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Sepsis is a life-threatening organ dysfunction caused by a dysregulated host 
response to infection, and its pathogenesis involves complex interactions between 
the host and the microbiome. The integration of multi-omics has important 
value in revealing the mechanism of host-microbiome interaction. It is a key tool 
for promoting accurate diagnosis and guiding dynamic treatment strategies in 
sepsis. However, multi-omics data integration faces technical challenges, such 
as data heterogeneity and platform variability, as well as analytical hurdles, such 
as the “curse of dimensionality.” Fortunately, researchers have developed two 
integration strategies: data-driven and knowledge-guided approaches, which 
employ various dimensionality reduction techniques and integration methods 
to handle multi-omics datasets. This review discusses the applications of multi-
omics technologies in host-microbiome interactions in sepsis, highlighting their 
potential in identifying novel diagnostic biomarkers and developing personalized 
and dynamic treatment strategies. It also summarizes commonly used systems 
biology resources and computational tools for data integration; the review outlines 
the challenges in this field and proposes potential directions for future studies.
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1 Introduction

Sepsis is a life-threatening disease with a global impact, posing a severe threat to humans 
and representing one of the significant challenges in global healthcare. It is characterized by 
high incidence and mortality rates, with data indicating that it causes approximately 5.3 
million deaths annually worldwide (Evans et al., 2021; Fleischmann et al., 2016). Although the 
ability to treat patients with sepsis is improved, the mortality rate of sepsis remains 
unacceptably high. Therefore, identifying novel pathogenic mechanisms is critical for 
improving outcomes in sepsis patients. Sepsis can be classified by severity into sepsis and septic 
shock, with the latter representing the severe stage of sepsis. This study encompasses research 
related to both sepsis and septic shock (Singer et al., 2016).

Over the past two decades, research on the microbiome has grown exponentially. The 
human microbiome consists of diverse microorganisms, including bacteria, viruses, fungi, and 
archaea, which coexist symbiotically with the human host and play a crucial role in maintaining 
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homeostasis (Koppel and Balskus, 2016). Dysbiosis of the microbial 
community is both a consequence and a contributing factor in the 
pathogenesis of sepsis, occupying a critical position in its progression. 
This imbalance can affect the host’s immune response, metabolic 
processes, and barrier function, thereby influencing the outcome of 
sepsis (Weersma et al., 2020). Therefore, understanding the complex 
interactions between the host and microbiome in sepsis is of 

significant value for identifying novel diagnostic biomarkers and 
developing personalized and dynamic therapeutic strategies.

Genomic sepsis studies can elucidate associations between host 
genetic variations and susceptibility (Rayzan et  al., 2023). 
Metagenomics reveals changes in microbial diversity and function 
(Kalantar et al., 2022). Transcriptomics aids in identifying sepsis 
biomarkers and infection types (Chen et  al., 2024). Proteomics 
uncovers host immune responses and metabolic remodeling 
processes (Miao et  al., 2021). Metabolomics assists in sepsis 
diagnosis and therapeutic monitoring (Pandey, 2024). Epigenomics 
clarifies epigenetic mechanisms by which microbes influence host 
immunity (Córneo et al., 2021). However, single-omics analyses 
provide an incomplete perspective. Therefore, integrating multi-
omics approaches enables a comprehensive and systematic 
dissection of biological systems. First, this integration helps 
identify novel biomarkers of host–microbe interactions in sepsis, 
such as specific microbes and metabolites, thereby enhancing 
diagnostic accuracy (Khan et al., 2019). Second, it facilitates the 
development of personalized therapeutic strategies, such as 
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modulating gut microbiota and precision drug administration (Isac 
et al., 2024). Thirdly, multi-omics technologies enable real-time 
therapeutic efficacy monitoring, predict patient outcomes, and 
assist clinicians in promptly adjusting treatment regimens (Sun 
et al., 2023).

The reproducibility of multi-omics data, combined with advanced 
modeling techniques, facilitates comprehensive and integrative 
analysis of these complex systems (Santiago-Rodriguez and Hollister, 
2021). Public datasets enable the reuse of high-quality data, while 
machine learning and network analysis tools uncover patterns and 
relationships within them. Integrative multi-omics approaches, such 
as multi-omics factor analysis and systems biology modeling, allow 
for simultaneous analysis across multiple biological levels, revealing 
correlations and causal relationships between omics layers. We posit 
that in sepsis research, there is a need for further synthesis and 
integration of multi-omics approaches and technologies, as well as a 
holistic perspective on host-microbe interrelationships 
and interactions.

2 Omics studies of host and 
microbiome in sepsis

Due to its high incidence and mortality, sepsis remains a priority 
health concern highlighted by the World Health Organization (WHO) 
(Rudd et al., 2020). As such, omics technologies have increasingly 
been applied to explore sepsis’s pathogenesis and therapeutic targets. 
Kurian et al. (2024) demonstrated that research on sepsis utilizing 
omics technologies has shown a growing trend in publications from 
the European Union and the United Kingdom, with microbiology 
being one of the primary research directions. Notably, studies in this 
field have proliferated since 2000, with 1,608 articles published 
between 2011 and May 2023. These findings provide new insights into 
the pathophysiology of sepsis and contribute to rapid diagnosis, 
targeted therapy, and personalized medicine (Ahmed, 2022).

2.1 Genomics and macrogenomics

Genomics elucidates the relationship between host genetic 
variations and sepsis susceptibility, therapeutic responses, and clinical 
outcomes by analyzing the genetic material in host somatic cells. 
Standard detection techniques include whole genome sequencing 
(WGS), whole exome sequencing (WES), and single nucleotide 
polymorphism (SNP) genotyping (Ahmed et al., 2021). Several studies 
have used WES to reveal the impact of rare immune-deficiency gene 
variants on sepsis susceptibility in pediatric patients (Rayzan et al., 
2023; Borghesi et al., 2020). However, the static nature of genomics 
limits in-depth exploration of the dynamic course of sepsis. Future 
research needs to shift toward studying phenotypes and dynamic 
gene expression.

Metagenomics enables sequencing microbial genomes (archaea, 
bacteria, viruses, and fungi) present in samples, providing critical 
insights into microbial diversity and functional potential (Almeida 
et al., 2019). Common approaches include amplicon-based marker 
gene analysis (e.g., 16S rRNA gene sequencing) and metagenomic 
shotgun sequencing. It will be interesting to mention that besides 16S 
rRNA gene, which is useful for identifying bacterial species on a 

broader taxonomic scale, more exact identification requires further 
genetic techniques, such as Nanopore sequencing, which produces 
long sequencing reads (Abedini-Nassab, 2017; Ying et al., 2013). This 
3rd generation sequencing technology is able to sequence the whole 
16S rRNA gene and not just some of its variable regions. Metagenomic 
sequencing has revealed significant alterations in the fecal microbiota 
of sepsis patients, such as increased abundances of Bacillota, 
Bacteroidota, Lactobacillaceae, and opportunistic pathogens such as 
Klebsiella spp. and Escherichia-Shigella in septic rats (Sun et al., 2020). 
Functional analyses of phyla such as Bacteroidota and Proteobacteria 
help elucidate the dysbiosis associated with sepsis (Daliri et al., 2021). 
Additionally, metagenomic data on the nasal microbiota, including 
genera such as Staphylococcus spp., Moraxella, and Streptococcus, 
enhance predictive diagnostic capabilities for patients with lower 
respiratory tract infections (Li et  al., 2022). The 16S rRNA gene 
sequencing technique provides critical microbiomic evidence for the 
subtyping and diagnosis of sepsis, facilitating the elucidation of the 
microbial mechanisms underlying sepsis susceptibility. Liu et  al. 
(2021) employed this technology to demonstrate a strong correlation 
between gut microbiota composition and sepsis subtype susceptibility, 
proposing two dysbiosis models: ICU Enterotype I is characterized by 
a predominance of Bacteroides and unclassified Enterobacteriaceae, 
with hosts more prone to progressing to septic shock. ICU Enterotype 
II is dominated by Enterococcus spp., corresponding to hosts 
predominantly exhibiting a sepsis phenotype without concomitant 
shock. The application of whole-genome sequencing (WGS) for 
precision monitoring microbial genomes facilitates accurate clinical 
diagnosis of infectious microorganisms, enhancing diagnostic 
accuracy in clinical settings (Huang et al., 2019).

