
Frontiers in Microbiology 01 frontiersin.org

Forecasting framework for 
dominant SARS-CoV-2 strains 
before clade replacement using 
phylogeny-informed genetic 
distances
Kyuyoung Lee 1*, Atanas V. Demirev 1, Sangyi Lee 1, 
Seunghye Cho 1, Hyunbeen Kim 1, Junhyung Cho 2, 
Jeong-Sun Yang 2, Kyung-Chang Kim 2, Joo-Yeon Lee 3, 
Woojin Shin 1, Soyoung Lee 1, Sejik Park 1, Philippe Lemey 4, 
Man-Seong Park 1,5,6 and Jin Il Kim 1,5,6*
1 Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul, 
Republic of Korea, 2 Division of Emerging Viral Diseases and Vector Research, Center for Infectious 
Diseases Research, National Institute of Infectious Diseases, Korea National Institute of Health, 
Osong, Republic of Korea, 3 Center for Infectious Diseases Research, National Institute of Infectious 
Diseases, Korea National Institute of Health, Osong, Republic of Korea, 4 Department of Microbiology, 
Immunology, and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium, 5 Vaccine Innovation 
Center, Korea University College of Medicine, Seoul, Republic of Korea, 6 Biosafety Center, Korea 
University College of Medicine, Seoul, Republic of Korea

Introduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is 
the causative agent of the global coronavirus disease 2019 (COVID-19) pandemic 
and continues to drive successive waves of infection through the emergence of 
novel variants. Consequently, accurately predicting the next clade roots through 
global surveillance is crucial for effective prevention, control, and timely updates 
of vaccine antigen updates. This study evaluated the evolutionary dynamics 
of SARS-CoV-2 using phylogeny-informed genetic distances based on 394 
complete genomes and spike (S) gene sequences. Furthermore, we introduced 
a forecasting framework to estimate the potential of emerging variants leading 
to clade replacement by analyzing non-synonymous and synonymous genetic 
distances from clade roots, which reflect global herd immune pressure.

Methods: Non-synonymous and synonymous genetic distances from both 
Wuhan and clade root strains were assessed to predict whether a clade would 
become dominant or extinct within 3 months before the clade replacement.

Results: Through five observed clade replacements up to January 2024, we captured 
the quantifiable heterogeneity in non-synonymous and synonymous genetic 
distances of the S gene from clade roots between dominant and extinct variants, 
as measured by the extent of novelty, whether through gradual or drastic change.

Discussion: Our framework demonstrated high predictability for identifying the 
next clade root before replacement in both training and test datasets (area under 
the receiver operating characteristic curve [AUROC] > 0.90) by incorporating 
differential weighting of non-synonymous and synonymous genetic distances. 
Additionally, the framework solely using spike gene data demonstrated 
similar accuracy to those using the complete genome. Overall, our approach 
establishes quantifiable molecular criteria for identifying potential updates to 
the SARS-CoV-2 vaccine, contributing to proactive pandemic preparedness.
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1 Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
is the viral pathogen responsible for the global coronavirus disease 
2019 (COVID-19) pandemic (Zhu et al., 2020). Since its emergence in 
late 2019, various SARS-CoV-2 variants have emerged, cycling 
through phases of spread and extinction. Some variants, notably Delta 
and Omicron, have effectively displaced earlier strains, leading to 
subsequent waves of infection. These dominant variants exhibited 
amino acid mutations, particularly in the spike (S) protein, which is a 
crucial mediator of host cell entry and a primary target of the adaptive 
immune response (Obermeyer et al., 2022). Such mutations likely 
enhance viral fitness by improving transmissibility, replication 
efficiency, and evasion of adaptive immune responses (Dadonaite 
et al., 2024; Maher et al., 2022; Markov et al., 2023; Starr et al., 2022). 
As a result, the ongoing emergence of variants with significant 
mutations in the S protein complicated the antibody-driven 
prevention and treatment efforts against COVID-19.

The global surveillance of SARS-CoV-2 novel variants is essential 
for effective prevention and control, particularly in identifying clade 
replacements that may indicate substantial shifts in transmissibility or 
antigenicity, prompting updates to vaccine strategies (Demirev et al., 
2023; Morris et  al., 2018). Neutralization assays demonstrate the 
antibody-driven immune response against a variant, similar to the 
hemagglutination inhibition (HI) test used in seasonal influenza virus 
surveillance (Huddleston and Bedford, 2024; Smith et al., 2004). The 
cross-reactivity measured by neutralization assays can be mapped to 
the antigenicity of SARS-CoV-2 variants, indicating their fitness under 
hosts’ immune pressure (Koel et al., 2013; Planas et al., 2024; Wilks 
et al., 2023). The change in the antigenicity of variants informs the 
determination of updates to s or therapeutics, considering their 
potential for transmissibility through breakthrough infections (Willett 
et  al., 2022). However, SARS-CoV-2 neutralization assays are still 
being improved for experimental standardization. Furthermore, 
similar to the HI test, SARS-CoV-2 neutralization assays encounter 
delays in confirming the antigenicity of the many globally reported 
variants in real time, as they require moderate time and resources.

