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Introduction: Bacteria-derived extracellular vesicles (BEVs) are emerging as key 

biomarkers of host-microbiota interactions. However, little is known about how 

BEV profiles differ across different biofluids or how these differences relate 

to clinical phenotypes. We aimed to examine the BEV distribution and site-

specific and shared associations with host phenotypes, and evaluated the clinical 

relevance of microbial distance between sampling sites. 

Methods: We profiled BEVs using 16S rRNA sequencing of urine and serum 

samples from middle-aged and older Koreans (n = 2,827). We compared the 

alpha and beta diversities between the two biofluids, and assessed their relative 

abundances and associations with host anthropometric measurements, blood 

tests, and dietary nutrient intake. We also calculated the distances between 

urine and serum BEV compositions and assessed their clinical and metabolic 

implications. 

Results: Urine BEVs exhibited higher alpha diversity than the serum BEVs, 

as well as stronger associations with dietary nutrient intake, particularly 

sugar, and with anthropometric measures such as waist circumference. The 

correlations between the urine and serum BEV compositions were generally 

low, emphasizing their distinct microbial profiles. Notably, individuals with 

shorter urine-serum BEV composition distances had higher waist-to-hip and 

sugar-to-fat ratios. 

Discussion: This study provides a comprehensive comparison of urinary and 

serum BEVs, revealing the differences in microbial composition and associations 

with host phenotypes. In particular, urine BEVs showed stronger associations 

with dietary and metabolic factors, underscoring their potential utility as non-

invasive biomarkers for metabolic health. 
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1 Introduction 

The human body harbors a diverse array of microbes on 

its skin and mucosal surfaces. These microbial communities 
have been extensively studied for their associations with various 
diseases, clinical conditions, and dietary intake (Cuevas-Sierra 

et al., 2019; Manor et al., 2020; Ross et al., 2024). Traditional 
microbiome analyses largely focus on bacterial cells and 

their genomes, including those of non-viable or inactive cells 
(Emerson et al., 2017). However, direct interactions between 

microbes and host cells are limited by the epithelial barriers in 

the gut and other mucosal surfaces. Instead, communication 

between the microbiota and host occurs primarily through 

bacteria-derived components, such as extracellular vesicles (EVs) 
(Liu et al., 2024). 

Bacteria-derived EVs are membrane-enclosed particles that 
carry cargo such as nucleic acids, proteins, lipids, and small 
molecules. These vesicles can traverse the intestinal epithelium 

and enter the bloodstream via paracellular transport, particularly 

under conditions of gut dysbiosis (Chakaroun et al., 2020) or 

through endocytosis, transcytosis, and exocytosis (Díaz-Garrido 

et al., 2021). Recent studies have highlighted the roles of 
BEVs in various diseases and clinical conditions, suggesting that 
they may serve as both biomarkers and mediators of host-
microbiota interactions (Liu et al., 2024). BEVs isolated from 

urine or serum have shown promise for the detection of cancers 
(Kim et al., 2020; Ou et al., 2023; Park et al., 2021; Yoon 

et al., 2023). They have also been associated with metabolic 

disorders such as obesity and type 2 diabetes, supporting their 

influence on insulin sensitivity, inflammation, and glucose or 

lipid metabolism (Lee et al., 2024; Nah et al., 2019). Notably, 
macro- and micronutrients can regulate the production of BEVs, 
and high-fat or high-carbohydrate diets have been linked to 

gut dysbiosis and altered BEV profiles (Chae et al., 2024; 
Taitz et al., 2023). 

Bacteria-derived EVs can be isolated from biofluids such as 
urine and serum, which are easily obtainable in clinical settings. 
While serum and urine BEVs may share certain characteristics 
owing to the filtration of blood into urine, they also exhibit 
site-specific characteristics. A previous study reported distinct 
bacterial compositions among the stool microbiota and BEVs 
from stool, serum, and urine (Nah et al., 2019). This study 

also observed that correlations between microbial profiles in 

dierent biofluids were higher in patients with type 2 diabetes, 
suggesting that investigating the associations between host 
phenotypes and biofluid-specific BEV abundance or microbial 
distance across sampling sites may provide meaningful insights into 

host-microbiota interactions. 
In this study, we aimed to (1) investigate and compare 

the distribution of BEVs in serum and urine using a large 

cross-sectional Korean study; (2) explore site-specific and shared 

associations between BEVs and host phenotypes, including 

anthropometric measures, blood measures, and nutrient intake; 
and (3) assess the clinical significance of the microbial distance 

between sampling sites. 

