
TYPE Review

PUBLISHED 23 July 2025

DOI 10.3389/fmicb.2025.1616273

OPEN ACCESS

EDITED BY

Renu S.,

Indian Council of Agricultural Research

(ICAR), India

REVIEWED BY

Chandra Mohan Singh,

Banda University of Agriculture and

Technology, India

Jayalakshmi K.,

Directorate of Onion and Garlic Research

(ICAR), India

*CORRESPONDENCE

Yun Li

gxuliyun@gxu.edu.cn

Pingwu Liu

hnulpw@hainanu.edu.cn

†These authors have contributed equally to

this work

RECEIVED 22 April 2025

ACCEPTED 30 June 2025

PUBLISHED 23 July 2025

CITATION

Umer M, Anwar N, Mubeen M, Li Y, Ali A,

Alshaharni MO and Liu P (2025) Roles of

arbuscular mycorrhizal fungi in plant growth

and disease management for sustainable

agriculture. Front. Microbiol. 16:1616273.

doi: 10.3389/fmicb.2025.1616273

COPYRIGHT

© 2025 Umer, Anwar, Mubeen, Li, Ali,

Alshaharni and Liu. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in

other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication

in this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Roles of arbuscular mycorrhizal
fungi in plant growth and disease
management for sustainable
agriculture

Muhammad Umer1†, Naureen Anwar2†, Mustansar Mubeen3,

Yun Li4*, Amjad Ali5, Mohammed O. Alshaharni6 and

Pingwu Liu1*

1School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of

Tropical Agriculture and Forestry, Hainan University, Sanya, China, 2Department of Biological Sciences,

Faculty of Science and Technology, Virtual University, Lahore, Pakistan, 3Department of Plant

Pathology, College of Agriculture, University of Sargodha, Sargodha, Pakistan, 4College of Agriculture,

Guangxi University, Nanning, China, 5Department of Plant Protection, Faculty of Agricultural Sciences

and Technologies, Sivas University of Science and Technology, Sivas, Türkiye, 6Department of Biology,

College of Science, King Khalid University, Abha, Saudi Arabia

Arbuscular mycorrhizal fungi (AMF) are the basis symbionts in terrestrial

ecosystems, profoundly influencing plant development, nutrient acquisition,

and resilience to biotic and abiotic stresses. This review synthesizes current

systematic understandings of AMF-mediated augmentation of plant growth

and disease resistance, with a particular emphasis on their role in sustainable

crop production. AMF improves host plant performance through enhanced

phosphorus, nitrogen, and water uptake via extensive extraradical hyphal

networks. Moreover, AMF colonization modulates phytohormonal signaling

pathways, including salicylic acid, jasmonic acid, abscisic acid, and nitric

oxide, priming SR and upregulating defense-related gene expression. Increased

biosynthesis of secondary metabolites, reinforcement of cell walls, and

activation of antioxidant enzyme systems often accompany these responses.

AMF also engage in synergistic interactions with rhizosphere microbiota

such as Trichoderma, Pseudomonas, and Bacillus, enhancing their collective

biocontrol e�cacy against a broad spectrum of soil-borne pathogens,

including fungi, bacteria, and nematodes. Through modulation of root

exudates, glomalin-mediated soil aggregation, and microbiome restructuring,

AMF contributes to the establishment of disease-suppressive soils. Genomic

and transcriptomic studies have elucidated key components of the common

symbiosis-signaling pathway, supporting AMF-host specificity and functional

outcomes. AMF is a promising biotechnological tool for integrated pest,

disease, and nutrient management. Advancing their application in field settings

requires targeted research on strain-host-environment interactions, formulation

technologies, and long-term ecosystem impacts, aligning AMF-based strategies

with the goals of resilient and sustainable agriculture.
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1 Introduction

Fungi have developed numerous strategies for plant

colonization, ranging from beneficial to fatal for the host.

Fungi are perhaps the most complex group of economically and

ecologically significant threats in terms of plant pathogens. Fungal

infections can cause a wide range of symptoms. Today, ∼19,000

fungi are globally recognized as causing crop plant diseases. Fungi

can be dormant under unfavorable environmental conditions,

even when found on live or dead plant tissues. Certain fungi

can develop in host plant tissue and be dispersed through the

soil, water, wind, and insects to other crop-growing areas (Jain

et al., 2019). However, fungi can be mutualistic or pathogenic; a

mutualistic relationship with a host involves growth promotion

and development, and mycorrhizae form a reciprocal relationship

with host root systems. However, pathogenic fungi cause diseases

like anthracnose, rusts, smuts, leaf spot, blight, wilt, gall, scab,

root rot, damping-off, mildew, canker, and dieback. These fungal

diseases contribute to significant yield loss, commercial crop

loss, and decreased crop quality (Iqbal et al., 2018). Rapidly

recognizing fungal disease symptoms is an efficient strategy for

controlling and preventing the spread of fungal diseases. The

timely detection and identification of fungal symptoms are crucial

for effective management of plant diseases. The process of crop

disease management involves assessing the adverse effects of

pathogens on crop yield (Baiyee et al., 2019). People rely heavily on

consistent and stable farm production, but fungal diseases can pose

significant threats to food safety. To ensure the overall health of

plants and crops globally, it is necessary to control plant diseases.

To date, numerous methods have been developed to protect plants

from diseases. Rather than implementing new and improved

agricultural procedures, most farmers have primarily focused on

pesticides for the past few centuries (Chen et al., 2023). However,

numerous advances in cultivation science have occurred over the

last century. Due to the extensive use of fungi, bacteria, nematodes,

and other pathogens, as well as the use of chemical pesticides in

agriculture, ecosystems are becoming increasingly resistant to

pesticides (Mubeen et al., 2023). Additionally, a growing number of

their natural enemies have been eliminated, leading to an increase

in pests and diseases (Sanchez-Bayo, 2021). Chemical pesticides

contaminate the soil, water, and air simultaneously, harming

the environment and the organisms in the food chain, including

insects, and impairing human health (Zhou et al., 2025b). Pesticide

and fertilizer-related food safety issues, as well as the ongoing

development in people’s living standards, have drawn considerable

attention (Razak and Gange, 2023). Thus, one of the primary areas

of interest for environmental scientists and plant pathologists is

the pursuit of eco-friendly technologies to manage plant diseases

and insect pests (Begum et al., 2019). One method that has

drawn considerable interest is biological control (Van Driesche

et al., 2010) due to its outstanding efficiency, low consumption,

environmental safety, and diverse applications. Consequently,

soil scientists, plant pathologists, and ecologists have extensively

investigated it (Prospero et al., 2021). Due to increasing health

concerns, an innovative disease management method, biological

management, has been implemented, and many microorganisms

help keep plant diseases in check (Aria et al., 2025). The use of this

method has been revived for the first time in many years due to

its minimal environmental and health risks to humans. Soil-borne

fungi, known as AMF, can significantly increase plant resilience

to various abiotic stressors and nutrient uptake (Sun et al., 2018;

Mehmood et al., 2022). Arbuscular mycorrhizal fungi (AMF) is

classified into Glomerales, Archaeosporales, Paraglomerales, and

Diversisporales. Within these 4 orders, 25 genera are located in

the subphylum Glomeromycotina of the phylum Mucoromycota,

which encompasses the majority of AMF species (spp.) (Redecker

et al., 2013; Goss et al., 2017). It is obligate biotrophs that

consume photosynthetic plant products and lipids to complete

their life cycle. AMF-induced growth enhances the absorption

of water and mineral nutrients from the surrounding soil while

safeguarding plants against fungal infections (Ahammed et al.,

2023). Therefore, AMFs are vital endosymbionts that influence

plant productivity and ecosystem functioning. It is essential to

improve crops sustainably (Gianinazzi et al., 2010; Chaudhary

et al., 2025). AMF releases hyphal chemicals into the soil to

control the hyphosphere that different microorganisms have

invaded. The rhizosphere and bulk soil have distinct microbial

compositions compared to the hyphosphere (Wang et al., 2025).

