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Wetlands are the largest natural sources of methane (CH4) emissions

worldwide, with methanogenic archaea serving as the primary drivers of CH4

production. Nevertheless, the influences of biotic factors (e.g., methanogen

abundance, community diversity and composition) and abiotic factors (e.g., soil

properties) on potential CH4 production rates remain insu�ciently understood

in Qinghai-Tibet Plateau. In this study, we examined soil properties, potential

methane production rates (PMPRs), methanogenic archaeal abundance,

diversity, community structure, and co-occurrence networks across four

wetlands (two desert wetlands and two peatlands) with contrasting soil

conditions on the northeastern edge of the Qinghai-Tibet Plateau. We found no

significant di�erences in methanogen abundance and PMPRs among the four

wetlands, but the two were significantly positively correlated. The structure of

methanogenic communities varied markedly among wetlands and was mainly

shaped by soil pH. The complexity of co-occurrence networks was positively

correlated with both methanogen diversity and PMPRs. Further analysis using

partial least squares path modeling (PLS-PM) revealed that PMPRs were closely

associated with soil nutrition (soil total organic carbon and total nitrogen;

standardized path coe�cient = 0.307), methanogenic abundance (0.570) and

network complexity (0.238). It indicated that biotic factors may exert a greater

influence than abiotic factors on soil PMPRs in wetland ecosystems. Additionally,

complex microbial interaction networks may play a more crucial role in

regulating PMPRs than methanogenic diversity and community structure. Our

study highlights a strong link between methanogenic network complexity and

methane-producing potential, o�ering a novel perspective on the relationship

between community interactions and ecosystem function.
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1 Introduction

The concentration of methane (CH4) in the troposphere has increased by 150% since

the onset of industrialization (Etminan et al., 2016). Compared to carbon dioxide, methane

is 72 times more potent in trapping heat radiation over a 20-year period (Stavert et al.,

2022). As a result, it is expected to play a significant role in driving future global warming
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caused by the greenhouse effect. Wetlands are the largest natural

sources of CH4 (Saunois et al., 2020). Ground-penetrating

radar and pore water-sampling efforts have shown that wetland

belowground topography can shape hydrology in ways which

enhance downward transport of labile organic carbon into deep

peat, encouraging methanogenesis meters below the surface

(Abdalla et al., 2016). Among various wetland ecosystems,

freshwater wetlands (138–165 Tg CH4 yr−1) and lakes (23–142 Tg

CH4 yr−1) constitute the dominant methane emitters. These are

followed by rice paddies (25–32 Tg CH4 yr−1), reservoirs (9–28

Tg CH4 yr−1), coastal oceans (<200m depth; 5–28 Tg CH4 yr−1),

and rivers/streams (2–21 Tg CH4 yr−1) (Rosentreter et al., 2021).

Aquatic CH4 is predominantly generated by methanogenic archaea

in soils during the terminal stage of anaerobic organic matter

degradation (Hao et al., 1988; Nazaries et al., 2013; Gruca-Rokosz

et al., 2020; Rosentreter et al., 2021; Stavert et al., 2022).

Archaea-mediated methanogenesis accounts for approximately

69% of global atmospheric methane emissions (Conrad, 2009).

Methanogens are key microorganisms influencing methane

production, as their diversity, abundance, and metabolic activity

directly determine the rate and total amount of methane

generated. Some studies have revealed that soil properties and

methanogenic microbial communities can influence the function

of methanogens (Brooker et al., 2014; Deng et al., 2019; Yang

et al., 2022). For example, pH plays an important role in habitat

filtering, which shapes the methanogenic biogeographic pattern

in paddy soils, lakes, and dry lands (Hu et al., 2013). In coastal

wetland systems such as mangroves, the abundance of labile

organic matter is considered a major driver of methane emissions

(Xiang et al., 2015). Meanwhile, biotic factors also drive methane

emissions in soils. Archaeal methanogens genes and bacterial

methylphosphonate degradation genes were both positively

correlated with methane flux in salt ponds (Zhou et al., 2022). In

an ombrotrophic peat bog in Maine, USA, researchers observed

variation in methanogen abundance explaining 70% of the flux

heterogeneity in a subset of plots (Arnold et al., 2023). These

suggested that the effects of biotic and abiotic factors on the

function of methanogenic communities remain controversial.