2.2 Transcriptomics and 
metatranscriptomics

The mRNA offers insights into the pathophysiology of sepsis 
patients. Whole-blood transcriptomics identifies biologically 
homogeneous subgroups by revealing differentially expressed genes and 
detects dynamic changes in sepsis (Saxena et al., 2024). In recent years, 
transcriptomics-based biomarkers have shown great potential in 
diagnosing, disease monitoring, and prognosis evaluation of sepsis. 
Some studies have conducted transcriptomic analyses on whole-blood 
RNA samples from sepsis patients and combined these with 
bioinformatics methods to identify nine genes, such as LRG1, ELANE, 
and TP53, as potential biomarkers for sepsis (Gong et al., 2020). The 
newly developed IMX-BVN-1 classifier, utilizing 29 preselected host 
mRNAs, employs a neural network to distinguish between bacterial and 
viral infections. This approach offers a novel method for rapid diagnosis 
in sepsis patients (Mayhew et al., 2020). Transcriptomics not only aids 
in rapidly differentiating infection types but also guides personalized 
sepsis treatment. Cano-Gamez et  al. (2022) constructed a cross-
platform transcriptomic reference map using transcriptomic data from 
different technical platforms. They proposed an immune dysfunction 
score (SRSq) for sepsis patient stratification, reflecting the degree of 
immune dysregulation and predicting clinical outcomes, thus providing 
new directions for early sepsis diagnosis and personalized treatment. 
Two subclasses of pediatric infectious shock patients were identified 
through genome-wide expression profiling based on whole blood RNA 
sequencing, providing information for clinical decision-making in 
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sepsis (Yang et  al., 2023). Kalantar et  al. (2022) combined host 
transcriptional profiling with broad-range metagenomic pathogen 
detection from nucleic acids to develop a novel diagnostic tool for sepsis.

Metatranscriptomics can compensate for the limitations of 
metagenomics by analyzing microbial transcription levels to reveal their 
metabolic and functional states (Santiago-Rodriguez et  al., 2015). 
Metagenomics focuses on the genetic potential of microbial 
communities, while metatranscriptomics provides insights into the 
actual gene expression and functional activities of microbes under 
specific conditions (Franzosa et al., 2014). This approach is beneficial for 
understanding microbial responses to environmental changes and their 
dynamic metabolic processes. Wang et  al. (2023) performed 
metatranscriptomic sequencing on bronchoalveolar lavage fluid (BALF) 
from COVID-19 patients, analyzing host transcriptomic profiles, viral, 
bacterial, and fungal content, as well as virulence factors. They found that 
SARS-CoV-2, human β-herpesvirus, and phyla such as Proteobacteria 
and Bacillota were highly represented. They revealed a significant 
correlation between microbial composition and host immune responses.

2.3 Proteomics

Proteomic profiling of host body fluids such as blood and urine, 
using high-resolution mass spectrometry technologies such as LC–
MS/MS to analyze post-translationally modified proteins, can reveal 
the immune responses and metabolic remodeling processes in sepsis 
(Duong and Lee, 2023). Proteomic profiling, based on shotgun 
proteomics and utilizing tandem mass spectrometry (MS) to identify 
species-specific peptides, distinguishes microbes at the amino acid 
level. This technique, when applied to analyze clinical samples from 
sepsis patients, aids in diagnosing sepsis infections (van Houten et al., 
2018). However, its clinical application is limited due to technical 
complexity and high costs. Wang C. et  al. (2021) performed a 
quantitative proteomic analysis of neutrophil proteins in the blood of 
sepsis patients and analyzed the blood microbiota. They found 
significant changes in different stages of sepsis, with interactions 
between microbiota changes and immune cell functional alterations. 
Bacterial genera were identified as potential predictive biomarkers for 
sepsis, providing new research and clinical management directions. 
Liu et al. (2019) performed proteomic analysis of fecal samples from 
sepsis patients and combined it with 16S rDNA sequencing and 
metabolomics. They found that sepsis leads to significant changes in 
gut microbiota protein expression, closely related to immune 
responses and coagulation function. These findings highlight the 
potential of gut microbiota proteins as biomarkers for sepsis.

2.4 Metabolomics

Metabolomics aids in sepsis diagnosis by detecting host 
metabolites (e.g., in blood, urine, and tissues) and microbial 
metabolites (e.g., SCFAs and amino acids), revealing host–microbe 
interactions and their impact on health and disease. Commonly used 
techniques include nuclear magnetic resonance (NMR) and liquid 
chromatography-mass spectrometry (LC–MS) (Bauermeister et al., 
2022). Analysis of gut fecal metabolites can serve as an early 
non-invasive diagnostic tool for sepsis, particularly for late-onset 
sepsis in preterm infants caused by Gram-negative bacteria. Specific 

metabolic markers, such as ethyl acetate and cyclopentane, are 
associated with Gram-negative late-onset sepsis. Additionally, octanal 
has been identified as a unique metabolic marker for late-onset sepsis 
caused by coagulase-negative staphylococci (Frerichs et al., 2023).

Metabolomics data can be utilized to monitor therapeutic effects, 
particularly by analyzing specific metabolites correlated with disease 
outcomes, thereby supporting personalized treatment strategies. For 
instance, metabolomic analysis in mice demonstrated that gut 
microbiota-derived short-chain fatty acids (SCFAs), including acetate, 
propionate, and butyrate, were significantly associated with reduced 
levels of Lactobacillus and Bifidobacterium in the microbiota of mice 
with Klebsiella pneumonia induced pneumonic sepsis. These findings 
highlight the therapeutic potential of SCFAs in sepsis (Wu et  al., 
2020b). Wang et al. (2024b) found that changes in the gut microbiota 
and metabolites of sepsis patients are closely related to changes in 
serum vitamin levels. Vitamin B9 protects the intestinal barrier and 
reduces the severity of sepsis by altering the type and abundance of 
gut microbiota and upregulating the concentration of microbiota 
metabolites, thereby increasing the expression of intestinal barrier-
related genes. Stewart et al. (2017) conducted metabolomic profiling 
of fecal samples from preterm infants with late-onset sepsis, combined 
with 16S rRNA sequencing. Their findings suggest that increased 
prebiotic oligosaccharides and the growth of Bifidobacterium in the 
gut exert a protective effect. While metabolomics can provide 
information on the correlation between metabolites and diseases, a 
single technique cannot trace the origin of metabolites (host, 
microbial, or co-microbial). Additionally, real-time metabolite 
detection technologies in critically ill clinical patients 
remain underdeveloped.

2.5 Epigenomics

In sepsis-related host-microbiota interactions, the inflammatory 
state promotes the influence of diverse microbes, particularly gut 
microbiota, on host cellular transcriptional programs and immune cell 
function. This process occurs through epigenetic mechanisms such as 
the production of epigenetic substrates and enzymatic regulators, 
modulation of DNA methylation and histone modifications, and 
regulation of non-coding RNA. These processes ultimately disrupt 
immune function and induce organ dysfunction (Woo and Alenghat, 
2022; Binnie et al., 2020). In the gut microbiota, Bacteroides fragilis, 
Clostridium perfringens, and Lactobacillus acidophilus, along with their 
metabolites, enhance DNA methylation levels in T-lymphocytes, 
induce the production of various cytokines, mitigate the inflammatory 
response during sepsis, regulate the balance of immune cells, and 
maintain intestinal immune homeostasis (Heffernan et  al., 2021). 
SCFAs produced by the gut microbiota induce histone post-
translational modifications (PTMs), thereby influencing gene 
expression and other cellular processes (Gates et al., 2024). These 
modifications regulate protein activity and affect cellular signaling 
events in sepsis, helping to control cytokine storms and 
immunosuppression during the disease process (Zhang L. et al., 2023).