The shift in the microbiome has an impact on nutrient cycling

in the hyphosphere. The organic nutrition cycle is influenced by

variations in microbial function, making the hyphosphere a unique

and vital functional zone in ecosystems. AMF forms a symbiotic

relationship with nearly two-thirds of terrestrial plants, providing

them with essential nutrients and supporting their growth.

Particular microorganisms are attracted to their hyphosphere by

AMF hyphae, the small area of soil that is impacted by hyphal

exudates (Wang et al., 2024). It molds this alleged second DNA

of AMF, notably assisting in the turnover and mobilization of

nutrients. Beneficial interactions between microbes and plants

are a natural phenomenon, and there is ample evidence of the

potential advantages these interactions offer for plant development

and health. Typically, in controlled laboratory settings, some of

the mechanisms underlying these advantages have been elucidated

(Gruden et al., 2020). AMF establishes intimate mutualistic

associations with the roots of most vegetable crops and more

than 70% of terrestrial plant spp. (Pozo De La Hoz et al., 2021).

AMF induces MIR against various foliar and root diseases and

pests, and AMF can also boost resistance or tolerance in plants to

biotic stressors (Abarca et al., 2024). It is acknowledged that plants

regulate the degree of fungal colonization in response to their

requirements and the surrounding environment (Pozo et al., 2015).

Consequently, understanding how AMF symbiosis is regulated

and the advantages it offers under certain circumstances requires

an understanding of its context dependency. Systemic resistance

(SR) induced by AMF has been shown in interactions with several

pathogens and might be reflected in the systemic autoregulation

of mycorrhizal colonization. It has been hypothesized that plants

utilize the autoregulation mechanism as a preventative measure

against further mycorrhizal colonization, while simultaneously

defending against pathogens (Fiorilli et al., 2024). The rhizosphere

microbiome is primarily shaped by host resistance, while the

microbiomes of the roots have been found to be significantly

influenced by pathogenic fungal infections. Fungal networks in

the roots are significantly impacted by plant disease and host
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resistance, as well as a few spp. predominate in the communities

from the healthy plants.

2 Role of AMF in enhancing plant
growth and stress resistance

The symbiotic relationship between AMF and plants was

documented 400 million years ago (Table 1) (Mythili et al., 2025).

These connections are formed by a series of biological processes,

resulting in numerous advantageous impacts on natural ecosystems

and agricultural biotas (Van Der Heijden et al., 2015). The

symbiotic relationship of AMF exemplifies amutualistic interaction

that can influence plant growth and development. The mycelial

network of fungi spreads beneath plant roots, facilitating the

absorption of nutrients that are normally unavailable (Ahmed et al.,

2025). The fungal mycelium infuses the roots of numerous plant

spp., forming a common mycorrhizal network (CMN) (Figueiredo

et al., 2021), and it is considered a central component of the

terrestrial ecosystem, intensely affecting several plant communities,

principally invasive spp., and permitting the AMF-mediated

transfer of nitrogen (N) and phosphorous (P) to plants (Begum

et al., 2019). AMF developed synergistic interactions with plants

by colonizing their root systems, contributing to enhanced water

uptake and nutrient absorption, as well as increased resistance

against biotic and abiotic stresses (Boyno et al., 2023). It can

improve soil structure and stimulate plant growth in standard

and complex conditions. AMF enhances the tolerance of plants

in saline soils by enriching soil structure and supporting various

plant mechanisms, including the uptake of water and nutrients,

antioxidant defense systems, photosynthesis, and the production

of secondary metabolites (SMs) (Boorboori and Lackoova, 2024).

It is considered a natural biofertilizer that supplies the host with

water, nutrients, and pathogen defense in return for photosynthetic

byproducts. Therefore, AMF are important biotic components of

soil, and their absence or shortage can result in reduced ecosystem

competence. Sustainable agriculture can be achieved by reinstating

the natural abundance of AMF, as it is a practical alternative

to traditional chemical fertilization. The primary method to

achieve this goal involves the direct reintroduction of AMF

propagules into the specified soil. AMF has no specific host or

niche preferences, signifying their potential role in agriculture

across a variety of environmental settings (Berruti et al., 2015).

AMF inoculation has the potential to maintain and stabilize

soil organic carbon (SOC) by promoting the growth of fungal

communities. In N-scarce soils, AMF also simultaneously reduce

microbial extracellular enzyme activity. AMF contributes to the

enrichment of a persistent carbon sink in drylands through its

selective influence on SOC components as a rhizospheric carbon

engineer (Li et al., 2025). AMF inoculation significantly increased

the abundance and diversity of the rhizosphere fungal community,

with a more complex co-occurrence network. The abundance and

diversity of the rhizosphere bacterial community were reduced

significantly (Chang et al., 2021). AMF symbiosis significantly

increased the allocation of photosynthetic carbon to the roots

and rhizosphere soils of maize plants. AMF inoculation promoted

the levels of macro-aggregates in the soil and microbial biomass

carbon in low SOC conditions and increased the formation of soil

aggregates, as well as the chemical composition of SOC (Li et al.,

2024a). The influence of AMF on SOC sequestration is significant,

as it alters the quantity and quality of carbon incorporated and the

processes regulating its transformation and storage (Liu and Chen,

2024). Glomalin-related soil protein (GRSP) is mainly produced

through the decomposition of AMF mycelium and is a varied

assortment of plentiful extracellular proteins along with other

components (Ling et al., 2025). Elevated concentrations of GRSP

in soils signify increased soil aggregate stability and improved

long-term SOC and N sequestration. Meanwhile, extended AMF

inoculation reduces soil N stocks and inhibits microbial hydrolase

synthesis for carbon substrates (Li et al., 2025). GRSP provides

a significant source of many macro and micro-elements, such

as C, H, O, S, K, P, Ca, Si, Fe, Cu, and Mg, which are vital

for plant development and aid in the immobilization of heavy

metal pollutants in soils and sediments (Ji et al., 2025). Glomalin

protects soil from dehydration by improving its water retention

ability. It consists of 30–40% carbon and related chemicals (Sharma

et al., 2017). AMF, as natural root symbionts, provide essential

inorganic nutrients to host plants, hence improving growth and

yield under both stressed and unstressed situations (Begum et al.,

2019). The inoculation of AMF influences growth functions,

including stomatal conductance, leaf water potential, relative water

content (RWC), PSII efficiency, and CO2 assimilation. AMF

enhances nutrient absorption, greatly increasing plant resilience to

drought, salinity, and heavy metal stress through optimizing water

usage efficiency and the modulation of physiological metabolic

processes. Additionally, AMF stimulate the plant immune system,

augmenting resistance to soil-borne diseases and nematodes,

and improving crop safety and quality (Nie et al., 2024).

Furthermore, the inoculation of AMF augments water and dry

matter absorption, improving plant resilience to stressors such as

salinity and desiccation. Employing AMF for plant development

across diverse biological environments can significantly enhance

organic cultivation, aiming to optimize yield and foster growth.

3 AMF as biocontrol agents against
soil-borne plant pathogens

AMFs inhabit the soil and infect plant roots, substantially

influencing soil-borne diseases (Cruz and Ishii, 2012; Li et al.,

2021b). AMF has been extensively utilized as a biological control

strategy against several phytopathogenic fungi (Lin et al., 2021).

The biocontrol efficacy of AMF has been documented across

various plant spp. and against numerous diseases, predominantly

soil-borne fungal pathogens responsible for root rot or wilting.

