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Background: Gut microbiota has been shown to initiate tumorigenesis and

cancer metastasis in multiple cancer types. However, the functional alterations

of gut microbiota and their association with metabolism in osteosarcoma

patients remain largely unexplored. This study aimed to characterize the gut

microbiota and serum metabolite profiles in osteosarcoma patients, evaluate the

diagnostic potential of gut microbiota and serum metabolites for osteosarcoma,

and explore their correlations.

Methods: We collected 128 fecal and 181 serum samples from osteosarcoma

patients, paired with matched healthy controls. 16S rRNA sequencing and

untargeted metabolomics were applied to analyze gut microbiota and serum

metabolism with significantly altered abundance in patients with osteosarcoma.

Models based on gut microbiome or serum metabolites were established and

evaluated in an independent validation cohort.

Results: The gut microbial diversity decreased in osteosarcoma patients

compared to healthy individuals. Principal component analysis identified

33 microbial species that exhibited significant changes in osteosarcoma

patients. Of note, the relative abundance of Alloprevotella and Prevotella

increased in these patients. This distinct alteration in gut microbiota was

accompanied by functional changes in pathways related to glycan degradation,

pentose and glucuronate interconversions, the citrate cycle, and fructose

and mannose metabolism during osteosarcoma progression. Furthermore,

metabolomic analyses revealed a distinct distribution of serum metabolites

in osteosarcoma patients compared to healthy controls. These metabolites

were correlated with cancer’s carbon metabolism, glucagon signaling, and the

citrate cycle pathways. Combined with the enrichment analysis results, gut

microbiota and serum metabolites were associated with carbohydrate-related

metabolism in osteosarcoma patients. Importantly, classifiers utilizing 3 optimal

microbial markers (6 serum metabolites) demonstrated strong diagnostic

efficiency in distinguishing osteosarcoma patients from healthy controls across

various cohorts.
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Conclusion: This study thoroughly analyzed gut microbiota and serum

metabolites in osteosarcoma patients, exploring their correlations and

facilitating the establishment of a diagnostic model.

KEYWORDS

osteosarcoma, gut microbiota, serum metabolites, characteristics, diagnostic
biomarker

Introduction

Osteosarcoma is the most common primary malignant bone
tumor in children and adolescents, accounting for 67% of all
primary malignant tumors of bone (Mirabello et al., 2009; Beird
et al., 2022). Osteosarcoma is a high malignancy among all
bone cancers, exhibiting aggressive growth and early metastasis
to distant sites (Kager et al., 2003; Gorlick et al., 2013). For
patients presenting with localized disease at diagnosis, standard
neoadjuvant chemotherapy combined with surgical resection yields
a 5-year survival rate of 70%. Metastatic disease, either at diagnosis
or at the time of recurrence, portends a poor prognosis with
a survival rate of 20% (Gill and Gorlick, 2021). Moreover,
patients with osteosarcoma usually have non-specific clinical
symptoms, which delay diagnosis until the tumors have reached
an advanced stage and often result in a poor prognosis. Early
detection and differentiation of osteosarcoma remain significant
clinical challenges. Notably, the underlying pathophysiology of
osteosarcoma remains largely unclear. Therefore, exploring novel
diagnostic markers and effective therapies is crucial for improving
patients’ prognoses.

The gut microbiota, which comprises most human microbial
communities, is now considered a critical element in regulating
host health and disease. Because of the advancement of molecular
techniques, including metagenomic, metabolomic, lipidomic, and
meta transcriptomic approaches, the intricate interactions between
the human host and gut microorganisms are progressively being
deciphered and characterized. Nowadays, mounting studies have
highlighted the crucial role of gut microbiota in various diseases,
including chronic kidney disease (Ren et al., 2020; Wang et al.,
2023), type 2 diabetes (T2D) (Qin et al., 2012), colorectal cancer
(CRC) (Chen et al., 2022; Sun et al., 2024), and pancreatic cancer
(Mendez et al., 2020; Li et al., 2021), indicating its involvement
in regulating pathways linked to immunity, energy metabolism,
lipid metabolism, and glucose regulation (Eckburg et al., 2005;
Rath and Dorrestein, 2012; Kundu et al., 2017; Levy et al., 2017;
Dominguez-Bello et al., 2019). T2D has been associated with
the outgrowth of facultative opportunistic pathogens (Qin et al.,
2012), particularly oxidative stress resistance and perturbations in

Abbreviations: 16S rRNA, 16S ribosomal RNA; Oss, osteosarcoma patients;
HCs, healthy controls; OTU, operational taxonomic unit; PCA, principal
component analysis; PCoA, principal coordinate analysis; POD, probability
of disease; ROC, Receiver operating characteristics; AUC, area under
the ROC curve; UPLC-MS, ultra-performance liquid chromatography-mass
spectrometry; VIP, Variable importance in the projection; PLS-DA, Partial
Least Squares Discrimination Analysis; OPLS-DA, Orthogonal Partial Least
Squares Discriminant Analysis.

metabolites such as short-chain fatty acids and insulin resistance
(Cani et al., 2007; Cani et al., 2009). CRC, the most prevalent
gastrointestinal malignancy, has been strongly linked to disturbed
gut microbiota with specific bacteria, such as Fusobacterium
nucleatum, Bacteroides fragilis, and Escherichia coli (Chen et al.,
2022; Sun et al., 2024). These microbial variations were involved
in the aberrantly elevated concentrations of the secondary bile
acid and deoxycholic acid, thereby suppressing CD8+ T cell
responses to maintain tumorigenesis in CRC (Cong et al., 2024).
Our previous research has verified the altered gut microbiota in
COVID-19 (Ren et al., 2021), pancreatic carcinoma (Ren et al.,
2017), hepatocellular carcinoma (Ren et al., 2019; Rao et al., 2020),
and cholangiocarcinoma (Rao et al., 2021).

Metabolic changes can be indicators of osteosarcoma
progression. The gut microbiota is crucial in regulating multiple
aspects of metabolic disorders [26]. Microbial metabolites interact
with host cells to activate or inhibit signaling pathways, impacting
host health. This regulatory mechanism relies on the production of
diverse metabolites and their interactions with host cell receptors,
resulting in potential beneficial or detrimental effects on the host’s
overall health. Recent animal studies have revealed correlations
between osteosarcoma and gut microbiota. For instance, Li
et al. demonstrated that Alloprevotella and Rikenellaceae were
upregulated, while Muribaculum, Klebsiella, Colidextribacter,
and Lachnospiraceae were downregulated in a BALB/c nude
mouse model of osteosarcoma. Furthermore, Alloprevotella,
Rikenellaceae, and Muribaculum abundances correlate with amino
acid metabolism, particularly histidine metabolism (Li et al.,
2024). However, none of the work has parallelly investigated gut
microbiotas and serum metabolites in patients with osteosarcoma,
as most previous studies have focused exclusively on either serum
or fecal metabolites (Zhang et al., 2010; Lv et al., 2020).