Obtaining detailed knowledge of complex species interactions

in natural environments through empirical studies remains a

significant challenge, particularly for the most abundant and

diverse microbial taxa (Layeghifard et al., 2017). In recent years,

co-occurrence network analysis has become a widely used approach

in ecology for inferring potential microbial interactions (Barberán

et al., 2012). Methanogens engage in complex associations

that encompass both interspecies and intraspecies syntrophic

relationships, as well as competitive interactions (Li et al.,

2021). Although coexistence cannot be strictly equated with co-

occurrence, co-occurrence patterns offer valuable insights into

potential coexistence relationships, spanning from taxon pairs to

complex multi-taxon communities across diverse ecosystems (Eiler

et al., 2012; Tavella and Cagnolo, 2019). While previous studies

have made important contributions in describing methanogenic

community composition and diversity, as well as in elucidating the

effects of biotic factors on CH4 fluxes in wetlands (Feng et al., 2021;

Dong et al., 2023; Qin et al., 2024; Yang et al., 2024), few have

examined the interactions among soil methanogens themselves,

which are likely to play a more critical role in the functioning of

complex ecosystems.

The Qinghai-Tibet Plateau plays a critical role in both regional

and global climate systems and ecological processes. It is also a

sensitive indicator of climate change (Chen et al., 2013), and a

critical component of the global carbon cycle. It has been called

the “third pole” of the Earth, and is a major CH4 emission

hotspot (Ding and Cai, 2007). We collected 128 soil samples

from four different wetland ecosystems, which vary in habitat

characteristics and soil properties on the northeastern edge of the

Qinghai-Tibet Plateau (Supplementary Figure 1). We analyzed soil

properties, measured soil potential CH4 production rates (PMPRs)

in lab, assessed the abundance and community composition of

methanogens. Studying methanogenic communities in diverse

wetland habitats provides a broader understanding of their

variation and enhances the generalizability of findings, and offers

new perspectives on the mechanisms driving methanogen function

and adaptation. Specifically, we address the following questions: (i)

Whether abiotic factors or biotic factors have a greater influence

on potential CH4 production rates. (ii) More complex networks

may enhance ecosystem functioning (Morriën et al., 2017; Zhang

et al., 2024), though whether this applies to methanogen networks

in promoting soil methanogenesis remains unclear.

2 Materials and methods

2.1 Study site description and sampling

Our samples were collected from four wetland ecosystems

on the northeastern edge of the Qinghai-Tibet Plateau. The four

wetlands are located in Maqu (MQ), Luqu (LQ), Zhangye (ZY)

and Sugan lake (SGH), respectively (Supplementary Table 1 and

Figure 1). MQ and LQ are peatlands located in the eastern Qinghai-

Tibet Plateau, while ZY and SGH are desert wetlands situated in the

arid northern region, characterized by low precipitation and a dry

climate (Zhou et al., 2019).

On July and August 2020, eight 2× 2-m2 plots (>50m interval)

were randomly arranged from each region, respectively. The soil

samples were collected from five points (the four corners and

center) in each plot and subsequently blended to obtain a composite

sample. At each plot, soil samples were collected at four depths, 0–5,

5–10, 10–20, 20–40 cm, respectively. In total, 128 soil samples were

collected in quadruplicate from eight plots and four depths. The

samples were then transported to the laboratory and divided into

two parts as follows: one part was air dried and sieved through a

2mmmesh for the soil properties analysis; the other part was stored

at−20◦C before DNA extraction and the incubation experiment.

2.2 Soil properties analysis

Weighed 10 g air-dried soil samples, added 50ml of 1 mol/L

KCl solution, then measured the soil pH by a pH meter (Sartorius

PB-10; Sartorius AG, Göttingen, Germany) (Xi et al., 2023). Soil

electrical conductivity (EC) was measured in water (1:5 w/v) by

conductivity meter (CT-3031) (Fang et al., 2024). The soil moisture
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FIGURE 1

Comparison of mcrA gene abundance and the potential methane production rates (PMPRs) in wetlands. Comparison of mcrA gene abundance and

PMPRs of each site, Di�erent letters indicate the significance at P < 0.05 by Tukey’ s honest significance test (a). Linear regression analysis was used

to assess the relationship between mcrA gene abundance and CH4 production in four sites and all samples (b). The significance levels reported were

based on Spearman’s coe�cient. The x axis is transformed by log10.