2 Materials and methods 

2.1 Study population 

The Ansan cohort is a longitudinal study of Koreans that 
is part of the Korean Genome Epidemiology Study (Kim et al., 
2016). Participants aged ≥ 40 years were recruited from Korea 
University Ansan Hospital, where they completed a questionnaire, 
underwent anthropometric measurement, and provided blood 
and urine samples for clinical evaluation. Further details of 
this cohort are available elsewhere (Kim et al., 2016). Of the 
5,012 participants, 3,879 provided urine samples and 4,779 
provided serum samples for BEV composition analysis at baseline 
(2001–2002). 

2.2 EV isolation and 16S rRNA gene 
sequencing 

For EV isolation, samples were subjected to dierential 
centrifugation at 10,000 × g and 4◦C for 10 min using a 
microcentrifuge (Labogene 1730R; Bio-Medical Science, Seoul, 
Korea) (Lee et al., 2007). This step removes most host cells and 
associated intracellular components, minimizing the likelihood 
of host-derived bacterial DNA contamination. The supernatant 
was passed through a 0.22-µm filter (Inchpor2 Syringe Filter; 
Inchemtec, Seoul, Korea) to remove bacteria, foreign particles, and 
waste. The isolated EVs were boiled at 100 ◦C for 40 min and 
centrifuged at 18,214 × g for 30 min at 4◦C to eliminate floating 
particles and impurities. The resulting supernatant was used for 
DNA extraction with a PowerSoil R  DNA Isolation Kit (MO BIO 
Laboratories, Carlsbad, CA, USA), following the manufacturer’s 
protocol. DNA was quantified using a QIAxpert system (Qiagen, 
Hilden, Germany). 

Paired-end sequencing of the V3–V4 region of the bacterial 
16S rRNA gene was conducted at MD Health Care (Seoul, 
Korea) with the MiSeq Reagent Kit v3 (600 cycles, Illumina, San 
Diego, CA, USA) using the widely used primers 16S_V3_F (5 

-TCGTCGGCAGCGTCAGATGTGTATAAGAGACA-GCCTACG 
GGNGGCWGCAG-3) and 16S_V4_R (5-GTCTCGTGGGCT 
CGGAGATGTGTATA-AGAGACAGGACTACHVGGGTATCTAA 
TCC-3). Adaptor sequences were detected and removed using 
the CUTADAPT software,1 with a minimum overlap of 11, a 
maximum error rate of 10%, and a minimum length of 10 (Martin, 
2011). Sequences were merged using CASPER,2 with a mismatch 
ratio of 0.27 and filtered based on the Phred (Q) score, resulting 
in sequences 350–550 bp in length (Bokulich et al., 2013; Kwon 
et al., 2014). After dereplication of the merged sequences, chimeric 
sequences were detected and removed using VSEARCH3 and 
the Silva Gold reference database for chimeras (Rognes et al., 
2016). Open-reference operational taxonomic unit (OTU) picking 
was conducted based on the EzTaxon database using UCLUST4 

1 https://cutadapt.readthedocs.io 

2 http://best.snu.ac.kr/casper 

3 https://github.com/torognes/vsearch 

4 http://www.drive5.com/usearch 
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(Edgar, 2010; Yoon et al., 2017). Samples with a read count ≤ 3,000 
were excluded, leaving 3,595 urine and 3,862 serum samples. In 
total, 2,827 participants had both urinary and serum microbiome 
data (Supplementary Figure 1). 

2.3 Clinical outcomes 

Anthropometric measurements, blood biochemical tests, 
and questionnaires were administered at baseline for each 
participant. Only variables with fewer than 10% missing 
values were included; details with abbreviations and units 
are provided in Supplementary Table 1. In total, 75 variables 
were available, including 16 variables from anthropometric 
measurements, 29 from blood measurements, and 30 from 
dietary nutrients. 