Therefore, we used 16S rRNA MiSeq sequencing and serum
metabolome analysis to explore the alterations in gut microbiota
and their cross-talk with osteosarcoma-associated metabolism
throughout the progression of osteosarcoma.

Materials and methods

Study participants and data collection

This study was conducted following the principles of the
Declaration of Helsinki (Ren et al., 2019). From December 2020
to December 2022, 309 samples were collected, including 128
fecal and 181 serum samples (Figure 1). The trial procedures and
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FIGURE 1

Study design and flow diagram. A total of 309 samples were collected. After applying the inclusion and exclusion criteria, 264 samples were
ultimately selected for further analysis, including 114 fecal samples (38 OSs and 76 HCs) and 150 serum samples (45 OSs and 105 HCs). We initially
examined the gut microbiota and serum metabolomics in OSs and HCs to identify significant microbial or serum metabolic markers. Subsequently,
the fecal or serum samples were randomly assigned to either a training cohort or a test set. In the training cohort, prediction classifiers were
developed using a fivefold cross-validation random forest model, which was then validated for diagnostic effectiveness in the test cohort.
Additionally, we analyzed correlations between the gut microbiome and serum metabolomics, as well as the relationships between the gut
microbiome or serum metabolites and clinical parameters. OSs, osteosarcoma patients; HCs, healthy controls; RFC, random forest classifier.

eligibility criteria were reported previously (Ren et al., 2019). This
study was approved by the Institutional Ethics Committee of the
Affiliated Cancer Hospital of Zhengzhou University (Approval
number: 2021-KY-0148-001). All participants provided written
informed consent before participating in the study.

After applying all selection criteria, 264 samples were
selected for the study. The fecal samples underwent thorough
16S rRNA MiSeq sequencing, while the serum samples were
analyzed using ultra-performance liquid chromatography-mass
spectrometry (UPLC-MS). In addition, key baseline factors for the
participants included in this analysis encompassed age, sex, body
mass index (BMI), primary tumor location and size, Enneking
stage, and metastasis (Table 1).

Fecal sample collection and DNA
extraction

Each participant was required to offer a fresh fecal sample
between 6:00 and 8:00 a.m. Once received, each collected sample
was divided into five equal parts of 200 mg and immediately stored
at−80◦C. Microbial genomic DNA was isolated from homogenized
fecal suspensions (200 mg wet weight) using the E.Z.N.A. R© Stool
DNA Kit (Omega Bio-Tek, Inc., GA) with the following critical
modifications: Three cycles of bead-beating (0.1 mm zirconia/silica
beads, 6.5 m/s for 45 s) using a FastPrep-24TM homogenizer (MP

Biomedicals); extended incubation with InhibitorEX R© Buffer at
70◦C for 10 min; post-extraction assessment via 1% agarose gel
electrophoresis and QubitTM dsDNA HS Assay (Thermo Fisher
Q32851); DNA integrity was confirmed through PCR amplification
of the 16S rRNA V4 region (positive control) and the lack of
amplification observed in no-template controls. Qualified extracts
were stored at –80◦C in Tris-EDTA buffer (pH 8.0) with RNase A
(10 µg/mL).

PCR amplification, MiSeq sequencing,
and data processing

PCR amplification targeting the hypervariable V3-V4
regions of bacterial 16S rRNA genes was performed using
primers 341F (5′-CCTACGGGNGGCWGCAG-3′) and 805R
(5′-GACTACHVGGGTATCTAATCC-3′), which were designed
against Escherichia coli reference positions 341–805. Amplicons
were size-selected (550–650 bp) using Hieff NGS DNA Selection
Beads (YeasenBiotech Co., Ltd., China), followed by dual-
index library construction with the TruSeq DNA PCR-Free Kit
(Illumina). Paired-end sequencing (2 × 300 bp) was conducted on
the Illumina MiSeq platform by Mobio Biomedical Technology
(Shanghai). Raw sequencing data were processed by FLASH
software (version 1.2.10) (Magoč and Salzberg, 2011). All
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TABLE 1 Demographic and clinical characteristics of study participants.

Clinical indices Fecal sample p-value Serum sample P-value

Healthy
controls
(n = 76)

osteosarcoma
(n = 38)

Healthy
controls
(n = 105)

Osteosarcoma
(n = 45)

Age (years) 16.18± 5.44 16.75± 7.23 0.671 15.87± 4.83 16.40± 5.47 0.552

Sex (female/male) 18/20 27/49 0.22 54/51 20/25 0.479

BMI 19.78± 4.12 20.94± 4.15 0.159 20.11± 3.89 20.05± 4.32 0.932

Tumor site (lower/upper extremity) 35/3 39/6

Tumor volume (cm3) − 292.64± 304.64 − 303.71± 319.24 −

Enneking stage

Stages IIA-IIB − 32(84.21%) − 37(82.22%) −

Stages IIIA-IIIB − 6(15.79%) − 8(17.78%) −

WBC (10∧9/L) 5.58± 1.17 5.23± 1.35 0.158 5.82± 1.55 5.31± 1.40 0.062

RBC (10∧12/L) 4.57± 0.43 4.64± 0.45 0.449 4.63± 0.44 4.66± 0.48 0.727

Hemoglobin (g/L) 135.61± 16.29 140.08± 13.64 0.148 137.20± 16.04 140.93± 14.51 0.181

Platelet (10∧9/L) 249.43± 52.51 235.84± 42.72 0.17 260.67± 52.68 237.13± 41.54 0.009

Albumin (g/L) 48.34± 2.48 49.00± 2.63 0.194 48.69± 2.00 49.098± 2.63 0.304

Alkaline phosphatase (µ/L) 60.68± 13.77 257.77± 260.74 < 0.001 60.60± 14.09 262.27± 248.88 < 0.001

Scr (µmol/L) 70.94± 11.39 77.43± 10.79 0.004 72.59± 14.16 76.76± 10.51 0.078

BMI, body mass index; WBC, white blood cells; RBC, red blood cells; Scr, serum creatinine.

sequencing data from this study are available in the Sequence Read
Archive under BioProject PRJNA1184406.

