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Background: Increasing evidence suggests a potential role of the gut microbiota 
in Parkinson’s disease (PD). However, the relationship between the gut 
microbiome (GM) and PD dementia (PDD) remains debated, with their causal 
effects and underlying mechanisms not yet fully understood.

Methods: Utilizing data from large-scale genome-wide association studies 
(GWASs), this study applied bidirectional and mediating Mendelian randomization 
(MR) to investigate the causal relationship and underlying mechanisms between 
the GM and PDD. In our analysis, inverse-variance weighting (IVW) was used 
as the primary method. Clinical validation was performed using metagenomic 
sequencing and bioinformatic analysis. The relationships between the GM 
and PDD were visualized using receiver operating characteristic (ROC) curves, 
confusion matrices, and correlation analyses.

Results: Our study revealed a significant causal impact of five GM genera, 10 
metabolites, two metabolite ratios, and 22 immune cells on PDD. Notably, the 
maltose to sucrose ratio was identified as a mediator of the positive causal effect 
of Subdoligranulum on PDD, with a mediation value of 13.2%. The clinical samples 
confirmed the efficacy of Subdoligranulum sp. in distinguishing patients with 
PDD from normal controls (area under the curve (AUC) = 0.80, 95% CI: 0.674–
0.924). In addition, correlation analysis revealed a potential negative association 
between Subdoligranulum abundance and the Mini-Mental State Examination 
(MMSE) scores (r = −0.316, p = 0.006). Finally, bioinformatic analysis suggested 
that Subdoligranulum may influence PDD risk through the regulation of starch 
and sucrose metabolism pathways.

Conclusion: Our study confirms the potential role of Subdoligranulum in PDD 
progression, potentially mediated through starch and sucrose metabolism. 
These findings highlight the importance of the gut–brain axis in PDD and may 
provide insights into targeted interventions for PDD.
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Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative 
disorder characterized by both motor and non-motor symptoms, and 
it is projected to affect more than 12 million patients globally by 2040 
(Dorsey et  al., 2018). Cognitive impairment (CI), a common 
non-motor symptom, can occur in the early stages, with approximately 
80% of patients eventually progressing to dementia over the course of 
the disease, resulting in increased mortality and disability (Buter et al., 
2008; Fengler et al., 2017; Hely et al., 2008). Moreover, no effective 
treatment strategies are currently available to stop or reduce cognitive 
decline (Weintraub et  al., 2022). Therefore, early diagnosis and 
intervention are vital for the cognitive management of PD. Identifying 
biomarkers that can detect individuals at high risk of PD-associated 
cognitive impairment (PD-CI) and in the early stage of cognitive 
decline is essential. However, the underlying mechanisms through 
which patients with PD experience cognitive dysfunction have not 
been elucidated.

Constipation can occur at all stages of PD, even prior to the onset 
of motor symptoms (Braak et  al., 2006). The composition of the 
microbiota residing in the intestine may change during the early phase 
of PD (Sun and Shen, 2018). Recently, the gut microbiome (GM) has 
been found to play a critical role in PD through the microbiome–gut–
brain axis, a finding that has been demonstrated in both mouse and 
human models (Qian et  al., 2020; Sampson et  al., 2016). Many 
researchers have explored fecal microbiota transplantation as a 
potential treatment for PD, and this approach could be promising 
(Cheng et al., 2023; Sun et al., 2018; Zhao et al., 2021). Moreover, 
current scholars have performed observational studies on the 
dysbiosis of the GM in patients with PD-associated cognitive 
impairment (PD-CI), although the correlation between the GM and 
PD-CI is controversial (Aho et al., 2024; Ren et al., 2020). One possible 
reason for this is the susceptibility of the GM to environmental 
confounding factors, which can lead to inconsistent results. 
Randomized controlled trials (RCTs), the gold standard for studying 
causal relationships, are prone to limitations due to cost, logistical 
challenges, and potential biases (Ning et al., 2024). Therefore, previous 
studies have established a causal link between the gut microbiota and 
PD-CI using Mendelian randomization (MR) analysis to avoid the 
impact of confounding variables and reverse causality (Fu et al., 2024; 
Ji et  al., 2024). In MR analysis, single-nucleotide polymorphisms 
(SNPs) from genome-wide association studies (GWASs) are used as 
instrumental variables (IVs).

The GM significantly influences key metabolic and immune 
processes, including host immunity, intestinal endocrine function, 
and intestinal permeability, which subsequently contribute to the 
initiation and progression of various diseases (Nakandalage et al., 
2023). An increasing number of studies have shown that GM 
metabolites may affect the brain through the bloodstream or the vagus 
nerve to regulate cognitive behavior (Dogra et al., 2022; Houser and 
Tansey, 2017). In addition, the GM plays an important role in the 
regulation of the immune cell response. Inflammation, as a risk factor 
for cognitive impairment, has been well documented (Fung, 2020). 

The GM can trigger an immune cell-mediated cytokine response and 
further influence neuroinflammation in memory-related brain regions 
(Walker et al., 2019). Immune cells and GM metabolites potentially 
act as mediating factors in the pathway from the GM to 
PD-CI. However, the causal relationships among the GM, blood 
metabolites or immune cells, and PD-CI have not yet been clarified.