Anthropometric measurements included body composition 
variables measured using multi-frequency bioelectrical impedance 
analysis (InBody version 3.0; InBody, Seoul, Republic of Korea). 
For dietary nutrient variables, daily energy and nutrient intakes 
were calculated using a validated 103-item semi-quantitative 
food frequency questionnaire. The daily nutrient intake was 
adjusted for total energy intake using the residual method 
(Willett and Stampfer, 1986). 

2.4 Covariates 

Lifestyle variables including smoking, drinking, physical 
activity, and dietary factors were used as covariates. The 
intensity of each variable was calculated using a self-reported 
questionnaire. For smoking, pack-years were calculated by 
multiplying the number of packs smoked per day by the number 
of years of smoking. Drinking intensity was measured in grams 
of ethanol per day, calculated by multiplying the frequency 
and amount of alcohol consumption by the ethanol content. 
Physical activity was quantified as metabolic equivalent of task 
min/day. Dietary nutrient intake included a large number of 
variables, and factor analysis and clustering were performed to 
reduce the dimensionality of dietary nutrient intake. Five-factor 
scores, based on energy-adjusted nutrient intake, and dietary 
supplement intake status, were used for K-prototype clustering, 
which incorporated both categorical and continuous variables. 
The silhouette score indicated that five clusters provided the 
best fit. 

2.5 Alpha and beta diversities 

Alpha-diversity metrics were evaluated using observed OTUs, 
Chao1, and Shannon indices, and compared across sampling 
sites using the Wilcoxon rank-sum test. Beta diversity was 
assessed based on the Bray–Curtis distance after read number 
normalization by rarefaction, and a principal coordinate analysis 
plot was generated. The distance between the urine and serum 
samples was calculated using common OTUs found at both 
sample sites. 

2.6 Permutational multivariate analysis of 
variance 

Permutational multivariate analysis of variance was performed 
on the clinical variables using the Bray–Curtis distance, with 
1,000 permutations (adonis function in R). Multiple comparisons 
were controlled using the Benjamini-Hochberg FDR (BH) 
method within each category (anthropometric measurements, 
blood measurements, and dietary nutrients). Additionally, to 
examine the potential influence of host conditions, PERMANOVA 
was also conducted based on self-reported comorbidities and 
current medication use, including urinary tract infection, gastric 
ulcer/gastritis, inflammatory or metabolic disease and drugs for 
metabolic conditions. 

2.7 Microbial clusters 

Microbial clusters were identified by applying the Dirichlet 
multinomial mixture model (Holmes et al., 2012) to the genus-
level abundance profile, resulting in four microbial clusters in the 
urine and serum samples. To evaluate whether the microbiome 
clusters had a significant association with clinical variables, we 
conducted an F-test to compare the two linear regression models. 
In the reduced model, we included age, sex, alcohol consumption, 
smoking, and dietary clusters, whereas in the full model, we 
included microbiome clusters as additional variables. 

2.8 Association analyses of OTUs 

Association analysis was conducted using OTUs with a 
mean relative abundance (MRA) > 0.001 across all subjects. To 
robustly identify the genera associated with clinical variables, 
we employed two statistical tools: the phylogenetic Tree-based 
Microbiome Association Test (TMAT) (Kim et al., 2019) and 
the Microbiome Multivariable Associations with Linear Models 
(MaAslin2) (Mallick et al., 2021) as a validation tool. We adjusted 
for age, sex, smoking, drinking, physical activity, and dietary 
clusters (for non-dietary outcomes). Multiple comparisons were 
controlled using the BH method. Associations were considered 
significant if they had a TMAT q < 0.05, and showed the same 
direction of association in MaAslin2 (p < 0.05). We initially 
explored associations with all clinical outcomes. Additionally, we 
analyzed the waist to hip circumference ratio (WHR) and sugar 
to fat intake ratio (SFR), which are derived variables of waist 
circumference (WC) and sugar intake that showed consistently 
significant associations in prior PERMANOVA and microbial 
cluster analyses. 