Some pathogens induce epigenetic changes in the host, promoting 
inflammation, regulating immune cell function, and modulating 
responses to microbial infections (Ma et  al., 2024). This process 
provides new insights for preventing sepsis caused by pathogenic 
microorganisms. In sepsis caused by Staphylococcus aureus in mice, 
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DNMT3A, an essential enzyme for DNA methylation, is suppressed 
in blood leukocytes in  vivo and in macrophages and neutrophils 
in  vitro. This suppression affects IL-10 regulation, impacting host 
immune responses. Through a DNA methylation-dependent 
mechanism, this process influences the host’s resistance to MRSA 
(Mba Medie et al., 2019).

3 Interaction between host immune 
system and microbiome in sepsis

3.1 Shaping of microbial communities by 
host immunity

The host immune system is critical in regulating microbial 
communities, as shown in Figures 1A,B. Under normal conditions, 
the host maintains intestinal microbiota homeostasis through innate 
immune mechanisms (e.g., secretion of antimicrobial peptides, 
complement activation) and adaptive immune mechanisms (e.g., 
antibody production, immune cell-mediated cytotoxicity) (Potruch 
et al., 2022). Sepsis-induced robust immune responses disrupt the 
ecological balance of the gut microbiota. Toll-like receptors (TLRs) 
recognize pathogen-associated molecular patterns (PAMPs) from 
microorganisms, triggering intracellular signaling pathways that 
stimulate macrophages to secrete pro-inflammatory cytokines. This 
inflammatory response alters the gut microenvironment and affects 
microbial survival.

Additionally, therapeutic interventions such as antibiotic 
treatment lead to the massive elimination of susceptible bacteria, 
allowing drug-resistant or opportunistic pathogens to overgrow, 
thereby promoting bacterial translocation and the displacement of 
microbial metabolites (Thazha et al., 2019; Piccioni et al., 2024; Kalra 
et al., 2022). Broad-spectrum antibiotics reduce microbial diversity 

and increase the abundance of Enterococcus species, which is directly 
associated with an increased risk of sepsis (Kang and Thomas, 2021). 
In infants treated with broad-spectrum antibiotics (e.g., penicillin, 
gentamicin, or amoxiclav) for suspected early-onset neonatal sepsis, a 
significant reduction in Bifidobacterium abundance and an increase in 
Klebsiella spp. and Enterococcus abundance are observed, profoundly 
impacting the development of the gut microbiota (Reyman 
et al., 2022).

3.2 Modulation of host immunity by the 
microbiome

The microbiota plays a dual role in sepsis: it is both a pathogenic 
factor and a critical modulator of disease progression and host 
immune responses, as shown in Figure  1C. Microbiota diversity 
significantly impacts the immunophenotype and mortality of sepsis. 
In septic mice with high gut microbiota β-diversity, survival rates are 
improved considerably, accompanied by enhanced CD4+T cell 
responses. Conversely, reduced diversity impairs immune function, 
leading to uncontrolled inflammation and increased mortality (Fay 
et al., 2019). Furthermore, alterations in the gut microbiota before 
disease onset increase susceptibility to sepsis through multiple 
mechanisms, such as the expansion of pathogenic gut bacteria, 
activation of pro-inflammatory immune responses, and reduced 
production of beneficial microbial metabolites (Adelman 
et al., 2020).

Microbial dysbiosis can lead to host immune dysregulation 
during sepsis. The microbiota primarily modulates host immune 
responses through metabolites such as SCFAs and molecular 
patterns, thereby influencing the progression of sepsis (Mann et al., 
2024). SCFAs (e.g., acetate, propionate, and butyrate) regulate 
epithelial barrier function, mucosal, and systemic immunity by 

FIGURE 1

Host microbiome interactions in sepsis. (A) Under normal conditions, the host relies on innate immunity mechanisms (such as antimicrobial peptide 
secretion, complement activation, etc.) and adaptive immunity (such as antibody production, immune cell-mediated killing, etc.) to maintain the 
balance of intestinal microbial community. (B) The strong immune response triggered by sepsis breaks the original ecological balance of intestinal 
microbial community. (C) Microorganisms influence sepsis development and host immune response.

https://doi.org/10.3389/fmicb.2025.1618177
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Lu et al. 10.3389/fmicb.2025.1618177

Frontiers in Microbiology 06 frontiersin.org

signaling through G protein-coupled receptors (GPCRs) such as 
GPR41 and GPR43 or by modulating histone deacetylase activity, 
thereby alleviating sepsis-associated inflammation (Wang et  al., 
2024a). Butyrate enhances histone H3 acetylation at the Foxp3 
promoter and other conserved non-coding sequences, inducing the 
differentiation of gut Treg cells and reducing TNF-α and IL-6 levels 
(Furusawa et al., 2013). Acetate lowers neutrophil apoptosis via the 
FFAR2 pathway. It downregulates FABP4 through the endoplasmic 
reticulum stress pathway, modulating neutrophil apoptosis, 
increasing inflammatory factors in lung epithelial cells, and 
aggravating sepsis-induced respiratory distress syndrome (Xuan 
et al., 2024).

3.3 Association of microbiome with 
sepsis-related organ dysfunction

3.3.1 Gut microbiome and intestinal barrier 
function

Intestinal microbiota maintains gut barrier integrity through 
multiple mechanisms, including promoting the expression and 
stability of tight junction proteins, enhancing mucosal barrier 
function, and regulating intestinal immune cell homeostasis. Tight 
junction proteins (e.g., occludin, claudin family proteins) are 
central components of the mechanical barrier, forming tight 
intercellular junctions that effectively prevent the translocation of 
intestinal bacteria, toxins, and other harmful substances across the 
mucosal barrier into the bloodstream (Serek and Oleksy-
Wawrzyniak, 2021).

In sepsis, microbial dysbiosis can compromise intestinal barrier 
function. On the one hand, the overgrowth of pathogenic bacteria 
directly erodes intestinal epithelial cells, disrupting tight junction 
structures. This process leads to increased tight junction proteins 
claudin-2 and JAM-A and decreased expression of claudin-5 and 
occludin, significantly increasing intestinal permeability (Yoseph 
et al., 2016). On the other hand, an imbalance in the gut microbiota 
impairs the gut’s immune regulatory functions, weakening the ability 
of immune cells to clear pathogens and further exacerbating intestinal 
barrier damage. Once the intestinal barrier is compromised, intestinal 
bacteria and their metabolites can translocate in large quantities into 
the mesenteric lymph nodes, portal venous system, and even directly 
into the bloodstream, causing systemic infection and serving as a 
critical trigger for sepsis (Kullberg et al., 2021). For example, D-lactic 
acid, produced by gut commensal bacteria, is transported via the 
portal vein to the liver, where it is essential for maintaining the 
integrity of the intra-vascular firewall mediated by Kupffer cells, 
enabling the capture and elimination of circulating pathogens 
(McDonald et al., 2020). Oral supplementation of SCFAs activates 
G-protein-coupled receptor 43, enhancing macrophage phagocytosis 
of Klebsiella pneumoniae (Wu et al., 2020a).

3.3.2 Effects of microbial changes in sepsis on 
other organs

Sepsis disrupts the gut microbiota and causes dysbiosis in the lung 
microbiota. In patients with sepsis or acute respiratory distress 
syndrome (ARDS), alveolar microbial diversity decreases, and the 
lung microbiota network shifts from being dominated by beneficial 
commensal bacteria (e.g., Streptococcus salivarius and Streptococcus 

oralis) to being dominated by gastrointestinal and periodontal 
pathogens (Lu et al., 2024). This altered microbial network can induce 
immunosuppression by promoting the expression of the EGFR gene 
and suppressing the expression of BST2 and HLA-C genes. The “gut-
lung axis” modulates pulmonary immune responses through 
microbial-associated molecular patterns (MAMPs) and metabolites. 
Oral/pharyngeal bacteria (e.g., Klebsiella pneumoniae and 
Pseudomonas aeruginosa) and gut bacteria (e.g., Enterococcus and 
Klebsiella spp.) can translocate to the lungs, causing infections and 
further disrupting systemic immunity (Lee and Banerjee, 2020).

Sepsis-associated neuroinflammation is closely linked to the 
imbalance of the gut-brain axis. Gut microbiota and SCFA metabolic 
disorders play a key role in sepsis-associated encephalopathy (SAE). 
SCFA supplementation can alleviate cognitive impairment and 
neuroinflammation in SAE mice (Li et al., 2023). Moreover, metformin 
has therapeutic potential for sepsis-related neuroinflammation by 
modulating the gut microbiota and metabolites, but its specific 
metabolic mechanisms require further validation (Zhao et al., 2022).