In this study, we used a bidirectional MR method to explore the 
causal relationships among the GM, immune cells, GM metabolites, 
and PD dementia (PDD). Furthermore, the relationship between five 
GM genera and PD-CI was evaluated using sequencing data from 
clinical samples. Ultimately, we identified the potential role of GM 
metabolites as mediators via MR analysis and a case–control study. 
Our findings provide a theoretical basis for understanding the 
mechanisms underlying PD-CI through the microbiome–gut–brain 
axis, as well as for the early screening and prevention of this disease.

Materials and methods

Mendelian randomization

Study design
We employed two-sample MR to explore the potential causal 

relationships between the GM and PDD. To further elucidate the role 
of the GM in cognitive decline in PD, two-step MR analysis was 
performed to strengthen our understanding of the mediatory 
mechanisms involved. The design of our study is detailed in Figure 1.

Data sources
The GWAS data for the GM were obtained from the MiBioGen 

consortium, based on the genomic statistical research conducted by 
Kurilshikov et al., which included genome-wide genotype and 16S 
fecal microbiome data from 18,340 individuals of primary European 
ancestry (24 cohorts) (Kurilshikov et al., 2021).1 The GWAS summary 
data contained a total of 211 gut microbiota taxa (131 genera). In 
addition, we extracted summary data on mediation factors from the 
most extensive and up-to-date GWAS catalog, including 1,400 
metabolites and 731 immune cell traits from individuals of European 
descent (Chen et  al., 2023; Orru et  al., 2020).2 For PDD, GWAS 
statistics were derived from the FinnGen study program and included 
267 cases and 216,628 controls.3 The diagnostic criteria for PDD were 
based on the G20 classification according to the ICD-10 criteria.

A secondary analysis using data from publicly available databases 
was conducted in the present study. Ethical approval was obtained for 
the original GWASs. In addition, we  did not include individual-
level data.

1  https://mibiogen.gcc.rug.nl

2  https://www.ebi.ac.uk/gwas/home

3  https://r5.finngen.fi/
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Instrumental variable selection
In this study, SNPs associated with GM, blood metabolites, 

immune cells, and PDD were selected as IVs. Initially, 
we employed an appropriate threshold (p < 1 × 10−5) to acquire a 
larger number of IVs for preliminary screening. Then, 
we rigorously excluded SNPs exhibiting linkage disequilibrium 
(LD) (r2 < 0.01, window size > 10,000 kb). To determine whether 
the identified IVs were strongly associated, F statistics were 
calculated. Generally, SNPs with F-statistics less than 10 were 
considered weak instrumental variables and excluded from 
the analysis.

Statistical analysis

MR analysis (primary analysis)
To assess the causal relationship between the GM and PDD, five 

methods were used: inverse-variance weighting (IVW), weighted 
median (WM), MR-Egger, simple mode, and weighted mode methods. 
We selected the IVW method as the primary analytical approach to 
ascertain the validity of all the genetic instruments used. The MR 
results were expressed as odds ratios (ORs) and 95% confidence 
intervals (CIs). A causal relationship was considered if the IVW 
method yielded significant results (p < 0.05) and if the directions of 
the IVW and other methods were consistent.

Bidirectional causality analysis
We evaluated the bidirectional causation effects between the GM 

and PDD using reverse MR analysis. PDD was used as the “exposure,” 
and the GM related to PDD was used as the “outcome” (Figure 1). 
We  selected SNPs significantly associated with PDD 
(p < 1 × 10−5) as IVs.

Mediation analysis
We analyzed the mediating effect of blood metabolites or immune 

cells on the causal relationship between the GM and PDD using 
two-step MR analysis. The proportion of the indirect effect mediated 
by blood metabolites or immune cells (β1 × β2) to the total effect was 
estimated, where β1 represents the impact of the GM on blood 
metabolites or immune cells and β2 represents the impact of blood 
metabolites or immune cell amino acids on PDD. Effect estimates 
were obtained using two-sample MR analysis.

Sensitivity analysis
The heterogeneity of each SNP was evaluated using Cochran’s Q 

test. We performed Mendelian randomization pleiotropy residual sum 
and outlier (MR-PRESSO) analyses to detect significant SNP outliers 
with pleiotropic effects and to correct estimates by removing the 
outliers. In addition, MR-Egger regression was used to assess the 
potential horizontal pleiotropy effect through its intercept test. Finally, 
we employed leave-one-out analysis to determine the impact of each 
individual genetic variant on the overall MR estimate. All the statistical 
analyses were performed using the R software (v4.3.3). The “Two 
SampleMR,” “MRPRESSO,” “ggplot2,” and “circlize” R packages were 
used for the MR study and data visualization.