Successful biocontrol has also been documented against aerial

infections, including Alternaria solani in tomatoes (Harrier

and Watson, 2004). AMF has been reported to reduce both

necrotrophic and biotrophic diseases directly or indirectly

(Schouteden et al., 2015). AMF establish a symbiotic association

with plant roots, thereby playing a crucial role in managing

soil-borne diseases (Cruz and Ishii, 2012) and are extensively

utilized as biocontrol agents against plant pathogenic fungi (Lin

et al., 2021). Mycorrhizal cotton plants have shown superior

resistance to infection by the pathogen Thielaviopsis basicola

compared to those with sterile roots. Later studies demonstrated
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TABLE 1 The impact of AMF inoculation on agrosystem services.

AMF symbionts Agrosystem service Crop tested Conditions References

Glomus coronatum, G. intraradices, and

G.mosseae

Tackling wildflowers and optimizing P

absorption

Sunflower Greenhouse (Fuentes-Quiroz et al.,

2022)

Rhizophagus irregularis and

Funneliformis mosseae

Enhanced plant mass and superior grain

characteristics.

Chickpea Agriculture land (Garg and Cheema,

2021)

G. fasciculatum, G. etunicatum, G.

clarum, and G. Versiforme

Superior growth attributes. Long pepper Center, garden, and

field

(Diagne et al., 2020)

Native AMF Supplemented absorption of Mg, Ca,

and K

Maize Arena (Wahid et al., 2020)

A mixture of Gigaspora clarum, G.

margarita, and Acaulospora sp.

Preservation against Zn and Cu toxicity. Coffee Greenhouse (Andrade et al., 2010)

G. viscosum, R. intraradices, G.

aggregatum, G. claroideum, and G.

etunicatum

Optimal crop growth, output, and grain

attributes.

Maize Arena (Emmanuel and

Babalola, 2020)

G. intraradices Boosted fruit attributes. Strawberry Glasshouse (Fuentes-Quiroz et al.,

2022)

G. etunicatum Elevated growth under salinity Soybean Greenhouse (Igiehon et al., 2021)

G. clarum Supplemented fruit production under

salinity

Pepper Glasshouse (Sałata and Buczkowska,

2020)

G.mosseae Dealing withMeloidogyne incognita Tomato Greenhouse (Wang et al., 2020)

Native AMF inoculum (consortium) Adapting plant responses to zinc Tomato Environment

chamber

(Boyno et al., 2022)

G.mosseae Boosted growth cycle, flowering stage,

and fruit formation.

Tomato Growth chamber (Fayaz and Zahedi, 2021)

G. intraradices Advanced harvest results. Onion and Tomato Field (Emmanuel and

Babalola, 2020)

G.mosseae, G. deserticola, and A. laevis Elevated nutritional content. Yam Glasshouse (Ivanov et al., 2019)

G.mosseae and G. etunicatum It helps to enhance plant growth, yield,

and nutrient absorption.

Brinjal and Wheat Field (Alaux, 2020)

that the generation of chlamydospores by T. basicola was inversely

correlated with the degree of mycorrhizal infection (Thakur et al.,

2024). The interaction between AMF and Rhizobium, alongside two

pathogenic fungi, Pythium ultimum and Phytophthora megasper,

showed that mycorrhizal fungi reduced the occurrence of plant

death caused by P. megasper (Chou and Schmitthenner, 1974;

Ghorui et al., 2024). Compared to the control group without

AMF inoculation, the illness index and incidence of Ralstonia

solanacearum were reduced by 9.7% and 49.8%, respectively,

when infected with G. rhizogenes and G. mossie (Steinkellner

et al., 2012). G. asciculatum, G. etunicatum, G. macrocarpum,

G. Margarita, G. heterogama, and G. calospora in AMF can

mitigate diseases induced by pathogenic fungi from the genera

Pythium, Phytophthora, Fusarium, Rhizoctonia, Macrophomina,

Pyrenochaeta, Thielaviopsis, Phoma, Cylindrocarpum, Ophiobolus,

and Sclerotium in barley, peanut, soybean, banana, cotton, kidney

bean, onion, tobacco, citrus, peach, poplar, strawberries, red clover,

and ginseng (Weng et al., 2022). G. intraradices inhibited the

proliferation of the pathogenic fungus F. oxysporum, suggesting

that the chemical equilibrium of mycorrhizae suppresses the

growth and reproduction of pathogenic fungi (Singh, 2020).

Infected peas with Aphanomyces euteiches demonstrate that

establishing a complete AMF symbiosis is crucial for plant defense

against pathogens (Slezack et al., 2000; Wang et al., 2022).

Phytophthora is a typical pathogenic fungus widely employed in

the treatment of plant diseases associated with AMF (Krzyzaniak

et al., 2021). The application of P and AMF pre-treatment

in tomatoes infected with G. intraradices and the pathogen

F. oxysporum resulted in diminished disease severity. Factors

such as the specific plant disease, the interaction between AMF

and host plants, the amount and timing of AMF inoculation,

and environmental variables (Weng et al., 2022) all affect the

effectiveness of AMF in managing plant diseases. Phytophthora

served as a model pathogenic fungus to elucidate the mechanism

of AMF-mediated disease control (Krzyzaniak et al., 2021). The

efficacy of G. intraradices against F. oxysporum can be enhanced

by the use of P, thereby reducing disease severity in tomatoes

(Steinkellner et al., 2012). The disease control mechanism of AMF is

affected by various aspects, including the pathogenic organism, the

symbiotic interaction between AMF and the host, the timing and

concentration of AMF inoculation, and environmental conditions.

4 AMF in managing bacterial and
nematode-induced plant diseases

AMF plays a crucial role in regulating bacterial and nematode

diseases through diverse molecular mechanisms and signal
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transduction pathways (Schouteden et al., 2015). SR is induced

in host plants by the colonization of AMF through the activation

of defense-related genes (DRGs), including those involved in

salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) signaling

pathways that are fundamental in the resistance against biotrophic

and necrotrophic pathogens (Stratton et al., 2022). AMF also

regulates the expression of pathogenesis-related proteins and

stimulates the activity of antioxidant enzymes, thereby limiting

oxidative stress during pathogen attack. AMF also alter root

exudation patterns, indirectly inhibiting nematodes and soil-

borne pathogens by restructuring the rhizosphere microbiome

(Schouteden et al., 2015; Afridi et al., 2024). AMF-mediated

suppression of Meloidogyne incognita and R. solanacearum is

coupled to the upregulation of defense-related genes (DRGs) such

as PR-1, LOX, and PAL and enhanced production of secondary

metabolites (SMs), including phenolics and flavonoids (Vos et al.,

2013; Zhu et al., 2018). Additionally, pathogen entry is restricted

due to AMF-stimulated cell wall modifications and the deposition

of callose and lignin (Underwood, 2012). Inoculation of tomato

plants with G. intraradices induced the expression of PR-1 and

PR-5 genes, thereby enhancing resistance to R. solanacearum (Gao

et al., 2004). G. mosseae also enhanced soybean resistance against

Heterodera glycines by upregulating JA- or ET-regulated defense

genes and antioxidant enzyme activity (Guo et al., 2015). In

cucumber, AMF colonization led to the upregulation of lignin

biosynthesis and SM genes, which limitedM. incognita penetration

and gall formation (Schouteden et al., 2015). R. solanacearum

induced bacterial wilt in tomatoes (Yuliar et al., 2015), and it can be

controlled with mycorrhizal application. Inoculation of mulberry

with G. fasciculatum or G. mosseae in combination with 60–90 kg

of P per hectare per year reduced the incidence of bacterial blight

caused by P. syringae (Imad Khrieba, 2019). AMF application

in grape fields has harmed the population of P. fluorescens in

the rhizosphere and reduced the likelihood of disease recurrence.