Operational taxonomic unit clustering
and taxonomic annotation

Amplicon sequence variants (ASVs) were clustered into
operational taxonomic units (OTUs) using the UPARSE pipeline
(version 11)1 with a 97% sequence identity threshold (Edgar,
2013). OTUs were annotated at various taxonomic levels, including
phylum, class, order, family, and genus, using the RDP Classifier V.
2.6262 against the SILVA216S rRNA database (Wang et al., 2007).

Bacterial diversity and taxonomic
analysis

Shannon and Simpson indices and observed OTUs via mother
7 (v.1.42.1) were used to assess bacterial α diversity. The R package
was utilized for bacterial β diversity analysis, and results were
visualized through PCA and PCoA. Heatmaps were created using
the R heatmap package.

PERMANOVA was employed to compare the gut microbiota
of osteosarcoma patients and healthy individuals, focusing on
identifying distinct characteristics, differential abundance, and
multivariable correlations. Taxonomic discrimination was further

1 http://drive5.com/uparse/

2 http://rdp.cme.msu.edu/

analyzed using the LEfSe method (Segata et al., 2011), which
highlighted key bacterial species that differentiated the gut
microbiota of osteosarcoma patients from that of healthy controls
based on a normalized relative abundance matrix (Ling et al.,
2014). Finally, the potential variations in metabolic pathways were
investigated using PICRUSt, which involved comparing data from
16S rRNA gene sequencing with the KEGG database.

Identification of the OTU biomarkers and
construction of probability of disease

The Wilcoxon rank-sum test was utilized to pinpoint significant
biomarkers in the gut microbiome for further investigation.
Subsequently, an optimal selection of OTUs was made utilizing a
random forest model with fivefold cross-validation, as detailed in
previous research (Heitner et al., 2010). For performance analysis of
the classification models, we used the probability of disease (POD)
index and Receiver Operating Characteristics (ROC) with the area
under the curve (AUC) (Robin et al., 2011).

Metabolomics preparations for serum
samples

Blood samples were carefully processed to isolate the serum
by centrifuging at 3,000 rpm for 10 min. For each sample, 100
µL of serum was mixed with 400 µL of 100% methanol (stored
at –20◦C) from each well in a 96-well plate and homogenized. After
centrifugation (12,000 × g, 15 min, 4◦C), the supernatants were
dehydrated under N2 at 35◦C. Dried extracts were reconstituted in
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150 µL of 4 ppm 2-chlorophenylalanine solution (stored at –20◦C),
vortexed for 5 min, and filtered using a 0.22-µm PVDF filter for LC-
MS detection. A pooled quality control sample was created from a
small amount of each sample to ensure analytical consistency.

UPLC-MS-based metabolomics data
acquisition and analysis

The analysis employed acetonitrile (B3) and 5 mM ammonium
formate (A3) as the phases. Metabolites were detected using an
Orbitrap Exploris 120 from Thermo Fisher Scientific, equipped
with an ESI ion source [34]. Subsequently, LC/MS raw data
were converted to mzXML format through MSConvert [35] and
processed using R XCMS for feature detection [36], retention time
correction, and alignment. Identification of serum metabolites was
performed by comparing against databases such as HMDB [37],
Massbank [38], and KEGG [39]. Data were analyzed using the R
package “ropls” (v1.22.0). To decipher metabolic profile variances
between the groups, Partial Least Squares Discriminant Analysis
(PLS-DA) and Orthogonal Partial Least Squares Discriminant
Analysis (OPLS-DA) were utilized. Significant metabolites were
defined based on a variable importance in projection (VIP)
value > 1 and a false discovery rate < 0.05. The Wilcoxon rank-sum
test was applied to compare metabolite levels between the groups.

Statistical analysis

Continuous variables in the two groups were compared using
either the Student’s t-test or the Wilcoxon rank-sum test, while
categorical variables were evaluated with the χ2 test or Fisher’s exact
test. The Spearman rank correlation test was used to determine
statistical correlations. The level of statistical significance for two-
tailed p-values was set at p < 0.05. Statistical analyses were carried
out in SPSS v. 22.

Results

Study design and characteristics of the
participants

Following the thorough application of strict criteria, 264
samples were selected for analysis, including 114 fecal samples
(38 OSs and 76 HCs) and 150 serum samples (45 OSs and 105
HCs). Initially, we characterized the gut microbiota and serum
metabolomics in patients with osteosarcoma and HCs to identify
key microbial and serum metabolic markers. Subsequently, fecal
and serum samples were randomly allocated into the training
and test cohort. In the training cohort, predictive classifiers were
constructed using a fivefold cross-validation random forest model,
which was subsequently assessed for diagnostic performance in
the test cohort (Figure 1). Additionally, correlations among the
gut microbiome, serum metabolites, and clinical parameters were
analyzed.

This study summarized and compared the demographic
features of OSs and HCs (Table 1). Most OS cases (approximately

90%) were found in the lower extremities, while a smaller
proportion (10%) were in the upper extremities. 80% of
osteosarcoma patients were classified as stage II according to
the Enneking Staging System. Interestingly, levels of alkaline
phosphatase levels were markedly elevated in OSs when compared
to HCs (p < 0.001). However, there were no notable differences
in body mass index (BMI) or levels of various blood biochemical
parameters like white and red blood cells, etc., as illustrated in
Table 1.

Gut microbial alterations in patients with
osteosarcoma

To investigate the gut microbial characteristics in OSs, 16S
rRNA MiSeq sequencing was performed on fecal samples from
both OSs and HCs. The alpha diversity of gut microbes, as
measured by the Shannon index, Simpson index, and observed
OTUs, was significantly decreased in OSs compared to HCs
(all p < 0.05) (Figures 2A–C and Supplementary Figure S2).
Significant differences in composition were observed between the
gut microbial communities of OSs and HCs in the PCA and PCoA
analyses (all p < 0.001). The gut microbiota of HCs clustered
together, while that of OSs was more heterogeneous, partially
overlapping with that of the healthy individuals (Figures 2D,E).
Venn diagram showed that 875 of the total 1,490 bacterial
OTUs were shared between the two groups, while 58 unique
OTUs were identified in OSs (Figure 2F). Furthermore, gut
microbial composition and variation were analyzed, identifying
35 critical OTUs as distinguishing lineages between OSs and HCs
(Supplementary Figures S1; Supplementary Data S2). Among these,
10 OTUs were elevated in OSs, while 25 were reduced compared to
HCs.