4 Strategies and methods of 
integrative omics in sepsis research

4.1 Necessity and challenges of 
multi-omics data integration

4.1.1 Necessity of a comprehensive 
understanding of biological systems

Sepsis involves complex interactions between the host and 
pathogens, with interconnected information from multiple levels, 
including the microbiome, genome, transcriptome, proteome, and 
metabolome (Mangioni et al., 2020). For example, changes in the 
composition and function of the gut microbiota are closely linked to 
the host’s immune response during sepsis. A single-omics approach 
cannot fully elucidate this intricate relationship. In studies on 
Staphylococcus epidermidis in neonatal sepsis, the pathogenic potential 
and molecular mechanisms of this bacterium in the sepsis microbiome 
can only be  fully understood by combining the open and diverse 
nature of its genome with the expression of virulence genes at the 
transcriptomic level. This integrated approach provides a basis for 
precision diagnosis and treatment (Joubert et al., 2022).

4.1.2 Technical and analytical challenges of data 
integration

In clinical sepsis research, the three common goals of using omics 
are to investigate host responses, develop diagnostic methods, and 
identify clinically relevant clusters (Schuurman et al., 2021). However, 
the integration of multi-omics data faces numerous technical barriers. 
On the one hand, different types of omics data vary in data structure, 
measurement scale, and noise level (Chen et al., 2023; Wang W. et al., 
2021). For example, 16S rRNA sequencing, used to analyze bacterial 
community structure, produces relatively sparse data. Researchers can 
consider integrating bacterial, viral, fungal, and protozoan 
communities to obtain more comprehensive information, but this 
increases complexity (Zhou et al., 2022). Metagenomic sequencing 
provides more comprehensive genetic information but generates large 
volumes of complex data, differing from nucleic acid-based 
omics data.
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On the other hand, differences in data acquisition platforms and 
experimental conditions also complicate integration, as batch effects 
often interfere with data consistency and comparability. Analytically, 
the “curse of dimensionality” from high-dimensional data challenges 
traditional statistical methods, which struggle to handle the 
complexity of multi-omics data. Models are prone to overfitting, lack 
generalizability, and fail to apply to new datasets (Gliozzo et al., 2024).

4.2 Multi-omics integration strategy

In recent years, multi-omics research has developed numerous 
integration strategies to address challenges. These strategies can 
be  broadly categorized into data-driven and knowledge-guided 
approaches, with a comparison provided in Table  1. Data-driven 
strategies focus on extracting meaningful patterns and relationships 
directly from raw omics data. This approach is highly flexible and suitable 
for complex datasets commonly encountered in multi-omics studies.

However, since extracted correlations may not always align with 
biological reality, more studies have begun incorporating external 
biological knowledge for guidance. By leveraging existing biological or 
functional knowledge (typically stored in multiple databases in network 
format, as shown in Table 2), knowledge-guided approaches effectively 
reduce multi-omics data’s complexity and enhance the integrated 
results’ biological significance and interpretability (Li W. et al., 2024). 
For example, in microbiome data integration, many microbial genes can 
be  aggregated into functional modules or pathway levels using 
functional families from the PATRIC database (Davis et al., 2020) or 
gene families from the KEGG database (Kanehisa et  al., 2023). 
Additionally, specialized databases focused on microbial genome 
annotation and comparison, such as IMG/M (Integrated Microbial 
Genomes & Microbiomes) (Chen et al., 2019) and MicroScope (Vallenet 
et al., 2020), can also be employed for this purpose. Additionally, for 
specific functional domains, specialized databases such as CARD 
(Alcock et al., 2020) for antibiotic resistance genes, VFDB (Zhou et al., 
2025) for bacterial virulence factors, and mobileOG-db (Brown et al., 
2022) for mobile genetic elements can be integrated. This approach 
provides a more comprehensive understanding of microbial community 
functional characteristics and interactions. Furthermore, bioinformatics 
tools such as PICRUSt (Langille et al., 2013), Piphillin (Narayan et al., 
2020), PUMAA (Mitchell et al., 2020), and iVikodak (Nagpal et al., 

2018) enable functional prediction based on 16S rRNA data, addressing 
functional research needs in cases where metagenomic sequencing is 
unavailable or resource-limited.

Key signaling molecules in the host’s transcriptomic and 
proteomic data can be utilized to construct detailed gene regulatory 
networks by leveraging gene expression and regulatory information 
integrated in Harmonizome (Rouillard et  al., 2016), as well as 
RNA-protein interaction data provided by catRAPID (Armaos et al., 
2021), RBPDB (Cook et al., 2011), and RNAct (Lang et al., 2019). In 
practice, data-driven and knowledge-derived DR can complement 
each other, providing a more comprehensive understanding of the 
critical interactions between the host and microbes in sepsis.

The integration steps of these two methods are primarily similar, 
as shown in Figure 2, with the key difference in how prior biological 
information is incorporated into the analysis (Abdelaziz et al., 2024). 
Data integration strategies are typically divided into horizontal and 
vertical integration (Zitnik et  al., 2019). Horizontal integration 
involves studying the same omics across different sample groups, while 
vertical integration examines multiple omics data on the same samples. 
Vertical integration is more complex and widely applied in practice; 
the following discussion in this paper focuses on vertical integration.

4.3 Dimension reduction of multi-omics 
integration

Dimensionality reduction is often an essential preprocessing step 
in multi-omics analysis, as simple integration of omics data may lead 
to the loss of critical features inherent to each omics layer, exacerbating 
the “curse of dimensionality” in data integration (Downing and 
Angelopoulos, 2023). While this step is optional, early and 
intermediate integration strategies typically require dimensionality 
reduction to enhance their effectiveness. Standard dimensionality 
reduction techniques are listed in Table 3.

Dimensionality reduction is typically achieved through feature 
selection and feature extraction. Feature selection identifies the most 
representative and informative variables from raw data, such as 
Recursive Feature Elimination (RFE) (Jeon and Oh, 2020), L1/L2 
Regularization (Elastic Net) (Xu et  al., 2010), and Least Absolute 
Shrinkage and Selection Operator (LASSO) (D’Angelo et al., 2009). 
This approach retains features’ original physical or biological meaning, 

TABLE 1 Differences between data-methods and knowledge-guided methods.

Difference Data-driven methods Knowledge-guided learning methods

Basic idea
Directly extract patterns and relationships from raw data without relying on 

prior biological hypotheses.

Utilize existing biological knowledge and databases to simplify data 

complexity using prior information.

Common 

techniques/tools

PCA, t-SNE, NMDS, LDA, WGCNA, correlation analysis, network fusion 

(e.g., SNF)

GSEA, GSVA, pathway annotation based on KEGG/Reactome, 

specialized databases such as CAZy and VFDB

Advantages
Flexible and unbiased, capable of uncovering novel patterns; well-suited for 

handling large-scale, high-dimensional data.

Offers strong biological interpretability by integrating data into 

functional modules, reducing noise, and identifying known key 

pathways.

Limitations
Requires a high sample size; some patterns discovered may be challenging to 

interpret.

Database update frequency may affect accuracy depending on existing 

knowledge and potentially missing novel or unrecorded biological 

mechanisms.

Integration stage
Commonly used in early to intermediate integration stages (e.g., data 

concatenation, feature transformation, network construction).

Typically applied in later stages, using functional annotation and 

pathway aggregation to interpret and validate analysis results.
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reduces model complexity, minimizes noise, and lowers the risk of 
overfitting. However, it may overlook complex feature interactions, 
potentially missing latent joint information.

In contrast, feature extraction constructs a new feature space, 
such as through Principal Component Analysis (PCA) (Ringnér, 

2008), t-stochastic Neighbor Embedding (t-SNE) (Mrowka and 
Schmauder, 2024), and Variational Autoencoders (Kingma and 
Welling, 2019). These methods map high-dimensional data into 
low-dimensional representations, capturing intrinsic data structures 
and nonlinear relationships more effectively. Although it achieves 

TABLE 2 Representative databases for various types of biological knowledge.