G. mosseae suppressed P. syringae and safeguarded soybean and

apple seedlings, which can be protected by root treatment with

AMF against Actinomycetes. M. incognita and M. javanica can

cause total crop failures in tobacco, tomato, sunflower, and pepper,

respectively, while AMF symbionts enhance plant tolerance to

nematodes (Schouteden et al., 2015). However, it can only inhibit

the damage caused by nematodes (Weng et al., 2022). AMF

reduces infection and reproduction of root-knot nematodes in

crops like tomatoes, bananas, and coffee (Schouteden et al., 2015).

G. mosseae and Rhizophagus irregularis reduce infection in bananas

by Radopholus similis (Mandou et al., 2023) and controlled M.

exigua in coffee plants (Alban et al., 2013). Soybean cyst nematodes

parasitised by AMF and the degree of disease-causing ability

in soybeans, oats, cucumbers, cotton, kidney beans, tomatoes,

citrus, peach, and alfalfa is decreased (Rodrigues et al., 2021). The

inoculation of G. mosy controlled the M. incognita population

in tobacco and developed disease resistance against nematodes

(Liu et al., 2012). Mycorrhizated plants showed fewer galls on

the roots of tomato plants than non-mycorrhizated plants, and

the infection rate was significantly reduced. AMF colonization

can modify host root exudates (Ma et al., 2022) and enhance the

antagonistic rhizosphere environment toward pathogens such as

Pseudomonas syringae and Agrobacterium tumefaciens, in addition

to affecting the levels of phenolic acids in cotton root exudates,

hence reducing the incidence of cotton Fusarium wilt (Zhang et al.,

2012). Furthermore, AMF enhance callose deposition, cell wall

fortification, and detoxification of reactive oxygen species, which

are essential at the early stages of pathogen invasion (Nath et al.,

2016). Subsequent to AMF colonization, it can limit nematode

motility and alleviate nematode infestation in tomatoes by affecting

the release of root exudates (Yizhu et al., 2020). AMF colonization

can improve resistance by modifying host root exudates. The

colonization by AMF affects changes in plant root exudates, and

these variations in exudates simultaneously influence the growth

and development of AMF, and it interacts with others rather than

existing independently (Zhang et al., 2024). The total molecular

responses attest to the potential of AMF as an efficient biocontrol

agent in agricultural practices.

5 Symbiotic interactions of AMF with
microbiota in plant disease
management

The synergistic effect of AMF and Trichoderma harzianum is

more considerate in the management of severity and incidence of

diseases than the use of T. harzianum and AMF alone, and studies

showed combined application in the field of Solanum lycopersicum

enhanced aboveground biomass by 11.6–69.7% (Weng et al., 2022).

Inoculation of F. oxysporum on tomatoes resulted in a disease

incidence rate of 70%. After applying Acaulospora laevis and

G. mosseae, the decrease was 20%. However, a 10% reduction

was found with the inoculation of T. virid and AMF (Tanwar

et al., 2013). AMF and Trichoderma can together prevent the

occurrence of disease. However, their different combinations have

different control effects on plant diseases. If AMF was individually

inoculated against Cucumis melo Fusarium wilt, it only reduced

disease incidence from 25% to 60% (Martinez-Medina et al., 2010).

Furthermore, the same combination of Trichoderma and AMF

also has varying effects on the different spp. types. The disease

control effect of T. harzianum and G. clarum for HEL246 (a variety

of Halianthus tuberosus) was the best. At the same time, AMF

alone was the best control for variety JA37 (Sennoi et al., 2013).

Synergistic effect of Pseudomonas and AMF refining plant disease

resistance rather than application individually. The individual

application of G. albida, G. sinosum, or P. fluorescens against the

disease induced by Phaseolus vulgaris can only reduce the disease

by 50.5 to 52.8%, while the combined application shows a reduction

from 68.9 to 69.2%. The combined application increases the P and

N contents of plants compared to single inoculation (Neeraj and

Singh, 2011). It was discovered that a combination inoculation of

G. sinuosum and P. fluorescens was more successful against the

diseases caused by F. oxysporum in tomatoes (Srivastava et al.,

2010) and papayas (Hernández-Montiel et al., 2013). However, the

synergistic effects of P. fluorescens and AMF on plants were not all

positive. When applied together, P. fluorescens + G. messeae had

a more significant growth-enhancing impact than when applied

alone in the absence of pathogenic microorganisms (Behn, 2016).

In addition, the combined applications of AMF and P. aeruginosa
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TABLE 2 The impact of AMF inoculation on plant pathogen management.

AMF strains Host plant Pathogen Growth improvements References

Rhizophagus irregularis Soybean Macrophomina phaseolina Enhanced plant ability to stand by

activating the immune system and

increasing plant biomass

(Vandegrift et al., 2023)

F. mosseae Tomato Cladosporium fulvum Enhanced plant ability to stand by

activating the immune system, increased

plant water content, and enhanced

seedling weight

(Kumari and Prabina,

2019)

Glomus spp. Pepper Pythium aphanidermatum Enhanced plant ability to stand by

activating the immune system and

increasing plant biomass

(Frac et al., 2023)

Gigaspora margarita and G.

etunicatum

Sugarcane Scutellospora fulgida Enhanced plant ability to stand by

activating the immune system, raised

phenolic and proline content, enhanced

antioxidant enzyme activities

(Kumari and Srimeena,

2019)

R. irregularis and R.

fasciculatus

Tomato and pepper F. oxysporum Improved root systems of plants and

reduced membrane damage, enhanced

nutrient uptake, and reduced lipid

peroxidation

(Aylward et al., 2023)

Claroideoglomus etunicatum,

G. versiforme, F. mosseae

Prairie Milk-vetch Erysiphe pisi N, K, and P play essential roles among

the crucial nutrients for plants

(Spagnoletti et al., 2020)

F. caledonium Tomato R. solanacearum Reduced wilt symptoms, increased

phenolic compounds, and defense gene

expression

(Li et al., 2021a)

R. irregularis Banana R. solanacearum Decreased bacterial wilt incidence,

enhanced root architecture, and SR

(Lin et al., 2021)

G. mosseae Tobacco R. solanacearum Induced DRGs and reduced bacterial

populations

(Yuan et al., 2016)

G. mosseae Tomato M. incognita Reduced gall formation, enhanced

lignin content, and chitinase activity

(Ma et al., 2022)

G.mosseae, Gigaspora

gigantea, and P. fluorescens

Eggplant M. javanica Reduced root-knot nematode

infestation and improved plant growth

(Sharma et al., 2021)

G.mosseae Soybean H. glycines Enhanced soybean resistance through

the upregulation of JA or ET-regulated

defense genes and antioxidant enzyme

activity

(Guo et al., 2015)

G.mosseae Banana M. incognita Enhancing growth by plant nutrition

and suppressing nematode reproduction

and galling during the early stages of

plant development

(Jaizme-Vega et al.,

1997)

manage plant diseases, as do the applications of P. fluorescens

and AMF. Elaeis guineensis base rot severity was reduced from

15% to 17% when inoculated with AMF alone (G. clarum and

G. intraradices). In contrast, if combined with P. aeruginosa, the

reduction of severity was found to be 57–80% (Parvin et al., 2020).

The synergistic biocontrol effect of Bacillus and AMF on diseases

of plant roots is the best control method. The mixed use of Bacillus

subtilis and G. mosseae can decrease the disease severity of tomato

fusarium root rot from 85% to 93.4%. In addition, it is involved

in plant nourishment (N, potassium (K), P, magnesium, calcium,

zinc, and iron), total soluble protein, total soluble sugar, total free

amino acid content, and leaf pigment (Cai et al., 2021). Single

B. vallismortis and G. versiforme can decrease the verticillium

wilt index for cotton from 35.7% to 37.7%, respectively. Still, a

combined application can reduce the disease by up to 63.3% (Zhang

et al., 2012). Additionally, it can be 73.6 to 82.1% effective when

applied against F. oxysporum (Cai et al., 2021) and 34.1 to 52.1%

effective when applied singly (Rashad et al., 2020). Glomus can

enhance the ability of B. subtilis to suppress strawberry Fusarium

wilt (Tahmatsidou et al., 2006). Strawberries with a combination

inoculation had a 61.7–90.9% increase in fresh weight as compared

to a single application (Table 2).