Computational approaches, supported by global data-sharing 
platforms of genomic surveillance, help identify high-potential dominant 
variants (Gardy and Loman, 2018; Matteson et  al., 2023; Shu and 
McCauley, 2017). The World Health Organization (WHO) coordinates 
the monitoring and classification of variants, designating specific 
“variants of concern” (VOC) based on significant mutations in the S gene 
(SG) (WHO, 2021). Although the VOC classification scheme provides a 
detailed framework, its meticulous criteria may hinder the timely 
identification of variants with high potential for clade replacement. 
Artificial intelligence (AI)-driven protein structure models also provide 
insights into variant fitness by predicting biochemical characteristics and 
interactions between surface proteins and antibodies (Abramson et al., 
2024; Krishna et al., 2024). However, this approach remains limited by 
computational and methodological constraints related to the limited 
availability of viral protein data. Phylogenetic methods are robust tools 
for elucidating viral evolutionary dynamics, especially for RNA viruses 

with high mutation rates (Grenfell et al., 2004; Holmes and Grenfell, 
2009). Multiple tree-based methods have been employed to detect 
emerging RNA virus variants and identify dominant variants likely to 
cause clade replacements (Huddleston et al., 2020; Łuksza and Lässig, 
2014; Neher et al., 2014). Despite the strength of phylogeny-informed 
approaches, genetic distance metrics derived from immune-driven 
strains have been sparingly to identify replacements within SARS-CoV-2 
clades (Kistler et al., 2022; Morris et al., 2018; Perofsky et al., 2024).

Our study evaluated phylogeny-informed genetic distances from 
key immune-driven VOCs shaping global herd immunity using 
complete genome (CG) and SG sequences as statistical predictors of 
clade replacement from the onset of the COVID-19 pandemic to 
January 2024. Additionally, we introduced a forecasting framework to 
quantify the potential impact of emerging variants likely to lead to the 
upcoming clade replacement.

2 Materials and methods

2.1 Data collection

The present study collected 394 CG sequences and their 
epidemiological information of global SARS-CoV-2 clade-definable 
strains subsampled by the Nextstrain team, the globally-renowned 
SARS-CoV-2 molecular epidemiology research group (Hadfield et al., 
2018), from the EpiCoV database of the Global Initiative on Sharing All 
Influenza Data (GISAID)1 (Shu and McCauley, 2017), reported from 
December 2019 to January 2024 (Supplementary Data S1). The 
sequences were aligned with Multiple Alignment using Fast Fourier 
Transform (MAFFT) (v7.419, RIMD, Japan) (Katoh and Standley, 2013) 
and finalized under manual review. Stop codons were removed from 
each ORF, and one cysteine nucleotide was inserted at nucleotide 
position 13,203 to ensure the continuity of the open reading frame of the 
ORF1a and ORF1b genes and the three-letter nature of codons. The 
alignments of gene segments were concatenated following the order of 
ORF1a,b (1–21,288), spike (21,289–25,116), ORF3 (25,117–25,941), E 
gene (25,941–26,166), M gene (26,167–26,832), ORF6 (26,834–27,015), 
ORF7 (27,016–27,378), ORF8 (27,379–27,741), N gene (27,742–28,998), 
and ORF10 (28,999–29,112) from 5′ end to 3′ end using SeaView (v4, 
PRABI. France) (Gouy et  al., 2010) (Supplementary Data S2). The 
alignment of spike gene (SG) sequences was extracted from the CG 
sequences (Supplementary Data S3). We also collected 143 SG sequences 
and their epidemiological information of global SARS-CoV-2 clade-
definable strains subsampled by the Nextstrain team from the EpiCoV 
database of the GISAID reported from January to October 2024 for the 
cross-validation of our forecasting framework. We combined the original 
(n = 394) and additional (n = 143) SG sequences, performing the same 
steps of cleaning and alignment to use as test data for cross-validation in 
the forecasting framework (n = 537) (Supplementary Data S4).

1 http://www.gisaid.org
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2.2 Bayesian phylogeny and tree-informed 
genetic distances estimation

CG and SG alignments were used for the phylogeny estimation by 
Bayesian Markov chain Monte Carlo (MCMC) Metropolis–Hastings 
algorithm on Bayesian evolutionary analysis sampling tree (BEAST) 
(v1.10.4. BEAST Developers) (Suchard et  al., 2018). We  used the 
generalized time-reversible substitution model, uncorrelated 
lognormal relaxed molecular clock, Bayesian renaissance counting 
(RNSC) (Lemey et al., 2012), and Bayesian skygrid prior model (Hill 
and Baele, 2019) with 12 parameters (2 parameters per year) and 
6 years at the last transition point (the year of SARS-CoV-2 emergence: 
2019). The MCMC chain length was initiated with 300 million runs, 
followed by a 10% burn-in period, and increased until the MCMC 
chains reached reliable convergence and stationarity. The convergence 
and stationarity of MCMC chains for numerical estimates were 
assessed using the effective sample size (ESS) and tracer plot in Tracer 
(v1.7.2. BEAST Developers). The estimation was accepted if the ESSs 
of all continuous estimates were higher than 100 with well-mixed 
tracer plots. The maximum clade credibility (MCC) trees of CG and 
SG were summarized from tree samples of MCMC estimation using 
TreeAnnotator (v.1..10.5, BEAST Developers) and visualized by the 
“ggtree” package (v1.14.6, Bioconductor) (Yu et al., 2017) on R Studio 
(v.4.4.0, R Studio, Inc. MA, US).