Database 
name

Full name Biological knowledge Source

UniProt-KB UniProt Knowledgebase (UniProt Consortium, 2025) Sequence and functional information on proteins https://www.uniprot.org/

KEGG
Kyoto Encyclopedia of genes and genomes (Kanehisa 

and Goto, 2000)

Molecular interaction, reaction, and relation 

networks

https://www.genome.jp/kegg/

pathway.html

Reactome Reactome pathway database (Croft et al., 2011) Signaling and metabolic pathways https://reactome.org/

STRING
Search Tool for the retrieval of interacting genes/

proteins (Szklarczyk et al., 2023)
Protein–protein interaction networks https://string-db.org/

PathBank PathBank (Wishart et al., 2024)
Metabolic, signaling, disease, drug, and 

physiological pathways
https://www.pathbank.org/

Pathway Commons Pathway Commons (Cerami et al., 2011)

Biological pathway and interactions: biochemical 

reactions; gene regulatory networks; protein, 

nucleic acid, small molecule interactions

https://www.pathwaycommons.org/

BioCyc
BioCyc Pathway/Genome Database Collection (Karp 

et al., 2019)
Metabolic pathways, regulatory networks https://biocyc.org/

WikiPathways WikiPathways (Agrawal et al., 2024) Signaling pathways https://www.wikipathways.org/

GRNdb
Gene Regulatory Network database

(Fang et al., 2021)

Gene regulatory networks among transcription 

factors and genes
http://www.grndb.com/

BioGRID
Biological General Repository for Interaction Datasets 

(Oughtred et al., 2021)
Protein and genetic interactions https://thebiogrid.org/

IID Integrated Interactions Database (Kotlyar et al., 2022) Protein–protein interaction http://ophid.utoronto.ca/iid

Harmonize Harmonize (Rouillard et al., 2016)
Integrative gene and protein expression data 

across various tissues and conditions

http://amp.pharm.mssm.edu/

Harmonizome

Cat RAPID
Computational Analysis of Targets of RNA-Protein 

Interactions and Discovery (Armaos et al., 2021)
RNA-protein interaction prediction

http://service.tartaglialab.com/page/

catrapid_group

RBPDB RNA-Binding Protein DataBase (Cook et al., 2011)
RNA-binding protein recognition motifs and their 

target interactions
http://rbpdb.ccbr.utoronto.ca/

RPISeq
RNA–Protein Interaction Sequence-based Predictor 

(Muppirala et al., 2011)
RNA-protein interactions http://pridb.gdcb.iastate.edu/RPISeq/

RNAct RNA - Critical Targets (Lang et al., 2019) Protein-RNA interactions http://rnact.crg.eu

StarBase StarBase (Li et al., 2014) miRNA-target, RNA–RNA interactions http://starbase.sysu.edu.cn/

MetaCyc
Metabolic Pathways From all Domains of Life (Caspi 

et al., 2006)
Metabolic pathways http://MetaCyc.org/

PHI-base
Pathogen Host Interactions Database (Winnenburg 

et al., 2006)

fungal and Oomycete pathogenicity genes-host 

interactions
http://www.phi-base.org/

ConsensusPathDB
ConsensusPathDB (The ConsensusPathDB 

Interaction Database, 2013)
Integrative database for molecular interactions http://consensuspathdb.org/

PATRIC
Pathosystems Resource Integration Center (Wattam 

et al., 2014)

Microbial genomes and associated functional 

annotations
https://www.patricbrc.org/

IMG/M
The Integrated Microbial Genomes & Microbiomes 

(Chen et al., 2019)

Multi-Source Microbial Genomes and 

Metagenomes prediction and functional 

annotation

https://img.jgi.doe.gov/m/

MicroScope MicroScope (Vallenet et al., 2020)

Functional annotation of microbial species genes 

and genomic regions, metabolic network 

reconstruction, and post-genomic experiments

https://www.genoscope.cns.fr/agc/

microscope
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efficient information compression, it often results in 
reduced interpretability.

Depending on whether they utilize data labels, dimensionality 
reduction techniques can be categorized as supervised or unsupervised. 
Unsupervised methods, which eliminate redundant variables based on 
correlations without considering target variables, are suitable for data 
exploration and structure revelation. Standard unsupervised techniques 
include Principal Component Analysis (PCA) (Ringnér, 2008), 
t-stochastic Neighbor Embedding (t-SNE) (Mrowka and Schmauder, 
2024), and Nonnegative Matrix Factorization (NMF) (Devarajan, 2008). 
In contrast, supervised methods leverage known class information to 
guide the dimensionality reduction process, making them appropriate 
for classification tasks. Examples of supervised techniques include Linear 
Discriminant Analysis (LDA) (Ayesha et al., 2020) and Partial Least 
Squares Discriminant Analysis (PLS-DA) (Lee et al., 2018).

Data integration can be categorized into single-omics, dual-omics, 
and multi-omics integration, with the number of datasets to 
be  integrated influencing the choice of dimensionality reduction 

techniques (see Table 3 for details). In practical applications, PCA and 
LDA can project multi-omics data from the host and microbiome 
onto a few principal components, retaining the significant variation in 
the data. This process allows visualization of key gene, protein, and 
microbiota changes under sepsis conditions (Jonathan et al., 2020). 
When integrating multi-omics data from different sources, cPCA can 
eliminate batch effects between datasets and extract standard features 
reflecting host-microbiome interactions. PLS helps identify host and 
microbial metabolites that co-vary during disease progression, 
providing evidence for potential therapeutic targets. WGCNA 
constructs co-expression or co-abundance networks, clustering 
related genes or microbes into modules. This step aids in discovering 
synergistic changes in host genes and microbes at the network level, 
revealing key regulatory networks and potential biomarkers in sepsis 
pathogenesis. SNF (Wang et al., 2014) integrates multi-omics data 
(e.g., genomics, transcriptomics, proteomics) by constructing and 
fusing similarity networks, capturing shared patterns across omics 
layers. UMAP reduces the dimensionality of complex host and 

FIGURE 2

Multi-omics data integration and analysis pipeline. The overall process of integration strategies includes data collection, data preprocessing, 
dimensionality reduction, multi-omics integration, downstream analysis (classification, regression, clustering), model/method evaluation, 
interpretability, and explainability. The difference between the Knowledge-Guided Learning Methods and the Data-Driven Methods is that in steps 3 
and 5, the former uses a variety of bioinformatics databases related to hosts and microorganisms as a guide to performing data dimensionality 
reduction, classification, regression, and cluster analysis.

https://doi.org/10.3389/fmicb.2025.1618177
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Lu et al. 10.3389/fmicb.2025.1618177

Frontiers in Microbiology 10 frontiersin.org

TABLE 3 Common dimension reduction methods.

Method Learning 
approach

Type Common tools Advantages Limitations Omic 
datasets

Principal Component 

Analysis (PCA)
Unsupervised

Feature 

extraction

base R (R) (Jolliffe and 

Cadima, 2016); dimRed 

(R) (Kraemer et al., 2018); 

mixOmics (R) (Rohart 

et al., 2017); FactoMineR 

(R) (Lê et al., 2008); 

pcaMethods (R) (Stacklies 

et al., 2007)

Simple, fast, 

interpretable

Assumes linearity; 

sensitive to scaling
Single

Independent 

component analysis 

(ICA)

Unsupervised
Feature 

extraction

fastICA (R) (Miettinen 

et al., 2018); fICA (R) 

(Miettinen et al., 2018)

Separates mixed 

signals; extracts non-

Gaussian sources

Sensitive to noise; 

independence assumption 

may not hold

Single

Multi-dimensional 

scaling (MDS)
Unsupervised

Feature 

extraction

base R (R) (Jolliffe and 

Cadima, 2016); dimRed 

(R) (Kraemer et al., 2018); 

MetaboAnalyst

Preserves pairwise 

distances; effective for 

visualization

Computationally 

intensive;

sensitive to outliers

Single

Correspondence 

analysis (CA)
Unsupervised

Feature 

extraction

vegan (R) (Chen et al., 

2024); ade4 (R) (Dray and 

Dufour, 2024); FactoMineR 

(R) (Lê et al., 2008); ca (R) 

(Nenadic and Greenacre, 

2007)

Reveals associations in 

contingency tables

Limited to count/

categorical data; 

interpretation can 

be subjective

Single

Multiple Factor 

Analysis (MFA); 

Hierarchical Multiple 

Factor Analysis 

(HMFA)

Unsupervised
Feature 

extraction

FactoMineR (R) (Lê et al., 

2008)

Integrates multiple 

datasets; balances 

influence of each data 

block

Requires careful 

preprocessing; 

interpretation may 

be complex

Single; multiple

Nonnegative Matrix 

Factorization (NMF)
Unsupervised

Feature 

extraction

NMF (R) (Wang and 

Zhang, 2013)

Produces parts-based, 

interpretable 

representation

Non-convex optimization; 

sensitive to initialization
Single

Linear Discriminant 

Analysis (LDA)
Supervised

Feature 

extraction

MASS (R) (Xu et al., 2009); 

caret (R) (Kuhn et al., 

2024)

Maximizes class 

separability; simple and 

fast

Assumes normality and 

equal covariance; limited 

to linear boundaries

Single

Locally linear 

embedding (LLE)
Unsupervised

Feature 

extraction

RDRToolbox (R) 

(Bartenhagen, n.d.)