content (SWC) was determined by drying the fresh soil to a

constant weight at 105◦C, 5◦C. The soil total organic carbon (TOC)

and soil total nitrogen (TN) were determined by Elementar analysis

systemCHNS (Elementar AnalysensystemeGmbH, Langenselbold,

Germany) (Yang et al., 2020). The soil total phosphorus (TP)

was analyzed by digestion with sulfuric acid at 375◦C, 5◦C. Soil

available N (NO−
3 and NH+

4 ) were extracted using 2M KCl (1:5

w/v) and analyzed by FIAstar 5000 Analyzer (FOSS, Hillerød,

Denmark) (Peng et al., 2024). Due to logistical constraints, soil

available nitrogen was measured using air-dried samples. While

fresh soil is generally preferred for such measurements, all samples

were processed under the same conditions, ensuring relative

comparability across samples. The results of soil properties are

presented in Supplementary Table 2.

2.3 Potential methane production rates
(PMPRs)

Anaerobic incubation experiments were conducted to measure

sediment CH4 production potential (Yang et al., 2022; Mu et al.,

2025). Approximately 5 g of each soil sample was put into a 120mL

serum vials capped with two-way valves and in deionized water

was added in 1:1 v/v. Before the start of incubation, the bottles

were flushed with pure nitrogen gas (N2) for 5–8min to create

an anoxic condition (Vizza et al., 2017). From each sample, we

prepared three replicates for quality control and one control filled

only with N2. CH4 concentrations were measured on the first and

fifteenth day use a gas chromatograph (Agilent 7890, Santa Clara,

CA, USA) equipped with a flame ion detector (FID) using 10ml

gas samples from the bottle. The furnace temperature, FID, and

ECD detector temperature were 55, 200, and 300◦C, respectively.

99.999% high purity nitrogen was selected as the carrier gas, and

the flow rate was 2 mL/min. High purity hydrogen and air were

used as the gas with flow rates of 40 and 400 mL/min, respectively.

Soil potential methane production rates (PMPRs) were calculated

according to soil incubation time and gas concentration as the

following equation:

PP =
dc

dt
·
MM · VH · PA

R ·Ws
·

TST

TST + T

PP is the flux of CH4 in soil samples [ng CH4 g−1 (dry

weight) day−1]; dc/dt is the rate of change in headspace CH4 in

the incubation bottle over time (mmol mol−1 d−1); MM is the

molar mass (g mol−1) of CH4 (g); VH is the volume of serum

bottles headspace (L); PA is the atmospheric pressure (kPa); R is

the gas constant (m3 Pa ◦K−1 mol−1); WS is the dry weight of

soil sample (g); TST and T are the standard temperature (◦K) and

the incubation temperature (◦K), respectively (Li et al., 2021; Yang

et al., 2022).

2.4 DNA extraction and gene qPCR

DNA extraction was performed from 0.25 g soil samples with

DNeasy Power Soil kit (Qiagen, Germantown, MD, United States).

The methyl coenzyme M reductase (mcrA) gene, which catalyzes

the final step in all methanogenic pathways by reducing the

methyl group attached to coenzyme M, is widely utilized as a

functional gene marker in the characterization of methanogenic

communities (Luton et al., 2002). The copy numbers of mcrA

gene were determined by real-time PCR with primer set

mlas (55′′- GGTGGTGTMGGDTTCACMCARTA) – rev (55′′ -

CGTTCATBGCGTAGTTVGGRTAGT) (Ma et al., 2010; Angel

et al., 2012) and a SYBR Green System (Takara Bio Inc., Shiga

Japan) as described previously (Costello and Lidstrom, 1999; Kolb

et al., 2003), Technical replicates were performed in triplicate. The

assays were performed using a Q5 Real-Time PCR System (Applied

Biosystems, Foster City, CA, USA) and the associated software. The

20 µl reaction mixtures contained: 2 µl template DNA, 10 µl SYBR

Green, 0.4 µl ROX mixture (2×, Takara Bio Inc., Shiga, Japan), 0.4

µl forward primer (10 µmol), 0.4 µl reverse primer (10 µmol l−1),

and 6.8 µl nuclease-free water. Standard curves were constructed

using plasmids harboring the gene fragment. PCR runs started with
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an initial denaturation and enzyme activation step at 98◦C8◦C for

2min, followed by 40 cycles of 10 s at 98◦C, 8◦C, 30 s at 60◦C, 0◦C

and 40 s at 72◦C, 2◦C, and 10min at 72◦C, 2◦C. We recorded the

fluorescence signal at 80◦C, 0◦C to attenuate influences of primer

dimers. The specificities of PCR products were tested by melting

curve analysis. The R2 and amplification efficiency of the standard

curve were 0.99 and 96.2%, respectively.