Significant differences in gut microbial profiles between the OSs
and HCs groups were analyzed at both the phylum and genus levels.
At the phylum level, Firmicutes, Bacteroidota, Actinobacteria, and
Proteobacteria predominated in both groups, accounting for
about 90% of the microbiota (Figure 2G). In comparison to
the HCs group, the OSs group exhibited a significant increase
in Bacteroidota, accompanied by a decrease in Firmicutes and
Actinobacteria (Figure 2I; Supplementary Data S3). At the
genus level, Prevotella, Sutterella, Alloprevotella, and Allisonella
were enriched, whereas 29 genera, including Bifidobacterium,
Butyricicoccus, Coprococcus, and Lachnospiraceae_CAG-56,
were remarkably reduced in the OSs group (Figures 2H,J;
Supplementary Data S4). Furthermore, we compared the gut
microbial composition between OSs and HCs at the class, order,
and family levels. The abundance and composition of the bacterial
community in each sample at the three levels are shown in
Supplementary Figures S2–S4 and Supplementary Data S5–S7.

Crucial gut bacteria and microbial
functions related to osteosarcoma

To identify critical gut bacteria and microbial functions in
osteosarcoma, we conducted Linear discriminant analysis Effect
Size (LEfSe) to pinpoint specific bacterial taxa and predominant
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FIGURE 2

Gut microbial alterations in patients with osteosarcoma. Gut microbial alpha diversity was estimated using the Shannon index (A), the Simpson index
(B), and the observed OTUs (C) in OSs (n = 38) and HCs (n = 76). The distribution of gut microbiota in the two groups was depicted by PCA (D) and
PCoA analysis (E). (F) A Venn diagram illustrated that 875 out of 1,490 gut bacterial OTUs were shared between the two groups, while 58 OTUs were
unique to the Oss. (G) The abundances of bacterial taxa in both groups are shown at the phylum level. (H) The abundance of bacterial taxa in both
groups was displayed at the genus level. (I) Significant differences emerged in the abundances of discriminatory phyla between OS (red) and HC
(blue). (J) Significant differences emerged in the abundances of discriminatory genera between OS (red) and HC (blue). OUT, operational taxonomic
unit; PCA, principal component analysis; PCoA, principal coordinate analysis; *p < 0.05; **p < 0.01; ***p < 0.001.
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species associated with microbiota changes between OSs and
HCs. The cladogram derived from the linear discriminant analysis
(LDA) showed significant differences in gut microbial taxa
between the groups (Figure 3A and Supplementary Data S8). At
the genus level, OSs were characterized by the enrichment of
Prevotella, Lachnospiraceae UCG 004, and Bacteroidales unclassified
(LDA score (log10) > 3). Conversely, Subdoligranulum, Gemella,
Bifidobacterium, and Agathobacter were dramatically depleted in
the OSs group (LDA score (log10) > 3), as depicted in Figure 3B
(Supplementary Data S9).

We utilized the Phylogenetic Investigation of Communities
by Reconstruction of Unobserved States 2 (PICRUSt2) to
predict the key functional and metabolic pathways of microbial
communities based on their 16S rRNA gene content. 58 KEGG
pathways differed markedly between the OSs and HCs groups
(all p < 0.05, LDA score > 3, Supplementary Data S10). Among
the 20 top predicted pathways (Figure 3C), six were related to
carbohydrate metabolism, including glycan degradation, pentose,
and glucuronate interconversions, the TCA cycle, carbon fixation
in prokaryotes, and fructose and mannose metabolism, which were
enriched in the OSs group. In contrast, the phosphotransferase
system was more abundant in the HCs group.

Non-invasive diagnostic model for
osteosarcoma via the gut microbiota

To investigate the diagnostic potential of gut microbiota
composition concerning osteosarcoma, we developed a random
forest classifier model based on gut OTUs from 25 OSs and 50
HCs in the training cohort, as shown in Figure 1. Three gut
OTUs, including OTU68 (Collinsella), OTU69 (Romboutsia), and
OTU105 (Monoglobus), were identified as the optimal marker set
that achieved the lowest classifier error in the random forest cross-
validation (Figures 4A,B). The relative abundance of these three
OTUs in each sample was shown in Supplementary Data S11. The
POD index was calculated using the identified optimal set of three
OTUs for both training and validation cohorts. In the training
phase, the POD value was significantly higher in the OSs group than
in the HCs group, yielding an area under the curve (AUC) value
of 94.67% (95% CI: 89.65–99.69%, p < 0.0001) (Figures 4C,D and
Supplementary Data S12). In the validation phase, which consisted
of 13 OSs and 26 HCs, the average POD index for OSs was markedly
elevated compared to that for HCs, achieving an AUC value of
88.00% (95% CI: 76.85–99.15%, p = 0.0002), as demonstrated in
Figures 4E,F (Supplementary Data S13). These findings suggest
that the gut microbial classifier model could specifically distinguish
osteosarcoma patients from the HCs group.

Serum metabolomics alterations in
patients with osteosarcoma

Gut microbiota produces biologically active metabolites that
can enter the bloodstream and regulate various physiological
processes in humans (Dominguez-Bello et al., 2019). To further
investigate the altered metabolomic profile in osteosarcoma,
we conducted untargeted metabolomics via UPLC-MS. Serum

samples were collected from 61 OSs and 120 HCs. The total
ion chromatogram of the quality control samples showed a
stable baseline in both groups (Supplementary Figure S5). As
demonstrated in Figures 5A,B, PCA, PLS-DA, and OPLS-DA
analyses in both positive and negative ion scanning modes revealed
significant differences in serum metabolites between OSs and HCs.

To further characterize the altered serum metabolites in
osteosarcoma progression, we performed a pairwise comparison
using VIP values from OPLS-DA and p- values obtained from
statistical analysis. Differential serum metabolites with consistent
shift were shown in Figures 5C–E, with 57 metabolites enriched
and 116 depleted in OSs compared to HCs. (Student’s t-test,
p < 0.01, FC > 1.5, and VIP > 1, Figure 5E) As depicted in
Figure 5F, fatty acids, carbohydrates, and amino acids were the
predominant affected, accounting for 40% of the total altered
metabolites. The OPLS-DA score plot presented a clear separation
between OSs and HCs based on these serum metabolites (Figure 5G
and Supplementary Data S14).