6 Non-symbiotic interactions of AMF
with microbiota in plant disease
management

AMF participates in non-symbiotic interactions with soil

microbiota, which significantly affect plant disease management.

While not characterized by direct symbiotic nutrient exchange,

these interactions influence microbial community composition
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and activity, thereby improving plant resilience to pathogens

(Purohit et al., 2024). AMF exudates, including strigolactones

and glycoproteins, promote the growth of beneficial rhizobacteria

and fungi, thereby enhancing a suppressive soil environment

(Ghorui et al., 2024). AMF-induced alterations in the rhizosphere

microbiome increase the prevalence of Pseudomonas and Bacillus

spp., which produce antibiotics and siderophores that inhibit

soil-borne diseases (Lahlali et al., 2022). Additionally, AMF

hyphae create an environment conducive tomicrobial colonization,

enhancing niche competition and reducing pathogen viability

(Yuan et al., 2021). Non-symbiotic interactions enhance plant

SR by activating DRGs and phytohormone signaling pathways

(Mhlongo et al., 2018). Furthermore, AMF-induced changes in

soil aggregation and organic matter breakdown impact microbial

habitat dynamics, thereby indirectly reducing the proliferation

of pathogens (Frey, 2019). Field studies have demonstrated that

AMF-associated microbiota minimize the occurrence of Fusarium

wilt and Phytophthora root rot, highlighting their potential as

biocontrol agents (Kashyap et al., 2024). Utilizing non-symbiotic

AMF-microbiota interactions offers a sustainable strategy for

integrated disease management, reducing reliance on chemical

fungicides and enhancing soil health.

7 Expanding research on AMF in plant
disease control mechanisms

The primary mechanisms associated with the research on

utilizing AMF in the control of plant diseases include enhancing

the micro-environment of the rhizosphere, modifying the

morphological structure of plant roots, improving plant nutrition,

sustaining the synthesis of SMs, directly competing with pathogenic

microorganisms for invasion sites and nutrients, and inducing

the formation of plant defense systems and disease resistance

(Figure 1) (Tatsumi et al., 2020; Chen et al., 2021).

7.1 Structural modifications induced by
AMF symbiosis for enhanced plant
resistance

In host plants, AMF can lead to the growth, thickening,

and branching of the root system, effectively slowing down the

virus infecting the roots (Basyal and Emery, 2021; Figure 2A).

Symbiotic roots with G. etunicatum and G. mosseae of Gossypium

hirsutum increased root xylem structure due toVerticillium dahliae

effect, and deformed vessels produced gelatinous substances,

shrunken and altered cells, palsied tissue, significant thickening

of a cell wall, and deepened color of cells (Weng et al., 2022).

The number of vacuoles in cells decreased, the inner folds of

mitochondria disappeared, and the root system underwentmultiple

structural changes, all of which positively improved host resistance

against Verticillium dahliae. Mycelial network and callose formed

by AMF infection induced papillary structure in the root epi

and endodermis with the arrangement of non-esterified pectin

(Figure 2B), which is an obstacle for the penetration of pathogen

in root cell and tissues and AMF alter the anatomy of tomato

roots and changed infection kinetics of Phytophthora (Pozo et al.,

2002). Plants andAMFmake fully functional symbiotic interactions

by establishing surface contact that initiates nutrient exchange

and signal transduction. The symbiotic interface is defined as a

molecular exchange between plants and AMF cytoplasm via cell

walls and plasmamembranes (Balestrini and Bonfante, 2014). AMF

stimulated the production of hydroxyproline-rich glycoproteins

(HRGPs) in mycorrhizal plants (Balestrini and Bonfante, 2014).

HRGPs are sugar-containing linear proteins embedded in the

plant cell wall. When pathogens attack, these proteins reinforce

the cell wall, reducing the breakdown caused by pathogen-

secreted enzymes such as proteases, hemicellulases, and cellulases.

Additionally, HRGPs function like lectins, acting as adhesive

molecules that trap and immobilize invading pathogens, thereby

preventing their further penetration into plant cells. AMF also

modifies the root system architecture, improving plant resistance

against infections (Figure 2C). Some spp. of Glomus, extra-root

hyphae, the cell wall of spores, and the germ tube inner wall contain

β-1, 3-glucan, while β-1, 3-glucan is not present in the cell wall

of Gigaspora or Scutellospora spp. (Ma et al., 2021a). It serves as

a structural component and provides a defensive barrier against

pathogens. Employing AMF as a biocontrol agent can modify

the root’s anatomical structure and enhance naturally occurring

defensive compounds, thereby boosting the innate resistance in

plants to diseases and pests (Silvestri et al., 2020).

7.2 Enhancement of water and nutrient
uptake by AMF for improved plant
resistance

AMF enhances the absorption of water and vital mineral

elements by plants. Research indicates that AMF establishes a

vast mycelial network in the soil, with their extra-radical hyphae

interlacing, so considerably enhancing the root system. This

network improves the uptake of water, nitrates, phosphates, and

other essential nutrients, benefiting numerous plants concurrently.

Furthermore, AMF enables the movement of water and nutrients

across plants, establishing an alternative and highly efficient

mechanism for resource acquisition (De La Rosa-Mera et al.,

2011). The 14C labeling technology was used in 1993, and it was

found that a very minute quantity of 14C was released around

the citrus mycorrhizal roots (Eissenstat, 1993). It was because of

the competition between pathogens and AMF for photosynthetic

products secreted by host plant roots. AMF utilizes photosynthetic

product materials first, which diminishes the pathogen’s acquisition

chance, thereby reducing its ability to grow and reproduce

(Kuila and Ghosh, 2022). By enhancing nutrient and water

uptake, mycorrhizae mitigate root damage caused by pathogens,

thereby reducing harm and improving plant resilience (Ma et al.,

2021a). Tomato inoculation under F. oxysporum stress increases

chlorophyll, soluble sugars, branching, and leaf development while

improving nutrient absorption (P, N, K, Mn, Zn, Ca), thereby

enhancing disease and pest resistance (Liang et al., 2021).
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FIGURE 1

The network highlighted key terms in the article title, abstract, or keywords related to the AMF and their role in biotic stress management. In the

network, the same color shows a cluster of interconnected phrases; however, the circle size indicates the number of publications.

FIGURE 2

Functional role of AMF within the host roots. (A) Role of AMF in regulating the morphology of plant roots; (B) Mycelial network and callose formed by

AMF infection; (C) How the AMF helps the cell wall of the roots of mycorrhizated plants to produce HRGPs and alters the root system; (D–F) The

symbiotic association of AMF with the plant roots and their impact on root exudate secretion.
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7.3 Mechanism of AMF-induced
production of SMs

The presence of SM compounds in AM-colonized plants

enhanced the expression of pathogenesis-related genes and

increased the production of volatile compounds, including

aldehydes, ethers, and alcohols, across different plant parts (Quaglia

et al., 2012). Multiple enzymes facilitate the production of these

metabolites. Lipoxygenases serve as critical signaling molecules

that trigger defense responses in crop plants (Singh et al., 2022).