2.9 Correlation between urine and serum 
microbiome and its effect on clinical 
variables 

Major taxa were defined as those present in > 45% of the 
participants with a MRA greater than 1%. For these major taxa, 
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FIGURE 1 

Comparison of bacteria-derived extracellular vesicles between urine and serum samples. (A) Beta diversity based on Bray–Curtis distance and (B) 
alpha diversity plots for both urine and serum samples. ****p < 0.0001. (C) Phylum- and (D) genus-level relative abundance bar plots by sampling 
site. 

Spearman correlation coeÿcients were calculated between paired 
urine and serum samples using log counts-per-million (CPM) 
transformed values of common major taxa. 

Next, we assessed the eect of the distance between the urine 
and serum BEVs on clinical variables. The Bray–Curtis distance 
was computed for each participant, and participants were divided 
into two groups: those with close distances (≤ first quintile, 0.908) 
and those with greater distances. WC, sugar intake, WHR and 
SFR were selected as clinical variables of interest. Dierences in 
clinical variables between the two groups were assessed using the 
Wilcoxon rank-sum test. 

2.10 Metagenome functional pathway 
prediction and association analysis with 
WHR and SFR 

We used PICRUSt2 (Douglas et al., 2020) to predict functional 
metagenomic pathways from urine 16S rRNA data based on the 
Kyoto Encyclopedia of Genes and Genomes database (level 3). 
Pathways present by less than half of the participants and with a 
relative abundance < 0.05% were excluded. 

Associations between predicted pathways and WHR, SFR, and 
the distance between urine and serum microbiome composition 
(≤ 0.9 or > 0.9) were assessed using a logistic regression model 
fitted to log CPM of pathway abundances. Adjustments were made 
for age, sex, drinking status, smoking status, physical activity, and 

dietary clusters (excluding the dietary cluster for the SFR). Multiple 
comparisons were controlled using the BH method. 

3 Results 

3.1 Baseline characteristics 

The baseline characteristics of the study participants are shown 
in Supplementary Table 2. The analysis included 2,827 participants 
with both urine and serum microbiome data. The average age of the 
participants was 48.79 years (standard deviation, SD = 7.65), and 
46.9% were males. The mean daily energy intake was 1,979.13 kcal. 
The average body mass index was 24.71 kg/m2 (SD = 2.98), and 
the WC was 80.54 cm (SD = 8.61). The mean values of the clinical 
variables were within normal ranges. Only 19 participants (0.67%) 
reported a history of urinary tract infection, and 16.8% were 
currently taking at least one medication regardless of type. BEV 
composition did not significantly dier by most of the self-reported 
comorbidities or current medication use (Supplementary Table 3). 

3.2 Comparison of BEVs in urine and 
serum 

Beta diversity analysis (Bray–Curtis distance) revealed 
that urine and serum BEV microbiomes were clearly distinct 
(Figure 1A). Additionally, urine BEVs were significantly more 
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TABLE 1 Major genera and their correlations between sampling sites. 

Phylum Family Genus Urine Serum Spearman 
correlationa 

q value 

Actinobacteria Bifidobacteriaceae Gardnerella O – – – 

Bifidobacteriaceae Bifidobacterium – O – – 

Coriobacteriaceae Collinsella – O – – 

Corynebacteriaceae Corynebacterium O O −0.030 0.222 

Micrococcaceae Rothia O – – – 

Nocardiaceae Rhodococcus – O – – 

Propionibacteriaceae Propionibacterium O O −0.022 0.356 

Bacteroidetes Bacteroidaceae Bacteroides – O – – 

Prevotellaceae Prevotella O O 0.030 0.222 

Firmicutes Lachnospiraceae Blautia – O – – 

Lactobacillaceae Lactobacillus O O 0.037 0.155 

Ruminococcaceae Faecalibacterium – O – – 

Ruminococcaceae JN713389_g – O – – 

Staphylococcaceae Staphylococcus O O 0.047 0.051 

Streptococcaceae Streptococcus O O −0.021 0.356 

Proteobacteria Enterobacteriaceae Escherichia O O −0.091 0.000 

Methylobacteriaceae Methylobacterium O O −0.005 0.794 

Moraxellaceae Acinetobacter O O −0.026 0.283 

Moraxellaceae Moraxella O O 0.012 0.585 

Pseudomonadaceae Pseudomonas O O −0.047 0.051 

Rhizobiaceae Rhizobium O – – – 

Rhodobacteraceae Paracoccus O – – – 

Sphingomonadaceae Sphingomonas O O −0.012 0.585 

Xanthomonadaceae Stenotrophomonas – O – – 

Verrucomicrobia Akkermansiaceae Akkermansia – O – – 

Major genera were defined as those present in > 45% of the participants with a mean relative abundance > 1%. a Log counts-per-million values were used to calculate Spearman correlations. 