Synonymous and non-synonymous genetic distances from a clade 
root (CR) strain numerically explain the extent of genetic heterogeneity 
in a variant compared to immune-driven strains, and it was measured 
by counting substitutions from a CR strain in a phylogeny. The present 
study measured two types of genetic distances separately. First, the 
genetic distances from the Wuhan strain demonstrate the extent of 
genetic heterogeneity caused by the immune pressure influenced by the 
origin of the SARS-CoV-2 strain. Second, the genetic distances from the 
CR strain illustrate the extent of genetic heterogeneity arising from the 
immune pressure formed after clade replacement. For the Bayesian 
estimation of genetic distances, a total of 500 phylogenies of CG and SG 
were randomly selected from the tree logs of the MCMC estimation. 
We selected the CR strains that became the origin of the dominant 
variant clade after clade replacement. The synonymous and 
non-synonymous distances from the CR strain and Wuhan strain were 
extracted as phylogeny-informed genetic distances of tips from the 500 
sampled phylogenies of CG and SG using an in-house script on R 
Studio. The 500 synonymous and nonsynonymous genetic distances for 
each strain were summarized as the median and 95% upper and lower 
boundaries to investigate statistical variability in a point estimate. The 
Pearson correlation coefficients were estimated to evaluate the statistical 
association between synonymous and non-synonymous genetic 
distances of CG and SG.

2.3 Antigenic distance estimation in 
Bayesian cartography

The present study collected the metadata of SARS-CoV-2 
neutralization titers from Wuhan to JN.1 strains through two research 
publications by Wilks et  al. (2023) and Planas et  al. (2024) 
(Supplementary Data S5). A total of 5,689 neutralization titers, along 
with their collection year, were used to estimate the first- and second-
dimension coordinates using Bayesian estimation of antigenic 

cartography (Bedford et  al., 2014). The MCMC chain length was 
initiated with 1 billion runs, followed by a 10% burn-in period, and 
then increased until the MCMC chains reached reliable convergence 
and stationarity. The convergence and stationarity of MCMC chains 
for numeric estimates were assessed using ESS and a tracer plot in 
Tracer. The estimation was accepted if the ESSs of all continuous 
estimate projections were higher than 200 with well-mixed tracer 
plots. The clade of 394 SARS-CoV-2 strains was classified using 
nucleotide sequences of the SG with Wuhan-Hu-1 with XBB SNPs as 
reference (updated: 17 October 20120) by the Nextclade (Aksamentov 
et al., 2021) (Supplementary Data S1). A total of 106 strains (106/394, 
26.9%) were successfully matched with the clades in the base antigenic 
cartography (Supplementary Figure S1). The point estimates of the 
first- and second-dimension coordinates of 106 strains and 5 serums 
were summarized in the median under the investigation of value 
distribution. The Euclidean distance between strains and serum of the 
CR and Wuhan strains in the antigenic cartography was evaluated as 
the antigenic distance. The Pearson correlation coefficients were 
estimated to assess the statistical association of antigenic distance with 
synonymous and non-synonymous genetic distances of CG and SG.

2.4 Statistics in forecasting framework to 
quantify the potential of the next dominant 
strains

The present study targeted SARS-CoV-2 strains that were spread 
3 months before the clade replacement, considering these as the viral 
population with maximum genetic diversity. The strains were labeled 
either “Dominant” if a strain was involved in the clade that diverged 
from the Most Recent Common Ancestor (MRCA) of the next CR 
strains in the MCC phylogenies of CG and SG, or “Extinct.” The 
Wilcoxon signed-rank test was used to assess the statistical association 
between dominance and synonymous and nonsynonymous genetic 
distances, as measured by CG and SG, considering the violation of the 
normality assumption due to the low sample size (n < 30) in each CR 
group. The optimal cut-off value of genetic distances for the 
classification of highly novel dominant variants was determined by the 
threshold in the receiver operating characteristic (ROC) curve analysis. 
A multivariable logistic regression model was fitted to evaluate the 
statistical association between dominance and synonymous and 
non-synonymous genetic distances from Wuhan or CR of CG and SG.

 ( )π~Binomial ,i i jy n

 ( )π β β β− −= + +Non syn Non synlogit i o i Syn Syn iX X

where:
iy is the dominance of a strain i (0 = Extinct/1 = Dominant).

π i is the expected probability of dominance of a strain i.
− ,Non syn SynX X  is the non-synonymous and synonymous genetic 

distances from the CR strain.
βo  is the base intercept.
β β,Nonsyn Syn is the log odds ratio (weight) for predictor variables.

The backward model selection was performed to identify 
statistically significant independent variables among synonymous and 
non-synonymous genetic distances in the final regression model by 
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comparing the Akaike information criterion (AIC) and the Wald test. 
The regression analysis and visualization were performed on R Studio. 
Statistical significance was determined using a p-value threshold of 
0.05. The generalizability of the model’s predictability was evaluated 
through cross-validation of the area under the receiver operating 
characteristic curve (AUROC) between the training and test data. 
Model 1 included α-β-γ and Delta CR groups as test data and 
performed cross-validation using test data from BA.2 and XBB.1.5 CR 
groups. Model 2 involved α-β-γ to XBB.1.5 CR groups as test data. 
Model 2 is used to evaluate the coherence of statistical estimates with 
Model 1 and to perform the prediction of the next CR strain from the 
JN.1. strain in October 2024 as indicated in the second data.

