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Background: Extensive research has demonstrated that the gut microbiota 
plays a critical role in maintaining homeostasis and promoting overall human 
health. However, the pharmacological mechanisms and functional roles of gut 
microbiota metabolites remain insufficiently understood. This study employs 
a network pharmacology approach to elucidate the metabolic transformation 
processes of gut microbiota metabolites and their molecular mechanisms in 
the pathogenesis of insulin resistance (IR), aiming to uncover the complex 
interactions among gut microbiota, metabolites, and therapeutic targets.

Methods: Gut microbiota metabolites and their corresponding target genes 
were retrieved from the gutMGene database. Potential targets of the metabolites 
were predicted using the SEA and STP databases. Disease-related targets for 
insulin resistance were collected from the GeneCards, DisGeNET, and OMIM 
databases. Core targets were identified via a protein–protein interaction (PPI) 
network, followed by comprehensive GO and KEGG enrichment analyses. 
Finally, a network illustrating the relationship among microbiota-substrate-
metabolite-target was established.

Results: Thirteen overlapping targets between the gut microbiota and insulin 
resistance were identified, among which IL6, JUN, and PPARG were recognized 
as hub genes. The MSMT (microbiota-substrate-metabolite-target) network 
revealed that these three hub genes exert therapeutic effects through 10 gut 
microbiota metabolites, 10 substrates, and 21 microbial species. KEGG pathway 
analysis indicated that the IL-17, Toll-like receptor, HIF-1, NOD-like receptor, 
TNF, and VEGF signaling pathways are the primary pathways involved in the 
pathogenesis of IR.

Conclusion: Gut microbiota metabolites may exert therapeutic effects 
on insulin resistance primarily through the targets IL6, JUN, and PPARG. 
The regulatory mechanisms are likely associated with several key signaling 
pathways, including the IL-17, Toll-like receptor and HIF-1, pathways. These 
three pathways collectively form an interconnected inflammation-metabolism-
hypoxia network. Targeting key nodes within this network—such as the IL-17 
receptor, TLR4, or HIF-1α—may offer a multidimensional therapeutic strategy 
for insulin resistance (IR) and its associated complications.
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Introduction

Insulin resistance (IR), long overlooked as an independent risk 
factor, currently affects approximately 51% of the global population, 
with its prevalence continuing to rise in both developed and 
developing countries (Fazio et al., 2024). IR plays a central role in the 
development of non-communicable diseases such as type 2 diabetes 
and cardiovascular disorders (Goh et  al., 2022). Epidemiological 
investigations of IR are essential for assessing disease burden and 
guiding evidence-based public health interventions and clinical 
decision-making. However, systematic screening and preventive 
strategies for IR remain lacking in the general population (Chiefari 
et al., 2021). As a result, IR has been referred to as a “silent epidemic” 
and has emerged as one of the most critical public health issues of the 
21st century (Hernández-Valdez et al., 2023).

The etiology of IR is multifactorial, with obesity recognized as a 
major modifiable risk factor. Additionally, IR may result from 
medication use (e.g., glucocorticoids, antiretroviral drugs, and oral 
contraceptives), disorders of lipid metabolism, genetic defects in insulin 
signaling (type A IR), or autoimmune responses involving insulin 
receptor-blocking antibodies (type B IR) (Chockalingam et al., 2021).

IR is a key pathogenic component in a variety of metabolic 
diseases, including type 2 diabetes, and is defined as a reduced 
responsiveness of insulin-targeted tissues to physiological insulin levels 
(Armutcu and McCloskey, 2024). It is characterized by impaired 
glucose uptake and metabolism in skeletal muscle and adipose tissue, 
inadequate suppression of hepatic gluconeogenesis, and uncontrolled 
lipolysis in adipose tissues (Rivas and Nugent, 2021). Consequently, IR 
contributes to the development of type 2 diabetes (Elkanawati et al., 
2024), metabolic syndrome (Tahapary et  al., 2022), and ischemic 
stroke, and is closely associated with poor prognosis (Fan et al., 2024). 
Numerous studies have also linked IR to alterations in cardiovascular 
structure and function, such as myocardial hypertrophy and ventricular 
remodeling, which are key features in the pathogenesis of diabetic heart 
disease (DHD) (Li et al., 2020). These findings underscore the urgent 
need to investigate the pathophysiological mechanisms underlying IR 
and to develop effective therapeutic strategies.

The gut microbiota (GM), often considered an overlooked organ 
system, has garnered increasing attention in recent years (Ago et al., 
2018). The human gastrointestinal tract harbors trillions of 
microorganisms, including bacteria, fungi, and viruses, with bacteria 
constituting the majority (Ahlawat et al., 2021). The gut microbiota is 
diverse yet relatively stable, with a shared core microbiome dominated 
by two major phyla: Bacteroidetes and Firmicutes (Zhou et al., 2020). 
The microbial community comprises over 114 bacterial species and 
weighs approximately 1–2 kg, earning it the designation of the “second 
genome” of the human body (Fassarella et al., 2021). The gut microbiota 
plays a vital role in maintaining human health through its involvement 
in nutrient absorption, energy metabolism, immune regulation, and 
maintenance of the intestinal barrier (Liu et al., 2023; Qiu et al., 2022). 
Beneficial gut bacteria can also exert immunosuppressive effects by 
modulating host immune responses (Fan and Pedersen, 2021).

Dysbiosis of the gut microbiota has been implicated in the 
pathogenesis of various diseases beyond the gastrointestinal tract, 
including metabolic disorders, cardiovascular diseases, and 
neurological conditions (Yang et  al., 2023). For instance, gut 
microbiota composition is closely linked to hypertension (Wang et al., 
2022), with pathogenesis involving complex interactions along the 
metabolite-immune axis and the microbiota-gut-brain axis. Increasing 
evidence suggests that this axis also contributes to the regulation of 
sleep behavior and may play a pivotal role in sleep disorders 
(Isticato, 2023).

Moreover, specific microbial taxa, such as Bifidobacterium and 
Akkermansia, have been positively correlated with improved insulin 
sensitivity. Akkermansia strengthens the intestinal mucus layer and 
upregulates mucin gene expression, thereby reducing the translocation 
of lipopolysaccharide (LPS) into the circulation—a process known to 
exacerbate IR and diabetes-related complications (Li et al., 2023). In 
obese individuals, alterations in gut microbial composition are closely 
linked to IR, with Bifidobacterium abundance often inversely 
associated with IR severity (Aljuraiban et al., 2023). Additionally, the 
gut microbiota can influence host metabolism by modulating bile acid 
metabolism, increasing levels of lithocholic acid (LCA), and producing 
succinate, further contributing to the amelioration of IR. These 
findings suggest that gut microbes, through diverse mechanisms, 
profoundly influence host metabolic homeostasis and play an essential 
role in improving IR.

