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Purpose: To evaluate the performance of targeted next-generation sequencing 
(tNGS) in pathogen detection in acute lower respiratory infection.
Methods: The retrospective study was conducted between July 2023 and May 
2024 at the Yantai Yuhuangding Hospital. Patients with acute lower respiratory 
infections were included. Qualified sputum or bronchoalveolar lavage fluid 
samples were collected for tNGS and conventional microbiological tests(CMTs), 
including culture, staining, polymerase chain reaction (PCR), and reverse 
transcription-PCR (RT-PCR). The time required and cost were counted.
Results: A total of 968 patients were enrolled. Study analysis discovered 1,019 
strains of bacteria, 259 strains of fungi, 302 strains of viruses, 76 strains of 
Mycoplasma pneumoniae, and two strains of Chlamydia psittaci using tNGS. 
In addition, tNGS also identified 39 mecA, four KPC, 19 NDM, and two OXA-
48 genes. The positive rates for bacteria, fungi, viruses, mycoplasma, and 
chlamydia obtained using tNGS were significantly higher than those determined 
using traditional methods. Among them, tNGS showed high consistence 
with mycobacterium DNA test, influenza A (H1N1) virus nucleic acid test and 
COVID-19 nucleic acid test. Poor consistency between drug resistance genes 
and bacterial resistance phenotypes was found. In addition, tNGS also had 
advantages over traditional methods in terms of detection time and cost.
Conclusion: Compared to traditional methods, tNGS had higher sensitivity in 
detecting bacteria, fungi, viruses, and other pathogens in acute lower respiratory 
infection, and also had the advantages of timeliness and cost-effectiveness, 
making it a promising method for guiding clinical diagnosis.
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Background

Infectious diseases cause over 17 million deaths annually, accounting for over 25% of total 
mortality in the world (Dai et  al., 2022). Among these infectious diseases, acute lower 
respiratory infection, especially pneumonia, is still one of the main causes of infection-related 
deaths (Thorburn et al., 2015; Yang et al., 2018). Rapid and accurate detection of pathogenic 
microorganisms is a prerequisite for accurate diagnosis of acute lower respiratory infection 
and a key to determining treatment strategies (Wu et al., 2023). A failure to make a timely 
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diagnosis in patients with respiratory infection contributes to poor 
outcomes. However, traditional methods for microbial identification 
and diagnosis of infections, represented by culture, are often time-
consuming and have low sensitivity (Mansoor et al., 2023; Kullar et al., 
2023; Li et al., 2023). Moreover, several types of microorganisms, such 
as anaerobic bacteria, viruses, and Mycoplasma pneumoniae are very 
difficult to cultivate (Gao et al., 2021; Chen et al., 2024; Patiño et al., 
2021; Huang et  al., 2023). Therefore, traditional culture-based 
approaches cannot meet the requirements for clinical diagnosis of 
pathogenic infections in terms of accuracy and timeliness. 
Metagenomic NGS (mNGS) is an increasingly rapid and high-
throughput method for pathogen detection, which also has the ability 
to detect unknown pathogens (Gao et al., 2021; Chen et al., 2024). 
However, it is expensive and imposes a significant economic burden 
on patients. The conventional PCR/RT-PCR has high sensitivity, but 
it can only detect specific pathogens each time, which limits the 
clinical application. Based on these, it is crucial to develop a fast, cost-
effective detection method that covers a wide range of pathogens.

Targeted next-generation sequencing (tNGS) enriching specific 
pathogen sequences and antimicrobial resistance markers has become 
an alternative option to circumvent these limitations. Although tNGS 
has certain limitations, firstly, it cannot differentiate between 
colonization and infection of pathogens. Secondly, the genetic material 
of dead pathogens can result in false positives using this method. 
However, its detection speed is getting faster and the cost is relatively 
low, and it does not rely on traditional culture (Yu et al., 2023; Alexis 
Trecourt et al., 2023; Li et al., 2021; Huang et al., 2023). Furthermore, 
it can simultaneously detect pathogens and their drug-resistant genes 
(Zhang et al., 2024; Song et al., 2022; Iyer et al., 2023). Given these 
advantages, tNGS has significant application prospects in the diagnosis 
of acute lower respiratory infection. Previous research on tNGS has 
mostly focused on the diagnosis of tuberculosis and meningitis 
(Mansoor et al., 2023; Li et al., 2023; Gao et al., 2021; Chen et al., 
2024), and relatively few studies have evaluated the performance of 
tNGS in the context of acute lower respiratory infection.