3 Results

3.1 The emergence of global SARS-CoV-2 
variants and clade replacements

The phylogenies of CG and SG depicted five major clade 
replacements through a ladder-shaped topology comprised of the 
rapid growth of a novel clade and subsequent local extinction of 

other clades (Figure 1). The first two clade replacements, from the 
Wuhan to the α-β-γ clades, and from the α-β-γ to the Delta clades, 
were observed around July 2020 and July 2021, respectively. 
Following the emergence of the Delta clade, the three subsequent 
clade replacements were observed at the end of 2022, 2023, and 2024. 
The Wuhan and Delta clades dominated for approximately 6 months, 
respectively, and each of the other three clades (α-β-γ, BA.2, and 
XBB.1.5) dominated for almost 1 year until the subsequent 
clade replacements.

3.2 Estimation of genetic distances from 
Wuhan or clade root strains in the 
phylogenies

Following the period of the five clade replacements, we classified 
394 representative SARS-CoV-2 strains into six clade root (CR) 
groups (Table  1). The extent of genetic heterogeneity in a variant 
against immune-driven strains was numerically measured by counting 
synonymous and non-synonymous substitutions from a CR strain in 
phylogenies of CG and SG, referred to as genetic distances. 
We  separately measured two types of genetic distances. First, the 

FIGURE 1

Phylogenies of 394 global SARS-CoV-2 strains reported from December 2019 to January 2024 with tips colored by the period of six clade roots. 
(A) Time phylogeny estimated by spike gene sequences. (B) Time phylogeny estimated by complete genome sequences.
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genetic distances from the Wuhan strain illustrate the extent of gene 
heterogeneity resulting from the immune pressure shaped by the 
origin of the SARS-CoV-2 strain. Second, the genetic distances from 
the CR strain explain the extent of gene heterogeneity resulting from 
the immune pressure formed after clade replacement.

Genetic distances estimated from CG and SG phylogenies showed 
a statistically significant positive correlation. Specifically, 
non-synonymous and synonymous genetic distances had a very high 
positive correlation between each pair of CG and SG (Figure 2A). The 
genetic distances from the Wuhan strain measured the temporal 
increment of all mutations since the first emergence of SARS-CoV-2 
(Figure 2B). On the other hand, the genetic distances from the CR 
strain measured the temporal increment of mutations partially during 
the period of each CR group (Figure 2C). Every non-synonymous 
genetic distance had higher variability than its synonymous genetic 
distances in both CG and SG (Figure 2; Supplementary Figure S2).

The Bayesian statistical variability in a point estimate of the 
genetic distances was higher in CG than in SG 
(Supplementary Figure S3). Specifically, a few strains exhibited 
relatively high statistical variability in the estimation of 
non-synonymous genetic distance of CG due to incongruence at local 
branches, which classified recombinant strains such as BA.2 and JN.1 
(Supplementary Figures S3a–c).

3.3 The association between 
phylogeny-informed genetic distances and 
antigenic distances

The antigenic cartography was used to estimate the antigenic 
distance of SARS-CoV-2 strains from Wuhan (n = 106) and CR 
antisera (n = 101) (Figure 3A). All genetic distances of SG showed a 
statistically significant positive correlation with antigenic distances, 
except the synonymous genetic distance from the CR strain. 
Non-synonymous genetic distances had higher correlation coefficients 
with antigenic distances than synonymous genetic distances 
(Figure 3B). The genetic distance of SG from the Wuhan strain showed 
a high correlation coefficient with antigenic distance, due to a clear 
difference in antigenicity among CR groups. Despite the lower 
correlation coefficients, genetic distances of SG from the CR strain 
distinctly displayed an association with the antigenic distance among 
variants in the same CR group rather than those from Wuhan 
(Figures 3C–F). The Delta, BA.2, and XBB1.5 CR groups had a positive 
correlation in both non-synonymous and synonymous genetic 

distances with antigenic distances (Figures 3E,F). On the other hand, 
variants in the α-β-γ CR group exhibited a negative correlation 
between synonymous genetic distance and antigenic distance 
(Figures 3D,F).

All genetic distances of CG exhibited a statistically significant 
positive correlation with antigenic distances, similar to those of 
SG. Even the synonymous genetic distances from the CR showed a 
significant positive correlation with antigenic distances 
(Supplementary Figure S4).

3.4 The heterogeneity in genetic distances 
between dominant and extinct strains 
before the clade replacement

Our study classified the 141 variants reported 3 months before the 
five clade replacements into either dominant or extinct strains, based 
on the phylogenies of SG (Figure 4A). In the five CR groups, excluding 
the JN.1 group, a total of 46 strains were labeled as the dominant 
strain, and the other 95 strains were labeled as the extinct strain 
(Dominant: Extinct ≈ 1:2) (Table 2). The dominant strains commonly 
had higher non-synonymous genetic distances from the CR strain in 
SG than the extinct strains (Figure  4B; Supplementary Table S1). 
However, in the α-β-γ and BA.2 CR groups, the dominant strain had 
lower or the synonymous genetic distances than the extinct strain. In 
contrast, the dominant strains in the Delta and XBB.1.5 CR groups 
had much higher synonymous genetic distances than the extinct 
strains (Figure 4C). The Wuhan CR group did not show a significant 
difference between dominant and extinct strains in both genetic 
distances from the CR strain (Supplementary Table S1).

The phylogeny of CG was also used to classify either dominant or 
extinct strains (Supplementary Figure S5a). Dominant and extinct 
strains exhibited high coherence in the distribution of genetic 
distances in CG, similar to those in SG (Supplementary Figures S5b,c; 
Supplementary Table S1). However, due to incongruent topology in 
phylogenies between CG and SG, around 8.7% of dominant strains in 
SG (4/46) were classified as extinct strains in CG, and 14.3% of 
dominant strains in CG (7/49) were classified as extinct strains in SG 
(Supplementary Table S2).

