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Background: The rising global burden of invasive fungal infections and the 
growing issue of antifungal resistance present critical public health threats. By 
using multicenter surveillance data from Sichuan Province, we conducted the 
largest five-year study on fungemia to date. Our objective was to gain insights 
into regional differences in the distribution and resistance patterns of fungal 
pathogens.

Methods: We performed a retrospective analysis of fungal bloodstream infections 
(BSIs) from 31 hospitals (2019–2023). Integrated clinical and laboratory data 
were analyzed using WHONET 5.6 to assess resistance patterns, and Microsoft 
Excel (with PivotTable functionality) was used to analyze epidemiological trends.

Results: Annual fungal isolations increased steadily over the study period. Candida 
species accounted for 88.7% (1,805/2,034) of the bloodstream isolates, with C. 
albicans being the most common (38.4%, 694/1,805). The majority of patients 
were men (58.6%, 1,191/2,034) and aged 46 years or older (80.0%, 1,627/2,034). 
Intensive care unit (ICU) cases accounted for 36.8% (748/2,034) of the total. C. 
albicans showed the highest fluconazole susceptibility (91.2%, 633/694). Both 
C. albicans and the C. parapsilosis complex maintained >80% voriconazole 
susceptibility, followed by the voriconazole wild-type C. glabrata complex 
(69.3%). C. tropicalis exhibited high resistance to fluconazole (36.2%, 21/58) and 
voriconazole (34.8%, 20/58). Cryptococcus spp. displayed non-wild-type rates 
to amphotericin B (8.7%), flucytosine (5.8%), fluconazole (8.7%), voriconazole 
(8.0%), and itraconazole (4.1%). Different hospital types isolated varying fungal 
species. While C. albicans was the predominant species in 83.9% (26/31) of the 
hospitals, pediatric specialty centers exhibited distinct microbiological profiles, 
showing the highest isolation rates of the C. parapsilosis complex (χ2 = 18.34, 
p = 0.002).

Conclusion: Our research conducted across several centers, revealed significant 
geographic variations in the spread of fungal diseases and antifungal resistance. 
It is important to understand local epidemiology to guide antifungal therapy and 
enhance stewardship programs.
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1 Background

Bloodstream infections (BSIs) are life-threatening systemic 
invasions predominantly caused by bacterial or fungal pathogens 
(Dolatabadi et al., 2024; Najafzadeh et al., 2024). Notably, fungemia in 
critically ill patients carries serious prognostic implications, with 
30-day attributable mortality rates remaining between 35 and 50% 
despite advancements in diagnostic modalities and targeted therapies 
(Oren and Paul, 2014; Ruhnke et al., 2018; Arias et al., 2017). Yeasts of 
the Candida genus are the predominant etiological agents of invasive 
fungal diseases (IFDs) in hospitalized populations, accounting for 
42.7% of all IFDs (Ruiz-Ruigómez et al., 2018). As the first national 
surveillance system for IFDs, the China Hospital Invasive Fungal 
Surveillance Network (CHIF-NET) offers valuable epidemiological 
evidence. However, our analysis of fungemia data from 2019 to 2023 
showed that there are regional differences in the distribution of fungal 
pathogens and antifungal resistance (Enoch et  al., 2017). 
Understanding the epidemiological patterns and in vitro antifungal 
susceptibility characteristics of the causes of fungal BSIs in this region 
is crucial for clinical diagnosis and treatment. These evidence-based 
findings directly inform clinical decision-making algorithms for 
selecting empirical antifungal therapies and help optimize provincial-
level antimicrobial stewardship programs.