In recent years, therapeutic strategies targeting gut microbiota 
modulation have demonstrated promising efficacy and relatively few 
side effects, positioning the microbiota as a potential intervention 
point for IR management. However, the roles and mechanisms of gut 
microbiota-derived metabolites in the context of IR remain 
insufficiently explored. Network pharmacology, which integrates 
drug-target-disease interactions within biological networks, offers a 
valuable framework for unraveling the molecular mechanisms of 
complex diseases. This approach facilitates the rapid identification of 
key bioactive components and therapeutic targets. In the present 
study, we applied network pharmacology to systematically investigate 
the metabolic transformation of gut microbiota-derived compounds 
and to elucidate the molecular mechanisms by which they influence 
the development of IR. The overall research workflow is illustrated in 
Figure 1.

Materials and methods

Identification of metabolites and targets of 
gut microbiota

We acquired gut microbiota metabolites and gut-associated 
target genes from the gutMGene v2.0 database.1 The metabolites 
were then converted into SMILES (Simplified Molecular Input 
Line Entry System) format using the PubChem database.2 
Subsequently, potential targets of the metabolites could 
be predicted by using the SEA and STP databases, with the species 

1 http://bio-computing.hrbmu.edu.cn/gutmgene/#/Resource

2 https://pubchem.ncbi.nlm.nih.gov/

Abbreviations: IR, Insulin resistance; GO, Gene Ontology; KEGG, Kyoto 

Encyclopedia of Genes and Genomes; PPI, Protein–protein interaction; IL-6, 

Interleukin-6; PPARG, Peroxisome proliferator-activated receptor gamma.
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restricted to Homo sapiens. The overlapping targets predicted by 
both methods were identified using a Venn diagram and selected 
as the final set of candidate targets.

Identification of disease targets

Using “Insulin Resistance” as keyword, we search for Insulin 
Resistance-related disease targets through GeneCards,3 
DisGeNET,4 and OMIM5 databases. From the GeneCards 
database, only targets with a relevance score ≥10 were included 
for further analysis. Overlapping disease targets across the three 
databases were identified using a Venn diagram and defined as the 
final set of IR-related targets.

PPI network construction and analysis

The final targets of IR were overlapped with the targets of gut 
microbiota metabolites using a Venn diagram to identify common 
targets. These overlapping targets were then submitted to the 
STRING database,6 with the interaction score threshold set to a 
combined score >0.4, to construct a protein–protein interaction 
(PPI) network. The resulting PPI network was subsequently 
visualized, and hub genes were identified based on network 
topology analysis.

3 https://www.genecards.org/

4 https://disgenet.com/

5 https://www.omim.org/

6 https://string-db.org

GO and KEGG enrichment analysis

 The overlapping targets were uploaded to the DAVID 
database7 for GO and KEGG enrichment analyses. The p-values 
of the enriched terms were adjusted using the Benjamini–
Hochberg method, and terms with adjusted p-values <0.05 were 
retained for further analysis. A false discovery rate (FDR) 
threshold of <0.05 was then applied to identify significantly 
enriched GO and KEGG terms. Additionally, a minimum gene 
count threshold of ≥5 was set to filter out low-abundance 
annotations. The final enrichment results were visualized using a 
bioinformatics platform.

The evaluation of and toxicity

SwissADME8 and ADMETlab9 platforms were used to evaluate 
the pharmacokinetic and toxicity profiles of key metabolites. A 
total of 32 metabolites associated with the three hub genes were 
assessed for drug-likeness and toxicity. High-potential candidate 
drug molecules were identified based on Lipinski’s rule of five, 
including criteria such as molecular weight (MW) <500 Da, 
hydrogen bond donors (HBD) <5, Moriguchi LogP (MlogP) <5, 
and polar surface area (PSA) <140, to ensure their suitability for 
clinical application.

7 https://david.ncifcrf.gov/tools.jsp

8 http://www.swissadme.ch/index.php

9 https://admetmesh.scbdd.com/

FIGURE 1

The flowchart reflecting our study design.
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Results

The identifications of targets of gut 
microbiota metabolites intervening IR

A total of 251 gut microbiota metabolites, 228 metabolites with 
available structural information (in SMILES format), and 117 
gut-associated target genes were retrieved from the gutMGene v2.0 
database. Using the SEA and STP platforms, 1,773 and 947 targets 
were predicted for the 251 metabolites, respectively. A Venn 
diagram revealed 706 overlapping targets, which were identified as 
the final set of potential targets for the gut microbiota metabolites 
(Figure 2A).

From the GeneCards, DisGeNET, and OMIM databases, 1,030 
insulin resistance (IR)-related targets were identified. By overlapping 
these with the 706 gut microbiota metabolite targets, 223 common 
targets were obtained (Figure 2B). Further intersection of these 223 
targets with gut-associated genes yielded 13 final overlapping targets 
(Figure  2C). A network illustrating the interactions among gut 
microbiota, targets, and IR was then constructed to visualize the 
regulatory relationships (Figure 2D).

PPI network construction and analysis

The 13 final targets were uploaded to the STRING database to 
generate a protein–protein interaction (PPI) network (Figure 3A). 
Cytoscape software was used for visualization, revealing 13 nodes 
and 44 edges in the network (Figure  3B). Based on degree 

centrality (DC) values, the top three hub genes—IL6, JUN, and 
PPARG—were identified as the core targets modulated by gut 
microbiota metabolites. The cluster of the PPI network was 
identified a functional module containing 8 targets and 28 edges 
(Figure 3C). GO biological process (GO-BP) enrichment analysis 
of the cluster indicated enrichment in pathways such as immune 
response, cellular response to lipopolysaccharide, and positive 
regulation of apoptotic process (Figure 3D). These results suggest 
that the PPI network may contribute to the pathogenesis of IR 
through the regulation of immune responses.