diverse than serum BEVs across all three alpha diversity measures: 
observed OTUs, Chao1, and Shannon index (Figure 1B). Relative 
abundance plots at the phylum and genus levels were generated, 
displaying the top 20 genera with MRA > 0.01 in either urine or 
serum, while lower abundance genera were grouped under “Other.” 
At the phylum level, Proteobacteria, Firmicutes, Bacteroidetes, 
and Actinobacteria were common taxa with high MRAs at both 
sampling sites (Figures 1C, D). Notably, urine exhibited a higher 
MRA of the Proteobacteria; specifically, an elevated presence of the 
Pseudomonas genus within this phylum. 

3.3 Correlation of common major taxa 
between sampling sites 

Sixteen genera in urine and 21 in serum were present 
in over 45% of participants with MRA > 0.01. Of these, 12 
genera, including Acinetobacter, Corynebacterium, Escherichia, 
Lactobacillus, Methylobacterium, Moraxella, Prevotella, 
Propionibacterium, Pseudomonas, Sphingomonas, Staphylococcus, 
and Streptococcus were shared between the sample types (Table 1). 

Spearman’s correlation coeÿcients were calculated between urine 
and serum samples for these common major genera. Among the 
genera examined, Staphylococcus, Pseudomonas, and Escherichia 
showed correlations of 0.05, −0.05 and −0.09, respectively, with 
only Escherichia showing a significant correlation after correction 
for multiple testing. 

3.4 Clinical variables explaining variance 
in BEV composition 

Figure 2 illustrates the proportion of variance (R2) in the 
BEV composition explained by various clinical variables, including 
anthropometric measurements, blood measurements, and dietary 
intake of nutrients. Among the anthropometric measurements 
(Figure 2A), WC, hip circumference, and subscapular skinfold 
thickness explained the highest R2 in both serum and urine 
samples, with the associations generally stronger in urine. 
Regarding the blood test results (Figure 2B), albumin, total protein, 
and calcium levels explained the greatest proportion of variance 
in the BEV composition, showing stronger eects in the serum 
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FIGURE 2 

Proportion of variance in the bacteria-derived extracellular vesicle composition explained by clinical variables. (A) Anthropometric measurement, (B) 
blood measurement, and (C) dietary nutrients intake. ∗ q < 0.05. 

samples. Regarding dietary nutrient intake (Figure 2C), sugar, 
water, vitamin C, potassium, and N-6 fatty acid intakes were most 
strongly associated with variance in BEV, with urine showing a 
slightly stronger relationship. Notably, in both dietary nutrients 
and anthropometric measurements, the urine BEV composition 
consistently showed stronger associations with clinical variables 
than the serum BEV composition. 

3.5 Microbiome clusters and their related 
clinical characteristics 

To explore overall patterns in BEV composition prior to genus-
level analysis, we identified clusters of microbiome profiles in urine 
and serum BEVs and examined their associations with various 
clinical variables, adjusting for age, sex, drinking, smoking, and 
dietary clusters for non-nutrient variables (Figure 3). 

In the urine BEV clusters, the relative abundance of genera 
varied across the four distinct clusters. In cluster 4, Sphingomonas, 
Staphylococcus, Rothia, Methylobacterium, and Novosphingobium 
were dominant, whereas genera such as Lactobacillus and 
Streptococcus were less abundant compared to other clusters. 
Cluster 4 also had a greater proportion of the top 20 most 
prevalent genera, with lower abundance genera grouped as “Other.” 
Demographically, individuals in cluster 4 were older and had 

a higher proportion of females. Most clinical variables that 
were significantly associated with urine BEV clusters showed a 
decreasing trend toward cluster 4 when cluster 1 was used as the 
reference. However, WC, serum calcium level, and sugar, energy, 
carbohydrate, and water intake were the highest in cluster 4. 