Case–control study

Participant recruitment
This case–control study was conducted at Nanjing Brain Hospital 

of Nanjing Medical University from June 2024 to January 2025. 
Patients with PD with normal cognition (PD-NC) and patients with 
PDD were selected from the Department of Neurology and were 
diagnosed with idiopathic PD according to the UK Brain Bank criteria 

FIGURE 1

Mendelian randomization (MR) flowchart.
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(Daniel and Lees, 1993). The exclusion criteria for patients were as 
follows: (i) atypical or secondary parkinsonism; (ii) serious illness 
(e.g., heart failure or malignancy); (iii) inflammatory gastrointestinal 
disease and history of gastrointestinal surgery; (iv) hematological or 
autoimmune disease, or use of immunosuppressive agents within the 
past 3 months; and (v) antibiotic use within 3 months prior to sample 
collection. Patients with PDD were identified using education-specific 
cutoff points on the Mini-Mental State Examination (MMSE) for 
elderly Chinese individuals: MMSE score ≤17 for illiterate individuals, 
≤20 for those with 1–6 years of education, and ≤ 24 for those with 7 
or more years of education (Li et al., 2016). Healthy controls (HCs) 
exhibited no disease symptoms and met none of the exclusion criteria. 
Simultaneously, age, sex, education, and body mass index (BMI) were 
recorded for all participants. The clinical characteristics of the patients 
with PD were obtained through face-to-face interviews, including the 
Hoehn and Yahr (H-Y) stage, the unified Parkinson’s disease rating 
scale III (UPDRS-III) score, disease duration, Parkinson’s Disease 
Questionnaire-39 (PDQ39) score, levodopa equivalent dose (LED), 
and Mini-Mental State Examination (MMSE) score. This study 
protocol was approved by the Ethics Committee of Nanjing Brain 
Hospital, Nanjing Medical University (no. 2023-KY056-01), and all 
participants signed an informed consent form.

Fecal sample storage, DNA extraction, and 
shotgun sequencing

All participants’ fecal samples were frozen and stored at −80°C in 
a refrigerator immediately after collection in containers with 2 mL of 
professional stool DNA preservation solution (Dongyuan Yikang 
Pharmaceutical Technology Co., Ltd., Beijing, China). Total fecal 
DNA was extracted using a MagPure Soil DNA KF Kit (Magen 
Biotechnology Co., Ltd., Guangzhou, China) according to the 
manufacturer’s instructions. All DNA extraction procedures were 
performed in a Class II biological safety cabinet. The concentration of 
genomic DNA in each sample was quantified using a NanoDrop 2000 
spectrophotometer (Thermo Scientific, United States). The extracted 
microbial DNA was processed to construct metagenome shotgun 
sequencing libraries according to the manufacturer’s instructions 
(Illumina, United  States). Each library was sequenced using the 
Illumina NovaSeq platform at Biomiao Biotechnology Corporation 
(Beijing, China). Briefly, the DNA samples were randomly sheared 
into fragments of approximately 350 bp using a Covaris S2020 
ultrasonic crusher (Gene Company, United States). The library was 
constructed through a series of steps, including end repair, adapter 
attachment, library amplification, and purification. The length of the 
library was assessed using an Agilent 2,100 Bioanalyzer (Agilent 
Technologies, United  States), and the library concentration was 
quantified using a Qubit® 3.0 fluorometer (Life Technologies, 
United States).

Statistical analysis

The DIAMOND (Buchfink et  al., 2015) software was used to 
compare the representative sequences (amino acid sequences) of the 
redundant gene set with the NCBI NR, Kyoto Encyclopedia of Genes 
and Genomes (KEGG), and Gene Ontology (GO) databases. 
Functional annotations were assigned a threshold of e < 1e-5, and the 
protein with the highest sequence similarity was selected. The gene 

sets were compared with the carbohydrate-active enzymes (CAZymes) 
database using the hmmscan tool (v3.1b2) to obtain information on 
the carbohydrate-active enzymes corresponding to the gene. Then, 
carbohydrate activity was calculated using the sum of the gene 
abundances corresponding to the carbohydrate-active enzyme 
abundance. Species annotations were obtained from the NR database’s 
taxonomic information, and gene abundances were summed to 
calculate genus-and species-level abundances. According to MR 
analysis, the relative abundances of the five GM genera were extracted 
from genus-level abundance data, and promising genera were further 
analyzed at the species level. Differences in GM and carbohydrate-
active enzyme abundances among the patients with PD-NC, patients 
with PDD, and HCs were subsequently analyzed using the Kruskal–
Wallis test. For comparisons of clinical and demographic 
characteristics across the multiple groups, statistical analyses were 
performed using one-way ANOVA, the chi-squared test, the Mann–
Whitney U test, or the Kruskal–Wallis test, as appropriate. Multiple 
comparisons were adjusted using the Bonferroni correction, with 
p < 0.05 considered statistically significant. Statistical power was also 
assessed because the sample size was relatively small4 (Cohen, 1992; 
Houle et al., 2005). The area under the receiver operating characteristic 
curve (AUC-ROC) was used to detect the distinguishing ability of 
biomarkers. The Pearson correlation coefficient was used to describe 
the correlation between the measurement data. All statistical analyses 
were performed using R (version 4.3.3, the R Project for Statistical 
Computing) and SPSS (version 24.0, SPSS Inc., United States).

Results

Causal effects of the gut microbiota on 
PDD

Initially, we identified a total of 1,531 SNPs that were significantly 
associated with the GM at the genus level by screening at a threshold 
of p < 1 × 10−5, and we excluded SNPs with linkage disequilibrium 
(LD), as detailed in Supplementary Table 1. All SNPs analyzed had 
F-values greater than 10 (Supplementary Table  1). Our analysis 
revealed that the five GM genera were significantly related to PDD 
(Supplementary Table 2). Specifically, information about 65 SNPs for 
the five GM genera is presented in Supplementary Table 2.