GO enrichment analysis

Gene Ontology (GO) enrichment analysis is a bioinformatics 
approach used to explore the functional enrichment of a gene set 
within the GO categories. First, we  visualized the hub genes 
involved in the regulation of insulin resistance (IR) (Figure 4A). 
GO enrichment analysis of the 13 final targets revealed that, in 
terms of biological processes (GO-BP), gut microbiota metabolites 
may regulate IR through positive regulation of miRNA 
transcription, apoptotic process, and DNA-templated 
transcription and transcription by RNA polymerase II (Figure 4B). 
The associated cellular component (GO-CC) was primarily the 
RNA polymerase II transcription regulator complex (Figure 4C). 
The TOP1 MF (molecular function) is closely related to identical 
protein binding (Figure 4D). These findings suggest that the hub 
genes may influence the development of IR by modulating miRNA 
transcription and apoptotic pathways.

FIGURE 2

Identification of gut microbiota metabolites and IR-related targets. (A) Common targets of gut microbiota metabolites predicted by the SEA and STP 
databases. (B) Common targets between gut microbiota metabolites and insulin resistance (IR). (C) Common targets between gut microbiota 
metabolites-IR and human gut targets. (D) The network of gut-targets-IR.
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KEGG enrichment analysis

KEGG enrichment analysis was performed to further elucidate 
the potential biological pathways. Results indicated that gut 
microbiota metabolites may exert regulatory effects on IR via the 
IL-17 signaling pathway, Toll-like receptor signaling pathway, HIF-1 
signaling pathway, NOD-like receptor signaling pathway, TNF 
signaling pathway, and VEGF signaling pathway (Figure  5A). 
Subsequent KEGG classification and pathway annotation analysis 
further categorized the enriched pathways into three major functional 
groups: human diseases (pathways in cancer, pertussis, lipid and 
atherosclerosis, inflammatory bowel disease, leishmaniasis, measles, 
non-alcoholic fatty liver disease, bladder cancer, malaria and alcoholic 
liver disease), organismal systems (immune system and endocrine 
system), and signal transduction (HIF-1 signaling pathway, TNF 
signaling pathway, PI3K-Akt signaling pathway, VEGF signaling 
pathway and NF-kappa B signaling pathway) (Figures 5B,C). Finally, 
a targets-pathways interaction network was constructed to visualize 
the associations between enriched pathways and key targets, with 
pathways shown in purple and targets in blue (Figure 5D).

The evaluation of and toxicity

To ensure the therapeutic safety of key substrates, toxicity profiling 
was conducted—an essential step prior to clinical application. 
SwissADME analysis indicated that several compounds, including 
5-(3,4-Dihydroxyphenyl)-4-hydroxypentanoic acid, secoisolariciresinol, 
and naringenin chalcone, satisfied Lipinski’s rule of five, demonstrating 
favorable drug-likeness (Table 1). Results from ADMETlab further 
revealed that these gut microbiota metabolites exhibited low to 
moderate risk levels in terms of carcinogenicity, hERG inhibition, 
human hepatotoxicity (H-HT), drug-induced liver injury (DILI), and 
oral LD₅₀ (Tables 2, 3). These findings suggest that the selected 
substrates possess acceptable toxicity profiles and may have potential 
for clinical application, although further validation is required.

The “M-S-M-T” network analysis

Finally, we  constructed a “Microbiota-Substrate-Metabolite-
Target” (M-S-M-T) network to visualize the complex interactions 

FIGURE 3

PPI network analysis. (A) The PPI network of the overlapping targets. (B) The visualization of the PPI network. (C) The cluster of PPI. (D) The GO-BP 
analysis of cluster.
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among gut microbiota, their metabolic substrates, metabolites, and 
targets. This network revealed three hub genes—IL6, JUN, and 
PPARG—as well as their associations with 10 metabolites, 10 
substrates, and 21 gut microbial taxa (Figure  6). In the network 
diagram, the yellow color represents targets, the green color represents 
metabolites, the purple color represents substrate and the red color 
represents gut microbiota. Notably, JUN exhibited the highest degree 
of connectivity with metabolites and substrates. All microbial species 
included in the network were clearly annotated and may serve as 
potential therapeutic targets for insulin resistance.

Discussion

Insulin resistance (IR) is a common and complex metabolic 
disorder that has emerged as a major global health concern. It is 
characterized by diminished cellular sensitivity to insulin, leading to 
impaired glucose uptake and utilization, and consequently elevated 
blood glucose levels. Globally, the prevalence of IR continues to rise 
steadily; approximately 1 in 11 adults has diabetes, with type 2 diabetes 
mellitus (T2DM) accounting for 90% of the cases (Zheng et al., 2018). 
Alarmingly, IR is no longer confined to adults—it is increasingly 
observed in children and adolescents, compounding the long-term 
health burden (Jia et  al., 2024). More importantly, IR not only 

contributes directly to the onset and progression of T2DM but also 
serves as a shared pathological basis for several metabolic disorders, 
including cardiovascular diseases, nonalcoholic fatty liver disease 
(NAFLD), and polycystic ovary syndrome (PCOS) (Lee et al., 2022). 
These complications markedly impair quality of life and impose 
significant economic burdens on healthcare systems. Therefore, the 
identification of effective therapeutic strategies to mitigate the impact 
of IR is of paramount importance.

Emerging evidence suggests that modulation of gut microbiota 
composition and abundance holds promise as a therapeutic approach 
for IR. This bidirectional regulation encompasses both the influence 
of host behaviors on the gut microbiota and the impact of microbial 
modulation on host metabolic parameters. For instance, a high-fiber 
diet can enhance the abundance of short-chain fatty acid (SCFA)-
producing bacteroidales while reducing proinflammatory bacteria, 
thereby decreasing intestinal monosaccharide (e.g., fructose, 
galactose) accumulation and improving insulin sensitivity 
(Sonnenburg and Sonnenburg, 2014). Physical exercise promotes 
microbial diversity and has been shown to alleviate IR (Allen et al., 
2018). Additionally, adequate sleep and stress management modulate 
gut microbiota-derived metabolites along the gut-brain axis, thereby 
enhancing insulin responsiveness (Zhao et al., 2022).

Conversely, targeted microbiota interventions can also improve 
metabolic outcomes. Supplementation with Alistipes indistinctus 

FIGURE 4

The GO enrichment analysis of core IR targets regulated by gut microbiota metabolites. (A) The hub genes of PPI network. (B) The GO-BP analysis of 
hub genes. (C) The GO-CC analysis of hub genes. (D) The GO-MF analysis of hub genes.
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FIGURE 5

The KEGG enrichment analysis of core IR targets regulated by gut microbiota metabolites. (A) KEGG pathway analysis. (B) KEGG classification analysis. 
(C) KEGG pathway annotation analysis. (D) The network of targets-pathways. The V shape represents pathway, the blue rectangle represents target.