Crucial metabolism-related signaling
pathway analysis in osteosarcoma

To explore the mechanism underlying the stage of
osteosarcoma, we performed metabolic pathway enrichment
analysis on differential metabolites between OSs and HCs. 40
metabolites were associated with 13 altered functional pathways,
including central carbon metabolism in cancer, linoleic acid
metabolism, and glucagon signaling pathway (Figure 6A and
Supplementary Data S15). Of note, half of the top six pathways
pertained to carbon metabolism in cancer, glucagon signaling
pathway, and citrate cycle (TCA cycle) were closely linked to
carbohydrate metabolism (Figure 6B). Interestingly, gut microbial
carbohydrate metabolism, including pathways like other glycan
degradation, pentose and glucuronate interconversions, citrate
cycle (TCA cycle), and fructose and mannose metabolism, was
significantly enriched in the OSs group (Figure 3C). These findings
above imply that carbohydrate-related metabolic pathways play a
crucial role in the progression of osteosarcoma.

Identification of the serum metabolites
classifier for osteosarcoma

Next, we investigated the potential of serum metabolites as
diagnostic biomarkers for osteosarcoma by constructing a random
forest classifier using differential serum metabolites from the
training cohort (30 OSs versus 70 HCs). A fivefold cross-validation
was employed to assess the robustness of the model. As a result,
a panel of 10 serum metabolite biomarkers showed outstanding
performance in discriminating OSs from HCs. Among these
metabolites, four metabolites (phthalic acid, oleoylethanolamide,
pentaporphyrin I, and thymidine) were enriched in OSs group,
whereas 6 metabolites, including 5-nitro-2-(3-phenylpropylamino)
benzoic acid, 5-oxoavermectin “2a” aglycone, 2-furoate, adenine,
citric acid, and anastrozole, were depleted (Figures 7A,B). Notably,
the POD index for osteosarcoma calculated from these 6
metabolites showed an increase significantly compared with that
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FIGURE 3

Crucial gut bacteria and microbial functions related to osteosarcoma. (A) A cladogram generated by the LEfSe method indicating the phylogenetic
distribution of gut microbiota related to OSs (red) and HCs (blue). (B) Significant bacterial differences between the OSs and HCs groups based on
LDA scores. (C) Prediction of key functional and metabolic pathways between the two groups.

of the HCs, with an AUC of 0.8029 (95% CI 71.69–88.88%,
p < 0.0001), as shown in Figures 7C,D (Supplementary Data S16).

Furthermore, validation with a test cohort (15 OSs and 35
HCs) confirmed the classifier’s effectiveness, yielding an AUC of
0.7905 (95% CI 66.67–91.42%) (Figures 7E,F and Supplementary
Data S17). These data suggested that the serum metabolic classifier
may differentiate OSs from HCs. Comparing the AUCs of both
models revealed that the gut microbiota panel (AUC 0.8800–
0.9467) outperformed the serum metabolite panel (AUC 0.7905–
0.8029) in distinguishing osteosarcoma from HCs.

Correlation among gut microbiome,
serum metabolites, and clinical index in
osteosarcoma

We conducted a deeper analysis of the relationships among
the gut microbiome, serum metabolites, and clinical indicators
of osteosarcoma through Spearman correlation analysis. A total
of 21 OTUs were identified as being linked to five clinical

indicators (Figure 8A and Supplementary Data S18), including
a positive correlation between ALP and osteosarcoma-increased
gut microbiota (e.g., Prevotella) and a negative correlation with
osteosarcoma-decreased gut microbiota, like Romboutsia and
Clostridiaceae. Meanwhile, we examined the correlations between
serum metabolites and clinical indicators in osteosarcoma and
found three clinical indicators (ALP, Scr, and Age) closely related
to 23 serum metabolites (Figure 8B and Supplementary Data S19).
Intriguingly, ALP and Scr were positively associated with fumaric
acid, beta-d-glucose 6-phosphate, 2-furoate, and citric acid, which
were involved in carbohydrate metabolism.

Next, we investigated the relationship between varying gut
microbes and metabolites in osteosarcoma. The results showed
that osteosarcoma-decreased microbes were positively correlated
with serum-depleted metabolites (Figure 8C and Supplementary
Data S20). Conversely, negative correlations were observed
between osteosarcoma-decreased microbes and serum-enriched
metabolites. Specifically, osteosarcoma-decreased gut microbes
(e.g., Bifidobacterium, Subdoligranulum, and Romboutsia) were
positively associated with serum-enriched metabolites (e.g.,
L-Rhamnono-1,4-lactone and sphingosine 1-phosphate) and
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FIGURE 4

Non-invasive diagnostic model for osteosarcoma via the gut microbiota. (A) 3 OUT microbial markers identified as the optimal marker set by the
random forest model. (B) Importance distribution map of the selected microbial markers in the model. (C) The POD value in the training cohort (25
OSs and 51 HCs). (D) ROC analysis of the selected microbial markers to discriminate OSs from HCs in the training cohort. (E) The POD value in the
test cohort (13 OSs and 25 HCs). (F) ROC analysis of the selected microbial markers to discriminate OSs from HCs in the test cohort; POD probability
of disease, AUC, area under the curve.

negatively correlated with serum-depleted metabolites (e.g.,
phthalic acid and cyclic GMP). All of the above findings
indicated a potential interaction among the gut microbiome,
serum metabolites, and clinical indicators in the progression of
osteosarcoma.

Discussion

Numerous studies have demonstrated that gut microbial
dysbiosis is closely associated with various cancers, making it a
novel target for diagnosis and therapy [21, 43, 44]. However, the

role of gut microbiota and serum metabolites in patients with
osteosarcoma requires further exploration. This study aimed to
analyze the characteristics of gut microbiomes and metabolomics
in OSs compared with HCs and identify crucial microbiota and
metabolites. Then, we established predictive models based on the
differential microbiota and metabolites, which reached a powerful
diagnostic potential in distinguishing osteosarcoma from HCs.

Gut microbiota colonizing humans has been identified at the
phylum level, including Firmicutes, Bacteroidetes, Actinobacteria,
Proteobacteria, Fusobacteria, and Verrucomicrobia, among which
Firmicutes and Bacteroidetes are the major phyla (Laterza et al.,
2016). Consistent with these findings, we also found that
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FIGURE 5

Serum metabolomics alterations in patients with osteosarcoma. (A) The positive ionic distribution of serum metabolites assessed by PCA, PLS-DA,
and OPLS-DA in OSs (n = 61) and HCs (n = 120). (B) The negative ionic distribution of serum metabolites assessed by PCA, PLS-DA, and OPLS-DA in
OSs and HCs. (C) Volcano plot illustrating changes based on the positive ionic distribution. (D) Volcano plot illustrating changes based on the
negative ionic distribution. (E) Volcano plot depicting the distribution based on the secondary spectra of the fragment ions between the two groups.
(F) The categories and number of differential serum metabolites identified from the OSs compared to HCs. (G) Heat map of the differential serum
metabolites in the OSs and HCs groups. PLS-DA, partial least squares discrimination analysis; OPLS-DA, orthogonal partial least squares discriminant
analysis.
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FIGURE 6

Crucial metabolism-related signaling pathway analysis in osteosarcoma. (A) Enrichment analysis of differential metabolic pathways. (B) Metabolic
network analysis based on the enriched metabolic pathways and the KEGG database.

Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria were
the predominant bacterial phyla in both OSs and HCs. Specifically,
Firmicutes and Actinobacteria decreased significantly in OSs,
whereas Bacteroidetes increased. In addition, analysis of the
gut microbiota revealed that 33 microbial species significantly
changed in OSs. The phylum Bacteroidota, particularly the
genera Alloprevotella and Prevotella, had the highest abundance
in the OSs group, followed by Proteobacteria (Sutterella) and
Firmicutes (Allisonella). Emerging evidence suggests that some
of these bacteria pose a substantial risk to human health. For
instance, Alloprevotella and Prevotella have been implicated in
tumorigenesis, and elevated levels have been shown to be associated
with oral cavity cancer (Ganly et al., 2019; Liu X. et al., 2023),
breast cancer (Liu E. et al., 2023), and pancreatic cancer (Chen
et al., 2023). As opposed to the observed decrease of Allisonella in
prostate cancer and bladder cancer (Mingdong et al., 2023), there
was an increase in osteosarcoma. Such a unique alteration may
constitute a characteristic gut microbiota signature distinguishing
osteosarcoma from other cancers.

Subsequently, the KEGG enrichment analysis revealed that gut
microbial dysbiosis in osteosarcoma was closely associated with
several disordered pathways, including other glycan degradation,
pentose and glucuronate interconversions, lipopolysaccharide
biosynthesis, citrate cycle (TCA cycle), carbon fixation pathways
in prokaryotes, and fructose and mannose metabolism pathways.
These pathways involved inflammatory reactions, immune
responses, and oxidative stress (Sepich-Poore et al., 2021; Hou
et al., 2022). Thus, our work suggested that alterations in the gut
microbiota associated with osteosarcoma may be attributed to
the imbalanced function of inflammatory and immune responses.
Research reveals a strong connection between the gut microbiome
and several diseases, suggesting it may function as a non-invasive
diagnostic tool for specific conditions. Wang et al. examined
changes in the gut microbiota associated with chronic kidney
disease (CKD) and developed a diagnostic model using gut
microbial markers, achieving significant efficacy in differentiating
CKD patients from healthy individuals (Wang et al., 2023). Chen
et al. comprehensively described gut microbiota characteristics
in pancreatic cancer and proposed potential microbial markers

as non-invasive tools for its diagnosis (Chen et al., 2023). Our
previous analyses have investigated that gut microbial markers
possess strong diagnostic potential for hepatocellular carcinoma
(Ren et al., 2019; Rao et al., 2020) and cholangiocarcinoma (Rao
et al., 2021). Therefore, we established a diagnostic panel of
three OTU biomarkers, which showed excellent performance in
discriminating OSs from HCs in the training cohort with an AUC
of 94.67 and 88.00% in the test cohort. These findings underscored
gut microbiota dysbiosis as a promising diagnostic biomarker and
a potential therapeutic strategy for osteosarcoma patients.

Dysregulated metabolism is a hallmark of cancer (Hanahan
and Weinberg, 2011). The serum metabolome plays a vital role in
mediating the impact of gut microbiota on host phenotypes in both
health and disease conditions (Chen et al., 2021). Meanwhile, in
this study, we observed a distinct distribution of serum metabolites
in OSs compared to HCs, which was associated with carbon
metabolism in cancer, the glucagon signaling pathway, and the
citrate cycle (TCA cycle) pathways. Furthermore, the pathway
and enrichment analyses of gut microbiota and serum metabolites
revealed a connection to carbohydrate-related metabolism in
OSs. This finding is consistent with recent reports emphasizing
disrupted energy metabolism in Oss (Zhang et al., 2010; Dean et al.,
2018; Lv et al., 2020). Then, we examined the diagnostic potential of
serum metabolites and constructed a diagnostic panel consisting of
six serum metabolite biomarkers (4 osteosarcoma and six depleted),
which showed adequate accuracy for differentiating OSs from HCs
(AUC = 0.8029). These results implicated the critical role of serum
metabolites in osteosarcoma progression.

In addition, the correlation analysis revealed mutual
interactions among gut microbiota, serum metabolites, and
clinical indicators of osteosarcoma. Of note, the level of alkaline
phosphatase was positively correlated with osteosarcoma-enriched
Prevotella (r = 0.209, p = 0.025) as well as osteosarcoma-associated
metabolites, including fumaric acid (r = 0.429, p = 0.000),
beta-D-Glucose 6-phosphate (r = 0.403, p = 0.000), 2-furoate
(r = 0.407, p = 0.000), and citric acid (r = 0.376, p = 0.000).
These findings support previous studies that identified elevated
alkaline phosphatase as linked to poorer overall survival in
osteosarcoma patients (Ferrari et al., 2001; Bacci et al., 2006).
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FIGURE 7

Identification of the serum metabolites classifier for osteosarcoma. (A) Ten serum metabolic markers identified as the optimal marker set by the
random forest model. (B) Importance distribution map of the selected metabolic markers in the model. (C) The POD value in the training cohort (30
OSs and 70 HCs). (D) ROC analysis for the selected metabolic markers to distinguish OSs from HCs in the training cohort. (E) The POD value in the
test cohort (15 OSs and 35 HCs). (F) ROC analysis for the selected metabolic markers to distinguish OSs from HCs in the test cohort; POD probability
of disease, AUC, area under the curve.

Meanwhile, the osteosarcoma-decreased microbes were positively
associated with serum-depleted metabolites, while negative
correlations were observed between osteosarcoma-decreased

microbes and serum-enriched metabolites. Collectively, these
results deciphered a potential relationship among gut microbiota,
clinical parameters, and metabolites that may contribute to the
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FIGURE 8

Correlation among gut microbiome, serum metabolites, and clinical indices in osteosarcoma. (A) Correlations between differing gut microbiota and
clinical indicators in the progression of osteosarcoma. (B) Correlations between differing serum metabolites and clinical indicators in the
progression of osteosarcoma. (C) Correlations between differing gut microbiota and serum metabolites in the progression of osteosarcoma. OTU,
operational taxonomic unit; RBC, red blood cell count; Hb, hemoglobin; ALB, albumin; Scr, serum creatinine; ALP, alkaline phosphatase. *P < 0.05;
**P < 0.01; ***P < 0.001.

progression of osteosarcoma. However, further investigation
is needed to determine the causal relationship and underlying
mechanisms.