In the serum BEV clusters, the relative abundance of 
Acinetobacter decreased from cluster 1 to cluster 4, whereas 
Bacteroides exhibited the opposite pattern, increasing toward 
cluster 4. Compared to urine, fewer clinical variables were 
statistically significantly associated with serum microbiome 
clusters, and those that were significantly associated were 
predominantly blood measurement variables. 

3.6 Association analysis 

Figure 4 presents the BEV features that were significantly 
associated with the clinical variables, as identified by TMAT and 
further validated using MaAsLin2. Only the associations that were 
consistent across both methods are shown. 

Bifidobacterium in the serum and Megasphaera in the 
urine were negatively associated with the WHR and SFR. 
Conversely, Sphingomonas, Staphylococcus, and Corynebacterium 
were consistently positively associated with WHR in both serum 
and urine. In contrast, Rothia, Prevotella, Enterococcus, and 
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FIGURE 3 

Microbiome clusters and their associated clinical characteristics. Relative abundances of genera in (A) serum and (B) urine bacteria-derived 
extracellular vesicle (BEV) clusters. Clinical characteristics associated with (C) serum and (D) urine BEV clusters. Adjusted for age, sex, alcohol 
consumption, smoking, and dietary clusters for non-nutrient variables. ∗ q < 0.05, ∗∗ q < 0.01, ∗∗∗ q < 0.001. 

FIGURE 4 

Bacteria-derived extracellular vesicles (BEVs) related to clinical variables in each sampling site. (A) Anthropometric measurements (B) dietary 
nutrients. A heatmap displaying values of −log (q value) multiplied by the sign of coefficients. BEVs showing a significant association with at least 
one clinical variable (Tree-based Microbiome Association Test (TMAT) q < 0.05 and Microbiome Multivariable Associations with Linear Models 
(MaAsLin2) p < 0.05 with same sign of coefficients) are included. Adjusted for age, sex, alcohol consumption, smoking, and dietary clusters for 
non-nutrient variables. Gray color indicates that the association between the BEVs and clinical variables was not analyzed, because BEVs filtered out 
according to the mean relative abundance. ∗ q < 0.05, ∗∗ q < 0.01, ∗∗∗ q < 0.001. 
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FIGURE 5 

Clinical variables and predicted pathways associated with the distance between urine and serum bacteria-derived extracellular vesicle composition. 
(A) Distribution of Bray–Curtis distances between urine and serum BEV compositions. (B) Comparison of clinical variables between participants with 
close distances (≤ first quintile, 0.908) and those with greater distances. P-values were calculated using the Wilcoxon rank-sum test. (C) A heatmap 
showing t-values of the association between predicted Kyoto Encyclopedia of Genes and Genomes pathways and the waist-to-hip circumference 
ratio (WHR), sugar-to-fat intake ratio (SFR), and distance group. ∗ p < 0.05. 

Escherichia were positively associated with WHR in urine, 
but negatively associated in serum, indicating sampling site-
specific relationships. 

Overall, dietary nutrients and anthropometric measurements 
were primarily associated with urine BEVs, whereas blood 
measurements showed a greater number of associations with BEV 
features in both serum and urine (Supplementary Figure 2). These 
results suggest that dietary and anthropometric factors were more 
closely linked to the urine microbiome, whereas blood-related 
variables exhibited broader connections across both sampling sites. 

3.7 Clinical variables associated with the 
distance between urine and serum BEV 
composition 

Figure 5A illustrates that the Bray–Curtis distance between 
urine and serum BEV composition ranged from 0.67 to 1, with most 
participants clustering near 1. The first quintile corresponded to a 
distance of 0.908. Participants with more similar BEV compositions 
between urine and serum (≤ 0.908) had significantly lower WHR 
(p = 0.034), daily sugar intake (p = 0.014), and SFR (p = 0.00069) 

compared to those with greater distance (Figure 5B). Although 
WC did not reach statistical significance, it showed a similar trend 
(p = 0.21). 