TABLE 1 The evaluation of toxicity on key metabolites.

Compound MW HBA HBD MLOGP Lipinski 
violations

Bioavailability 
score

TPSA

5-(3,4-Dihydroxyphenyl)-4-

hydroxypentanoic acid
226.23 5 4 0.55 0 0.56 97.99

Secoisolariciresinol 362.42 6 4 1.56 0 0.55 99.38

Naringenin chalcone 272.25 5 4 1.02 0 0.55 97.99

3-(3,4-Dihydroxyphenyl)-2-

hydroxypropanoic acid
198.17 5 4 −0.04 0 0.56 97.99

1-O-Caffeoylglycerol 254.24 6 4 −0.07 0 0.55 107.22

Myristic acid 228.37 2 1 3.69 0 0.85 37.3

10-Keto-12Z-octadecenoic acid 296.44 3 1 3.59 0 0.85 54.37

Linoleic acid 280.45 2 1 3.59 0 0.85 37.3

10-Oxo-11-octadecenoic acid 296.44 3 1 3.59 0 0.85 54.37

2-Hydroxy-3-(4-

hydroxyphenyl)propanoic acid
182.17 4 3 0.52 0 0.56 77.76

Lipinski’s rule of five: MW <500; HBA <10; HBD ≤5; MLOGP ≤4.15; Lipinski violations ≤1; bioavailability score >0.1; TPSA <140.

https://doi.org/10.3389/fmicb.2025.1617496
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significantly reduces hepatic triglyceride accumulation and fasting 
glucose levels in IR mouse models (Semo et al., 2024). Akkermansia 
muciniphila, a mucin-degrading bacterium, enhances gut barrier 
integrity, reduces endotoxin translocation, and stimulates GLP-1 
secretion, collectively contributing to improved insulin signaling 
(Depommier et al., 2019).

Network pharmacology, rooted in systems biology and multi-
omics integration, facilitates the construction of drug-target-disease 
networks to elucidate the molecular mechanisms of therapeutic 
agents. Its ability to systematically predict drug targets and efficacy, 
identify novel target-pathway associations, and support precision 
medicine makes it an invaluable tool in drug discovery and disease 
modeling (Nogales et  al., 2022). To uncover key targets and 
metabolites in IR treatment, we constructed a comprehensive “disease-
gene-gut microbiota-metabolite” interaction network using data from 
public databases.

Protein–protein interaction (PPI) analysis identified IL6, JUN, 
and PPARG as hub genes in IR, each functioning through distinct yet 
interconnected mechanisms: IL6 mediates inflammation, JUN is 
involved in oxidative stress signaling, and PPARG regulates lipid 
metabolism. IL6, a prototypical proinflammatory cytokine, activates 
the JAK/STAT3 pathway, inducing SOCS3 expression in adipose and 
hepatic tissues. SOCS3 inhibits tyrosine phosphorylation of insulin 
receptor substrate-1 (IRS-1), thereby disrupting PI3K/Akt signaling 
and reducing insulin sensitivity (Senn et al., 2002). JUN (c-Jun), a 
component of the AP-1 transcription factor complex, is activated via 
the JNK pathway under oxidative stress or high-fat dietary conditions. 
It promotes inflammatory gene expression and lipogenesis while 
impairing GLUT4 translocation, thus exacerbating insulin resistance 
in adipose tissue and the liver (Hirosumi et al., 2002). PPARG plays a 
pivotal role in lipid metabolism by promoting adipocyte 
differentiation, enhancing adiponectin secretion, and reducing 

TABLE 2 The evaluation of toxicity on key metabolites.

Compound hERG H-HT DILI Carcinogenicity LD50_oral

5-(3,4-Dihydroxyphenyl)-4-

hydroxypentanoic acid
0.015 0.202 0.032 0.12 0

Secoisolariciresinol 0.132 0.253 0.208 0.089 0

Naringenin chalcone 0.141 0.076 0.77 0.524 0

3-(3,4-Dihydroxyphenyl)-2-

hydroxypropanoic acid
0.02 0.252 0.377 0.029 0

1-O-Caffeoylglycerol 0.007 0.057 0.048 0.341 0

Myristic acid 0.04 0.03 0.042 0.078 0

10-Keto-12Z-octadecenoic acid 0.017 0.106 0.059 0.149 0

Linoleic acid 0.031 0.174 0.016 0.351 0

10-Oxo-11-octadecenoic acid 0.035 0.125 0.102 0.222 0

2-Hydroxy-3-(4-hydroxyphenyl)

propanoic acid
0.029 0.14 0.281 0.031 0

TABLE 3 Explanation of parameter range for drug toxicity evaluation.

Parameter Definition Range and interpretation

Carcinogenicity Potential risk of cancer induction caused by the compound

 - <0.3: Low risk

 - 0.3–0.7: Moderate risk

 - >0.7: High risk

hERG Inhibition
Cardiotoxicity risk due to inhibition of the hERG potassium 

channel, which may cause QT prolongation and arrhythmias

 - <0.1: Low risk

 - 0.1–0.3: Moderate risk

 - >0.3: High risk

H-HT
Human hepatotoxicity: likelihood of liver cell damage induced by 

the compound

 - <0.2: Low risk

 - 0.2–0.5: Moderate risk

 - >0.5: High risk

DILI
Drug-induced liver injury: prediction of clinically relevant 

hepatotoxicity

 - <0.1: Low risk

 - 0.1–0.3: Moderate risk

 - >0.3: High risk

LD50_oral
Oral median lethal dose: estimated dose causing death in 50% of 

rodents (unit: mg/kg)

 - >5,000: Practically non-toxic (category 5)

 - 300–2,000: Moderately toxic (category 3–4)

 - <50: Highly toxic (category 1)
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lipotoxicity in peripheral tissues. Moreover, PPARG suppresses 
NF-κB-mediated inflammation and improves glucose uptake in 
muscle and liver while indirectly modulating gut microbiota-derived 
metabolites to enhance insulin signaling (Ahmadian et  al., 2013; 
Rangwala and Lazar, 2004). Collectively, these factors form an 
inflammation-metabolism-stress regulatory network, offering 
multiple points for therapeutic intervention in IR.