Captures local 

structure; reveals non-

linear manifolds

Sensitive to noise and 

parameter settings; 

computationally heavy

Single

Consensus PCA 

(cPCA)
Unsupervised

Feature 

extraction

mogsa (R) (Meng et al., 

2016)

Integrates multiple 

datasets; robust to 

dataset-specific noise

Less standardized; higher 

computational demand
Pair

Canonical Correlation 

Analysis (CCA)
Unsupervised

Feature 

extraction

CCA (R) (González and 

Déjean, 2023); vegan (R) 

(Oksanen et al., 2025); 

PMA (R) (Chu et al., 2013); 

mixOmics (R) (Rohart 

et al., 2017)

Identifies linear 

relationships between 

two variable sets

Assumes linearity; 

sensitive to noise
Pair

Co-inertia analysis 

(CIA)
Unsupervised

Feature 

Extraction

made4 (R) (Culhane et al., 

2005)

Highlights common 

structure between 

datasets

Requires matched 

samples; interpretation 

can be complex

Pair

Partial Least Squares 

(PLS)
Unsupervised

Feature 

extraction

pls (R) (Mevik and 

Wehrens, 2007); caret (R) 

(Kuhn, 2024)

Handles 

multicollinearity; 

effective with high-

dimensional predictors

The risk of overfitting 

requires rigorous cross-

validation

Pair

(Continued)
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microbiome multi-omics data for visualization, enabling researchers 
to intuitively observe data distribution and clustering patterns. 
Extended CCA integrates multi-omics datasets (e.g., microbiome and 
metabolome) to capture disease-related multi-omics modules, 
uncovering significant correlations and highly predictive modules 
across omics layers (Muller et al., 2024).

4.4 Data integration methods and 
challenges

Due to the problems of high dimensionality, population 
heterogeneity, and complex data association, it is challenging to utilize 
the multi-omics data of sepsis effectively. In order to meet these 

challenges, Iperi et al. (2025) used BiomiX to solve the bottleneck of 
high-throughput omics data analysis, which can efficiently and 
integratively analyze multi-omics data from different queues. 
Moreover, multi-omics factor analysis (MOFA) is commonly used for 
solving multi-omics data integration (Guo et al., 2025). Besides, direct 
linkage prioritizes longitudinal multi-omics profiling (e.g., concurrent 
genomic, metabolomic, and microbiome measurements within 
identical sepsis cohorts) to reconstruct patient-specific interactomes 
using advanced integration algorithms (MOFA+/mixOmics). This 
approach systematically reveals latent covariance structures and time-
resolved biological associations. Indirect linkage addresses non-paired 
datasets through cross-cohort meta-analytic frameworks, statistically 
harmonizing heterogeneous sepsis cohorts to detect subtle trans-study 
differential signals.

TABLE 3 (Continued)

Method Learning 
approach

Type Common tools Advantages Limitations Omic 
datasets

Partial Least Squares 

Discriminant Analysis 

(PLS-DA)

Supervised

Feature 

extraction; 

Feature 

selection

mixOmics (R) (Rohart 

et al., 2017); PLS-DA tool 

(Open source MATLAB 

tool) (Zontov et al., 2020)

Combines 

dimensionality 

reduction with 

classification

Overfitting risk; model 

validation is crucial
Pair

Generalized 

Procrustes Analysis 

(GPA)

Unsupervised
Feature 

extraction

Vegan(R) (Oksanen et al., 

2025); FactoMineR (R) (Lê 

et al., 2008)

Aligns multiple 

datasets; removes scale/

rotation differences

Sensitive to outliers; may 

require iterative 

convergence

Pair

Multiple co-inertia 

analysis (mCIA)
Unsupervised

Feature 

Extraction

omicade4 (R) (Meng et al., 

2014)

Simultaneously 

analyzes several 

datasets.

Computationally 

intensive; interpretation is 

complex

Multiple

Tensor Component 

Analysis (TCA)
Unsupervised

Feature 

extraction

tensor BSS (R) (Virta et al., 

2024); rTensor (R) (Li 

et al., 2018); tensorr (R) 

(Rougier, 2012); ThreeWay 

(R) (Giordani et al., 2014); 

SDA4D (R) (Gill and 

Marchini, 2020)

Captures multi-

dimensional 

interactions; parts-

based representation

High computational 

complexity; challenging 

parameter tuning

Multiple

Weighted Correlation 

Network Analysis 

(WGCNA)

Unsupervised
Feature 

extraction

WGCNA (R) (Zhang et al., 

2021a)

Identifies co-expression 

modules; robust 

network construction

Sensitive to parameter 

selection; high 

computational cost for 

large networks

Multiple

Two-way orthogonal 

PLS (O2PLS)
Supervised

Feature 

extraction

OmicsPLS (R) 

(Bouhaddani et al., 2018)

Separates shared vs. 

dataset-specific 

variation

Model complexity; 

challenging interpretation
Multiple

Jint and individual 

variation explained 

(JIVE)

Unsupervised
Feature 

extraction

r.jive (R) (Murden et al., 

2022)

Distinguishes shared 

and unique variation; 

enhances 

interpretability

Sensitive to noise; proper 

model selection is critical
Multiple

Generalized CCA 

(GCCA)
Unsupervised

Feature 

extraction

RGCCA (R) (Gloaguen 

et al., 2022); mixOmics (R) 

(Rohart et al., 2017)

Integrates more than 

two datasets 

simultaneously

High computational 

demand; similar linearity 

assumptions as CCA

Multiple

Similarity Network 

Fusion (SNF)
Supervised

Feature 

extraction

SNFtool (R) (Burton-

Pimentel et al., 2021)

Combines multiple 

similarity networks; 

robust to noise

Requires careful tuning of 

similarity and network 

parameters

Multiple

Uniform Manifold 

Approximation and 

Projection (UMAP)

Unsupervised
Feature 

extraction

Umap (R) (Yang et al., 

2021)

Preserves both local 

and global structures, 

faster computation 

compared to t-SNE

Sensitive to initial 

conditions, it may not 

capture all global 

structures.

Single;Multiple
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Three procedures can be  employed to address population 
heterogeneity to mitigate population bias from different data sources. 
Initially, during the preprocessing phase, the ComBat-harmony 
algorithm can be applied to eliminate batch effects. Subsequently, a 
causal inference framework (such as do-calculus) can be introduced 
in the modeling phase to distinguish confounding factors from 
accurate biological signals (Dibaeinia et  al., 2025). Additionally, 
transfer learning can bridge the gap between general databases and 
sepsis-specific data, which is conducive to better handling population 
heterogeneity across different data sources (Liu et al., 2024). Finally, 
in the validation phase, when the sample size of specific subgroups is 
limited, a digital twin cohort can be  developed to verify the 
performance and robustness of the model. Although these methods 
are reasonable and feasible in theory, adjustments and optimizations 
are necessary during implementation according to the data and 
research objectives.