2 Materials and methods

2.1 Strains and identification of isolates

This retrospective cohort study followed the CHIF-NET protocols 
to collect fungal BSI data from 31 tertiary care hospitals across 
Sichuan Province (January 2019–December 2023). Strains of the same 
type and from the same patient were excluded, and the data of strains 
with antifungal sensitivity results were included. When duplicate 
strains had antifungal sensitivity results, the one isolated first was 
retained. Demographic and microbiological data were collected 
included gender stratification, age distribution, clinical department 
classification, fungal speciation, and antifungal susceptibility profiles. 
All isolates were identified to the species level using matrix-assisted 
laser desorption ionization time-of-flight mass spectrometry 
(MALDI-TOF MS, Bruker Corporation, Germany), VITEK MS 
(Bio-Merieux, France).

2.2 Antifungal agents and standards

Antifungal susceptibility testing was conducted using validated 
commercial microdilution systems: Sensititre YeastOne (Thermo 
Fisher Scientific, United States) and ATB FUNGUS 3 (bioMérieux, 
France). Antifungal susceptibility was determined following the 
Clinical and Laboratory Standards Institute (CLSI) guidelines. 
Susceptibility testing for C. albicans, the C. parapsilosis complex, 
C. tropicalis, and the C. glabrata complex (except voriconazole) against 

fluconazole, voriconazole, anidulafungin, caspofungin, and 
micafungin was performed using the CLSI M27M44S standards 
(Clinical and Laboratory Standards Institute, 2022a). Susceptibility of 
the C. glabrata complex to voriconazole, as well as susceptibility of 
C. albicans, the C. parapsilosis complex, C. tropicalis, and the 
C. glabrata complex to amphotericin B, itraconazole, and 
posaconazole, was analyzed using the epidemiological cutoff value 
(ECV) outlined in CLSI M57S (Clinical and Laboratory Standards 
Institute, 2022b). Similarly, susceptibility of Cryptococcus spp. to 
amphotericin B, flucytosine, fluconazole, voriconazole, and 
itraconazole was evaluated using the ECV outlined in CLSI 
M57S. C. albicans ATCC 90028 and C. parapsilosis ATCC 22019 were 
used as antifungal sensitivity quality controls.

2.3 Software tools and analytical methods

The data were processed using WHONET 5.6 and Microsoft Excel 
with PivotTable functionality. In addition, we used SPSS 25.0 software 
to analyze the data, and the count data were expressed as species (n). 
The χ2 test was performed, and a p-value of < 0.05 was considered 
statistically significant.

3 Results

3.1 Patient information and departmental 
distribution

The geographic distribution of the 31 hospitals from 1 January 
2019 to 31 December 2023 is shown in Figure 1. Of the 2,034 patients, 
58.6% (1,191/2,034) were male individuals and 41.4% (843/2,034) 
were female individuals. The incidence rates by age group were as 
follows: 2.7% (55/2,034) for patients aged 0–6 years; 1.3% (26/2,034) 
for patients aged 7–12 years; 1.1% (22/2,034) for patients aged 
13–17 years; 14.9% (304/2,034) for patients aged 18–45 years; 42.0% 
(854/2,034) for patients aged 46–69 years; and 38.0% (773/2,034) for 
patients over 69 years. The majority of the patients were admitted to 
the ICU (36.8%, 748/2,034), followed by the Department of Internal 
Medicine (27.7%, 564/2,034), Surgical Departments (15.3%, 
312/2,034), Emergency Medicine (8.7%, 177/2,034), Outpatient 
Clinics (4.0%, 81/2,034), Pediatrics (3.9%, 80/2,034), and other 
departments (e.g., Gynecology, Reproductive Medicine; 3.5%, 
72/2,034).

3.2 Strain isolation

Longitudinal analysis revealed a significant upward trend in 
fungal isolations from 2019 to 2023, with an anomalous decline in 
2022 potentially associated with COVID-19 containment measures. 
Among the 2,034 fungemia cases, Candida species were the 
predominant etiological agents (88.7%, n = 1,805). C. albicans 
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comprised 38.4% (694/1,805), followed by the C. parapsilosis complex, 
C. glabrata complex, and C. tropicalis. Cryptococcus spp. ranked fifth 
among all isolates, accounting for 8.3% (169/2,034). Detailed species 
distribution and annual isolate counts are provided in Table 1.