3.5 The forecasting framework of the next 
CR strain before the clade replacement 
using genetic distances

Considering the heterogeneity of non-synonymous and 
synonymous genetic distances between dominant and extinct strains, 
we  established a two-step forecasting framework using genetic 
distances from the CR strain in SG (Figure 5). The first step detected 
“genetically highly novel” variants, and this dominant strain exhibited 
high non-synonymous and synonymous genetic distances from the 
CR strain (e.g., the BA.2 strains from the Delta CR group and JN.1 
strains from the XBB.1.5 CR group). The optimal cut-off values for 
classifying the dominant strain were estimated to be  over 35 for 
non-synonymous and 5.5 for synonymous genetic distances from the 
CR strain in SG. In the second step, all strains not selected as the 
dominant strain in the first step were tested, and multivariable logistic 
regression was fitted with different weights based on either 

TABLE 1 The number of SARS-CoV-2 strains classified by clade root (CR) 
after the clade replacement.

Clade root Period Number of 
strains

Wuhan December 2019–to June 2020 47

α-β-γ June 2020–to June 2021 79

Delta July 2021–December 2021 40

BA.2 January 2022–December 2022 56

XBB.1.5 January 2023–December 2023 164

JN.1 January 2024 8

Total 394
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non-synonymous or synonymous genetic distances from the 
CR strain.

The present study evaluated the predictability of the model 
through cross-validation, where the training and test data were subsets 
by the CR group. In Model 1, the strains in the α-β-γ and Delta CR 
groups were used as training data, and those in BA.2 and XBB.1.5 CR 
groups were used as test data (Table 2). The estimates from the second 
step in Model 1 using SG showed a positive association between 
non-synonymous genetic distance and a negative association between 
synonymous genetic distance and the dominance of variants (Table 3). 
The odds ratio indicated that the count of a non-synonymous 
mutation increased the likelihood of dominance by approximately 2.6 
times. In contrast, the accumulation of synonymous mutations 
decreases the possibility of dominance to about 0.3 times. Model 1 in 
SG exhibited high predictability, with an area under the receiver 
operating characteristic curve (AUROC) of over 0.90 in both training 
(0.925) and testing (=0.963) datasets (Table  4; 
Supplementary Figure S6).

We also fitted a forecasting framework of CG with a similar 
scheme to the model in SG (Supplementary Figure S7). The optimal 
cut-off values for the classification of the first step, detecting 
“genetically highly novel” dominant strain, were estimated to be over 
68.5 for non-synonymous and 22.5 for synonymous genetic distances 
from the CR strain in CG (Supplementary Figure S7). The second step 
also involved fitting multivariable logistic regression with different 

weights based on non-synonymous or synonymous genetic distances 
from CR for all variant strains that were not selected as the dominant 
strain in the first step. The second step of Model 1 in CG showed the 
same direction of association between dominance and genetic 
distances, but had around half the estimate of non-synonymous 
genetic distance compared to that in SG. However, it showed high 
similarity in the forecast of synonymous genetic distance (Table 3). 
Model 1 in CG also exhibited high predictability, with an AUROC of 
over 0.95  in both training (0.975) and test data (0.958) (Table  4; 
Supplementary Figure S6).

3.6 The forecasting framework of emerging 
variants in the upcoming clade 
replacement using genetic distances of SG

Considering the high comparability of the forecasting 
framework between SG and CG, we used only SG in the additional 
146 SARS-CoV-2 strains reported as of October 2024 for the second 
cross-validation. The phylogeny of SG with the second cross-
validation data revealed that 145 strains originated from the JN.1 
lineage, and one strain from Russia in September was classified as 
an XBB strain (Figure 6A). In Model 2, the strains from α-β-γ to 
XBB.1.5 CR groups were involved as the training data, and 44 
strains in the JN.1 CR group were involved as the test data (Table 2). 

FIGURE 2

Distribution of non-synonymous and synonymous genetic distances of SG or CG from Wuhan or CR. (A) Correlation matrix of non-synonymous and 
synonymous genetic distances of SG or CG from Wuhan or CR. (B) Distribution of non-synonymous and synonymous genetic distances of SG from 
Wuhan. (C) Distribution of non-synonymous and synonymous genetic distances of SG from CR.
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The 44 strains in the test data were from 18 to 24 and from 3 to 7 in 
non-synonymous and synonymous genetic distances from the CR, 
respectively (Figures 6B,C). They did not strictly meet the criteria 
in the first step of the forecasting framework for high genetic 
novelty. The second step of Model 2 in SG showed high numeric 
coherence in estimates, as well as the direction of association 
between dominance and genetic distances (Table 3). The model 2 in 
SG also exhibited high predictability, with an AUROC in the 
training data (= 0.963) and similar to as that in CG (= 0.955) 
(Table  4; Supplementary Figure  6). The second step of Model 2 
yielded a high dominance score (> 0.999) for many strains of the test 
data, despite being emerging variants at an early stage, due to their 
very high non-synonymous genetic distances compared to the early 
form of the JN.1 strain reported in November 2023 (Table  5). 
Particularly, the KP.3.1.1. and LB.1.3.1 sublineages reported in 
October 2024 had a relatively high dominance score among the 44 
JN.1 strains.