The present study aimed to evaluate the performance of tNGS in 
pathogen detection in acute lower respiratory infection by comparing 
its detection rate to those of conventional microbiological tests(CMTs), 
including culture, staining, polymerase chain reaction (PCR), and 
reverse transcription-PCR (RT-PCR).

Methods

Study population

The present study was conducted between July 2023 and May 
2024 at the Yantai Yuhuangding Hospital of Shandong Province, a 
3,000-bed tertiary teaching hospital located in East China. Patients 
with obvious symptoms of acute lower respiratory infection were 
considered for inclusion in the study. The cohort included the 
following: (I) pneumonia patients with any of the following symptoms 
or signs: fever (>38 °C), tachypnea, tachycardia, wheezing, cough, new 
or progressive exudation, solid shadow, and cavity or pleural effusion 
on chest images; (II) tracheitis or tracheobronchitis patients with two 
of the following symptoms or signs: cough accompanied by increased 
sputum, respiratory distress, wheezing, apnea, or tachycardia; and 
(III) patients with other infections of the lower respiratory tract based 

on pulmonary radiology results, such as lung abscess or empyema. 
Specimens repeatedly submitted by the same patient within 1 week 
were excluded. The procedures involving human subjects were in 
accordance with the Declaration of Helsinki (as revised in 2013). 
Qualified sputum or bronchoalveolar lavage fluid (BALF) samples 
from all patients were collected for culture, rapid acid-fast staining, 
gomori methenamine silver(GMS) staining, PCR or RT-PCR, and 
tNGS. The time required and cost were also counted.

Clinical data collection

Clinical and demographic data for all study participants were 
retrieved through medical records and included information on sex, 
age, underlying diseases, admission to department, length of 
hospitalization, mechanical ventilation, and outcomes.

Conventional microbiological tests

All specimens were inoculated on Columbia blood agar (Autobio 
Diagnostics Co., Ltd., Zhengzhou, China), MacConkey agar 
(Autobio), chocolate agar(Autobio), and Sabouraud agar (Autobio) 
plates for bacterial and fungal cultivation. The microbiological 
identification was performed using matrix-assisted laser desorption/
ionization time-of-flight mass spectrometry (MALDI-TOF MS, 
Bruker Daltonics, Karlsruhe, Germany). Antibiotic susceptibility tests 
(imipenem and meropenem for Gram negative bacteria, and oxacillin 
for Staphylococcus aureus) were carried out via the VITEK®2 compact 
system (Biomérieux, Marcy l’Etoile, France). Rapid acid-fast staining 
(Baso Biotechnology Co., Ltd., Zhuhai, China) and mycobacterial 
DNA examination(Capital Biotechnology Co., Ltd., Beijing, China) 
were used to detect mycobacteria. GMS staining (Baso) was performed 
on patients with a suspected Pneumocystis jiroveci infection. PCR or 
RT-PCR examination (Sansure Biotechnology Co., Ltd., Changsha, 
China) was used to identify viral nucleic acids in specimens suspected 
of a viral infection. Immunochromatography (Dynamiker 
Biotechnology Co., Ltd., Tianjin, China) was utilized to detect 
carbapenem enzyme.

The tNGS

The panel design was derived from expert consensus and literature 
in the field of infection (Huang et al., 2020; Li et al., 2021; Liu et al., 
2023; Kasper and Fauci, 2016). The tNGS panel covered 153 pathogen 
targets commonly encountered in clinical scenarios and some 
resistance genes, and the complete list of target species and resistance 
genes identified is shown in Supplementary Table 1. The reference 
sequence data was curated mainly from NCBI RefSeq/NT, and highly 
similar redundant sequences were removed for improvement. For 
target selection, priority was given to genes that had been verified by 
PCR methods, followed by bioinformatics evaluation of conserved 
and specific regions. Specific primers were designed in accordance 
with strict standards described in a previous study, and the full list of 
primer panels can be found in Supplementary Table 2 (Yin et al., 2024).