3.3 Antifungal susceptibility testing in vitro

The number of tests included in the analysis did not always 
match the number of strains isolated due to variations in the drug 
sensitivity kits used at each hospital, which led to the exclusion of 
certain drugs from the analysis. C. albicans showed the highest 
susceptibility to fluconazole (91.2%), followed by the C. parapsilosis 
complex. C. albicans and the C. parapsilosis complex exhibited 
over 80% susceptibility to voriconazole, followed by the 
voriconazole wild-type C. glabrata complex (69.3%). A high 
percentage of wild-type isolates to itraconazole was observed in 
the C. parapsilosis and C. glabrata complexes, as well as in 
C. albicans and the C. parapsilosis complex for posaconazole. The 
resistance rates of C. tropicalis to fluconazole and voriconazole 
were 36.2 and 34.8%, as shown in Table  2. C. albicans, the 
C. parapsilosis complex, the C. glabrata complex, and C. tropicalis 

showed high susceptibility to amphotericin B, caspofungin, 
micafungin, and anidulafungin, as shown in Table 3. A total of 169 
Cryptococcus spp. strains were isolated from 2,034 patients with 
fungal BSIs. These strains exhibited varying rates of not-wild-type 
susceptibility to amphotericin B (8.7%), flucytosine (5.8%), 
fluconazole (8.7%), voriconazole (8.0%), and itraconazole (4.1%), 
as shown in Table 4.

3.4 Changes in resistance to fluconazole 
and voriconazole

Among the four common Candida species, C. albicans 
exhibited the lowest resistance rates to fluconazole and 
voriconazole, with both rates declining annually. In contrast, 
fluconazole resistance in the C. parapsilosis complex initially 
increased but subsequently declined, while voriconazole resistance 
decreased consistently each year. C. tropicalis displayed the highest 
resistance rates to both antifungal agents in 2021, exceeding 50% 
(fluconazole: 55.5%; voriconazole: 50.8%; p < 0.01), but these rates 
declined over the following 2 years (p < 0.05), as shown in 
Figure 2.

FIGURE 1

The study’s geographic coverage (18 cities, dark gray). The number of hospitals that participated in the study is indicated by the first number in 
parentheses under the city name, and the number of isolates gathered is indicated by the second number.
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TABLE 1 Distribution of bloodstream infection-causing fungi over a 5-year period.

Species Overall Year

n % 2019 2020 2021 2022 2023

Candida spp. 1805 88.7%

C. albicans 694 38.4% 133 112 186 85 178

C. parapsilosis complex 356 19.7% 56 59 106 41 94

C. glabrata complex 335 18.6% 49 57 74 41 114

C. tropicalis 290 16.1% 46 45 70 22 107

P. kudriavzevii 30 1.7% 3 8 6 5 8

C. lusitaniae 16 0.9% / 2 7 / 7

C. guilliermondii 15 0.8% 8 4 1 1 1

W. anomalus 8 0.5% 2 1 4 / 1

C. intermedia 4 0.2% / 2 1 / 1

D. rugosa 2 0.1% 2 / / / /

D. catenulata 3 0.2% / / 2 / 1

P. norvegensis 2 0.1% / 1 1 / /

C. haemulonii 2 0.1% 1 / / / 1

K. marxianus 2 0.1% 1 / 1 / /

C. inconspicua 1 0.1% 1 / / / /

Y. lipolytica 1 0.1% / / 1 / /

C. auris 2 0.1% / / / / 2

Other 42 2.3% 11 8 11 4 8

Cryptococcus spp. 169 8.3%

C. neoformans 168 99.4% 29 31 41 20 47

P. laurentii 1 0.6% 1

Talaromyces spp. 49 2.4%

T. marneffei 49 100.0% 11 9 7 8 14

Trichosporon spp. 11 0.6%

T. asahii 7 63.6% 3 1 1 / 2

T. ovoides 2 18.2% / 1 1 / /

T. beigelii 1 9.1% / / 1 / /

T. faecale 1 9.1% / / 1 / /

Total 2034 100.0% 356 341 523 227 587

The bold values in table represent the number of species of each spp.