The WHR, SFR, and urine-serum distance groups exhibited 
similar patterns of association with the predicted pathways 
(Figure 5C). Pathways that were more abundant in participants 
with elevated SFR, higher WHR, and closer urine-serum 
microbiome composition distances included those related to 
carbohydrate metabolism (citrate cycle, glycolysis/gluconeogenesis, 
pyruvate, galactose, propanoate, and butanoate metabolism), 
endocrine system (adipocytokine and glucagon signaling pathway), 
membrane traÿcking, phosphotransferase system (PTS), and 
oxidative stress (ferroptosis, and HIF-1 signaling pathway) 
(q < 0.05). 

4 Discussion 

In this study, we examined BEVs in urine and serum 
samples from a large cohort of Korean adults, focusing on 
their composition, diversity, and associations with host dietary, 
anthropometric, and clinical factors. Our findings highlight the 
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distinct dierences between urine and serum BEVs, oering new 
insights into their biofluid-specific profiles and relationships with 
host phenotypes. Urine BEVs exhibited higher alpha diversity than 
those derived from the serum, which is consistent with reports 
from other East Asian populations (Park et al., 2022; Nah et al., 
2019). This elevated alpha diversity in urine could stem from the 
broader range of vesicle origins; urine contains BEVs that originate 
not only from the bloodstream but also from the urogenital tract 
(Whiteside et al., 2015). 

While most previous studies examined the association between 
host phenotypes and microbes using bacterial genomic data 
from stool or vaginal samples, our investigation focused on 
BEVs, revealing both consistent and novel findings. For instance, 
Bifidobacterium-derived EVs in serum and Megasphaera-derived 
EVs in urine were negatively associated with WHR, which 
is consistent with their previously reported roles in obesity 
(Gao et al., 2018; Sroka-Oleksiak et al., 2020; Lv et al., 2019). 
Conversely, Staphylococcus- and Corynebacterium-derived EVs in 
both biofluids were positively associated with WHR, which is 
consistent with previous findings (Sroka-Oleksiak et al., 2020; 
Vongsa et al., 2019). Furthermore, Prevotella- and Escherichia-
derived EVs, known to increase in obesity (Gao et al., 2018; 
Nirmalkar et al., 2018; Thingholm et al., 2019), showed positive 
associations exclusively in urine, but negative associations in 
serum, suggesting that functional dierences in BEVs across 
biofluids may underpin these diering relationships. Additionally, 
urine BEVs showed stronger associations with dietary nutrient 
intake, particularly sugar, and with anthropometric measurements, 
suggesting that urine BEVs may better reflect dietary and body 
composition factors. This trend was consistently observed in both 
microbiome cluster- and genus-level association analyses, and the 
coherence across analytical approaches underscores the potential 
utility of urine BEVs as biomarkers of host metabolic status. Further 
research is warranted to elucidate the biological mechanisms 
underlying these dierential associations. 

We observed a low overall correlation between urine and serum 
BEV compositions, highlighting their distinct microbial profiles. 
Individuals with closer urine-serum BEV composition distances 
exhibited higher WHR and SFR, suggesting that central adiposity 
and sugar-rich diets may coincide with greater convergence 
of microbial signals across serum and urine. One plausible 
explanation for this convergence lies in gut barrier dysfunction 
under metabolic stress. Metabolic stress is known to promote low-
grade inflammation and compromise intestinal barrier integrity. 
Lipopolysaccharide, a component of the outer membrane of 
Gram-negative bacteria, contributes to intestinal inflammation 
and disrupts tight junction organization, thereby increasing gut 
permeability (Di Vincenzo et al., 2024). In addition, high-sugar 
diets have been shown to alter gut microbiota composition, 
reduce microbial diversity, and impair intestinal barrier function, 
facilitating the translocation of microbial products, including 
BEVs, into systemic circulation (Saouri et al., 2019). As a 
result, increased BEV exposure in the bloodstream may lead to 
the presence of more similar BEV composition in both serum 
and urine. Supporting this notion, a study using a dierent 
Korean cohort found that correlations between urine and serum 
BEV profiles were higher in individuals with type 2 diabetes 
(Nah et al., 2019). 