4 Discussion

The present study investigated the evolutionary dynamics of 
SARS-CoV-2, specifically focusing on the genetic heterogeneity 

among variants reported before the clade replacements. Using 
phylogeny-informed genetic distances with differential weighting 
based on the selection pressure, we effectively quantified the viral 
fitness of variants. We estimated the potential of emerging variants 
that would likely lead to upcoming clade replacement.

The phylogenies of both the CG and SG coherently depicted the 
five distinct clade replacements through the evolution of global SARS-
CoV-2 variants from the Wuhan to JN.1 clades. The phylogeny of the 
CG and SG showed strong temporal structure comprising a high rate 
of local clade extinction and continual replacement of successful 
clades through the strong viral fitness difference, as other rapidly 
evolving RNA viruses showed (e.g., Influenza virus) (Grenfell et al., 
2004). The epidemic of SARS-CoV-2 led to an increasing number of 
infected people, as well as expanding the genetic pools by the 
emergence of novel variants. While the genetic pool of SARS-CoV-2 
shrank after the peak of the epidemic, the population of variants is 
forced to naturally select the next CR due to the difference in viral 
fitness. Antigenicity, shaped by immune pressure, is a significant 
evolutionary feature influencing viral fitness. SG, a pivotal genetic 
component of antigenicity, appeared to reliably represent the 
evolutionary patterns of SARS-CoV-2 associated with clade 
replacement, demonstrating strong concordance with CG (Kistler 
et al., 2022).

FIGURE 3

Correlation among antigenic and genetic distances of SG. (A) Antigenic cartography with 5 serums and 21 strains. (B) Correlation matrix among the 
four genetic distances of SG and the antigenic distance. (C) Correlation between the non-synonymous genetic distance of SG and antigenic distance 
from Wuhan. (D) Correlation between the synonymous genetic distance of SG and antigenic distance from Wuhan. (E) Correlation between the non-
synonymous genetic distance of SG and antigenic distance from CR. (F) Correlation between the synonymous genetic distance of SG and the 
antigenic distance from CR.
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Our study investigated quantifiable evolutionary features in SG, 
differentiating between the dominant and extinct strains before 
clade replacement. The first clade replacement from the Wuhan to 
α-β-γ CR group did not show clear numeric metrics. Antigenic 
clusters, as well as genetic distances, did not show a clear, 
quantifiable difference between dominant and extinct strains in the 
Wuhan CR group. However, the SG of the dominant strain in the 
Wuhan CR group exhibited low genetic heterogeneity, which is 
inconsistent with that of the CG. This possibly demonstrates that 
the clade replacement of the Wuhan group was driven by the global 
fixation of the D614G mutation in SG under extensive purifying 
selection in other genomic components, which likely optimized 
host adaptation by promoting efficient human-to-human 
transmission during the early stages of the pandemic (Antia et al., 

2003; Korber et al., 2020; Rochman et al., 2021). From the second 
clade replacement within the α-β-γ CR group, we could measure 
metrics of evolutionary features in SG that differentiate between the 
dominant and extinct strains. After the emergence of the D614G 
variant, including the α-β-γ CR group, the mutation in key residues 
of SG for efficient antibody evasion determined viral fitness by 
clades and drove the emergence of regional variants (Rochman 
et al., 2021).

The present study characterized two genetic criteria of the next 
CR strain that will lead to clade replacement. The first type of 
dominant strain was genetically highly novel, numerically 
characterized by high non-synonymous and synonymous genetic 
distances of the SG as well as the CG. The replacement of BA.2 from 
the Delta clade, and JN.1 from the XBB.1.5 clade, possibly exemplified 

FIGURE 4

Classification and genetic distance distribution between dominant and extinct strains. (A) Phylogenies of SG classifying dominant and extinct strains 
among variants reported 3 months before the clade replacement. (B) Distribution of non-synonymous genetic distance from CR in SG between 
dominant and extinct strains. (C) Distribution of synonymous genetic distance from CR in SG between dominant and extinct strains.

TABLE 2 The number of dominant and extinct strains in the prediction models using genetic distances from CR in SG.

Clade root Periods Number of 
extinct 
strains

Number of 
dominant 
strains

Total Number 
of strains

Model 1 Model 2

Wuhan April 2020–June 2020 12 8 20 –

α-β-γ April 2021–June 2021 18 10 28 Train Train

Delta October 2021–December 2021 8 3 11 Train Train

BA.2 October 2022–December 2022 12 4 16 Test Train

XBB.1.5 October 2023–December 2023 45 21 66 Test Train

JN.1 October 2024 44 – Test

Total 95 46 174
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the first type of genetic characteristics of the dominant strain. These 
dominant strains exhibited dramatically high antigenic novelty 
compared to concurrent strains, resulting from the genetic 
recombination of key gene regions that express antigenicity, 
particularly the N-terminal and receptor binding domains in the SG 
(Demirev et  al., 2023). The first step of our model is designed to 
capture the dramatic genetic novelty of the dominant strain by high 

non-synonymous and synonymous genetic distances from the CR 
strain in the SG.