As shown in Figure 2 and Supplementary Table 3, the results of 
the MR analysis using the IVW method revealed that Roseburia 
(odds ratio (OR) = 3.3971, 95% confidence interval (CI) = 1.4473–
7.9735, p = 0.00497), Hungatella (OR = 2.2976, 95% CI = 1.0753–
4.9092, p = 0.03175), and Subdoligranulum (OR = 2.6652, 95% 
CI = 1.0245–6.9333, p = 0.0446) were potential risk factors, indicating 
a promoting role in the onset of PDD. Conversely, 
LachnospiraceaeUCG001 (OR = 0.5136, 95% CI = 0.2679–0.9847, 
p = 0.04482) was related to a reduced risk of PDD. Butyricimonas 
(OR = 0.3014, 95% CI = 0.1420–0.6400, p = 0.00180) also showed a 
similar protective trend against PDD. This relationship was further 
validated using both WM and simple mode methods. Furthermore, 
the results of the reverse MR analysis did not indicate any significant 

4  https://www.psychometrica.de/effect_size.html
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causal effects of PDD on the five microbiota genera, as reported in 
Supplementary Table 3.

Clinical validation of the gut microbiota

In our case–control study, fecal samples were collected from 75 
participants, including 27 patients with PDD, 20 patients with PD-NC, 
and 28 HCs. The baseline demographic and clinical characteristics of all 
participants were compared and are summarized in Table 1. Following 
the confirmation of the causal association direction through MR analysis, 
we proceeded to evaluate the five GM genera identified in the case–
control study. We  extracted the relative abundances of Roseburia, 
Hungatella, Subdoligranulum, Lachnospira, and Butyricimonas according 
to the corresponding groups and performed comparative analyses. 
Hungatella was not significantly different between the corresponding 
groups (p = 0.093). Compared to the patients with PDD, the HCs 
presented a significantly greater relative abundance of Subdoligranulum 

(p = 0.004, Bonferroni-corrected p = 0.011) (Figure 3a). The area under 
the curve (AUC) for Subdoligranulum was 0.73 (95% CI: 0.59–0.87), with 
an optimal cutoff value of 0.001 determined from the receiver operating 
characteristic (ROC) curve (Figure 3a). The confusion matrix evaluation 
revealed that the sensitivity, specificity, and accuracy of this biomarker 
were 0.70, 0.75, and 0.72, respectively (Figure 3a). Furthermore, the 
relative abundance of Subdoligranulum was negatively correlated with 
the MMSE score (r = −0.316, p = 0.006) (Figure 3a). In contrast, the 
relative abundance of Lachnospira was significantly lower in the HCs 
than in the patients with PDD (p = 0.023, Bonferroni-corrected 
p = 0.069) (Supplementary Figure 2a). The AUC for Lachnospira was 0.68 
(95% CI: 0.54–0.83), with an optimal cutoff value of 0.007 
(Supplementary Figure 2a). The sensitivity, specificity, and accuracy were 
0.74, 0.64, and 0.69, respectively, as determined from the confusion 
matrix evaluation (Supplementary Figure 2a). In addition, the abundance 
of Lachnospira was significantly positively correlated with the MMSE 
scores (r = 0.271, p = 0.019) (Supplementary Figure 2a). The combined 
ROC curve analysis demonstrated that Subdoligranulum exhibited 

FIGURE 2

MR analysis of the causal effects of the gut microbiota on Parkinson’s disease dementia (PDD). This forest plot displays the associations between 
specific gut microbiota taxa and PDD risk. Each point represents the odds ratio (OR) for a single taxon, showing the strength and direction of the 
association. Horizontal bars represent the confidence intervals (CIs), indicating the precision of the OR estimate. Points positioned to the left of the 
vertical reference line (OR < 1) suggest a protective effect against PDD, while points to the right (OR > 1) indicate a potential risk. p-values assess the 
statistical significance of each association.

TABLE 1  Demographic and clinical characteristics of participant.