2.5 Illumina sequencing and bioinformatic
analysis

We used high-throughput sequencing to characterize the

community compositions of methanogensis. The soil DNA were

extracted and then sent to the Majorbio Biotechnology Company

(Shanghai, China) for Illumina MiSeq sequencing. For each DNA

sample, amplified the mcrA gene in triplicate utilizing specific

primers (mlas-rev) equipped with a unique barcode. Subsequently,

the triplicate amplicons were combined and subjected to a

purification process. The purified PCR products from each sample

were quantified and pooled in an equimolar fashion, followed by

the construction of Illumina libraries using the MiSeq Reagent

Kit v3 (Illumina, USA). Sequencing was conducted as paired-

end or single-direction format by Majorbio Company (Shanghai,

China) on an Illumina MiSeq PE300 platform. Kanzhege, due to

unsuccessful library preparation of certain DNA samples, the final

available sample count is 121 (MQ:31 samples, LQ:32 samples, ZY:

29 samples, SGH: 29 samples).

A total of 20,71,622 sequences were obtained from 121

soil samples. QIIME 2 (2,022.8) was used to analyze the

sequencing data. Specifically, paired-end reads were trimmed to

a minimum Q-score of 20. These sequences mcrA gene were

processed to generate amplicon sequence variants (ASVs) by

DADA2. Insertions and deletions caused the frameshifts of the

mcrA gene sequences were corrected using FrameBot (Wang

et al., 2013) from FunGene database (http://fungene.cme.msu.

edu). The resulting ASVs were assigned to the database from

(http://doi.org/10.5880/GFZ.4.5.2014.001) (Yang et al., 2014), to

further proofread the taxonomical assignments, the representative

sequences of dominant ASVs were compared with the GenBank

database using BLAST (https://blast.ncbi.Nlm.nih.gov). The ASVs

that contained less than 10 reads were removed from the datasets,

and all samples were rarified to 1,016 sequences based on the

lowest sequencing depth. After processing, the total number of

representative ASVs across all samples was 3,147. The sequencing

depth of amplicon sequencing was estimated using rarefaction

analyses (Supplementary Figure 2). All raw sequencing data of

mcrA were submitted to the Sequence Read Archive of NCBI under

the accession numbers PRJNA1227586 (https://www.ncbi.nlm.nih.

gov/sra/PRJNA1227586).

2.6 Microbial network construction and
keystones

The co-occurrence patterns observed in the networks are

indicative of the interactions among microorganisms in the

ecosystems (Ma et al., 2016). Network structures were calculated

in R4.2.1 using the “picante” package (Kembel et al., 2010)

and visualized using the interactive platform Gephi 0.10.1 using

directed network and the Fruchterman-Reingold layout. We

considered a valid co-occurrence event to have a Spearman’s

correlation coefficient (R> 0.6, P< 0.01). A set ofmetrics including

the number of nodes [NN], number of edges[NE], connectance,

average degree [AD], global clustering coefficient [GCC], average

clustering coefficient [ACC], average neighborhood [AN], average

clustering centralization [ADC], degree centralization [DC],

number of positive nodes and connectance was calculated to

describe the network.

The Zi-Pi thresholds were based on topology heterogeneous

properties of the network structure in “igraph” package (Csardi

and Nepusz, 2005), and we sorted all species into four groups:

peripherals (zi ≤ 2.5; pi ≤ 0.62), connector hubs (zi ≤ 2.5; pi >

0.62), module hubs (zi > 2.5; pi ≤ 0.62), and network hubs (zi >

2.5; pi > 0.62) (Olesen et al., 2007).

2.7 Network complexity index

A comprehensive index was established to reflect the

complexity of microbial network, and was calculated by averaging

the standardized scores of the topological properties including the

NN, NE, connectance, AD, GCC, ACC, AN, ADC, DC and number

of positive edges, as follows:

Complexity = (Xraw− Xmin)/(Xmax− Xmin)

where Xraw, Xmin, and Xmax represent the raw topological

properties, the minimum and maximum values across all samples,

respectively (Zhang et al., 2024).