Despite the advantages outlined above, this study has several
limitations. It was constrained by the absence of early stage cases, as
most patients enrolled with osteosarcoma presented with advanced
disease (stage II/III according to the Enneking staging system).
This led to an insufficient sample size for stage-stratified analysis.
Additionally, since this is a single-center study conducted in China,

the effectiveness of the diagnostic models has not been validated
across different regions.

Conclusion

In summary, we comprehensively characterized the alterations
in gut microbiota accompanied by distinct changes in the
metabolomic profiling of osteosarcoma. Furthermore, the intricate
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interactions among osteosarcoma-related species, metabolites,
and clinical indices were closely associated with osteosarcoma
progression. Clinically, we established diagnostic models based on
gut microbiota and serum metabolites that effectively differentiate
osteosarcoma patients from healthy controls with high specificity.
Therefore, our research highlights the critical role of gut microbes
and metabolites in the development of osteosarcoma, providing
new diagnostic and therapeutic targets for patients.

Data availability statement

All sequencing data is available in the NCBI Sequence Read
Archive (SRA) under BioProject PRJNA1184406. Additionally, the
raw numerical data that were used to create the figures in our
manuscript are openly available in Supplementary Material 2:
Supplementary Data S1–S20. The other data supporting the
findings is available in the methods and from the corresponding
author upon reasonable request.

Author contributions

CL: Writing – original draft, Funding acquisition, Resources,
Formal Analysis, Project administration, Data curation,
Methodology, Validation. YC: Formal Analysis, Methodology,
Funding acquisition, Writing – original draft. WY: Data curation,
Writing – original draft, Resources. PZ: Resources, Writing –
original draft, Data curation. XW: Resources, Data curation,
Writing – original draft. GQ: Resources, Data curation, Writing –
original draft. ZR: Conceptualization, Writing – review and editing,
Supervision, Funding acquisition. JW: Resources, Supervision,
Conceptualization, Writing – review and editing.

Funding

The author(s) declare that financial support was received for
the research and/or publication of this article This study was
sponsored by the Medical Science and Technique Foundation of
Henan Province, China (Grant Nos. 232102311084, 242102310046,
and 252102310118), as well as the Key Scientific Research
Projects of Colleges and Universities in Henan Province
(Grant No. 24B320034).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmicb.2025.
1616603/full#supplementary-material

SUPPLEMENTARY DATA S1

Detailed values of the gut microbial diversity index and the observed OTUs
in 76 HCs and 38 OSs.

SUPPLEMENTARY DATA S2

The abundance and distribution of 35 OUTs in both groups.

SUPPLEMENTARY DATA S3

Phylum-level difference between the two groups.

SUPPLEMENTARY DATA S4

Genus-level differences between the two groups.

SUPPLEMENTARY DATA S5

Class-level differences between the two groups.

SUPPLEMENTARY DATA S6

Order-level differences between the two groups.

SUPPLEMENTARY DATA S7

Family-level differences between the two groups.

SUPPLEMENTARY DATA S8

Identified bacterial taxa and predominant bacteria in OSs (n = 38) and HCs
(n = 76) through LEfSe analysis.

SUPPLEMENTARY DATA S9

The LDA value and p-value associated with the genera significantly differed
between the two groups.

SUPPLEMENTARY DATA S10

The LDA value and p-value related to the microbial community gene
function for samples from both groups.

SUPPLEMENTARY DATA S11

Each optimal microbial marker’s output value in the training cohort.

SUPPLEMENTARY DATA S12

The corresponding POD values for each sample in the training
cohort.

SUPPLEMENTARY DATA S13

The corresponding POD values for each sample in the test
cohort.

SUPPLEMENTARY DATA S14

Serum metabolites differ according to the VIP values from OPLS-DA and
the p-values from statistical analysis.

SUPPLEMENTARY DATA S15

Analysis of enriched differential metabolic pathways in both
groups.

SUPPLEMENTARY DATA S16

The POD value linked to each sample in the training cohort.

SUPPLEMENTARY DATA S17

The POD values corresponding to each sample in the test
cohort.

SUPPLEMENTARY DATA S18

The p-value from Spearman’s correlation analysis related to variations in
gut microbiota and clinical indicators in the progression
of osteosarcoma.

Frontiers in Microbiology 14 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1616603
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1616603/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1616603/full#supplementary-material
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-16-1616603 July 15, 2025 Time: 15:49 # 15

Li et al. 10.3389/fmicb.2025.1616603

SUPPLEMENTARY DATA S19

The p-value from Spearman’s correlation analysis of differential serum
metabolites in relation to clinical indicators during the progression
of osteosarcoma.

SUPPLEMENTARY DATA S20

Spearman’s correlation analysis revealed the p-value linking differential gut
microbiota to serum metabolites in the progression of
osteosarcoma.

References

Bacci, G., Longhi, A., Versari, M., Mercuri, M., Briccoli, A., and Picci, P. (2006).
Prognostic. factors for osteosarcoma of the extremity treated with neoadjuvant
chemotherapy: 15-year experience in 789 patients treated at a single institution. Cancer
106, 1154–1161. doi: 10.1002/cncr.21724

Beird, H. C., Bielack, S. S., Flanagan, A. M., Gill, J., Heymann, D., Janeway, K. A.,
et al. (2022). Osteosarcoma. Nat. Rev. Dis. Primers 8:77. doi: 10.1038/s41572-022-
00409-y

Cani, P., Amar, J., Iglesias, M., Poggi, M., Knauf, C., Bastelica, D., et al. (2007).
Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–
1772. doi: 10.2337/db06-1491

Cani, P., Possemiers, S., Van de Wiele, T., Guiot, Y., Everard, A., Rottier, O.,
et al. (2009). Changes in gut microbiota control inflammation in obese mice through
a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58,
1091–1103. doi: 10.1136/gut.2008.165886

Chen, F., Dai, X., Zhou, C. C., Li, K. X., Zhang, Y. J., Lou, X. Y., et al. (2022).
Integrated analysis of the faecal metagenome and serum metabolome reveals the role
of gut microbiome-associated metabolites in the detection of colorectal cancer and
adenoma. Gut 71, 1315–1325. doi: 10.1136/gutjnl-2020-323476

Chen, L., Wang, D., Garmaeva, S., Kurilshikov, A., Vich Vila, A., Gacesa, R., et al.
(2021). The long-term genetic stability and individual specificity of the human gut
microbiome. Cell 184, 2302–2315.e12. doi: 10.1016/j.cell.2021.03.024

Chen, T., Li, X., Li, G., Liu, Y., Huang, X., Ma, W., et al. (2023). Alterations of
commensal microbiota are associated with pancreatic cancer. Int. J. Biol. Markers 38,
89–98. doi: 10.1177/03936155231166721

Cong, J., Liu, P., Han, Z., Ying, W., Li, C., Yang, Y., et al. (2024). Bile acids modified
by the intestinal microbiota promote colorectal cancer growth by suppressing CD8(+)
T cell effector functions. Immunity 57, 876–889.e11. doi: 10.1016/j.immuni.2024.02.
014.