Characteristic HC (n = 28) PD-NC (n = 20) PDD (n = 27) P value

Age, y 58.86 ± 3.73 61.15 ± 8.28 67.19 ± 7.59 <0.001a***

Gender (M/F) 15/13 14/6 8/19 0.02c

Education (y) 10.89 ± 1.97 12.30 ± 2.74 6.67 ± 5.08 <0.001a***

BMI (kg/m2) 24.70 ± 2.79 24.51 ± 3.08 24.80 ± 2.96 0.944a

Duration (y) - 6.95 ± 3.76 7.44 ± 3.46 0.538d

UPDRS-III - 33.20 ± 16.45 47.67 ± 18.19 0.005d**

H-Y stage - 2.28 ± 0.73 2.63 ± 0.75 0.098d

PDQ39 - 29.90 ± 21.53 43.04 ± 21.24 0.016d*

LED (mg/day) - 709.13 ± 293.67 599.44 ± 305.15 0.333d

MMSE 29.18 ± 0.90 28.50 ± 1.15 19.30 ± 4.10 <0.001b***

Data are means ± standard deviations; Unified Parkinson’s Disease Rating Scale, Part III, UPDRS-III; Hoehn and Yahr stage, H-Y stage; Parkinson’s Disease Questionnaire-39, PDQ39; 
Levodopa equivalent dose, LED; Mini-Mental State Examination, MMSE; a Age: NC vs PDD**, PDD vs HC***; aEducation: NC vs PDD***, HC vs PDD***; bUPDRS-III: NC vs PDD*; 
bMMSE score: NC vs MCI**, NC vs PDD***, MCI vs PDD***, MCI vs HC***, HC vs PDD***; bMoCA score: NC vs MCI***, NC vs PDD***, MCI vs PDD***, MCI vs HC***, HC vs 
PDD***; a: one- ANOVA test; b: Kruskal−Wallis test; c: Chi-squared test; d: Mann–Whitney U. *p < 0.05; ** p < 0.01; *** p < 0.001.
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promising performance in distinguishing patients with PDD from HCs, 
whereas Lachnospira showed limited discriminative ability (Figure 3b). 
We extracted significantly more species-level data on Subdoligranulum 

from the patients with PDD compared to the HCs and conducted a 
combined ROC curve analysis to improve the diagnostic accuracy. The 
AUC for the seven Subdoligranulum species (Subdoligranulum 

FIGURE 3

Clinical validation of the gut microbiota genera identified using MR analysis. (a) Top row, left: differences in Subdoligranulum abundance among the 
healthy controls (HC), patients with PD with normal cognition (PD-NC), and patients with PDD (Kruskal–Wallis test). Top row, right: receiver operating 
characteristic (ROC) curve assessing the ability of Subdoligranulum abundance to discriminate patients with PDD from HC. Bottom row, right: 
confusion matrix illustrating Subdoligranulum’s classification performance (PDD vs. HCs). Bottom Row, right: scatter plot showing the association 
between Subdoligranulum abundance and the Mini-Mental State Examination (MMSE) scores. (b) ROC curves comparing the diagnostic performance 
of Subdoligranulum, Lachnospira, and their combination (Subdoligranulum + Lachnospira) for discriminating patients with PDD from HCs. (c) ROC 
curves comparing the diagnostic performance of genus-level Subdoligranulum abundance versus the combined abundance of multiple differentially 
abundant Subdoligranulum species (Subdoligranulum sp. combined) for discriminating patients with PDD from HCs. *p < 0.05.
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sp.4_3_54A2FAA, AF14-43, AM  16-9, AM23-21 AC, OF01-18, 
TF05-17 AC, and CAG:314) was 0.80 (95% CI, 0.681-0.928), which 
demonstrated strong potential as biomarkers for distinguishing patients 
with PDD from HCs, outperforming the genus-level Subdoligranulum 
analysis (Figure 3c; Supplementary Table 7). These findings highlight the 
potential of Subdoligranulum as a microbial biomarker for distinguishing 
patients with PDD from HCs, as validated through MR analysis and 
case–control studies. In contrast, the results for Roseburia and 
Butyricimonas were inconsistent with the MR results. The HCs displayed 
a significantly greater relative abundance of Roseburia compared to the 
patients with PD (p = 0.011, Bonferroni-corrected p = 0.033) and PDD 
(p = 0.017, Bonferroni-corrected p = 0.052) (Supplementary Figure 2b). 
Conversely, the relative abundance of Butyricimonas was lower in the 
HCs than in the patients with PDD (p = 0.001, Bonferroni-corrected 
p = 0.003) (Supplementary Figure 2b).

Mediation analysis

We conducted MR analysis to explore the intermediary roles of 
immune cell traits and metabolites in the pathway from the GM to 
PDD. IV selection for immune cell traits and metabolites was similar 
to that used for the gut microbiota. Next, we applied the IVW method 
as the main evaluation standard, and other methods, including 
MR-Egger, weight mode, simple mode, and weighted median 
methods, served as auxiliary analysis tools. This analysis identified 10 
metabolites, two metabolite ratios, and 22 immune cells (Figures 4, 
5; Supplementary Table 4; Supplementary Figures 3a,b). Specifically, 
five metabolites (isovalerate, 7-methylguanine, gamma-
glutamylleucine, 4-acetaminophen sulfate, and N-delta-
acetylornithine) and one metabolite ratio (maltose to sucrose ratio) 
were identified as potential risk factors for PDD, whereas five 
additional metabolites (N-acetyl-3-methylhistidine, 
2-hydroxyhippurate, 3-phosphoglycerate, N-acetylarginine, and 
N-acetyl-1-methylhistidine) and one metabolite (cytidine to 
N-acetylglucosamine/N-acetylgalactosamine) were found to exert a 
protective causal effect against PDD (Figure 4). Further analysis, as 
depicted in Figure 5, revealed that among the 22 immune cell types, 
15 were significantly associated with a reduced risk of PDD, but the 
remaining seven types were associated with an increased risk of 
PDD. Notably, our MR analysis indicated that Subdoligranulum 
influences maltose and sucrose metabolism (OR = 1.223, 95% 
CI = 1.009–1.483, p = 0.0406), thereby promoting PDD development, 
with a mediated proportion of 13.2% (Figure  6a; 
Supplementary Figure 3c).