The tNGS workflow includes total nucleic acid extraction, library 
construction, sequencing, and bioinformatics processing. Total 
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nucleic acid was extracted from all samples, including clinical samples, 
negative controls (NC) and positive controls (PC), using the Nucleic 
Acid Extraction and Purification Kit (KS118, KingCreate Biotech, 
Guangzhou, China) on the KingFisher™ Flex Purification System 
(Thermo Fisher Scientific, Waltham, MA, United  States). PCR 
amplification was performed using the Respiratory Pathogen 
Microorganisms Multiplex Testing Kit (KS608-100HXD96, 
KingCreate, Guangzhou, China). The amplification protocol started 
with an initial denaturation at 95 °C for 3 min, followed by 25 cycles 
of DNA denaturation at 95 °C for 30 s and annealing at 68 °C for 
1 min. Subsequently, the samples underwent 30 consecutive heating 
cycles, including denaturation at 95 °C for 30 s, annealing at 60 °C for 
30 s, and extension at 72  °C for 30 s. Finally, an extension was 
performed at 72 °C for 1 min to ensure the completion of all partially 
amplified fragments. After PCR amplification, the resulting product 
was purified. The generated library was then quantified using the 
Invitrogen™ Qubit™ 3.0/4.0 Fluorometer (Q33216, Thermo Fisher 
Scientific, USA) to ensure that the library concentration of all samples 
was ≥ 0.5 ng/μL; otherwise, library reconstruction was carried out.

Sequencing was performed using the KM Miniseq Dx-CN 
Sequencer (KY301, KingCreate, Guangzhou, China). Fastp v0.20.1 
was employed for adapter trimming and low-quality read filtering. 
The read filtration criteria were delineated as follows: (1) reads with 
an average quality score below 15 were subjected to trimming; (2) 
reads with a length of < 15 bp; (3) reads possessing the ambiguous “N” 
bases over 10. The obtained sequences were aligned with the human 
genome to filter out host sequences. Subsequently, Bowtie2 v2.4.1 was 
used to align with the reference database (containing 683 species of 
bacteria, 372 species of viruses, and 349 species of fungi) in a “very-
sensitive” mode. The number of reads per 100,000 sequencing reads 
was calculated at the species and genus levels.

Statistical analyses

SPSS Statistics 26 software (IBM Corporation, NY, United States) 
was used for data entry. Categorical data were summarized using 
percentages. For comparison of categorical variables, the chi-square 
test or Fisher’s exact test was performed. Continuous variables were 
represented as means ± standard deviations and compared using the 
Student’s t-test or Mann–Whitney U-test as appropriate. p < 0.05 was 
considered statistically significant.

Results

Baseline patient characteristics

A total of 968 patients were enrolled based on the inclusion 
criteria, of which 54.9% were male and 45.1% were female. Patient age 
ranged from 1 to 98 years, with an average of 60.72 ± 20.06 years. 
Furthermore, 6.3% of patients came from pediatric wards, 55.5% from 
respiratory wards, 34.5% from intensive care units, and 3.7% from 
other departments. 52.5% of patients had other comorbidities, with 
chronic obstructive pulmonary disease, bronchiectasis, and lung 
cancer being the most common. The average hospitalization time was 
17.04 ± 24.54 days. In addition, 73.1% of patients improved and were 
discharged, 16.8% died, 0.5% were transferred to higher-level 

hospitals, and 9.5% were transferred to infectious disease hospitals. 
The average white blood cell (WBC) counts, C-reactive protein (CRP) 
levels, and procalcitonin (PCT) levels were 9.47 ± 5.79, 60.40 ± 69.97, 
and 1.62 ± 6.53, respectively.

Among the 968 evaluated patients, 18.1% underwent mechanical 
ventilation, while 81.9% did not. The comparison between the two 
groups is shown in Table  1. Compared to the non mechanical 
ventilation group, the mechanical ventilation group had a higher age, 
higher WBC counts, CRP and PCT levels, longer hospital stay, and 
higher mortality rate.

A total of 305 qualified sputum samples and 663 BALF samples 
were collected in the study, and there was no statistically difference in 
the above indicators among different specimen types.

Overview of tNGS and CMTs

Overall, 1,019 strains of bacteria, 259 strains of fungi, 302 strains 
of viruses, 76 strains of Mycoplasma pneumoniae, and two strains of 
Chlamydia psittaci were detected in 968 samples through 
tNGS. Pathogen distribution and the top 10 pathogens are shown in 
Figure 1. Only one pathogen (92 were bacteria, 28 were fungi, 60 were 
viruses, and 27 were mycoplasma) was detected in 207 cases (21 
sputum, 186 BALF), while 761 cases were characterized by at least two 
pathogens. BALF was more likely to detect one pathogen (28.05% vs. 
6.88%), and the difference is statistically significant. Resistance genetic 
testing identified 39 mecA, four KPC, 19 NDM, and two OXA-48 
genes. The comparison of pathogens between tNGS and CMTs is 
shown in Figure 2.