TABLE 2 In vitro susceptibility of the selected pathogenic fungi to azoles.

Species Fluconazole Voriconazole Itraconazole Posaconazole

n SDD% S% R% n I% S/WT% R/
NWT%

n WT% NWT% n WT% NWT%

C. albicans 693 1.7 91.2 7.1 693 5.5 88.9 5.6 / / / 113 93.8 6.2

C. parapsilosis 

complex

356 9.3 76.4 14.3 356 7.3 87.4 5.3 356 96.4 3.6 82 100.0 0.0

C. glabrata 

complex

335 94.3 / 5.7 335 / 69.3 30.7 335 93.4 6.6 49 67.4 32.6

C. tropicalis 290 2.8 61.0 36.2 290 10.3 54.9 34.8 290 65.5 34.5 46 32.6 67.4

SDD, susceptible-dose dependent; S, susceptible; I, intermediate; R, resistant; WT, wild-type; NWT, non-wild-type. Data are expressed as numbers and percentages (%) of each species.
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3.5 Differences in the distribution of fungi 
across hospitals

C. albicans, the C. parapsilosis complex, the C. glabrata complex, 
and C. tropicalis were the predominant species causing fungal BSIs 
across the 31 hospitals. There was some variation in the ranking of the 
fungal species isolated across hospitals, although C. albicans 
predominated in most institutions. However, in certain hospitals, such 

as Panzhihua Central Hospital, Zigong First People’s Hospital, and 
Xichang People’s Hospital, the C. glabrata complex accounted for the 
highest number of isolates. The highest number of C. tropicalis isolates 
was reported at the Affiliated Hospital of Sichuan North Medical 
College, while the C. parapsilosis complex was the most frequently 
isolated fungal species at the Second West China Hospital of Sichuan 
University. Figure 3 shows the differences in the distribution of fungal 
isolates responsible for bloodstream infection across hospitals.

TABLE 3 In vitro susceptibility of the selected pathogenic fungi to amphotericin B and echinocandins.

Species Amphotericin B Caspofungin Micafungin Anidulafungin

n WT% NWT% n I% S% R% n I% S% R% n I% S% R%

C. albicans 693 97.8 2.2 369 0.0 96.6 3.4 369 0.0 96.3 3.7 369 0.0 94.6 5.4

C. parapsilosis 

complex

356 99.1 0.9 208 0.0 100.0 0.0 208 0.0 97.9 2.1 208 0.0 100.0 0.0

C. glabrata 

complex

335 98.7 1.3 160 10.9 86.9 2.2 160 3.1 90.6 6.3 160 0.0 91.7 8.3

C. tropicalis 290 97.9 2.1 144 0.0 100.0 0.0 144 0.0 100.0 0.0 144 6.9 93.1 0.0

S, susceptible; I, intermediate; R, resistant; WT, wild-type; NWT, non-wild-type. Data are expressed as numbers and percentages (%) of each species.

TABLE 4 In vitro susceptibility of Cryptococcus spp. to the selected antifungal agents.

Species Amphotericin B Flucytosine Fluconazole Itraconazole Voriconazole

WT% NWT% WT% NWT% WT% NWT% WT% NWT% WT% NWT%

Cryptococcus 

spp.

91.7 8.3 94.2 5.8 91.3 8.7 92.0 8.0 95.9 4.1

WT, wild-type; NWT, non-wild-type. Data are expressed as percentages (%) of each species.