The mechanisms underlying the alteration of the number of

SMs remain unknown. Colonization by AMF leads to increased

concentrations of phenolic, terpene, and nitrogenous compounds

in shoot and root plant tissues (Kumar et al., 2021). The results of

the study indicate that symbiotic colonization by AMF improves

the nutritional value of the plants due to increased P and N

absorption from the soil. The infection of host plants with

AMF generally promotes the uptake of P, thereby enhancing the

nutritional value and the levels of SMs as well as phytochemicals in

the plants (Selwal et al., 2023;Wu et al., 2024). The alteration in SMs

production may be an outcome of the introduction of changes by

AMF in phytohormone pathway-associated plant pathways (Amani

Machiani et al., 2022). The pathways involve those participating

in gibberellin acid (GA), abscisic acid (ABA), brassinosteroids

(BR), auxin (IAA), SA, JA, cytokinin (CK), and ET. Besides that,

the symbiosis enhances the plant’s defense mechanism (Schmitz

and Harrison, 2014). Cucumber plants inoculated with Gigaspora

terrestris contained high levels of IAA, zeatin, and GA. The high

IAA levels enhance Rhizoctonia solani resistance by activating the

defense mechanisms in plants against pathogen attack (Metwally

and Al-Amri, 2020). AMF enhanced GA gene expression in

Medicago truncatula (Ortu et al., 2012), JA and GA enhanced

the concentration of terpenoid components through the induction

of glandular trichomes development and improved expression of

sesquiterpenoid biosynthetic genes (Singh and Sharma, 2015). The

signaling molecules involved in AMF and host-plant symbiosis

have the potential to modulate the content of SMs in plants.

A symbiosis between Trifolium repens and G. mosseae enhances

the content of signaling molecules such as salicylic acid, nitric

oxide, and hydrogen peroxide, which in turn elevates the activity

of enzymes related to phenolic biosynthesis (Zhang et al., 2013).

Mycorrhizal plants have higher phytohormone levels (ABA, IAA,

CK, GA, and ET) in leaves and stems compared to non-mycorrhizal

ones. Induction of those participating in the phytohormone

pathway, i.e., AMF, directly influences plant growth and indirectly

affects resistance. Under stress, these hormones can alter the

expression of genes and regulate gene synthesis, thereby enhancing

the adaptability of plants (Weng et al., 2022).

7.4 AMF-induced production of SMs for
plant disease resistance

A key mechanism by which AMF enhances plant disease

resistance is the regulation of SMs production. This occurs as the

mycorrhizal symbionts influence the physiological metabolism of

plants, altering both the quantity and diversity of these defensive

compounds (French, 2017). SMs are advantageous for plants

because they help them combat harmful conditions caused by

infection. A class of resistant substances known as phytoprotectins

is initiated in response to pathogenic infection. The rate and

amount of accumulation of these compounds are connected

to the ability of plants to resist diseases (Monther Mohumad,

2012). The accumulation of phytophanins serves as a barrier

around infected cells to prevent the spread of auxiliary pathogens

(Jaiti et al., 2008). G. mosseae enhances phytotoxin production

in response to infection, boosting plant resistance. Additionally,

inoculation of G. intraradices on cucumber roots promotes

callose deposition, which helps protect against the toxic effects

of Colletotrichum orbiculare (Bais et al., 2006). AMF infection

significantly increases the vinblastine in Catharanthus roseus leaves

and protects them against biotic stresses (Martinez-Medina et al.,

2010). The compounds belong to the phenolic family, e.g., phenolic

carboxylic acids and flavonoids act as signaling molecules in

the defense system (Monther Mohumad, 2012). Flavonoids were

found to attract AMF toward plants and expand the symbiotic

relationship between AMF and plants (Pei et al., 2020). In the roots

of Gossypium hirsutum, upon infection of AMF, the production of

phenolic substances escalates, and resistance toward Verticillium

dahliae rises (Lioussanne et al., 2008). G. mosseae was found to

stimulate the higher production of ascorbic acid and polyphenol

content in strawberries, while also reducing the severity and disease

incidence of C. gloeosporioides and F. oxysporum (Chandanie et al.,

2009). The use of the root-splitting technique in tomato plants,

SR against Ralstonia solanacearum, can be induced through G.

versiforme (Zhu and Yao, 2004). In both uninfected and infected

roots, the production of phenolic compounds is significantly

increased (Weng et al., 2022). Therefore, plant resistance is based

on the enhanced production of phenolic compounds. Conversely,

AMF inoculated, and AMF uninoculated Phoenix dactylifera do

not show a rise in the production of phenolic compounds

upon infection with F. oxysporum, accumulation of derivative of

hydroxycinnamic acid by mycorrhizated plants shows the ability to

halt chlorosis (Jaiti et al., 2008).

7.5 AMF influence on root exudates,
rhizosphere microbiome, and soil
properties

Plants and AMF form a symbiotic association that influences

the permeability of root cell membranes, the composition

and volume of root exudates, the physical and chemical

properties of the rhizosphere, the structural makeup of microbial

communities, and the overall microbial density within the

rhizosphere (Figures 2D–F). Extra-root hyphae of mycorrhizae

can pierce from the minute pores present between soil particles

and mycorrhizal secretions, e.g., organic acids, Glomus-associated

protein (GRSP), and polyamines involved in the soil particles

adhesion, stimulate the soil aggregation, mend soil pH, aeration,

water permeability, and stability, promote redox potential (Eh),

and enhance the growth of plants to resist pathogenic attack

(Tatsumi et al., 2020). Reproduction, growth, and development

of soil-borne fungi, bacteria, and nematodes are directly affected

by the secretion of root exudates, which stimulate the growth

of AMF and plant symbiotic relationships (Ghorui et al., 2024).
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This symbiotic relationship also affected the microbial community

in terms of spatial distribution, nature, quantity, structure, and

variation. Nematode invasion in roots is controlled through the

secretion of root exudates, which paralyze nematodes with AMF

infection in tomatoes (Lone et al., 2024), deter the Phytophthora

nicotianae zoospores and limit their access to roots (Lioussanne

et al., 2008). AMF can form symbiotic relationships with beneficial

soil microbes, creating a synergistic effect. This partnership

enhances the presence of advantageous microorganisms in the

rhizosphere, particularly those that suppress soil-borne pathogens.

Trichoderma, Gliocladium, Streptomyces, various antagonistic

fungi, Actinomycetes, phosphate-solubilising bacteria, N-fixing

bacteria, and plant growth-promoting rhizobacteria (PGPR)

(Miransari et al., 2014). These beneficial microorganisms enhance

plant disease resistance by decreasing pathogen populations and

minimizing the risk of harmful bacterial infections. Furthermore,

PGPR can enhance the symbiotic relationship between AMF

and plants.

7.6 AMF and soil-borne pathogen
competition in the rhizosphere

The ecological habitat and intrusion site shared by soil-borne

pathogens and the biotrophic symbiotic microbes (e.g., AMF)

in the soil rhizosphere are frequently the same. As a result,

under the natural environment conditions, pathogens and AMF

must interact in their primary biocontrol function to decrease

the initial infection and re-infection of root epidermal pathogens

in a spatially competitive manner. G. moshe infection was used

to reduce the incidence of Phytophthora nicotianae disease, and

it cannot infiltrate arbuscular cells in nearby uninfected root

systems. In mycorrhizated plants, mycorrhizated roots and nearby

non-mycorrhizated roots had a comparatively low population of

H. glycines (Weng et al., 2022). Competition was seen in inoculated

pathogenic bacteria, and AMF was aimed at Aquilaria agallocha

infection sites (Tabin et al., 2009). The plants of A. agallocha

mycorrhizated with G. fasciculatum significantly constrain the

damping-off symptoms and morbidity index of the root tissue

developed by Pythium aphanidermatum (Zhou et al., 2020). AMF

plays a vital role as a parasite of nematodes, and its hyphae, vesicles,

and arbuscular incursion are found in nematode galls such as

G. polygamyces, which is a parasite of H. glycines and induces

infection in their eggs (Keshari et al., 2024). Chlamydospores

produced by AMF can colonize the cysts of soybean cyst

nematodes, and it is a visible indication that AMF is a parasite of

nematodes (Vos et al., 2013; Keshari et al., 2024).