Bacteria detection

A total of 92 cases of mycobacteria were detected in 968 samples, 
including 60 cases of Mycobacterium tuberculosis and 32 cases of 
non-tuberculous mycobacteria (intracellular mycobacteria, accounting 
for 78% of non-tuberculous mycobacteria, followed by Mycobacterium 
abscessus and Mycobacterium avium). The results of tNGS and rapid 
acid-fast staining as well as mycobacterial DNA detection(PCR) are 
shown in Figure 2. Compared to rapid acid-fast staining and PCR, 
tNGS could increase the mycobacterial detection rate by 178.8 and 

TABLE 1  Baseline characteristics between mechanical ventilation group 
and non mechanical ventilation group.

Variates Mechanical 
ventilation 

group 
(n = 175)

Non 
mechanical 
ventilation 
(n = 793)

p value

Age (years) 70.68 ± 14.41 58.52 ± 20.49 0.000

Sex (male) 93 (53.14%) 438 (55.23%) 0.615

WBC (*109/L) 11.89 ± 8.16 8.92 ± 4.94 0.000

CRP (mg/L) 93.45 ± 76.06 53.52 ± 66.72 0.003

PCT (ng/mL) 4.03 ± 11.02 0.92 ± 4.22 0.000

Hospital stay 

(days)

37.87 ± 40.74 12.49 ± 16.04 0.000

Outcome (died) 107 (61.14%) 56 (7.06%) 0.000
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FIGURE 1

The types of pathogens detected (a) and the distribution of the top 10 pathogens (b) in 968 respiratory samples using tNGS.
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26.0%, respectively, and the detection rate of Mycobacterium by tNGS 
was significantly higher than rapid acid-fast staining method 
(p = 0.000). The kappa coefficients for the consistency of tNGS with 
rapid acid-fast staining and PCR were 0.503 and 0.795, respectively. 
Using PCR as the gold standard, the sensitivity and specificity of tNGS 
for detecting Mycobacterium were 91.8 and 97.2%, respectively.

As shown in Figure  2, compared to traditional cultivation 
methods, tNGS has significantly improved the detection of bacteria. 
Particularly for bacteria that are not easily detected by conventional 
cultivation, such as Fusobacterium nucleatum, Tropheryma whipplei 
and Micromona micros, tNGS detected 89, 36, and 33 cases 
respectively, whereas the cultivation methods failed to detect any. For 
the majority of bacteria, those detected by culture methods were also 
identified by tNGS. However, there were 44 cases of Corynebacterium 

striatum, four cases of Acinetobacter baumannii, three cases of 
Pseudomonas aeruginosa, one case of Klebsiella pneumoniae, one case 
of Streptococcus pneumoniae, and four cases of Stenotrophomonas 
maltophilia with a positive culture but negative tNGS result. In terms 
of bacterial detection, tNGS and culture only showed 40.6% full or 
partial consistency. Using culture as the gold standard, the sensitivity 
and specificity of tNGS for detecting bacteria were 81.1 and 22.2%, 
respectively.

Fungal detection

A total of 122 cases of filamentous fungi were detected using 
tNGS, with Aspergillus fumigatus being the most common, detected 

FIGURE 2

The comparison of pathogens between tNGS and CMTs.
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in 83 cases, followed by Aspergillus flavus and Aspergillus niger, 
detected in 16 and 12 cases, respectively. A total of 89 filamentous 
fungi were identified using the cultivation method, and the fungal 
distribution patterns were similar to those observed by 
tNGS. Aspergillus fumigatus, Aspergillus flavus, and Aspergillus niger 
were detected in 56, 15, and 12 cases, respectively. In addition, one 
case of Schizophyllum commune was detected by the cultivation 
method but not by tNGS, and two cases of Scedosporium were detected 
by tNGS but not by the cultivation method. Moreover, 137 cases of 
Pneumocystis jiroveci were detected by tNGS, while only two cases 
were detected by GMS staining. The positive rates of tNGS for 
filamentous fungi and Pneumocystis jiroveci were significantly higher 
than those of traditional methods (p < 0.05). The kappa coefficient of 
consistency between tNGS and culture methods for detecting 
filamentous fungi was 0.495. Using culture as the gold standard, the 
sensitivity and specificity for detecting filamentous fungi were 67.4 
and 92.9%, respectively.