FIGURE 2

Trends in the resistance of the common Candida species to fluconazole and voriconazole. R for Resistant; NWT for Non-wild-type. Different colors 
represent distinct Candida species: blue for C. albicans, orange for the C. parapsilosis complex, gray for the C. glabrata complex, and yellow for C. 
tropicalis.
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4 Discussion

The number of patients with invasive mycoses is rising due to 
increasing risk factors such as immunocompromised states, neoplastic 
diseases, leukemia, and invasive operations (Pappas et al., 2018; Puig-
Asensio et al., 2014). The annual number of fungal BSIs reported from 
31 hospitals in the Sichuan provincial center of the CHIF-NET 
increased steadily from 2019 to 2023, with the exception of 2022 when 
a decline occurred likely due to COVID-19-related disruptions. This 
is the largest recent study of fungemia in Sichuan. Few other studies 
in China have conducted province-wide surveillance over a 5-year 
period, particularly in comparing different types of hospitals. In our 
study, men accounted for 58.6% (1,191/2,034) of the patients, with 
80.0% (1,627/2,034) being middle-aged or elderly patients (>46 years 
old). Previous studies have shown that fungal BSIs are highly prevalent 
in middle-aged and elderly populations. In addition, 36.8% 
(748/2,034) of the cases were from ICUs, followed by the Department 
of Internal Medicine and Surgical Departments. IFDs in ICUs 
represent a critical clinical challenge, with a global incidence 
increasing by 6.8% annually. This rise is largely due to the severity of 
illness in ICU patients and risk factors such as invasive procedures, 
prolonged bed rest, and extended antifungal use, all of which 
contribute to an increased likelihood of infection (Vincent et al., 2009).

Candida species dominated the fungal distribution (88.7%, 
1,805/2,034). The most common species was C. albicans, followed by 

the C. parapsilosis complex, the C. glabrata complex, and C. tropicalis. 
This distribution differs from reports in other countries and shows 
regional variation compared to national data from the CHIF-NET 
(Xiao et  al., 2018a). The pathogenicity of fungal BSIs shifts from 
C. albicans to non-albicans Candida species, and there is also variation 
in the virulence of different Candida species (Arendrup, 2013). In this 
study, non-albicans Candida species outnumbered C. albicans as 
causes of BSIs. This shift in pathogen distribution may reflect the 
widespread use of antifungal agents, which can alter the epidemiology 
of fungal BSIs (Pfaller et  al., 2019). Two strains of C. auris were 
detected in 2023, representing only 0.1% (2/2,034) of the cases. 
However, C. auris is an emerging fungus that can cause serious 
illnesses and is easily spread among patients in healthcare facilities. 
The emergence and rapid increase of C. auris should be considered a 
threat. C. auris was first discovered in China in 2018 (Wang et al., 
2018; Chen et al., 2018). As of December 2023, C. auris has been 
reported in 10 provinces across China. A study reported 312 cases of 
C. auris infections across 18 hospitals. The researchers found 
significant differences in prevalence between years, with the lowest 
number of cases occurring in 2020–2021. Notably, the number of 
infections increased dramatically to 182 in 2023, marking a 450% rise 
compared to 2022 (33 cases) (Bing et al., 2024). C. auris causes serious 
infections including bacteremia, wound infections, and catheter-
associated infections (Tsay et al., 2017), and it can also colonize the 
urinary tract, respiratory system, digestive tract, and central nervous 
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FIGURE 3

Differences in the distribution of fungal isolates across the 31 hospitals. The Y-axis represents isolate counts, explicitly labeled as “n” (number of 
isolates). Different colors represent distinct Candida species: blue for C. albicans, orange for the C. parapsilosis complex, gray for the C. glabrata 
complex, yellow for C. tropicalis, and light blue for C. neoformans.
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system (Eyre et al., 2018). The fungus persists in hospital environments 
and colonizes patients’ skin, posing significant infection control risks. 
Primarily affecting immunocompromised individuals through 
nosocomial transmission, C. auris carries a high mortality rate (up to 
60% in BSI cases) (Boutin and Luong, 2024). Its propensity for causing 
hospital outbreaks jeopardizes the safety of patients and healthcare 
workers. On the other hand, C. auris is naturally prone to carry 
antifungal resistance-related genes, and more than 90% of clinical 
isolates of C. auris are resistant to azole antifungal agents (Chowdhary 
et al., 2023). Resistance to other antifungal agents (e.g., amphotericin 
B or echinocandins) is also frequently observed, complicating 
treatment strategies for C. auris infections and significantly increasing 
healthcare costs, compared to other fungal infections.