To further elucidate the biological implications of MR, fecal 
samples were collected from the clinical patients for metagenomic 
sequencing. In our case study, we observed a significant increase in 
the gene abundance of total glycoside hydrolase family 31 
(GH31_19) (Bonferroni-corrected p < 0.001) and GH31_19 from 
Subdoligranulum sp. AF14-43 (Bonferroni-corrected p < 0.01) in 
the patients with PDD compared to the HCs (Figure 6b). Moreover, 
there was an increasing trend in the gene abundance of GH13_31 
from Subdoligranulum sp. AF14-43 (p = 0.08) in the patients with 
PDD compared to the HCs. Functional annotations using KEGG 
analysis revealed that GH31_19 and GH13_31 from 
Subdoligranulum sp. AF14-43 are involved in galactose metabolism, 
starch and sucrose metabolism, and metabolic pathways (KO 

00052, KO 00500, KO 01100). The starch and sucrose metabolism 
pathways include the key enzymes alpha-glucosidase (EC 3.2.1.20) 
and sucrase-isomaltase (EC 3.2.1.10). The identified KO symbols 
included malZ (encoding alpha-glucosidase [EC:3.2.1.20]) from 
GH31_19 and IMA and malL (both encoding oligo-1,6-glucosidase 
[EC:3.2.1.10]) from GH13_31  in Subdoligranulum sp. AF14-43. 
This information reveals a biological mechanism for the MR 
findings, suggesting that Subdoligranulum may influence PDD risk 
through the regulation of sucrose and maltose metabolism 
(Figure 6c).

Sensitivity analyses

The MR-Egger regression intercept revealed no horizontal 
pleiotropy, with p-values greater than 0.05 (Supplementary Table 6). 
In addition, no outliers were detected using MR-PRESSO analysis 
(p > 0.05). Furthermore, the Cochran’s Q test revealed no significant 
heterogeneity (p > 0.05). No impact on the overall results was 
observed after the removal of any SNP in the leave-one-out analysis 
(Supplementary Figure 1). Therefore, the MR analysis revealed the 
robustness and reliability of our study.

Discussion

In our investigation, we established significant genetic correlations 
between five GM genera—including Roseburia, Hungatella, 
Subdoligranulum, LachnospiraceaeUCG001, and Butyricimonas—and 
PDD. Subsequently, a case–control study validated that 
Subdoligranulum may serve as a potential biomarker for PD-CI 
progression. Integrated MR analysis and the case–control study 
revealed that Subdoligranulum potentially influences carbohydrate 
metabolism to induce Parkinson’s cognitive impairment via the gut–
brain axis. These findings provide new insights into the effects of gut 
microbiota–metabolite interactions on the pathogenesis of PDD.

Several studies have reported alterations in GM composition 
among patients with cognitive impairment or PD, prompting the 
exploration of the GM as a potential biomarker for this disease (Varesi 
et al., 2022; Verhaar et al., 2021). We systematically assessed the causal 
relationship between intestinal bacteria and the development of PDD 
by integrating data from GWAS summary statistics and MR analysis. 
We detected a suggestive association between increased Roseburia 
abundance and increased PDD risk, as well as a link between increased 
Butyricimonas abundance and reduced PDD susceptibility, which is 
consistent with previous MR studies (Fu et al., 2024; Ji et al., 2024). 
However, our case–control studies revealed a significant reduction in 
Roseburia abundance and an increase in Butyricimonas abundance in 
the patients with PDD. Our cross-sectional findings on Butyricimonas 
abundance align with those of a Chinese PD-CI cohort study, although 
reduced Butyricimonas abundance has been reported in other 
cognitive impairment cohorts (Liang et al., 2022; Olazaran et al., 2015; 
Ren et  al., 2020). Notably, previous observational studies have 
associated lower Roseburia abundance with worse progression of 
motor, non-motor, and cognitive functions, as well as higher levodopa 
doses in patients with PD (Cilia et  al., 2021; Wallen et  al., 2020). 
Similarly, a lower abundance of Butyricimonas correlated with worse 
non-motor symptoms in patients with PD (Nuzum et al., 2023). These 
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discrepancies indicate that complex confounding factors (e.g., 
medication, disease severity, and symptom subtypes) may exert 
significant short-or long-term effects on the GM in traditional clinical 
studies, effects that may not be  captured by genetic instruments 
reflecting lifetime bacterial abundance variation. Consequently, the 
relationships among Roseburia, Butyricimonas, and PDD should 
be viewed cautiously, and further investigation is needed to clarify 
their roles in PDD pathogenesis. In addition, this MR study revealed 
an association between reduced LachnospiraceaeUCG001 abundance 
and reduced cognitive performance in patients with PD, which is 
consistent with our case–control study. Indeed, it was reported that a 

decreased abundance of Lachnospiraceae CG001 was associated with 
cognitive decline and PD (Jiang et al., 2023; Klee et al., 2024; Proano 
et al., 2023). Therefore, we hypothesize that LachnospiraceaeUCG001 
could play a potential protective role against PDD progression, as 
supported by our results and those of previous studies. However, ROC 
curve analysis and confusion matrix evaluation demonstrated that the 
role of Lachnospiraceae UCG001 in cognitive impairment was less 
prominent than that of Subdoligranulum. Interestingly, both our 
integrated case–control study and MR analysis revealed a significant 
association between Subdoligranulum and PDD development, 
suggesting its potential as a biomarker or therapeutic target. 