The replacement of Delta strains from the α-β-γ clade, and 
XBB.1.5 strains from the BA.2 clade, likely exhibited the second type 
of genetic characteristics of the dominant strain, which emerged 
through antigenic drift. The second type of dominant strain is 
numerically defined by the accumulation of amino acid mutations in 
key antigenic residues, while maintaining minimal mutations in 
conserved residues in both SG and CG. The second step of our model 
is designed to classify either dominant or extinct strains based on 
non-synonymous and synonymous genetic distances from the CR 
strain with differential weighting through a multivariable logistic 
regression model. Models 1 and 2 explained that a variant with an 
amino acid mutation of SG showed 2–3 times higher likelihood of 
dominance than others, but a variant with a synonymous mutation 
had 3 times lower likelihood. A high non-synonymous genetic 
distance from the CR strain can numerically illustrate the gradual 
natural selection of the dominant strain (Łuksza and Lässig, 2014). 
Like the seasonal emergence of novel influenza A strains, SARS-
CoV-2 has promoted the accumulation of advantageous mutations 
that evade the host’s adaptive immunity, which is developed through 
prior infections or vaccinations. On the other hand, a low synonymous 

FIGURE 5

The scheme of a two-step forecasting framework using genetic distances from CR in SG.

TABLE 3 Statistical estimates of the second step in the forecasting frameworks with the multivariable logistic regression using SG and CG.

Data Model Variable Estimate Odds ratio p-value

SG 1 Non-synonymous distance 0.937 2.55 (0.94, 6.91) 0.065

Synonymous distance −1.080 0.34 (0.14, 0.82) 0.016

2 Non-synonymous distance 1.113 3.04 (1.17, 7.95) 0.023

Synonymous distance −1.292 0.27 (0.13, 0.62) 0.002

CG 1 Non-synonymous distance 0.257 1.29 (1.05, 1.60) 0.018

Synonymous distance −0.957 0.38 (0.13, 1.12) 0.080

2 Non-synonymous distance 0.138 1.15 (1.03, 1.28) 0.013

Synonymous distance −0.415 0.66 (0.51, 0.85) 0.002

TABLE 4 The area under the curve of the receiver operating 
characteristics (AUROC) in the forecasting framework of models 1 and 2 
was estimated using SG and CG.

Gene Model Dataset for 
cross-
validation

AUROC

SG 1 Train data 0.925

SG 1 Test data 0.963

SG 2 Train data 0.963

CG 1 Train data 0.975

CG 1 Test data 0.958

CG 2 Train data 0.955
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genetic distance in the dominant strain possibly implies a small 
number of deleterious mutations in genetically conserved residues 
under purifying selection (Koelle and Rasmussen, 2015).

Our study designs a two-step forecast framework to detect the next 
CR after the clade placement using phylogeny-informed genetic distances 
of SG with differential weighting. A phylogeny straightforwardly depicts 
the hierarchy of viral evolution, specifically on nucleotide level. However, 
phylogenetic topology and branch length only partially illustrate viral 
fitness due to the heterogeneity of selection pressure on the amino acid 
residue (Demirev et al., 2023; Harvey et al., 2016; Koel et al., 2013; Koelle 
and Rasmussen, 2015; Zhang et al., 2022). The present study separately 

measured non-synonymous and synonymous genetic distances from a 
phylogeny, assigned separate statistical weights to quantify their 
differential effects on immune-driven selection pressure and viral fitness, 
leading to clade replacement, and showed high predictability (AUROC > 
0.9). However, model 2 achieved high scores in multiple sublineages and 
did not identify a dominant strain among the 44 strains in the test data. 
Interestingly, the 2024–2025 period did not show a clear clade replacement 
by one variant and multiple sublineages such as KP.3.1.1, XEC, LP.8.1, 
LF.7, and NB.1.8.1 coexisted with similar composition of genetic diversity 
among geographical regions until May 2025 (Hadfield et al., 2018). Our 
forecasting framework also seemed to capture comparably high viral 

FIGURE 6

Classification and genetic distance distribution between dominant and extinct strains in the second data for the cross-validation collected until 
October 2024 (n = 537). (A) Phylogenies of SG classifying dominant and extinct strains among variants reported 3 months before the clade 
replacement. (B) Distribution of non-synonymous genetic distance from CR in SG between dominant and extinct strains. (C) Distribution of 
synonymous genetic distance from CR in SG between dominant and extinct strains.

TABLE 5 The dominance score of the top seven strains and their non-synonymous and synonymous genetic distances to SG from CR.

Rank Accession 
number

Country Sublineage Prediction 
score

Non-
synonymous 
genetic distance 
from JN.1.

Synonymous 
genetic distance 
from JN.1

1 PQ461534 USA MC.2 >0.9999 24 4

1 PQ536516 USA KP.3.1.1 >0.9999 24 4

3 PQ525133 USA XDY >0.9999 24 5

4 PQ461550 USA KP.3.1.1 >0.9999 23 4

4 PQ509644 USA LB.1.3.1 >0.9999 23 4

4 OZ198117 Denmark KP.3.1.1 >0.9999 23 4

4 PQ509566 USA LB.1.3.1 >0.9999 23 4
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fitness of multiple variants, which has made it difficult for any single 
variant to lead the clade replacement.

Our study tested two criteria of our numeric predictors, genetic 
distances, considering (1) the comparability of SG with CG and (2) 
the different impact of immune pressure shaped by either the origin 
of the SARS-CoV-2 strain, or the CR strain formed after clade 
replacement. Then our model targeted the global SARS-CoV-2 strains 
reported 3 months before the clade replacement, focusing on 
maximum genetic pools prior to the clade replacement, which 
commonly occurred from October to December in the 
Northern Hemisphere.