Virus, mycoplasma, and chlamydia 
infection detections

Three hundred and two strains of viruses were detected in 968 
patients, as shown in Figure 2. Influenza virus was the most common 
viruses, with 118 cases detected, followed by Rhinovirus, 
Cytomegalovirus and COVID-19, with 44, 41 and 38 cases detected, 
respectively. Among the 118 cases of influenza virus, 80 were influenza 
A (H1N1) virus and 38 were other influenza viruses. Unfortunately, 
nucleic acid tests were carried out only for influenza A (H1N1) virus 
and COVID-19, and 76 cases and 36 cases were detected, respectively. 
The kappa coefficients between tNGS and nucleic acid test for 
Influenza virus and COVID-19 were 0.761 and 0.972, respectively. 

Using nucleic acid testing as the gold standard, the sensitivity and 
specificity of tNGS for detecting influenza A (H1N1) virus were 97.4 
and 99.3%, respectively. The sensitivity and specificity for detecting 
COVID-19 were 97.2 and 99.7%, respectively.

In addition, a total of 76 cases of Mycoplasma pneumoniae and two 
cases of Chlamydia psittaci were detected in tNGS. The positive rate of 
Mycoplasma pneumoniae in pediatric patients was much higher than 
that in patients from other departments [59.02% (36/61) vs. 4.41% 
(40/907)].

Resistance gene detection

Multiple resistance genes or genotypes can also be  detected 
through tNGS, mainly including resistance genes that pose a serious 
threat to patients. The results are shown in Figure 3, the comparison 
between resistance genes and resistance phenotypes revealed that the 
overall consistency rate between resistance genes and resistance 
phenotypes was only 25% (16/64). Except for the high consistency rate 
(75%) between KPC resistance genes and resistance phenotypes, the 
consistency rate between other resistance genes and resistance 
phenotypes was less than 30%. In addition, a case of Staphylococcus 
aureus was found to be resistant to oxacillin, while mecA genetic test 
was negative.

Time required and cost

It took approximately 24 and 72 h for pathogen diagnosis by tNGS 
and culture, respectively. In addition, tNGS could simultaneously 
detect 153 pathogens and 370 resistance genotypes at a cost of 
approximately 1,000 RMB, making it cost-effective compared to 

FIGURE 3

The comparison of resistance genes and resistance phenotypes. *One case of Staphylococcus aureus was resistant to oxacillin, while mecA was 
negative.
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traditional methods. Therefore, tNGS also had advantages over 
traditional methods in terms of detection time and cost.

Discussion

The tNGS is an increasingly fast and relatively low cost method 
that can screen for multiple human pathogens in sputum and BALF 
samples in an unbiased manner (Dai et al., 2022; Li et al., 2022; David 
et al., 2022). One hundred and fifty-three pathogens and over 370 
resistance genes or genotypes can be detected for only about 1,000 
RMB, and the results can be obtained within 24 h, faster than culture, 
all of which lead to the increasing application of tNGS. The present 
study evaluated the application of tNGS in acute lower respiratory 
infection and found that the pathogen distribution detected by tNGS 
was consistent with the recognized pathogen distribution in acute 
lower respiratory tract infection, with bacterial and viral infections 
being the most common. Of course, previous studies have shown that 
some pathogens, such as Streptococcus pneumoniae, may also 
be normal microbial communities that colonize the respiratory tract 
(Li et al., 2022; Li et al., 2021). These pathogens may contaminate 
sputum when it passes through the mouth, leading to positive results. 
Therefore, characterizing the symbiotic colonization or pathogenic 
infection of these microorganisms requires consideration of the 
patient’s clinical manifestations, inflammatory indicators, and 
imaging results.

The tNGS test for mycobacterium was significantly superior 
to rapid acid-fast staining. The ability of tNGS to detect 
mycobacterium was comparable to that of PCR, and with high 
consistency. The sensitivity and specificity of tNGS for detecting 
Mycobacterium were both greater than 90%, indicating that tNGS 
had a stronger ability to detect Mycobacterium. Meanwhile, high 
sensitivity of tNGS made its detection rate for bacteria 
significantly higher than that of the culture methods. In this study, 
the consistency between tNGS and culture was only 40.6%, and 
the specificity was poor because tNGS could not distinguish 
between colonization and infection, live pathogens and corpses, 
and a small amount of pathogen colonization or genetic material 
could make tNGS positive, which is consistent with previous 
studies (Deng et al., 2023; Zhang et al., 2024). Moreover, tNGS 
cannot provide antimicrobial susceptibility results, therefore 
tNGS cannot replace culture in bacterial detection. Nevertheless, 
there are many bacteria that are difficult to cultivate, such as 
Legionella pneumophila, Bordetella pertussis, and Tropheryma 
whipplei, as well as some anaerobic bacteria, such as Micromona 
micros and Fusobacterium nucleatum. These bacteria are picky 
pathogens that are difficult to detect using traditional cultivation 
methods, while tNGS detection is not affected and can improve 
its detection rate. Unfortunately, the bacteria identified in the 
present study did not include Corynebacterium striatum, although 
prior studies generally consider it to be colonizing bacteria. It has 
also been recently reported that Corynebacterium striatum caused 
lower respiratory infections (Shariff et  al., 2018; Zhang 
et al., 2023).