KEGG pathway enrichment analysis revealed that the IL-17 
signaling pathway, Toll-like receptor (TLR) signaling pathway, and HIF-1 
signaling pathway play crucial roles in IR regulation. The IL-17 pathway, 
activated by Th17 cell-derived IL-17A, stimulates the MAPK/NF-κB 
cascade, promoting the expression of proinflammatory cytokines (e.g., 
IL-6, TNF-α) in metabolic tissues. This leads to macrophage polarization 
toward the M1 phenotype and enhanced serine phosphorylation (but 
reduced tyrosine phosphorylation) of IRS-1, thereby inhibiting insulin 
signaling (Bapat et al., 2015; Zúñiga et al., 2010). The TLR pathway 

recognizes gut-derived endotoxins and free fatty acids, activating NF-κB 
and JNK via MyD88-dependent mechanisms. This not only triggers 
inflammatory responses and SOCS3 expression but also disrupts 
intestinal barrier integrity, exacerbating systemic inflammation and 
metabolic endotoxemia—conditions that are alleviated by TLR4 
inhibition (Cani et  al., 2007). HIF-1 signaling, induced by hypoxic 
adipose environments in obesity, upregulates glycolytic enzymes (e.g., 
LDHA) and angiogenic factors (e.g., VEGF), contributing to adipocyte 
hypertrophy and fibrosis. Simultaneously, HIF-1α promotes lipid 
synthesis by inhibiting mitochondrial oxidative phosphorylation, thereby 
aggravating lipotoxicity and IR (Halberg et al., 2009). These pathways 
converge into an interrelated network of inflammation, metabolism, and 
hypoxia, offering multidimensional therapeutic entry points.

Among the identified substrates, cholesterol, chlorogenic acid, and 
rutin emerged as key metabolites. Cholesterol modulates IR via liver X 
receptor (LXR)-mediated reverse cholesterol transport, enhancing 

FIGURE 6

The network of microbiota-substrate-metabolites-targets. The yellow color represents targets, the green color represents metabolites, the purple 
color represents substrate and the red color represents gut microbiota.
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ABCA1/ABCG1 expression to prevent macrophage lipid accumulation 
while suppressing SREBP-1c-driven lipogenesis. In contrast, cholesterol 
oxidation products exacerbate IR via ER stress and NF-κB activation, 
indicating that their inhibition may preserve β-cell function and reduce 
hepatic steatosis. Chlorogenic acid improves IR by activating the AMPK/
PGC-1α axis, enhancing mitochondrial metabolism, suppressing 
gluconeogenic enzymes (PEPCK, G6Pase), and fortifying intestinal 
mucosal integrity, thereby reducing endotoxin leakage and systemic 
inflammation (Horton et al., 2002). In an in vitro study conducted by 
Onyango (2018), hepatocytes and adipocytes cultured in vitro were 
stimulated with cholesterol, resulting in the activation of downstream 
NF-κB and JNK pathways of the Toll-like receptor 4 (TLR4) signaling 
cascade. Concurrently, phosphorylation levels of IRS-1/Akt were 
reduced, and GLUT4 expression was downregulated, indicating that 
cholesterol induces insulin resistance through TLR4-mediated activation 
of multiple stress response pathways. Similarly, research by Radin et al. 
(2008) demonstrated that knockout of TLR4 or treatment with TLR4 
inhibitors (e.g., TAK-242) in adipocytes significantly reduced the 
expression of cholesterol-induced proinflammatory cytokines and 
restored insulin signaling activity, suggesting a negative correlation 
between the TLR4 pathway and the development of insulin resistance.

In an in vivo animal study, Ye et al. (2021) investigated the effects of 
chlorogenic acid (CGA) on obesity and related metabolic endotoxemia, 
as well as its association with gut microbiota alterations and insulin 
regulation. Oral glucose tolerance tests (OGTT) and insulin tolerance 
tests (ITT) were performed, alongside measurements of inflammatory 
and gut barrier function markers. The composition of the gut microbiota 
was analyzed using 16S rRNA high-throughput sequencing. The results 
showed that CGA suppressed high-fat diet (HFD)-induced weight gain 
and fat accumulation in mice, independent of food intake, indicating 
improved glucose homeostasis and reduced insulin resistance. Moreover, 
CGA decreased plasma lipopolysaccharide (LPS) levels and inhibited the 
expression of TLR-4, TNF-α, IL-1β, and MCP-1  in the liver and 
epididymal adipose tissue, thereby alleviating low-grade inflammation 
and enhancing insulin sensitivity. In addition, CGA increased the 
abundance of short-chain fatty acid (SCFA)-producing bacteria in the 
gut, improved gut barrier function, and reduced LPS translocation into 
the bloodstream. Fecal microbiota transplantation experiments further 
demonstrated that mice receiving microbiota from the HCGA group 
exhibited reduced body weight and fat mass, along with improved 
insulin sensitivity and glucose tolerance.

Zhang’s research team identified cholesterol, chlorogenic acid, and 
rutin as key metabolites through metabolomic screening and analyzed 
their co-occurrence with 21 gut microbial taxa using the GutMDisorder 
database. The results revealed that in HFD-fed mice, rutin increased the 
abundance of Akkermansia muciniphila, activated the aryl hydrocarbon 
receptor (AHR) signaling pathway, and promoted the production of the 
tryptophan-derived metabolite indole-3-acetic acid (IAA). These effects 
collectively suppressed the hepatic TLR4/NF-κB inflammatory pathway 
(targeting IL-6) and downregulated lipid synthesis-related genes (Scd-1, 
Fasn, Acaca). The findings suggest that rutin alleviates IR-related 
metabolic disturbances through a “microbiota-metabolite-host” axis (Ye 
et al., 2021).

Furthermore, Eggerthella lenta was identified as a key microbiota in 
the M-S-M-T network. This species transforms host-derived bile acids 
into secondary bile acids, which activate intestinal FXR and TGR5 
receptors to suppress hepatic gluconeogenesis, promote GLP-1 secretion, 
and enhance β-cell function. Its metabolites also inhibit the TLR4/NF-κB 

pathway, reduce adipose macrophage infiltration, and lower 
proinflammatory cytokine levels, ultimately restoring insulin sensitivity 
(Paik et al., 2022).