2.8 Statistical analysis

Since there were no significant differences between soil samples

from different depths at the same site (Supplementary Table 3), they

were treated as independent samples for subsequent analysis. All

statistical analyses were performed using R4.2.1 (https://www.R-

project.org/). One-way analysis of variance (ANOVA) with Tukey’s

test was uesd to evaluate differences in mcrA gene copies and

PMORs among regions. The data derived from qPCR (i.e., gene

copy numbers) were log10 transformed and used in the following

analyses. Based on the rarified ASV tables of methangentic group,

we calculated the ASV richness and the relative abundance of

each ASV in each sample. The relative abundance of taxonomical

taxa at the levels of genus, family or class were also calculated

on the basis of the ASV tables with taxonomical annotations.

Regional differences in microbial communities were assessed using

constrained analysis of principal coordinates (CAP) based on

Bray-Curtis distance with the “vegan” package (Jiao et al., 2016).

CAP is particularly suitable for analyzing non-normally distributed

ecological data. Compared to traditional linear methods like

RDA, CAP offers improved resolution in detecting and visualizing

group-level differences, making it ideal for examining microbial

community variation across distinct wetland habitats. Therefore,
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FIGURE 2

Relative abundance of the dominant ASVs of each methanogens (represented by the corresponding genes) on four sites. Only the top 10 most

abundant ASVs on each site were shown (a). Richness of methanogens on each site, di�erent letters indicate the significance at P < 0.05 by Tukey’ s

honest significance test (b). Constrained analysis of principal coordinates (CAP) based on Bray-Curtis and environmental variables that were

significantly related to microbial variation (c).

to evaluate environmental variables significantly contributing

to ASV composition variation among samples, we performed

CAP with stepwise forward selection and 999 Monte Carlo

permutations (using the “ordistep” function from the “vegan”

package), and confirmed feature significance via permutational

MANOVA (PERMANOVA). Variation partitioning was performed

with adjusted R2 to determine the proportion of variation

in bacterial communities explained purely by environmental

factors and shared variation of environmental. The “pheatmap”

package in R (https://github.com/raivokolde/pheatmap) was used

to generate heatmaps of soil properties, biotic factors and topo

properties. Random forest analysis (RFA) was performed using the

‘randomForest’ package in R (Jin et al., 2020). Linear correlation

between variables was tested by calculating Pearson’s correlation

coefficient. Variation partitioning analysis (VPA) to discern the

contributions of these variables to the overall variations of the

PMPRs (using “vegan” package).

Partial least squares path modeling (PLS-PM) is an effective

statistical method for studying cause and effect relationships among

biotic and abiotic variables (Barber et al., 2014; Wagg et al., 2014;

Fan et al., 2019). Based on the previous CAP screening results

for soil properties, the nutritional and non-nutritional factors in

the PLS-PM model were determined. We conducted principal

component analysis (PCA) to create a new index to represent the

methanogenic community of soils before PLS-PM (Qin et al., 2021).

The latent variable “diversity” includes methanogensis richness and

shannon, “community” includes PC1 of methanogenic community

composition. Then, we used PLS-PM analysis to evaluate the

potential causal relationships between the variables to PMPRs. Path

coefficients were assessed for difference from 0 by bootstrapping

using 1,000 resamples; this allowed calculation of the precision of

each path and the direction and strength of the linear relationships

between variables (direct effects). Indirect effects are the multiplied

path coefficients between a predictor and a response variable,

adding the product of all possible paths excluding the direct effect.

For PLS-PM, the function “inner plot” was used and calculated by

the package “plspm” in R (Monecke and Leisch, 2012). The model

reliability was evaluated using the Goodness of Fit (GoF) statistic

(Monecke and Leisch, 2012).

3 Results

3.1 Correlations of methanogenic
abundance and PMPRs

In our study, the log-transformed mcrA gene abundance

ranged from 1.648 ± 0.037 to 1.970 ± 0.125. The potential

methane production rates (PMPRs) ranged from 49.668 ± 5.557

ng g−1 dry soil d−1 to 83.361 ± 13.377 ng g−1 dry soil

d−1, with no significantly differences among the sampled sites

(Figure 1a). Linear regression analysis was conducted to examine

the relationship between mcrA copies and PMPRs across four sites

and all samples (Figure 1b). A significant positive correlation was

observed in MQ, LQ, SGH and all samples, while no significant

correlation was found in ZY.