The genetic distances of the SG seemed to sufficiently explain 
evolutionary characteristics related to the clade replacement and 
antigenic distance as much as those of CG. The phylogeny of SG 
may not fully capture the evolutionary attributes of SARS-CoV-2 
driven by other genetic components in CG (Wagner et al., 2024). 
However, our study found that the genetic distances of the SG were 
highly correlated with antigenic distances, and the predictability of 
the models was also highly comparable to that of CG. This seems 
reasonable because most evolutionary processes driving clade 
replacement, such as genetic recombination and antigenic drift, are 
commonly observed in the SG rather than in another genetic region 
(Dadonaite et al., 2024; Harvey et al., 2021; Jackson et al., 2021; 
Mittal et  al., 2022). Furthermore, considering the low cost of 
computational resources and high stability of point estimates in 
Bayesian estimation, genetic distances of SG could be  more 
preferable predictors than those of CG to capture the viral fitness 
related to the clade replacement.

The genetic distances from the CR strain properly quantified the 
viral fitness related to immune pressure before the clade replacement. 
The “spindly” phylogeny of SARS-CoV-2 illustrates the phylodynamics 
with rapid clade replacement through a short infectious period and 
the host population’s partial cross-immunity (Ferguson et al., 2003; 
Grenfell et  al., 2004; Koelle et  al., 2006). Even with vaccine- or 
infection-induced immunity in the global population, primarily 
driven by the Wuhan strain during the pandemic, the global 
population’s immune pressure appeared to be rapidly reshaped by 
serial clade replacements and/or booster vaccine administration 
(Huang et al., 2023). Our antigenic cartography also illustrated that 
the cluster of novel CR strain was located around the cluster of prior 
CR strains. Therefore, genetic distances from CR effectively quantify 
the viral fitness of a variant, conditioned on the serial shifts in host 
immune pressure caused by clade replacement.

Despite our meaningful findings, our results may not capture the 
full phylogenetic history of SARS-CoV-2, including every clade-
specific key mutation possibly related to viral fitness. We estimated the 
pruned phylogenies using the genetic sequences of clade-definable 
strains and a model based on the clade-definable trees, which likely 
excluded clade-specific evolutionary history and overestimated the 
predictability. However, our phylogenies would reflect major 
evolutionary characteristics, including key mutations significantly 
related to viral fitness, and suggest informative numeric predictors to 
detect strong candidates that could lead to a clade replacement. Our 
next step will refine the forecasting framework by using the genetic 
characteristics of other genetic domains (e.g., Nsp6 and ORF7a) 
(Kistler et  al., 2022) and incorporating more clade-specific 
evolutionary history of extinct strains to capture key residues related 
to purifying selection (Neher, 2022).

Even so, we  would address the limited generalizability of the 
seasonal pattern of clade placement. Over the last 3 years, SARS-
CoV-2 has shown a regularity in the pattern of clade replacement, 
repeating the expansion of genetic diversity through an increasing 
number of infection cases and natural selection of a strong candidate 
by either antigenic drift or the emergence of highly novel variants. Our 
study appears to reveal generalizable evolutionary characteristics that 
may have led to the dominant candidate, possibly contributing to 
clade replacement through extrapolation of evolutionary 
characteristics of RNA viruses with high seasonality, such as the 
influenza virus. However, we still pondered whether six years of the 
global SARS-CoV-2 pandemic would be  sufficient to determine 
whether an evolutionary pattern is an outcome of contingency or a key 
deterministic driver of natural selection with high repeatability 
(Beavan et al., 2024; Blount et al., 2018). Furthermore, our framework 
considered antigenic response to host immune pressure as the sole 
determinant of viral fitness, under the assumption of a seasonally 
homogeneous transition of herd immunity driven by clade 
replacement. During the pandemic, the global population 
simultaneously acquired herd immunity to SARS-CoV-2 variants 
through infection and/or vaccination. However, in the post-pandemic 
era, immune imprinting is likely to contribute to heterogeneity in herd 
immunity across birth cohorts, vaccination histories, and the 
geographical distribution of emerging variants, potentially influencing 
the evolutionary dynamics of SARS-CoV-2 (Barrat-Charlaix et al., 
2021; Bedford et al., 2015; Chemaitelly et al., 2023; Gostic et al., 2016; 
Huang et al., 2023; Koutsakos and Ellebedy, 2023; Lemey et al., 2020; 
Russell et al., 2008; Tegally et al., 2023; Tortorici et al., 2024; Vieira 
et al., 2021). Therefore, our next step will be to expand the forecasting 
framework to incorporate epidemiological and immunological 
characteristics, aiming for better predictability in the post-
pandemic era.

5 Conclusion

Optimal selection for the update of vaccine strain against rapidly 
evolving viruses plays an essential role in endorsing high vaccine 
effectiveness (Huddleston and Bedford, 2024; McAdams, 2014). Our 
study focused on the repeating pattern of clade replacement by the 
emergence of genetically novel variants of SARS-CoV-2, specifically 
following a 3-month window of seasonal outbreaks in the Northern 
Hemisphere. Furthermore, the present study revealed that phylogeny-
informed non-synonymous and synonymous genetic distances of SG 
from CR appear to be plausible predictors for inferring the future CR 
strain before clade replacement, considering the sampling scale, the 
time and resources required for analysis, the convenience of 
information size, and predictability. We believe that our intuitive, 
simple, but potent forecasting framework could provide better insight 
for the current global SARS-CoV-2 prevention and control measures 
under the technical advantage of future genomic surveillance (Morris 
et al., 2018).
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