Despite the promising role of the gut microbiota in the treatment 
of insulin resistance (IR) revealed in this study, several limitations 
should be acknowledged. First, the gut microbiota data utilized in this 
work were derived from the gutMGene database, which is primarily 
based on fecal samples. Although such data provide a valuable 
reference, they may not fully reflect the actual composition of 
intestinal microbiota compared to biopsy-derived samples, and are 
subject to considerable inter-individual variability. As a result, the 
constructed network may carry certain biases, and the reliability of the 
microbial data should be  further validated using experimental 
approaches such as fecal microbiota transplantation (FMT), 16S rRNA 
sequencing, and metagenomic analysis.

Moreover, this study mainly focused on IR itself, whereas the roles 
of gut microbiota and their metabolites in IR-related complications, 
such as hypertension and hyperlipidemia, remain underexplored. 
Future investigations should place greater emphasis on these aspects.

To enhance the robustness of the findings, future studies should 
integrate network pharmacology with multi-omics approaches—
including metagenomics and metabolomics—to establish a more 
comprehensive regulatory network. Furthermore, systematic 
validation through animal experiments and clinical trials is essential 
to clarify the mechanisms by which gut microbiota contribute to the 
regulation of IR and its associated metabolic disorders.

Conclusion

In this study, we employed network pharmacology approaches to 
elucidate the regulatory mechanisms by which the gut microbiota 
contributes to the pathogenesis of insulin resistance (IR). Three hub 
genes—IL6, JUN, and PPARG—were ultimately identified as potential 
therapeutic targets for IR. These genes correspond to key pathological 
aspects of IR: inflammatory regulation (IL6), stress-related signaling 
(JUN), and lipid metabolic balance (PPARG), providing distinct 
avenues for targeted intervention.

By constructing the microbiota-substrate-metabolite-target (M-S-
M-T) network, we revealed that these three hub genes are closely 
associated with 10 gut microbiota metabolites, 10 microbial substrates, 
and 21 Gut microbiota. Among these, cholesterol, chlorogenic acid, 
and rutin emerged as key compounds that improve IR and its 
complications through mechanisms including lipid metabolism 
regulation, mitigation of oxidative stress, and modulation of 
microbiota-host interactions. For example, inhibiting intestinal 
cholesterol absorption has been shown to alleviate hepatic steatosis 
and contribute to the amelioration of IR, highlighting a mechanistic 
axis of therapeutic relevance.

Additionally, KEGG enrichment analysis identified six major 
signaling pathways implicated in IR pathophysiology: the IL-17 
signaling pathway, Toll-like receptor (TLR) signaling pathway, HIF-1 
signaling pathway, NOD-like receptor signaling pathway, TNF 
signaling pathway, and VEGF signaling pathway. Notably, IL-17, TLR, 
and HIF-1 signaling pathways play pivotal roles in reshaping the 
inflammatory microenvironment, responding to metabolic 
endotoxemia, and mediating hypoxia-induced metabolic imbalance, 
respectively. These three pathways collectively form an interrelated 
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inflammation–metabolism–hypoxia regulatory network. Targeting 
key nodes within this network—such as the IL-17 receptor, TLR4, or 
HIF-1α—may offer multi-dimensional therapeutic strategies for IR 
and its associated complications.

Data availability statement

The original contributions presented in the study are included in 
the article/supplementary material, further inquiries can be directed 
to the corresponding author.

Author contributions

BX: Visualization, Writing – original draft, Writing – review & 
editing. XC: Writing – review & editing, Writing – original draft, 
Visualization. RZ: Writing – review & editing, Writing – original draft, 
Data curation, Resources. YG: Writing – original draft. ZZ: Writing – 
review & editing. SB: Writing – review & editing.

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. This study was funded by 

National Key Research and Development Program of China (ID: 
2018YFC1704100 and 2018YFC1704103) and Traditional Chinese 
Medicine Science and Technology Project of Shandong Province (No. 
Z-2023010).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
Ago, T., Matsuo, R., Hata, J., Wakisaka, Y., Kuroda, J., Kitazono, T., et al. (2018). Insulin 

resistance and clinical outcomes after acute ischemic stroke. Neurology 90, e1470–e1477. 
doi: 10.1212/WNL.0000000000005358

Ahlawat, S., Asha, and Sharma, K. K. (2021). Gut-organ axis: a microbial outreach and 
networking. Lett. Appl. Microbiol. 72, 636–668. doi: 10.1111/lam.13333

Ahmadian, M., Suh, J. M., Hah, N., Liddle, C., Atkins, A. R., Downes, M., et al. (2013). 
PPARγ signaling and metabolism: the good, the bad and the future. Nat. Med. 19, 
557–566. doi: 10.1038/nm.3159

Aljuraiban, G. S., Alfhili, M. A., Aldhwayan, M. M., Aljazairy, E. A., and 
Al-Musharaf, S. (2023). Metagenomic shotgun sequencing reveals specific human gut 
microbiota associated with insulin resistance and body fat distribution in Saudi women. 
Biomol. Ther. 13:640. doi: 10.3390/biom13040640

Allen, J. M., Mailing, L. J., Niemiro, G. M., Moore, R., Cook, M. D., White, B. A., 
et al. (2018). Exercise alters gut microbiota composition and function in lean and 
obese humans. Med. Sci. Sports Exerc. 50, 747–757. doi: 10.1249/MSS. 
0000000000001495

Armutcu, F., and McCloskey, E. (2024). Insulin resistance, bone health, and fracture 
risk. Osteoporos. Int. 35, 1909–1917. doi: 10.1007/s00198-024-07227-w

Bapat, S. P., Myoung Suh, J., Fang, S., Liu, S., Zhang, Y., Cheng, A., et al. (2015). 
Depletion of fat-resident Treg cells prevents age-associated insulin resistance. Nature 
528, 137–141. doi: 10.1038/nature16151

Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., et al. (2007). 
Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772. 
doi: 10.2337/db06-1491

Chiefari, E., Mirabelli, M., La Vignera, S., Tanyolaç, S., Foti, D. P., Aversa, A., et al. 
(2021). Insulin resistance and cancer: in search for a causal link. Int. J. Mol. Sci. 22:11137. 
doi: 10.3390/ijms222011137

Chockalingam, A., Natarajan, P., Thanikachalam, P., and Pandiyan, R. (2021). Insulin 
resistance: the inconvenient truth. Mo. Med. 118, 119–121. doi: 10.1093/ije/dyt202