In the context of cross-species (human and animal) data 
integration and analysis, although the use of phyloP scores effectively 
identifies conserved molecular features across species (Sullivan et al., 
2023), thereby reducing the impact of interspecies differences on 
research outcomes, we recommend that when collecting data, efforts 
should be  made to ensure similarity between human and animal 
samples in terms of experimental conditions and processing methods. 
Data should not be simply combined without consideration; suitable 
data for aggregation should be  carefully selected. Following data 
cleaning and imputation, the data should undergo standardization 
and batch effect correction to eliminate systematic differences 
introduced by different experimental batches or platforms.

Addressing the sparsity issue in omics data, employing deep 
learning methods such as OmiEmbed (a cross-modal generation 
approach based on Variational Autoencoders, VAEs) to generate 
partially missing data represents an advanced strategy (Zhang et al., 
2021b). This method can predict missing values based on existing data 
to address partial missingness in omics datasets. However, when 
facing comprehensive omics sparsity, leveraging existing biological 
knowledge to augment data analysis emerges as an effective alternative. 
Utilizing BioBERT to extract knowledge from literature and 
constructing virtual omics layers with this knowledge can help 
mitigate the issue of data sparsity (Lee et al., 2020). Given that deep 
learning methods and sophisticated statistical models may demand 
substantial computational resources, the computational cost must 
be  considered when applying these approaches. Moreover, when 
imputing and integrating data, it is crucial to ensure that the results 
are biologically meaningful, which can be  confirmed through 
biological validation to verify the reliability of the outcomes.

4.5 Types of data integration

Following dimensionality reduction, further analysis and 
integration of multi-omics data are required. Various integration 
strategies are available, as proposed by Picard et al. (2021), into five 
types: early (concatenation-based), mixed (transformation-based), 
late (model-based), intermediate and hierarchical. Early integration 
can be selected if each dataset has been preprocessed according to its 
omics type; this approach involves directly concatenating samples and 
assembling the resulting matrix as input for machine-learning models. 

While this method is straightforward, it increases data complexity; 
therefore, various strategies have been developed to transform or map 
datasets to facilitate integration. Mixed integration involves 
independently transforming or mapping each omics dataset, whereas 
intermediate integration constructs a joint low-dimensional 
representation across omics. Late integration analyzes each omics 
dataset separately and aggregates predictions after model training. 
Hierarchical integration leverages known regulatory relationships 
between omics, as defined by the central dogma of molecular biology, 
to integrate datasets.

Numerous tools and platforms based on diverse integration 
methods have emerged to integrate multi-omics data and investigate 
host–microbe interactions in sepsis. For example, multi-omics factor 
analysis (MOFA) and MOFA+ are dimensionality reduction 
techniques and intermediate integration-based integration tools. 
These tools take abundance matrices of microbial communities (e.g., 
bacteria, fungi, viruses) as input and learn low-dimensional 
representations of samples along with corresponding feature-loading 
matrices (Argelaguet et al., 2020; Losert et al., 2024). Haak et al. (2021) 
utilized MOFA to integrate gut microbiota data from sepsis patients 
and healthy volunteers, including bacterial (16S rRNA), fungal 
(internal transcribed spacer 1 (ITS1) rRNA), viral (viral metagenomic 
next-generation sequencing) components and revealed that the 
proliferation of aerobic pathogens, bacteriophages, and opportunistic 
yeasts disrupts anaerobic environments, thereby contributing to 
sepsis pathogenesis.

MintTea (Muller et al., 2024) is an intermediate integration method 
to identify disease-associated microbial modules from multi-omics data. 
It elucidates the mechanistic roles of the microbiome in disease and 
provides evidence for generating system-level, multi-dimensional 
hypotheses of microbiome-disease interactions. MaAsLin 2 (Mallick 
et al., 2021) is a tool for multivariable association analysis in microbial 
community multi-omics studies. It is classified as a late integration 
method but incorporates features of mixed integration. It is designed to 
explore associations between microbial community features and 
complex metadata, such as human health outcomes, diet, and 
environmental conditions. BZINB-iMMPath (Lin et al., 2023) is a late 
integration method that constructs metabolite-species and species-
species correlation networks. It identifies species modules through 
similarity-based clustering and facilitates the joint modeling and analysis 
of microbiome and metabolome data. Zhang S. et al. (2023) introduced 
a Bayesian modeling method for integrating sparse multivariate count 
data in microbiome studies. This method leverages joint sparsity to 
capture feature interactions and supports robust structural estimation in 
small-sample datasets. Hypergraph-induced orthogonal Nonnegative 
Matrix Factorization (HONMF) (Ma et al., 2023) is an unsupervised 
learning framework and an intermediate integration method for 
microbiome multi-omics data. By integrating three groups of latent 
variables, it preserves the high-order geometric structure of the original 
data. It supports sample clustering, data visualization, feature selection, 
and cross-domain association analysis (e.g., bacteria-virus, fungi-virus 
interactions). Multimodal Functional Deep Learning for Multi-Omics 
Data (MFDL) (Zhou et al., 2024) is a deep learning-based intermediate 
integration method. It integrates various omics data by fitting them into 
a shared dimensionality-reduction hidden layer at the input level. It 
enables learning complex relationships between multi-omics data and 
phenotypes through multi-layer training. EMPress (Cantrell et al., 2021) 
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is an open-source, interactive visualization tool for multi-omics data and 
employs a late integration approach. It effectively links community-level 
sample groupings with feature-level structures, supporting exploratory 
analysis of complex multi-omics datasets.

4.6 Guidelines for clinical sample collection 
in sepsis

One crucial aspect is that researchers need to minimize sample 
heterogeneity when collecting samples. Factors to be  considered 
include chemotherapy, active or passive immunotherapy, antibiotic 
medication use, lifestyle, etc., which can disrupt the microbial balance 
and consequently damage the network within the bacterial community 
and its relationship with the host.

The sepsis-specific biobank was designed, and different sampling 
time windows, core omics layer, and extended omics layer were 
recommended for different stages of sepsis. During the early 
recognition phase (0–6 h), it is suggested to collect metabolomics 
(plasma) and microbiome (fecal) samples within the first hour of 
initial presentation in the emergency department, along with single-
cell transcriptomics (peripheral blood mononuclear cells, PBMC) 
analysis. Metabolomics and microbiome samples are relatively 
inexpensive and easy to collect, with high clinical feasibility and cost-
effectiveness. During the progression phase (6–72 h), dynamic 
sampling of proteomics (serum) and lipidomics (plasma) every 12 h 
is recommended. Although these samples are easy to collect, they 
require substantial resources and incur higher costs. Spatial 
transcriptomics (tissue biopsy) is more challenging to sample but 
offers deeper analytical insights. In the recovery or sequelae phase, 
follow-up visits are recommended at 30, 90, and 180 days post-
discharge to collect circulating cell-free DNA (cfDNA) and exosome 
omics samples and perform longitudinal analysis of gut metagenomics. 
This stratified sampling strategy facilitates comprehensive acquisition 
of the multi-omics features of sepsis, providing critical evidence for 
early disease recognition, progression monitoring, and 
prognostic assessment.

In order to reduce costs, some intensive care centers are equipped 
with core devices such as mass spectrometers and sequencers to meet 
the real-time decision-making needs for septic shock. An automated 
diagnostic platform is constructed and can be operated by grassroots 
medical staff. At the same time, data analysis is automatically 
completed by cloud-based learning models, thereby achieving 
intensive and efficient use of resources.

5 Application of integrative omics in 
the diagnosis and treatment of sepsis

5.1 Discovery of diagnostic markers

Since infection and host-pathogen interactions constitute a 
complex nonlinear system, no single biomarker can accurately 
diagnose sepsis (Pierrakos et al., 2020). Multi-omics integration offers 
new avenues for identifying diagnostic markers of sepsis. Metagenomic 
sequencing and 16S rRNA analyses reveal altered gut microbiota 
structure and function in sepsis patients. Specific microbes (e.g., 
Enterococcus abundance) and metabolites (e.g., SCFA levels) are linked 

to sepsis progression and hold potential as diagnostic markers. 
Integrating host omics data, such as inflammatory gene expression in 
the host transcriptome and specific protein markers in the proteome, 
with microbiome data enhances diagnostic accuracy and specificity 
(Malik et al., 2024).