8 Mechanisms of host defense
activation by AMF

8.1 Role of AMF-induced signaling
substances and phytohormones in plant
defense

Signal molecules called phytohormones have the potential to

be crucial for the functional regulation of the growth, development,

and environmental adaptability of plants. Developing the symbiotic

relationship between plants and AMF initiates the synthesis of

hormones through plants, or AMF can directly produce hormones

(Schmitz and Harrison, 2014). AMF initiates the process of

synthesis of different signaling substances, for example, JA, nitric

oxide (NO), ET, SA, ABA, hydrogen peroxide (H2O2), sugar

signal, and Ca2+ signal, once a symbiotic relationship of plant and

AMF is established (Schmitz and Harrison, 2014). The signaling

substances are functional in developing a symbiotic relationship

between plants and AMF, which triggers the plant’s defense system

(Metwally and Al-Amri, 2020). ET and JA were found to resist

saprophytic infections, which have been reported to be triggered

by ET and JA, and SA has an inhibiting impact. It was studied for

biotrophic pathogens. ET and JA play essential roles in systemic

acquired resistance (SAR) in plants, as opposed to systemic induced

resistance (ISR) after the establishment of pathogenic infection

(Hause et al., 2007). NO was recognized as a signaling substance

and initiator of plant defense system-related gene expression

(Calcagno et al., 2012). AMF symbiosis has a strong affinity with

the NO accumulation in plants, and alfalfa showed NO content in

roots and leaves is 1.9 and 3.3 times higher, respectively, than in

control treatment when inoculated with G. margarita; it suggested

that NO accumulation initiated by AMF symbiosis linked with

induced SR (He et al., 2010). F. oxysporum-infected roots of tomato

seedlings were inoculated with G. macrocarpum and G. polyphylla.

After 20 days, disease severity indexing reduced by 75% and 78%,

respectively. AMF-stimulated ISR in plants is primarily due to

the signaling substance SA (Dugassa et al., 1996). SA application

and the inoculation of G. moses reduced the degree of wilting

and disease severity index of F. oxysporum-infected tomato plants.

Cantaloupe is a phytohormone deceased upon infection with

F. oxysporum, while inoculation of G. rhizogenes on infected plants

increases the production of phytohormone cantaloupe, stimulates

the SA and JA signaling pathways, and enhances resistance in plants

(Steinkellner et al., 2012). However, G. intraradiculae inoculated

Nicotiana attenuata showed no appreciable changes in endogenous

SA and JA contents while slightly reducing ET content (Kapoor,

2008).

8.2 AMF-regulated expression of DRGs in
plants

The symbiotic association between plants and AMF enhances

pathogen resistance by upregulating DRGs (Kashyap et al., 2024).

AMF can also modulate the expression of specific resistance

genes in plants, enhancing defense responses against particular

diseases (Badrbani et al., 2024). In wheat leaves, the expression

of genes was remodeled explicitly after G. mosseae activated the

MIR response against Zymoseptoria tritici, and the rate of foliar

protection is 78%. Symbiotic relationship of mycorrhizae with

plants before pathogenic infection upregulated the PR1 and Pox

genes involved in the process of DRGs. After the establishment

of infection, the transcriptome profiling revealed that 5 genes

(GST, PAL, PR5, CAD, and CalS) were upregulated along with

PR1 and Pox in a biotrophic stage of Z. tritici in leaves (Allario

et al., 2025). In soybean plants infected with Heterodera glycines,

inoculation with AMF led to upregulation of the DRGs (Chib1
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and PAL5). This increased expression was confirmed at the

transcriptional level using quantitative reverse transcription PCR

(qRT-PCR) and Northern blotting techniques. The activation of

these genes contributed to induced resistance against nematodes

(Li et al., 2005). The Proteomic profiling depicted that upregulation

of the DRGs related to transcription factors (such as WRKY),

proteases and kinases receptors, auxins production, and encoding

proteins related to disease resistance in response to F. virguliforme

induced infection in mycorrhizated soybean plants. However,

primed expression was found for DRGs encoding pleiotropic drug

resistance and thaumatin-like protein. PODs and modification

of cell wall-related DRGs were downregulated in transcriptome

analysis of mycorrhizated and non-mycorrhizated soybean plants

(Marquez et al., 2019). G. mosseae first colonized susceptible maize

cultivars (Gaoyou-115 and Yuenong-9) to establish mycorrhizal

symbiosis. After successful colonization, the plants were inoculated

with Rhizoctonia solani to induce infection. The study found

that mycorrhizal colonization upregulated the expression of DRGs

(e.g., PAL, AOS, and PR2a), enhancing resistance against the

pathogen. Additionally, BX9, a gene involved in the biosynthesis

of benzoxazinoids (including DIMBOA and related compounds),

showed increased expression in the leaves of both cultivars,

suggesting a role in systemic defense priming (Ma et al., 2021b).

Both nonmycorrhizal genotypes of Lycopersicon esculentum

(mutant rmc and wild type 76R) infected with R. solani exhibited

similar DRGs expression. However, after inoculation with AMF, the

mutant rmc showed increased intracellularmRNA levels of GluBAS

and Chi9 and higher extracellular PR-1 expression (Gallou et al.,

2011).

8.3 AMF-induced defensive enzyme
activation in plants

AMF initiate defensive enzymes in plants after the development

of symbiotic relationships such as PODs and polyphenol oxidase

(PPO) (phenolic substance metabolizer), chalcone synthase (CHS)

(flavonoid synthesizer), chalcone isomerase (CHI) (metabolizer

of lignin, phytoalexin, and isoflavone/flavonoid biosynthesis),

phenylalanine ammonia-lyase (PAL) (metabolizer of proteins

related to disease resistance (PR proteins) and phenypropanes)

(Isayenkov et al., 2005). PAL is a physiological marker of plant

resistance to pathogens. PAL activity was enhanced significantly in

leaves and stems when infected F. oxysporum inoculated tomato

seedlings were injected with AMF, which resisted disease and

infection development (De Román et al., 2010). It was observed

that Superoxide dismutase (SOD), 1,1-diphenyl-2-picrylhydrazyl

(DPPH), and free radical scavenging activity enhanced in

G. mosy-infected strawberry plants. The antioxidant production

significantly increased in plants, which improved the resistance

against F. oxysporum (Steinkellner et al., 2012). The PR protein,

chitinase, glucanase, and other allergic reaction substances are

upregulated in mycorrhizated plants with G. mosei. Inoculation

with G. clarum, G. monosporum, and G. deserticola significantly

enhanced the polyphenol oxidase activity in date palms and

resisted chlorosis. G. rhizogenes stimulates the synthesis of sp7

(a defense protein); in the nucleus, it interacts with ERF19 (a

protein transcription factor relevant to the disease process). The

phrase sp7 helps in symptom alleviation induced by Magnaporthe

oryzae (Kloppholz et al., 2011). AMF can enhance disease resistance

in plants, either systemically or locally. The mechanisms by

which AMF improves plant resistance may involve a single

process or the combined effects of multiple pathways (Tabin

et al., 2009). The effectiveness of AMF in suppressing diseases

depends on the interactions between viruses, host plants, and

AMF, which are influenced by abiotic factors such as soil

properties (temperature, moisture, pH, and nutrient levels), timing

of inoculation, and inoculum dosage. Additionally, agricultural

practices, including farming techniques, pest control strategies, and

fertilizer application, play a crucial role in determining the success

of AMF-mediated biocontrol in farming ecosystems (Figure 3)

(Chandanie et al., 2009).

8.4 Transcriptome and proteome profiling
of AMF-responsive genes in host plants

Transcriptomic and proteomic profiling are crucial for

elucidating the molecular mechanisms underlying plant defense

responses influenced by AMF (Aslam et al., 2024). Proteomic

analysis facilitates the systematic identification and quantification

of proteins expressed in plant roots in response to AMF

colonization, offering insights into the functional dynamics of the

plant-microbe interaction at the protein level (Yu et al., 2023).