FIGURE 4

Forest plot of the causal estimates from MR analysis showing the effects of 10 metabolites (a) and two metabolite ratios (b) on PDD using the inverse-
variance weighting (IVW) method, filtered p-values < 0.01.
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Nevertheless, whether Subdoligranulum can be  considered a gut 
microbiota-associated factor in PD-CI remains unclear. Future animal 
studies are needed to elucidate its causal role in PDD pathogenesis.

The gut–brain interplay involves many pathways, one of which is 
mediated by active metabolites synthesized by the microbiota (Zheng 
et al., 2021). These metabolites, encompassing a spectrum of essential 
biomolecules such as amino acids, lipids, carbohydrates, and 
nucleotides, are pivotal to human health (Shaffer et al., 2017) and can 
function as neuromodulators, affecting brain function (Zheng et al., 
2021). Our MR analysis identified the serum maltose-to-sucrose ratio 
as a mediator of the positive causal effect of Subdoligranulum on 
PDD. However, this cross-omics MR mediation analysis failed to 
elucidate the precise in vivo biological mechanisms underlying this 
association. To investigate potential pathways, we performed fecal 
metagenomic sequencing in our case–control study, profiling 
CAZymes and associated KEGG pathways. This analysis revealed a 
significant increase in Subdoligranulum sp. AF14-43-derived 
GH31_19 (alpha-glucosidase [EC:3.2.1.20]) in the patients with 

PDD. GH13_31 (oligo-1,6-glucosidase [EC:3.2.1.10]) levels were also 
elevated, although not significantly. As illustrated in Figure 6c, alpha-
glucosidase hydrolyzes maltose and sucrose into glucose, whereas 
oligo-1,6-glucosidase converts dextrin to glucose, concurrently 
resulting in the accumulation of maltose. These findings provide 
indirect evidence that Subdoligranulum may promote PDD 
development through gut glucose metabolic dysregulation and 
elevated blood glucose, offering biological support that complements 
the MR results. This potential mechanism aligns with recognized 
metabolic comorbidities in PD. For example, impaired glucose 
tolerance is evident in moderate-to-advanced PD stages, with 58% of 
non-diabetic patients exhibiting systemic insulin resistance (Hogg 
et al., 2018; Marques et al., 2018). The proposed contributing factors 
include intestinal microbial disorders, autonomic nerve dysfunction, 
abnormal insulin signal transduction, and reduced dopaminergic 
receptor activity (Chen et al., 2025). These disturbances may trigger 
oxidative stress, a microglial inflammatory response, amyloid-β 
deposition, and pathological Tau hyperphosphorylation in brain 

FIGURE 5

Forest plot of the causal estimates from MR analysis showing the effects of 22 immune cells on PDD using the IVW method, filtered p-values < 0.05.
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regions associated with cognition (Chakrabarty et al., 2022; Gaspar 
et al., 2016; Macauley et al., 2015; Sima et al., 2009; Tomlinson and 
Gardiner, 2008), thereby leading to neuronal damage and 
mitochondrial dysfunction, which ultimately results in cognitive 
decline in patients with PD. In support of this finding, a Korean cohort 
study revealed that SGLT2 inhibitors reduce dementia and PD risk in 
type 2 diabetes patients, underscoring the neuroprotective potential 
of improving insulin resistance (Kim et al., 2024). Consequently, one 

possible explanation for this discovery is that Subdoligranulum in the 
gut potentially activates enzymes that hydrolyze maltose and sucrose 
into glucose, potentially contributing to glucose neurotoxicity and 
subsequent cognitive decline in patients with PD. Further animal and 
multi-omics studies are needed to elucidate how Subdoligranulum 
affects PDD pathology via disturbances in carbohydrate metabolism.

Our study established a compelling link between specific GM 
genera and PDD and identified a novel microbiota–metabolite–PDD 

FIGURE 6

MR and clinical validation. (a) Forest plot of the causal estimates from mediation analysis showing the effects of the mediator on the pathway from the 
gut microbiota to PDD. (b) Differences in glycoside hydrolase family 31 (GH31_19) abundance derived from all bacterial species (left) and 
Subdoligranulum sp. AF14-43 (center) among the HCs, patients with PD-NC, and patients with PDD; differences in GH13_31 abundance derived from 
Subdoligranulum sp. AF14-43 (right) among the HCs, patients with PD-NC, and patients with PDD (Kruskal–Wallis test); (c) starch sucrose metabolic 
pathways map (KEGG pathway ko00500) from Kyoto Encyclopedia of Genes and Genomes (KEGG). Red arrows indicate enzymatic activities, with EC 
3.2.1.20 representing α-glycosidase and EC 3.2.1.10 representing oligo-1,6-glucosidase. **p < 0.01 and ***p < 0.001.
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mechanism through an integrated case–control study and MR 
analysis, a step previously unaccomplished. These findings support 
the development of adjunctive therapies (e.g., targeted dietary 
modifications or probiotics) alongside dopaminergic treatment to 
prevent cognitive decline in patients with PD-CI. Furthermore, these 
findings may facilitate earlier identification of at-risk patients with 
PD-CI, allowing timely diagnostic and therapeutic strategies to 
improve prognosis. However, microbiota research continues to face 
significant challenges due to substantial interindividual heterogeneity 
driven by environmental exposure, dietary habits, pharmacological 
treatments, and comorbidities. Therefore, future studies should 
prioritize multiomics approaches that integrate the gut microbiota, 
metabolomics, and neuroimaging within large cohorts to establish 
early diagnostic frameworks and effective interventions.