3.2 Methanogenic communities associated
with environmental factors

Taxonomic annotations of these ASVs offer limited

information, 99.1% of ASVs belong to the Archaea domain,

and 33.2% of total ASVs taxonomically assigned only up to

the phylum level (see the Supplementary material). The top

ten dominant ASVs in the four regions exhibited significant

differences, with no shared ASVs among them (Figure 2a). The

most dominant methanogen ASVs in the four wetlands were

ASV2300, ASV2815, ASV1415, and ASV1380, respectively.

The alpha diversity of soil methanogenic communities in ZY

respectively was strikingly higher than other sites (Figure 2b).

The Constrained analysis of principal coordinates (CAP)

based on Bray-Curtis distance was performed to investigate the

relationship between methanogenic community composition and
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TABLE 1 ANOVA of the environmental factors correlated to the

methangens beta-diversity in CAP analysis.

Factor Df Pseudo-F P-value Significance

pH 1 1.94 0.001 ∗∗∗

EC 1 1.75 0.001 ∗∗∗

TN 1 1.70 0.001 ∗∗∗

TOC 1 1.68 0.001 ∗∗∗

Significance: 0= “∗∗∗”; 0.001= “∗∗”; 0.01= “∗”; 0.05= “.”; 0.1=.”

Permutations= 999.

Overall model significance: pseudo-F = 3.6249, P < 0.001∗∗∗ .

environmental factors. TN, TOC, pH and EC were found to

significantly influence methanogenic community distribution (P

< 0.05) after forward selection procedure (Figure 2c, Table 1).

The first axis was positively correlated with EC but negatively

correlated with pH, TOC and TN. The second axis was positively

correlated with TOC and TN, but negatively correlated with pH

and EC. Among the variables, pH had the strongest influence on

the difference among the bacterial communities of all samples.

3.3 Co-occurrence networks of
methanogenic community and network
complexity

We analyzed microbial networks and key ASVs that connect

community nodes and maintain stability across different regions.

Molecular ecological networks of methanogenic community were

constructed at the ASVs level for MQ, LQ, ZY, and SGH regions

(Supplementary Figure 3). Supplementary Table 5 summarizes the

network parameters. Correlation analysis showed predominantly

positive relationships among methanogens in all regions. ZY had

the most nodes and edges, the smallest geodesic length, and the

highest degree, indicating a more complex and interconnected

network compared to others, while SGH had the fewest nodes and

edges, suggesting a simpler structure. In addition, we conducted

further analysis on the Zi-Pi relationships among ASVs and

found 34 provincial hubs and 29 connectors were identified as

keystones in all site (Supplementary Table 4). We also calculated

the topological properties of the methanogen subnetwork in

each sample and assessed the network complexity. The network

complexity index for methanogens exhibited a creasing trend

with increasing PMPRs (Figure 3). Correlation analysis indicated

a significant positive relationship between these properties and

methanogenic community richness, pH and EC, a negative

correlation with soil nutrients (Supplementary Figure 4).

3.4 Correlations among biotic factors,
abiotic factors, and PMPRs

We conducted principal component analysis (PCA) to create

a new index to represent the methanogenic community of soils

(Supplementary Figure 5). Random forest analysis indicates that

soil properties (TOC, SWC, TN, TP, EC, pH, NO−
3 , and NH+

4 ),

diversity (richness), microbial community structure (PC1 of PCA

analysis) and network complexity to PMPRs (Figure 4). The

abundance of mcrA is the most significant factor contributing to

PMPRs, with the variable importance exceeding 40%. Following

closely is network complexity. Variation partitioning analysis

(VPA) revealed that biotic factors independently explained 28% of

the variation in PMPRs, while abiotic factors accounted for only

4%. An additional 18% was jointly explained by the interaction

between biotic and abiotic factors. In total, these variables explained

50% of the observed variation in PMPRs (Supplementary Figure 6).

We further explored the direct and indirect effects of soil

properties, mcrA abundance, the diversity of community and

the network complexity on PMPRs by PLS-PM. The goodness

of fit of this module is 0.57. The solid line in the figure

shows a significant relationship. Generally, PMPRs are mainly

directly influenced by mcrA abundance (0.57), soil nutrition

(0.307) and the network complexity (0.238) of methanogens.

methanogenic diversity indirectly affected PMPRs (Figure 5). Soil

nutrition had significant effects on mcrA abundance (0.228),

methanogenic diversity (−0.31) and community structure (0.498).