The isolation rates of different fungi varied across hospitals. For 
example, the C. parapsilosis complex was the most frequently isolated 
fungal pathogen at the Second Hospital of West China, Sichuan 
University, accounting for 53.6% (22/41) of cases. This may be because 
the hospital is a specialized children’s hospital (Yılmaz-Ciftdoğan 
et al., 2021). The C. parapsilosis complex comprises C. parapsilosis, 
C. metapsilosis, and C. orthopsilosis. Although these species were not 
individually listed in the Results section of this study, it should 
be noted that they exhibit differences in antimicrobial susceptibility 
breakpoints and phenotypic profiles. Similar considerations apply to 
the C. glabrata complex. Unlike in adults, the C. parapsilosis complex 
may be the predominant pathogen causing fungal BSIs in children. 
Among Candida species, the C. parapsilosis complex ranks second 
only to C. albicans in biofilm-forming capability among clinically 
relevant species (Mancera et  al., 2021). Biofilms formed by this 
complex are structurally less complex and thinner than those of 
C. albicans, facilitating their attachment to medical devices (Larkin 
et al., 2018). In children, the gut is not fully developed, allowing the 
C. parapsilosis complex to enter the bloodstream through damaged 
mucosal barriers. This leads to infections in children. It can also 
be  transmitted to immunocompromised children by healthcare 
workers through contact.

An important limitation of our study is the variability in antifungal 
susceptibility testing methods among the participating hospitals, 
which may affect the comparability of resistance rates for certain 
agents. Nevertheless, the data presented in this study can still truly 
reflect the prevalence of fungal BSIs in Sichuan Province. In this study, 
the best in vitro susceptibility of Candida to the antifungal agents 
analyzed was observed with echinocandins, followed by amphotericin 
B. Among the azoles, fluconazole (except C. albicans) and voriconazole 
showed sensitivities of no more than 90%. This may be due to the 
extensive clinical use of fluconazole, which has driven natural selection 
in Candida itself, leading to mutations in certain genes that make it 
less sensitive to fluconazole (Andes et al., 2006). The C. parapsilosis 
complex showed resistance rates of 14.3 and 5.3% to fluconazole and 
voriconazole, respectively, both of which were higher than those 
reported in 20 consecutive years of surveillance data from the SENTRY 
Antimicrobial Surveillance Program (Pfaller et al., 2019). C. tropicalis 
exhibited resistance rates of 36.2 and 34.8% to fluconazole and 
voriconazole, respectively, with rates exceeding 50% in 2021. These 
values are notably higher than those reported by the CHIF-NET 
(fluconazole 21.0% vs. voriconazole 21.4%) (Xiao et al., 2018a). As 
with the threat posed by the emergence and rapid spread of C. auris, 
the increasing azole resistance rate of C. tropicalis also warrants serious 
attention. The rate of drug resistance in C. tropicalis has been 