Depommier, C., Everard, A., Druart, C., Plovier, H., Van Hul, M., Vieira-Silva, S., et al. 
(2019). Supplementation with Akkermansia muciniphila in overweight and obese human 
volunteers: a proof-of-concept exploratory study. Nat. Med. 25, 1096–1103. doi: 
10.1038/s41591-019-0495-2

Elkanawati, R. Y., Sumiwi, S. A., and Levita, J. (2024). Impact of lipids on insulin 
resistance: insights from human and animal studies. Drug Des. Devel. Ther. 18, 
3337–3360. doi: 10.2147/DDDT.S468147

Fan, Y., and Pedersen, O. (2021). Gut microbiota in human metabolic health and 
disease. Nat. Rev. Microbiol. 19, 55–71. doi: 10.1038/s41579-020-0433-9

Fan, Y., Yan, Z., Li, T., Li, A., Fan, X., Qi, Z., et al. (2024). Primordial drivers of diabetes 
heart disease: comprehensive insights into insulin resistance. Diabetes Metab. J. 48, 
19–36. doi: 10.4093/dmj.2023.0110

Fassarella, M., Blaak, E. E., Penders, J., Nauta, A., Smidt, H., and Zoetendal, E. G. (2021). 
Gut microbiome stability and resilience: elucidating the response to perturbations in order 
to modulate gut health. Gut 70, 595–605. doi: 10.1136/gutjnl-2020-321747

Fazio, S., Affuso, F., Cesaro, A., Tibullo, L., Fazio, V., and Calabrò, P. (2024). Insulin 
resistance/hyperinsulinemia as an independent risk factor that has been overlooked for 
too long. Biomedicines 12:1417. doi: 10.3390/biomedicines12071417

Goh, L. P. W., Sani, S. A., Sabullah, M. K., and Gansau, J. A. (2022). The prevalence of 
insulin resistance in Malaysia and Indonesia: an updated systematic review and meta-
analysis. Medicina 58:826. doi: 10.3390/medicina58060826

Halberg, N., Khan, T., Trujillo, M. E., Wernstedt-Asterholm, I., Attie, A. D., Sherwani, S., 
et al. (2009). Hypoxia-inducible factor 1alpha induces fibrosis and insulin resistance in white 
adipose tissue. Mol. Cell. Biol. 29, 4467–4483. doi: 10.1128/MCB.00192-09

Hernández-Valdez, J., Velázquez-Zepeda, A., and Sánchez-Meza, J. C. (2023). Effect of 
pesticides on peroxisome proliferator-activated receptors (PPARs) and their association with 
obesity and diabetes. PPAR Res. 2023:1743289. doi: 10.1155/2023/1743289

Hirosumi, J., Tuncman, G., Chang, L., Görgün, C. Z., Uysal, K. T., Maeda, K., et al. 
(2002). A central role for JNK in obesity and insulin resistance. Nature 420, 333–336. 
doi: 10.1038/nature01137

Horton, J. D., Goldstein, J. L., and Brown, M. S. (2002). SREBPs: activators of the 
complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109, 
1125–1131. doi: 10.1172/JCI15593

Isticato, R. (2023). Bacterial spore-based delivery system: 20 years of a versatile 
approach for innovative vaccines. Biomol. Ther. 13:947. doi: 10.3390/biom13060947

Jia, I. L. J., Zampetti, S., Pozzilli, P., and Buzzetti, R. (2024). Type 2 diabetes in children 
and adolescents: challenges for treatment and potential solutions. Diabetes Res. Clin. 
Pract. 217:111879. doi: 10.1016/j.diabres.2024.111879

Lee, S. H., Park, S. Y., and Choi, C. S. (2022). Insulin resistance: from mechanisms to 
therapeutic strategies. Diabetes Metab. J. 46, 15–37. doi: 10.4093/dmj.2021.0280

Li, Q., Jin, M., Liu, Y., and Jin, L. (2020). Gut microbiota: its potential roles in pancreatic 
cancer. Front. Cell. Infect. Microbiol. 10:572492. doi: 10.3389/fcimb.2020.572492

https://doi.org/10.3389/fmicb.2025.1617496
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://doi.org/10.1212/WNL.0000000000005358
https://doi.org/10.1111/lam.13333
https://doi.org/10.1038/nm.3159
https://doi.org/10.3390/biom13040640
https://doi.org/10.1249/MSS.0000000000001495
https://doi.org/10.1249/MSS.0000000000001495
https://doi.org/10.1007/s00198-024-07227-w
https://doi.org/10.1038/nature16151
https://doi.org/10.2337/db06-1491
https://doi.org/10.3390/ijms222011137
https://doi.org/10.1093/ije/dyt202
https://doi.org/10.1038/s41591-019-0495-2
https://doi.org/10.2147/DDDT.S468147
https://doi.org/10.1038/s41579-020-0433-9
https://doi.org/10.4093/dmj.2023.0110
https://doi.org/10.1136/gutjnl-2020-321747
https://doi.org/10.3390/biomedicines12071417
https://doi.org/10.3390/medicina58060826
https://doi.org/10.1128/MCB.00192-09
https://doi.org/10.1155/2023/1743289
https://doi.org/10.1038/nature01137
https://doi.org/10.1172/JCI15593
https://doi.org/10.3390/biom13060947
https://doi.org/10.1016/j.diabres.2024.111879
https://doi.org/10.4093/dmj.2021.0280
https://doi.org/10.3389/fcimb.2020.572492


Xiao et al. 10.3389/fmicb.2025.1617496

Frontiers in Microbiology 12 frontiersin.org

Li, J., Yang, G., Zhang, Q., Liu, Z., Jiang, X., and Xin, Y. (2023). Function of 
Akkermansia muciniphila in type 2 diabetes and related diseases. Front. Microbiol. 
14:1172400. doi: 10.3389/fmicb.2023.1172400

Liu, J., Liu, Y., and Li, X. (2023). Effects of intestinal flora on polycystic ovary 
syndrome. Front Endocrinol. 14:1151723. doi: 10.3389/fendo.2023.1151723

Nogales, C., Mamdouh, Z. M., List, M., Kiel, C., Casas, A. I., and Schmidt, H. H. H. 
W. (2022). Network pharmacology: curing causal mechanisms instead of treating 
symptoms. Trends Pharmacol. Sci. 43, 136–150. doi: 10.1016/j.tips.2021.11.004

Onyango, A. N. (2018). Cellular stresses and stress responses in the pathogenesis 
of insulin resistance. Oxid. Med. Cell. Longev. 2018:4321714. doi: 10.1155/ 
2018/4321714