In a multicenter prospective study (van Houten et al., 2018), 
researchers collected blood, nasal swabs, and fecal samples from 
sepsis and non-infected individuals. Multi-omics analyses included 
host RNA and protein biomarker detection, nasal and gut microbiota 
analysis, host genomics, and bacterial proteomics. A multi-
parameter model was developed to distinguish between bacterial 
and viral infection etiologies. This study provided a diagnostic tool 
for differentiating bacterial and viral infections and also offered data 
support for bacterial subtype classification, providing a more 
accurate basis for sepsis diagnosis. Ma et al. (2022) integrated host 
transcriptomics, microbiomics, and metabolomics data and found 
that in cecal sepsis caused by methicillin-resistant Staphylococcus 
aureus, CYP1A1 deficiency improved gut barrier function and 
reduced the accumulation of the harmful metabolite cadaverine, 
whose level was positively correlated with the clinical SOFA score, 
and could offer new biomarkers for early sepsis diagnosis and 
treatment. Using the BZINB model, an integrative multi-omics 
model, disease-related modules in the microbiome and metabolome 
were identified. Specific correlations between certain metabolites 
and microbes were found in healthy and orally diseased patients, 
providing new insights for developing disease diagnostic biomarkers 
(Lin et al., 2023).

5.2 Development of personalized 
treatment strategies

Integrating multi-omics technologies enables in-depth analysis of 
patients’ genomics, transcriptomics, proteomics, metabolomics, and 
gut microbiomes. This approach precisely characterizes each patient’s 
unique pathophysiological profiles, immune status, microbial 
composition, and interactions, thereby enabling the gradual 
realization of personalized medicine in sepsis therapy.

If a deficiency of beneficial gut microbiota or an overgrowth of 
pathogenic bacteria is detected, interventions such as probiotic 
supplementation, prebiotic administration, or fecal microbiota 
transplantation (FMT) can be  employed (Lisko et  al., 2017). For 
instance, FMT has been shown to restore and increase butyrate levels 
via the IRF3/NF-κB signaling pathway, counteract the 
immunosuppressive effects of sepsis pathogens, and improve sepsis-
induced muscle atrophy (Kim et  al., 2020). By integrating host 
genomic and transcriptomic data, it is possible to predict patient 
responses to medications, select more appropriate antimicrobial 
agents, prevent antibiotic misuse, and achieve precision medicine. 
Additionally, dynamic monitoring based on omics data can facilitate 
timely adjustments in therapeutic strategies, thereby enhancing 
treatment outcomes and improving patient prognosis. Yang et  al. 
(2024) utilized a two-sample bidirectional Mendelian randomization 
analysis, integrating data from genome-wide association studies 
(GWAS), eQTL datasets, single-cell transcriptomics, and large-scale 
RNA sequencing. By combining insights into gut microbiota 
regulatory mechanisms with drug databases, they precisely evaluated 
the association between gut microbiota and sepsis, identified potential 
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genes and targets, and deeply explored and validated potential 
therapeutic agents for sepsis. Mu et al. (2023) used clinical isolates of 
four sepsis-causing bacterial strains and integrated multi-omics data, 
including genomics, transcriptomics, proteomics, and metabolomics, 
to investigate the responses of sepsis pathogens in a human serum 
environment. Their findings provide critical evidence for the 
development of therapeutic targets for sepsis. Li D. et  al. (2024) 
conducted bulk RNA sequencing, single-cell transcriptomic analysis, 
metabolomics, and 16S rDNA sequencing of gut microbiota using 
peritoneal lavage fluid (PLF) cells in mice. They discovered that 
rhamnose derived from the gut or therapies targeting SLC12A4 may 
enhance macrophage phagocytosis during sepsis, offering a novel 
potential direction for clinical sepsis treatment.

5.3 Therapeutic effect monitoring and 
prognosis evaluation

In the treatment of sepsis, multi-omics technologies play a critical 
role. By integrating and analyzing multi-omics data, including the 
microbiome, host transcriptome, proteome, and metabolome, these 
technologies enable real-time and comprehensive monitoring of 
therapeutic efficacy, provide deep insights into disease progression, 
predict patient outcomes, and offer a scientific basis for formulating 
and adjusting treatment plans with precision. This approach ultimately 
contributes to improving clinical outcomes for patients with sepsis.

In treating neonatal sepsis, monitoring the expression changes of 
Staphylococcus epidermidis virulence genes and the dynamics of 
transcriptional regulatory networks, combined with the unique host 
environmental factors of neonates, comprehensively evaluates the role 
of treatment in controlling infection and improving prognosis. 
Providing key information for optimizing subsequent treatment 
decisions and, more precisely, grasping the progress and direction of 
sepsis treatment (Joubert et  al., 2022). Using the central security 
database (HoPOIT database) to standardize, integrate, and 
dynamically monitor multi-omics data of patients (such as host 
biomarkers, pathogen characteristics, and drug resistance 
information), the temporal dynamics of host-pathogen interactions 
are analyzed, revealing the changing trends of biomarkers during 
treatment (van Houten et al., 2018). Sepsis patients are categorized 
into different enterotypes by integrating gut microbiota 16S rRNA 
analysis and metabolomics. It is found that patients with enterotype 
E3 have the most severe conditions. The OTU773 of Bacteroidota and 
OTU822 from Rikenellaceae are significantly positively correlated with 
ICU length of stay. 5-Hydroxyindoleacetylglycine is positively 
correlated with the APACHE II score, and three compounds negatively 
correlate with ICU length of stay. Long et  al. (2023) utilized 
metagenomics and metabolomics to delineate the dynamic changes in 
gut microbiota and their metabolites in sepsis patients at different 
stages of ICU admission. They observed that in sepsis patients, gut 
microbiota diversity, the relative abundance of Firmicutes, and SCFA 
levels were significantly reduced, whereas the relative abundance of 
Proteobacteria and primary bile acid levels markedly increased with 
prolonged hospitalization. Among the differential microbiota and 
metabolites, the relative abundance of Klebsiella and the concentrations 
of butyrate and taurocholic acid exhibited strong correlations with 
sepsis patient prognosis, providing direction for prognostic evaluation 

and the adjustment of treatment plans based on microbiota profiles. 
These findings indicate that alterations in gut microbiota and 
metabolites are associated with sepsis’s progression and clinical 
outcomes, providing a basis for early prediction of clinical outcomes 
and exploration of new therapies (Sun et al., 2023).

6 Current challenges and future 
directions

In the field of sepsis, multi-omics integration has achieved some 
progress in exploring host-microbiota interactions, but many 
challenges remain, and there is still considerable room for 
development. From the perspective of omics technology 
development, novel technologies such as single-cell and spatial 
omics are continuously emerging and evolving. Single-cell RNA 
sequencing (scRNA-seq) (Cheng et al., 2023) and single-cell nascent 
RNA sequencing (scGRO–seq) (Mahat et  al., 2024) can reveal 
cellular heterogeneity at the single-cell level and provide deeper 
insights into cellular functions and characteristics. Spatial omics, 
on the other hand, allow for the investigation of cellular 
microenvironments and intercellular interactions while preserving 
the spatial structure of tissues (Wang J. et  al., 2024). Currently, 
Janosevic et al. (2021) used scRNA-seq to detect changes in various 
renal cell populations in septic mice during the disease process and 
combined spatial omics sequencing to provide a spatiotemporal 
dynamic map of septic kidneys at the cellular and molecular levels. 
However, there are currently no studies on the relationship between 
microbiota and host in sepsis at the single-cell and spatial levels. 
Integrating emerging omics technologies to locate the distribution 
of microbiota within the host precisely and their impact on 
surrounding tissues and cells, as well as deeply exploring the spatial 
interactions between host and microbiota in sepsis, holds 
great potential.

From the perspective of the disease process, most existing multi-
omics studies are focused on static analysis, that is, testing samples at 
specific time points. However, sepsis is a dynamically evolving 
pathological process, with microbial community structures, host gene 
expression, and metabolite levels all fluctuating continuously over 
time. The lack of dynamic monitoring limits our understanding of 
critical turning points and intervention timing during the disease 
process, making it difficult to provide precise time-window guidance 
for precision treatment. Dynamic modeling approaches should 
be adopted to study bacterial populations from a dynamic perspective 
and integrate data from multiple time points or conditions.
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