Dean, D. C., Shen, S., Hornicek, F. J., and Duan, Z. (2018). From genomics to
metabolomics: Emerging metastatic biomarkers in osteosarcoma. Cancer Metastasis
Rev. 37, 719–731. doi: 10.1007/s10555-018-9763-8

Dominguez-Bello, M. G., Godoy-Vitorino, F., Knight, R., and Blaser, M. J. (2019).
Role of the microbiome in human development. Gut 68, 1108–1114. doi: 10.1136/
gutjnl-2018-317503

Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M.,
et al. (2005). Diversity of the human intestinal microbial flora. Science 308, 1635–1638.
doi: 10.1126/science.1110591

Edgar, R. C. (2013). UPARSE: Highly accurate OTU sequences from microbial
amplicon reads. Nat. Methods 10, 996–998. doi: 10.1038/nmeth.2604

Ferrari, S., Bertoni, F., Mercuri, M., Picci, P., Giacomini, S., Longhi, A., et al.
(2001). Predictive factors of disease-free survival for non-metastatic osteosarcoma of
the extremity: An analysis of 300 patients treated at the Rizzoli Institute. Ann. Oncol.
12, 1145–1150. doi: 10.1023/a:1011636912674

Ganly, I., Yang, L., Giese, R., Hao, Y., Nossa, C., Morris, L., et al. (2019). Periodontal
pathogens are a risk factor of oral cavity squamous cell carcinoma, independent of
tobacco and alcohol and human papillomavirus. Int. J. Cancer 145, 775–784. doi:
10.1002/ijc.32152

Gill, J., and Gorlick, R. (2021). Advancing therapy for osteosarcoma. Nat. Rev. Clin.
Oncol. 18, 609–624. doi: 10.1038/s41571-021-00519-8

Gorlick, R., Janeway, K., Lessnick, S., Randall, R. L., and Marina, N. (2013).
Children’s Oncology Group’s 2013 blueprint for research: Bone tumors. Pediatr. Blood
Cancer 60, 1009–1015. doi: 10.1002/pbc.24429

Hanahan, D., and Weinberg, R. A. (2011). Hallmarks of cancer: The next generation.
Cell 144, 646–674. doi: 10.1016/j.cell.2011.02.013

Heitner, S. B., Hollenberg, S. M., and Colilla, S. A. (2010). Heat maps, random
forests, and nearest neighbors: A peek into the new molecular diagnostic world. Crit.
Care Med. 38, 296–298. doi: 10.1097/CCM.0b013e3181c545ed

Hou, K., Wu, Z. X., Chen, X. Y., Wang, J. Q., Zhang, D., Xiao, C., et al. (2022).
Microbiota in health and diseases. Signal Transduct Target Ther. 7:135. doi: 10.1038/
s41392-022-00974-4

Kager, L., Zoubek, A., Pötschger, U., Kastner, U., Flege, S., Kempf-Bielack, B.,
et al. (2003). Primary metastatic osteosarcoma: Presentation and outcome of patients
treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols. J. Clin.
Oncol. 21, 2011–2018. doi: 10.1200/jco.2003.08.132

Kundu, P., Blacher, E., Elinav, E., and Pettersson, S. (2017). Our gut microbiome:
The evolving inner self. Cell 171, 1481–1493. doi: 10.1016/j.cell.2017.11.024

Laterza, L., Rizzatti, G., Gaetani, E., Chiusolo, P., and Gasbarrini, A. (2016). The
gut microbiota and immune system relationship in human graft-versus-host disease.
Mediterr J. Hematol. Infect. Dis. 8:e2016025. doi: 10.4084/mjhid.2016.025

Levy, M., Kolodziejczyk, A. A., Thaiss, C. A., and Elinav, E. (2017). Dysbiosis and
the immune system. Nat. Rev. Immunol. 17, 219–232. doi: 10.1038/nri.2017.7

Li, J. J., Zhu, M., Kashyap, P. C., Chia, N., Tran, N. H., McWilliams, R. R., et al.
(2021). The role of microbiome in pancreatic cancer. Cancer Metastasis. Rev. 40,
777–789. doi: 10.1007/s10555-021-09982-2

Li, Y., Qiao, X., Feng, Y., Zhou, R., Zhang, K., Pan, Y., et al. (2024). Characterization
of the gut microbiota and fecal metabolome in the osteosarcoma mouse model. Aging
16, 10841–10859. doi: 10.18632/aging.205951

Ling, Z., Liu, X., Jia, X., Cheng, Y., Luo, Y., Yuan, L., et al. (2014). Impacts of
infection with different toxigenic Clostridium difficile strains on faecal microbiota in
children. Sci. Rep. 4:7485. doi: 10.1038/srep07485

Liu, E., Zhang, F., Xu, T., Ye, L., Ma, S. S. Q., and Ji, Z. S. (2023). Relationship
between tumor microbiota transcriptional activity and gene expression in breast
cancer. BMC Cancer 23:252. doi: 10.1186/s12885-023-10726-4

Liu, X., Li, X., Xie, M., Guo, J., Zheng, X., Shi, S., et al. (2023). Association of gut
microbiome and oral cavity cancer: A two sample mendelian randomization and case-
control study. J. Stomatol. Oral Maxillofac Surg. 125:101736. doi: 10.1016/j.jormas.
2023.101736

Lv, D., Zou, Y., Zeng, Z., Yao, H., Ding, S., Bian, Y., et al. (2020). Comprehensive
metabolomic profiling of osteosarcoma based on UHPLC-HRMS. Metabolomics
16:120. doi: 10.1007/s11306-020-01745-4
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