Although our study provides novel insights into the relationship 
between Subdoligranulum and PDD, several limitations must 
be acknowledged. First, our clinical sample validation relied on cross-
sectional studies. Medium effect sizes were observed for group 
differences, yet statistical power largely remained below 0.8, indicating 
that the small sample size limited power (Table 2). Together, these 
factors limit the current strength of evidence, necessitating further 
validation through animal models and large cohort studies to establish 
robust causality. Second, the GWAS data for the GM (MiBioGen) and 
PDD traits (FinnGen) were derived predominantly from European 
populations. Although we  included partial validation in an Asian 
cohort, this demographic bias may limit the generalizability of our 
findings to other ethnic populations, particularly given potential 
variations in gene–environment interactions across ethnicities. 
Therefore, future multiethnic studies are essential. Third, the selected 
IVs may still be susceptible to horizontal pleiotropy. Factors such as 
the intricate interplay among bacterial species, genetic background, 
lifestyle choices, and environmental conditions can profoundly shape 
the composition and function of the gut microbiome, resulting in a 
relatively small proportion of variance explained by IVs. Furthermore, 
the current study could not assess whether IVs are associated with 
confounding factors.

In conclusion, our study provides novel insights into the potential 
causal relationships among Subdoligranulum, carbohydrate 
metabolism, and PDD. The identification of Subdoligranulum as a 
potentially promising biomarker and a therapeutic target adds to our 

understanding of the intricate interplay between the gut and brain in 
the development of PDD. These results may provide the basis for 
future therapeutic strategies for PDD.
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TABLE 2  Differences of gut microbiota and carbohydrate active enzyme abundance in case–control study.

Microbiota / Enzyme HC (n = 28) PD-NC 
(n = 20)

PDD 
(n = 27)

P value P FDR-corrected 
value

Power Eta squared 
(η2_H)

Roseburia 0.017804 (0.0255) 0.008067 (0.0186) 0.008942 (0.0113) 0.015* 0.024* 0.622 0.088

Hungatella 0.000437 (0.0003) 0.000437 (0.0005) 0.000646 (0.0036) 0.093 0.093 0.304 0.038

Lachnospira 0.010449 (0.0176) 0.004669 (0.0116) 0.003327 (0.0085) 0.038* 0.05 0.475 0.063

Butyricimona 0.000964 (0.0018) 0.002711 (0.0044) 0.003960 (0.0070) 0.004** 0.016* 0.783 0.125

Subdoligranulum 0.000719 (0.0007) 0.000972 (0.0015) 0.001217 (0.0027) 0.013* 0.024* 0.647 0.093

GH31_19 7.34 (12.99) 11.58 (22.96) 24.77 (35.5101) 0.0004*** 0.0032* 0.933 0.193

GH31_19 (Subdoligranulum sp. 

AF14_43)

0.079 (0.31) 0.034 (0.09) 0.156 (0.83) 0.011* 0.024* 0.667 0.097

GH13_31 (Subdoligranulum sp. 

AF14_43)

0.056 (0.15) 0.111 (0.35) 0.246 (1.52) 0.087 0.093 0.318 0.04

Data are median and interquartile range. Differences between three groups were assessed using Kruskal-Wallis test. Effect size is calculation according to η2_H, an effect size of 0.01 is small, an 
effect size of 0.06 is average and an effect size of 0.14 is high. *p < 0.05; **p < 0.01; ***p < 0.001.
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SUPPLEMENTARY FIGURE 1

(a,b) MR leave-one-out sensitivity for five gut microbiota on PD, 
Subdoligranulum on maltose to sucrose ratio and maltose to sucrose ratio 
on PDD.

SUPPLEMENTARY FIGURE 2

Clinical evaluation of Roseburia, Lachnospira and Butyricimonas from MR 
analysis. (a) Differences in Lachnospira abundance among HC, PD-NC and 
PDD (Kruskal-Wallis test); the receiver operating characteristic (ROC) of 
Lachnospira (compare with healthy control); the confusion matrix of 
Lachnospira discriminating abilities (compare with healthy control). Scatter plot 
of the association between Lachnospira and Mini-Mental State Examination 
scores (MMSE). (b) Differences in Roseburia and Butyricimonas abundance 
among HC, PD-NC and PDD (Kruskal-Wallis test). *p<0.05 and **p<0.01.

SUPPLEMENTARY FIGURE 3

MR analysis on the causal effect of the metabolite and immune on PDD. (a,b) 
Circos plot shows the association between metabolite, immune cells and 
PDD via five methods with p-values <0.05. (c) bidirectional and mediating MR 
analysis among Subdoligranulum, mediator (maltose to sucrose ratio) 
and PDD.
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