Soil non-nutrition, as well as the methanogenic diversity (−0.403)

and community structure (−0.303). methanogenic diversity and

community structure do not have a significant direct effect

on PMPRs.

4 Discussion

4.1 Biotic and abiotic drivers of PMPRs

In this study, we observed significant differences in microbial

community composition among the sampling sites, with no

shared top 10 dominant methanogenic ASVs across locations

(Figure 2a). The differences in community composition were

primarily influenced by pH, EC, TOC, and TN, with pH having

the most significant effect (Figure 2c). It should be noted that pH

can be regarded as a cumulative and integrative parameter that

can potentially mask and/or reflect unmeasured environmental

drivers and their interactions, such as vegetation, hydrography or

chemical concentrations. Soil pH can lead to differences in the

community composition of methanogens. Methanoregulaceae are

found across a wide pH range (Juottonen, 2020). Among them,

Methanoregula predominated as a bioindicator of acidic niches

(pH < 4.9) (Seppey et al., 2023). The methylotrophic methanogens

Methanomassiliicoccales served as important bioindicators for only

one niche—the niche with a pH ≥ 4.9 (Seppey et al., 2023). In

studies with a pH range of 4.0 to 10.0, extreme pH conditions

reduced the relative abundance of acetoclastic methanogens,

while the abundance of obligate hydrogenotrophic and facultative

acetoclastic/hdrogenotrophic methanogens increased (Qiu et al.,

2023). It has thus been suggested that the low pH of bogs causes

a fundamental disconnect between acetogenesis and acetoclastic

methanogenesis (Yavitt and Seidman-Zager, 2006). In addition,

since the study sites are located in different habitats, endemism or

dispersal effects may lead to the formation of distinct communities

within different habitats (Von Eggers et al., 2024), geographic

distance may still contribute to variations in microbial community

structure across sites. Therefore, the observed differences are likely
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FIGURE 3

Linear regression analysis was used to assess the relationship between network complexity and PMPRs.

FIGURE 4

The predictions soil properties (TOC, SWC, TN, TP, EC, pH, NO−

3 , and

NH+

4 ), diversity (Richness), microbial community structure (PC1) and

network comlexity to PMPRs base on random forest regression

analysis. Percentage increases in the MSE of variables were used to

estimate the importance of these predictors, and higher MSE%

values indicate more important predictors. Significance levels were

as follows: *P < 0.05, **P < 0.01, and ***
P < 0.001.

driven by the combined effects of soil physicochemical properties

and geographic isolation.

Our results indicate that soil nutrient promotes PMPRs.

Soil TN and TOC can exert a positive influence on PMPRs,

either directly or indirectly (Figure 5). The anoxic environment

inhibits the aerobic decomposition of organic matter, resulting

in SOC accumulation, which increases the diversity of CH4-

cycling microbial communities and mcrA gene abundance (Yang

et al., 2024). The relationships between availability of organic

carbon provide important substrates for microbes and play an

important role in CH4 production (Wik et al., 2016). Abundant

organic matters in the sediments can reduce competition between

sulfate reducers and methanogens by providing more competitive

substrate and/or providing more noncompetitive substrate for

methanogenesis (Zhuang et al., 2016). Furthermore, Ammonia

nitrogen can also serve as a nitrogen resource for microbes to

deliver methanogenic substrates, thereby increasing the availability

of organic carbon for methanogens (Banger et al., 2012). Recent

studies on CH4 emission prediction from thermokarst lakes have

also shown that the DOC and ratios of SOC and TN in sediments

had direct positive effects on CH4 release (Mu et al., 2023). This

suggests that soil organic matter quality directly promates PMPRs

in wetlands.

Although soil nutrients contribute to enhancing potential CH4

production rates, these results suggest that biotic factors may exert

a stronger influence on PMPRs than abiotic factors. We found

significant positive correlation was observed between mcrA gene

abundance and PMPRs (Figure 1b), suggesting that mcrA gene

abundance can regulate soil methanogenic potential. The random

forest and PLS-PM analyses yielded consistent results, indicating

that mcrA gene abundance had the most significant impact on

PMPRs among all research factors (Figures 4, 5). The influence

of mcrA gene abundance and network complexity on PMPRs is

significantly greater than that of soil nutrients. The results of

the VPA analysis indicate that biotic factors alone explained 28%

of the variation in PMPRs (Supplementary Figure 6), which is
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FIGURE 5