To explore these host-microbiota interactions, we predicted 
functional abundances using urine BEV data. Pathways related 
to carbohydrate metabolism, endocrine system, oxidative stress, 
PTS, and membrane traÿcking were enriched among individuals 
with higher WHR, SFR, and closer serum-urine BEV distances. 
Carbohydrate metabolic pathways, which are involved in energy 
harvesting, and the PTS, a bacterial system that facilitates the 
transport and phosphorylation of carbohydrates (Deutscher et al., 
2006), have been previously implicated in obesity and insulin 
resistance (Liu et al., 2017; Takeuchi et al., 2023; Turnbaugh et al., 
2009; Turnbaugh et al., 2006). Enrichment of membrane traÿcking 
pathways, which mediate the internalization and intracellular 
transport of EVs (Gurunathan et al., 2021), in individuals 
with shorter serum-urine BEV distances may reflect enhanced 
EV transport activity under metabolic stress. These findings 
support the hypothesis that metabolic conditions may promote 
convergence in the microbial signatures of distinct biofluids, 
potentially due to increased barrier permeability and systemic EV 
dissemination. However, these pathway predictions rely on 16S 
rRNA data and should be interpreted with caution until validation 
using multi-omics approaches. 

Among anthropometric variables, those associated with 
abdominal obesity–including waist circumference, hip 
circumference, abdominal fat ratio, and subscapular skinfold 
thickness–explained the largest proportion of variance in BEV 
composition, particularly in urine samples. This reinforces the 
link between adiposity and microbial vesicle profiles, which has 
been observed not only for bacterial taxa but also at the EV 
level. In terms of dietary intake, sugar intake showed the highest 
explanatory power among nutrients. Given the high carbohydrate 
consumption typical among middle-aged and older Korean 
populations (median 74% of daily calories), our findings suggest 
that dietary sugar, rather than fat, may be a particularly relevant 
modulator of BEV composition in this context. 

Regarding blood markers, albumin and calcium explained a 
substantial proportion of the variance in BEV profiles. Albumin is a 
key marker not only of age and nutritional status, but also of vesicle 
stability (Wolf et al., 2012). The association with serum calcium 
levels may reflect an underlying disruption in calcium homeostasis. 
Further studies are needed to better understand how laboratory 
biomarkers influence BEV profiles. 

This study has several limitations. First, although we included 
available data on comorbidities and current medication use, we 
cannot exclude the potential influence of unmeasured confounders. 
In particular, a lack of information on recent antibiotic use 
remains a limitation. Second, experimental validation techniques 
commonly used in EV research (e.g., transmission electron 
microscopy or nano particle tracking analysis) were not performed 
due to the practical constraints at the time of sample processing, 
and contamination could not be directly assessed using negative 
controls. Third, despite the implementation of strict protocols to 
minimize contamination, the results may have been influenced by 
potential contamination during sample collection and processing, 
which is an inherent challenge for low-biomass samples (Tulkens 
et al., 2020). Fourth, although we referred to the EVs containing 
bacterial DNA as bacteria-derived EVs, we acknowledge that our 
isolation method, based primarily on dierential centrifugation, 
cannot definitively distinguish bacterial EVs from human-derived 
EVs that may carry bacterial components. Therefore, the detected 
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bacterial DNA signatures should be interpreted with caution, 
and future studies employing more rigorous EV purification and 
characterization techniques are warranted. Fifth, while we focused 
on urine and serum BEVs, comparisons with other biofluids 
such as saliva or stool were not possible because of the lack 
of corresponding data. The inclusion of additional biofluids in 
future studies could enhance our understanding of BEV profiles 
across dierent sample types. Sixth, the observed associations could 
not establish causality owing to the cross-sectional design of our 
study. Finally, our study population exclusively consisted of East 
Asian middle-aged and older adults, which potentially limit the 
applicability of these findings to other populations. 

In conclusion, this study provides a comprehensive comparison 
of urinary and serum microbial signals through the analysis 
of BEVs, uncovering the distinct characteristics of microbial 
composition, diversity, and associations with host phenotypes in 
urine and serum. Urinary BEVs demonstrated stronger associations 
with dietary nutrient intake and anthropometric measurements, 
suggesting their potential as non-invasive biomarkers for 
metabolic health. 
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