The detection rate of tNGS for filamentous fungi was also 
higher than that of culture, but the matching degree was not 
particularly satisfactory. Due to the thick fungal cell walls, it was 

difficult to extract DNA, which may lead to negative tNGS and 
positive culture method results. Moreover, the culture methods 
were greatly influenced by antibiotics, resulting in positive results 
for tNGS and negative results for the culture methods. In addition, 
several samples showed inconsistent results using culture and 
tNGS, which may be due to double infections or high homology 
between the two fungi, resulting in incorrect identification by 
tNGS or MALDI-TOF MS. Although the sensitivity and 
consistency of tNGS were not particularly ideal, the specificity was 
greater than 90% and can be  used as an auxiliary diagnostic 
method for filamentous fungal infections. Pneumocystis jiroveci 
does not grow in commonly used culture media, and traditional 
methods often use GMS staining for detection. The present study 
found that the positivity rate of GMS staining was very low, while 
tNGS significantly increased the positivity rate.

The tNGS had excellent advantages in detecting viruses and other 
pathogens, including mycoplasma, chlamydia, and Rickettsia, which was 
also confirmed by the high sensitivity and specificity of tNGS in detecting 
influenza A (H1N1) virus and COVID-19. Viruses and mycoplasma are 
difficult to cultivate, and laboratory testing often uses single PCR or 
specific antibodies, which is time-consuming and costly (Chen et al., 
2022). The tNGS simultaneously detected 43 RNA viruses, 25 DNA 
viruses, and 11 other pathogens, greatly improving detection efficiency 
and reducing detection costs. In terms of the viruses, Influenza virus and 
Rhinovirus were the top two viruses detected, consistent with the 
generally recognized pathogens in acute lower respiratory infections. The 
detection rates of mycoplasma and chlamydia in tNGS were relatively 
low, which is consistent with previous study results (Li et al., 2022).

The biggest problem with molecular detection of drug resistance 
genes is the lack of sufficient research data on the consistency between 
drug resistance genes and resistance phenotypes, which makes it 
difficult for drug resistance genes to be used as resistance markers in 
clinical applications. Although research has found that tNGS drug 
resistance genes were in line with resistance phenotypes in 
approximately 65% (Zhang et  al., 2024), our study found that the 
consistency between the two was relatively low. The appearance of 
positive resistance genes with sensitive phenotypes may be related to 
the unexpressed or low expression levels of resistance genes, and 
clinical attention should be paid to changes in pathogen resistance. If 
the resistance gene is positive but the culture method shows no 
pathogenic bacteria growth, this may be related to the high sensitivity 
of the tNGS method, which can detect even trace amounts of 
pathogenic bacteria or genetic material. In addition, since tNGS can 
detect dead bacteria, if a specimen is collected after the effective use of 
antibiotics and the pathogen has died, tNGS can still detect its resistance 
genes, which can also lead to positive resistance genes and negative 
culture results, rendering the detection of resistance genes meaningless.

This report presents the application of tNGS in acute lower 
respiratory infection. Nevertheless, some limitations exist in this 
study. Firstly, this was a single-center study and may not 
be representative. Secondly, approximately 30% of the specimens in 
this study were sputum, and the presence of oral colonization bacteria 
may affect the detection rate, resulting in detection bias. However, it’s 
undeniable that tNGS surpasses traditional methods in diagnosing 
acute lower respiratory tract infection in many respects. It has proven 
to be a promising detection method, guiding the diagnosis of acute 
lower respiratory tract infection.
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Conclusion

Compared to traditional methods, tNGS had higher sensitivity in 
detecting bacteria, fungi, viruses, and other pathogens, and also had 
the advantages of timeliness and cost-effectiveness, all of which are 
typically considered in clinical use. The tNGS is a promising method 
for guiding clinical diagnosis of acute lower respiratory infection.
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