Paik, D., Yao, L., Zhang, Y., Bae, S., D’Agostino, G. D., Zhang, M., et al. (2022). Human 
gut bacteria produce ΤΗ17-modulating bile acid metabolites. Nature 603, 907–912. doi: 
10.1038/s41586-022-04480-z

Qiu, P., Ishimoto, T., Fu, L., Zhang, J., Zhang, Z., and Liu, Y. (2022). The gut microbiota 
in inflammatory bowel disease. Front. Cell. Infect. Microbiol. 12:733992. doi: 
10.3389/fcimb.2022.733992

Radin, M. S., Sinha, S., Bhatt, B. A., Dedousis, N., and O’Doherty, R. M. (2008). 
Inhibition or deletion of the lipopolysaccharide receptor Toll-like receptor-4 confers 
partial protection against lipid-induced insulin resistance in rodent skeletal muscle. 
Diabetologia 51, 336–346. doi: 10.1007/s00125-007-0861-3

Rangwala, S. M., and Lazar, M. A. (2004). Peroxisome proliferator-activated receptor 
gamma in diabetes and metabolism. Trends Pharmacol. Sci. 25, 331–336. doi: 
10.1016/j.tips.2004.03.012

Rivas, A. M., and Nugent, K. (2021). Hyperglycemia, insulin, and insulin resistance 
in sepsis. Am J Med Sci 361, 297–302. doi: 10.1016/j.amjms.2020.11.007

Semo, D., Reinecke, H., and Godfrey, R. (2024). Gut microbiome regulates 
inflammation and insulin resistance: a novel therapeutic target to improve insulin 
sensitivity. Signal Transduct. Target. Ther. 9:35. doi: 10.1038/s41392-024-01746-y

Senn, J. J., Klover, P. J., Nowak, I. A., and Mooney, R. A. (2002). Interleukin-6 induces 
cellular insulin resistance in hepatocytes. Diabetes 51, 3391–3399. doi: 
10.2337/diabetes.51.12.3391

Sonnenburg, E. D., and Sonnenburg, J. L. (2014). Starving our microbial self: the 
deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell 
Metab. 20, 779–786. doi: 10.1016/j.cmet.2014.07.003

Tahapary, D. L., Pratisthita, L. B., Fitri, N. A., Marcella, C., Wafa, S., Kurniawan, F., 
et al. (2022). Challenges in the diagnosis of insulin resistance: focusing on the role of 
HOMA-IR and tryglyceride/glucose index. Diabetes Metab. Syndr. 16:102581. doi: 
10.1016/j.dsx.2022.102581

Wang, Z., Wang, Z., Lu, T., Chen, W., Yan, W., Yuan, K., et al. (2022). The microbiota-gut-
brain axis in sleep disorders. Sleep Med. Rev. 65:101691. doi: 10.1016/j.smrv.2022.101691

Yang, Z., Wang, Q., Liu, Y., Wang, L., Ge, Z., Li, Z., et al. (2023). Gut microbiota and 
hypertension: association, mechanisms and treatment. Clin. Exp. Hypertens. 45:2195135. 
doi: 10.1080/10641963.2023.2195135

Ye, X., Liu, Y., Hu, J., Gao, Y., Ma, Y., and Wen, D. (2021). Chlorogenic acid-induced 
gut microbiota improves metabolic endotoxemia. Front. Endocrinol. 12:762691. doi: 
10.3389/fendo.2021.762691

Zhao, E., Tait, C., Minacapelli, C. D., Catalano, C., and Rustgi, V. K. (2022). Circadian 
rhythms, the gut microbiome, and metabolic disorders. Gastro Hep Adv. 1, 93–105. doi: 
10.1016/j.gastha.2021.10.008

Zheng, Y., Ley, S. H., and Hu, F. B. (2018). Global aetiology and epidemiology of type 
2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 14, 88–98. doi: 
10.1038/nrendo.2017.151

Zhou, B., Yuan, Y., Zhang, S., Guo, C., Li, X., Li, G., et al. (2020). Intestinal flora and 
disease mutually shape the regional immune system in the intestinal tract. Front. 
Immunol. 11:575. doi: 10.3389/fimmu.2020.00575

Zúñiga, L. A., Shen, W. J., Joyce-Shaikh, B., Pyatnova, E. A., Richards, A. G., Thom, C., 
et al. (2010). IL-17 regulates adipogenesis, glucose homeostasis, and obesity. J. Immunol. 
185, 6947–6959. doi: 10.4049/jimmunol.1001269

https://doi.org/10.3389/fmicb.2025.1617496
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://doi.org/10.3389/fmicb.2023.1172400
https://doi.org/10.3389/fendo.2023.1151723
https://doi.org/10.1016/j.tips.2021.11.004
https://doi.org/10.1155/2018/4321714
https://doi.org/10.1155/2018/4321714
https://doi.org/10.1038/s41586-022-04480-z
https://doi.org/10.3389/fcimb.2022.733992
https://doi.org/10.1007/s00125-007-0861-3
https://doi.org/10.1016/j.tips.2004.03.012
https://doi.org/10.1016/j.amjms.2020.11.007
https://doi.org/10.1038/s41392-024-01746-y
https://doi.org/10.2337/diabetes.51.12.3391
https://doi.org/10.1016/j.cmet.2014.07.003
https://doi.org/10.1016/j.dsx.2022.102581
https://doi.org/10.1016/j.smrv.2022.101691
https://doi.org/10.1080/10641963.2023.2195135
https://doi.org/10.3389/fendo.2021.762691
https://doi.org/10.1016/j.gastha.2021.10.008
https://doi.org/10.1038/nrendo.2017.151
https://doi.org/10.3389/fimmu.2020.00575
https://doi.org/10.4049/jimmunol.1001269

	Network pharmacology-based insights into the role of gut microbiota metabolites in insulin resistance
	Introduction
	Materials and methods
	Identification of metabolites and targets of gut microbiota
	Identification of disease targets
	PPI network construction and analysis
	GO and KEGG enrichment analysis
	The evaluation of and toxicity

	Results
	The identifications of targets of gut microbiota metabolites intervening IR
	PPI network construction and analysis
	GO enrichment analysis
	KEGG enrichment analysis
	The evaluation of and toxicity
	The “M-S-M-T” network analysis

	Discussion
	Conclusion

	References