RNA of 64-day-old AMF RNA sequencing (RNA-seq) inoculated

watermelon plants exhibited 2,259 differentially expressed genes

(DEGs) related to signal transduction and metabolic pathways

and involved in photosynthesis, nutrient transporters, biosynthesis

of chlorophyll, and hormone biosynthesis. Proteomic profiling

suggested that AMF is involved in the auxin signaling pathway

by triggering auxin response factors, auxin-mediated proteins,

auxin transporter-like proteins, and auxin-responsive proteins

(Ma et al., 2024). Roots of mycorrhizated wheat plants with

F. mosseae under water scarcity were analyzed for DEGs,

114,428 DEGs were found those involved in N compound,

lipid, and carbohydrate metabolic pathways, cellulose synthase,

and chitinase activity, and membrane transports and help

plants to tolerate water deficit environment (Moradi Tarnabi

et al., 2020). RNA-seq exhibited that the mycorrhizated root of

snapdragon plants inhibits the osmotic stress induced by cold

stress by enhancing the production of proline, soluble sugars,

and proteins. Further, AMF attenuated the damage initiated by

reactive oxygen spp. through the boost of GSH and AsA contents,

PODs, catalase (CAT), SOD, monodehydroascorbate reductase

(MDHAR), dehydroascorbate reductase (DHAR), glutathione

reductase (GR), and ascorbate peroxidase (APX) activities.

Furthermore, proteomic profiling identified AMF involved in

regulating genes encoding the photosystem I and II related

proteins, phytohormones synthesis, transcription factors related

to stress, and active oxygen metabolism (Li et al., 2024b).

Transcriptome profiling of mycorrhizated soybean plants with

F. mosseae and infected with F. oxysporum showed DEGs (24,285),

and genes PAL, CCR, CHI, and CYP73A were found upregulated

upon infection with pathogenic fungi and triggered the defense
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FIGURE 3

Activation of plant defensive enzymes by pathogen recognition and modulated through colonization of AMF and other beneficial microbes.

response of soybean. In addition, mycorrhizated soybean roots

upregulate of isoflavone metabolic pathway and lead to the

synthesis of defense compounds by the production of glycine and

daidzein along with substantial changes in the ample amount

of terpene and phenolic metabolites, phenolic, and amino acids

(Lu et al., 2020).

9 Common symbiosis signaling
pathway

The common symbiosis-signaling pathway (CSSP) is a

conserved signaling cascade that is required for the development

of AMF symbiosis and the activation of nutrient exchange between

plants and AMF (Maclean et al., 2017). It is activated upon the

perception of fungal-derived lipochitooligosaccharides (e.g., Myc

factors) and by plant LysM receptor-like kinases, including LYR3

fromMedicago truncatula (Fliegmann et al., 2016). This interaction

induces a downstream signaling cascade involving DMI1, DMI2,

DMI3, and CCaMK (Mitra et al., 2004). DMI1 is an ion channel

localized in the nucleus that facilitates calcium spiking, a key

second messenger in AMF symbiosis (Jiang and Ding, 2023).

Patch-clamp electrophysiological experiments revealed that DMI1

played an essential role in the generation of rhythmic calcium

oscillations in root epidermal cells after AM fungus recognition

(Tian et al., 2020). DMI2, a leucine-rich repeat receptor-like

kinase, functions downstream of Myc factor perception and,

together with the symbiosis receptor kinase SYMRK, assembles

into a complex to activate the CSSP (Zhou et al., 2025a).

Phosphoproteomic analysis indicates that DMI2 is quickly auto-

phosphorylated in response to fungal signals, thereby activating

a phosphorelay cascade that propagates the symbiotic signal
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(Ivanov and Harrison, 2024). Calcium-activated protein

kinase CCaMK, which DMI3 encodes, decodes the calcium-

spiking rhythm via calmodulin binding and transcription factor

phosphorylation (Dhanker et al., 2020). Structural studies through

cryo-electron microscopy (cryo-EM) have also unraveled how

calcium-calmodulin binding relieves the auto-inhibitory domain

of CCaMK, thereby facilitating downstream transcriptional

reprogramming (Yuan et al., 2022). CCaMK also interacts with

DELLA proteins, thereby coordinating gibberellin signaling

to regulate AM fungal colonization (Yuan et al., 2022). New

single-cell RNA-seq data reveal that DMI genes are cell-type-

expressed explicitly in the root cortex, where arbuscule formation

occurs, during their spatial regulation during symbiosis (Somoza

et al., 2024). Epigenetic studies reveal that histone deacetylases

regulate DMI expression to maintain proper signaling intensity

under different phosphate conditions (Li et al., 2024c). CSSP

land plant conservation prioritizes its evolutionary importance

as comparative genomics dictates the existence of orthologs in

non-legumes, postulating a potential role in promoting AMF

symbiosis for sustainable agriculture (Vernie et al., 2025).

10 Genomic and pangenomic studies
of AMF

The genomic and pangenomic research on AMF has

significantly advanced our understanding of their evolutionary

biology, symbiosis, and functional diversity (Liu and Chen,

2024). The genomic sequencing of the fungus Rhizophagus

irregularis (genome accession no.: DAOM-197198) provided the

first complete genome of an AMF (Masclaux et al., 2019). This

analysis exhibited a diminished suite of plant cell wall-degrading

enzymes with an expanded suite of symbiotic signaling genes,

including those in the common symbiosis pathway (Tisserant

et al., 2013). Pangenomic analyses of Rhizophagus and Gigaspora

spp. have likewise revealed significant genomic plasticity, in which

strain-specific genes are associated with host adaptation and

nutrient exchange (Oliveira et al., 2024). The research uncovered

evidence of horizontal gene transfer from bacterial origins, which

accounts for the metabolic versatility of AMF (Li et al., 2018).

Pangenomic approaches unveiled the core and accessory genomes,

with a focus on the contribution of transposable elements to

genomic development (He et al., 2024). The findings emphasize

the need for more extensive sampling approaches to achieve the

genomic diversity of AMF and inform subsequent research on

their ecological and agricultural significance.

11 Conclusion

This comprehensive review underscores the pivotal role

of AMF in sustainable crop disease management and yield

enhancement. AMF establishes intricate symbiotic associations

with plant roots that greatly boost nutrient uptake, water

absorption, and protection from biotic and abiotic stresses. Besides

their conventional role as a facilitator of nutrient mobilization,

AMF induces SR through hormonal signaling, upregulation of

DRGs, and SMs biosynthesis. Their symbiotic and non-symbiotic

interactions with beneficial rhizosphere microbiota also enhance

their biocontrol activity against a range of phytopathogens.

AMF-mediated root exudate alteration, porosity of soil, and

structure of microbial community create a suppressive soil

status that is unfavorable for pathogens. Molecular studies,

including proteomics and transcriptomics, have explained the

potential of AMF in modulating host plant immunity at

biochemical and genetic levels. Most generally, AMF offers a

promising, sustainable alternative to chemical inputs to modern

agriculture that is consistent with global sustainability and food

security goals.

12 Future aspects

Future research must endeavor to optimize AMF inoculants

for diverse agroecosystems through the identification of host-

specific strains and environmental tolerance. Metagenomics and

transcriptomics can resolve tripartite interactions among AMF,

plants, and pathogens. Field trials with varying climatic and

soil conditions will validate efficacy, while precision agriculture

tools can integrate AMF for pinpoint delivery. Investigation

of synergistic effects from interaction with other biocontrol

agents (e.g., PGPR, Trichoderma) through combinatorial

testing will enhance disease control measures. Long-term

studies on soil fertility and carbon sequestration through

glomalin production are a must. Lastly, the scaling up of

AMF production processes will enable commercial viability for

sustainable agriculture.
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