Directed graph of the partial least squares path model (PLS-PM). Each box represents an observed variables and the ellipse represents observed

variables. The model was calculated by the Goodness of Fit statistic. The weights of arrows indicated the strengths of the causal relationships with

red indicating a positive e�ect and blue a negative e�ect. Continuous and dashed arrows indicated the significant di�erence or not. The numbers at

the arrows showed the standardized path coe�cients. Coe�cients of inner model di�er significantly from 0 are indicated by *P < 0.05, **P < 0.01,

***P < 0.001. R2 indicates the explained variances of each block. Nutrition: soil TOC and TN; Non-nutrition: soil pH and EC; type I, community: PC1

and PC2; Diversity: Richness and Shannon; CH4 production: PMPRs.

significantly higher than the explanatory power of abiotic factors.

It is precisely for this reason that, despite the significant differences

in soil properties among the four wetlands, there was no significant

difference in PMPRs.

4.2 Network complexity promotes PMPRs

Building on previous research into community composition

and structure, we examined the interactions among soil

methanogens—an aspect often overlooked in earlier studies.

Interestingly, we found that network complexity showed a

stronger positive effect on PMPRs than methanogen diversity

and composition, a pattern consistently observed across different

wetland habitats (Figures 4, 5). In this study on co-occurrence

networks, weaker correlations were filtered out. Correlation

analysis revealed predominantly positive relationships among

methanogensis across all habitats (see Supplementary Table 5),

signifying cooperative rather than competitive interactions within

these communities. We found that the richness of methanogens

was positively correlated with specific topological features

such as AD, number of nodes and edges, complexity and AN

(Supplementary Figure 4). Conversely, methanogenic network

might be more susceptible to external interference, potentially

leading to a less stable structure (Faust et al., 2012), sensitive to

changes or disruptions in SGH. Similar results were observed

in rice paddies (Li et al., 2021). This result suggested that the

microbially derived ecological processes are not necessarily

captured by the sum of its coexisting individuals. Rather, these are

a consequence of integrated metabolic pathways that are conducted

by a myriad of interactions among taxa. More tightly connected

microbial members supported a higher level of ecosystem

functions, which could be associated with a higher efficiency of

resource use and metabolic regulation of ecological processes

(Morriën et al., 2017). The combined effects of mechanisms that

alter methanogenesis, methanotrophy, nitrogen cycling, and

ammonium release, along with those that enhance decomposition

and promote the growth of syntrophic bacterial populations,

could collectively contribute to increased net CH4 flux in wetlands

(Hartman et al., 2024). These network structures provide us with

deeper insights into the interconnections among microbes and the

ecological assembly rules, far beyond the mere understanding of

diversity and community composition (Ziegler et al., 2018).

Additionally, our findings reveal that network complexity and

specific topological properties (such as GCC, ACC, connectance,

AD, and AN) are negatively correlated with soil nutrients

(Supplementary Figure 4). As soil nutrients decline, resource

input becomes limited, prompting microbes to intensify their

interactions both within and between species (e.g., cooperation,

mutualism) and enhance their metabolic capacity to acquire these

limited resources (Brown et al., 2004; Jansson and Hofmockel,

2020), particularly in relation to carbon decomposition (Ren et al.,

2021).

5 Conclusion

In summary, this study advances the existing framework for

assessing the relationships between biotic and abiotic factors and

potential CH4 production rates by incorporating an evaluation of

methanogenic microbial co-occurrence networks—an essential yet
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previously underexplored dimension of methanogenic microbial

diversity. Our findings clearly indicate that the complexity of

methanogenicmicrobial networks is a key role of soil methanogenic

microbial diversity in methane production processes. Integrating

this perspective enables a more mechanistic understanding of

how interactions among methanogenic microorganisms shape

potential methane production and broader ecosystem functioning

in natural environments. These results highlight the need to

shift focus from the total number of methanogenic species to

their association networks, which may help reduce uncertainty

in biodiversity–ecosystem function relationships. The strong

correlations between methanogenic microbial networks and

PMPRs underscore the importance of expanding both empirical

and theoretical investigations into the network structures of

methanogenic communities. Future predictions of potential

CH4 production rates from wetlands should take into account

not only the methanogenic microbial communities in soil

environments, but also the surrounding catchment vegetation-

derived inputs and hydrochemical conditions, as well as conduct

more in-depth investigations into the mechanisms influencing

methane production.
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