increasing annually, as shown in some studies (Fan et al., 2017). The 
increase in isolation rates of azole-resistant strains was not associated 
with the amount of azole antifungal used. However, several 
mechanisms of resistance to azoles in C. tropicalis have been identified, 
including mutations and overexpression of the ERG11 gene (Morio 
et al., 2017), mutations and overexpression of the UPC2 gene (Choi 
et al., 2016), and overexpression of the MDR1 and CDR1 genes (Fan 
et al., 2019). The observed increase in fluconazole resistance poses a 
direct threat to the effectiveness of first-line therapy for C. tropicalis 
infections. In regions where resistance rates exceed 10%, Infectious 
Diseases Society of America (IDSA) guidelines recommend avoiding 
fluconazole for the empirical treatment of BSIs. Our data suggest that 
local stewardship programs should prioritize the use of echinocandins 
or voriconazole in high-risk patients (Pappas et al., 2016). In this study, 
resistance rates to fluconazole and voriconazole were higher than those 
observed for itraconazole. Further investigation is needed to determine 
the underlying reasons for this difference. The IDSA guidelines 
recommend echinocandins as the best treatment for IFDs because 
resistance to azole antifungal agents has increased. The European 
Committee on Antimicrobial Susceptibility Testing (EUCAST) has not 
established a breakpoint for caspofungin because susceptibility results 
for caspofungin vary significantly across laboratories. The EUCAST 
also does not recommend using caspofungin MIC values for clinical 
evaluation. Some laboratories found that certain C. glabrata complex 
isolates were susceptible to anidulafungin but not to caspofungin when 
tested using methods such as the E-test and Sensititre YeastOne for 
sensitization. This discrepancy may be related to the variability of the 
in vitro assay for caspofungin (Arendrup and Pfaller, 2012; Eschenauer 
et al., 2014). Therefore, the EUCAST recommends using anidulafungin 
and micafungin as markers for caspofungin susceptibility. Until 2018, 
when the first case of echinocandin-resistant C. glabrata infection was 
reported in China. The main mechanism of its resistance to 
echinocandins is a mutation in FKS1/FKS2, and the FKS2 E655K 
mutation (Fks2 HS1) is a recently identified echinocandin resistance 
site (Xiao et al., 2018b). Therefore, when testing for caspofungin, the 
result can be directly reported as “Sensitive.” When an “Intermediate” 
or “Resistant” result is obtained, it is necessary to confirm the result 
using the following methods: 1. Additional testing for micafungin or 
anidulafungin; 2. DNA sequencing analysis, including screening for 
FKS1 point mutations in all Candida species and FKS2 point mutations 
specifically in C. glabrata; and 3. sending the isolate to a reference 
laboratory for further confirmation. In addition, Candida spp. should 
report resistance to all echinocandins (including caspofungin) if they 
are resistant to anidulafungin or micafungin or carry an FKS 
point mutation.

The preferred treatment for Cryptococcus infections is amphotericin 
B (Iyer et al., 2021). In our study, 8.3% (14/169) of Cryptococcus strains 
were classified as non-wild-type for amphotericin B, which is 
inconsistent with the results of a global drug sensitivity study of 3,590 
novel Cryptococcus strains conducted by Espinel-Ingroff et al. (2012). A 
total of five Cryptococcus strains exhibited non-wild-type susceptibility 
to amphotericin B (four strains with an MIC = 1 μg/mL; one strain with 
an MIC = 2 μg/mL). This reduced susceptibility may reflect prolonged 
amphotericin B exposure in patients with disseminated cryptococcosis, 
where antifungal pressure selects for resistant subpopulations (Córdoba 
et al., 2016). In addition, since most laboratories use Sensititre YeastOne, 
which is not the gold standard (broth microdilution method), this may 
result in the observation of higher levels of not-wild-type strains.
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Our findings reveal a critical geospatial divergence in both fungal 
pathogen distribution and resistance profiles. Given the high 
prevalence of azole-resistant C. tropicalis and the emergence of 
C. auris, empirical treatment with echinocandins should 
be considered for high-risk patients, particularly in settings where 
resistance rates exceed established thresholds. Accurate knowledge 
of the regional epidemiology of pathogenic fungi and suspected 
fungal BSIs is essential for the early selection of appropriate empirical 
antifungal treatment or intervention, even before definitive 
pathogenic evidence is obtained.
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