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Background: Hyperuricemia (HUA), found widely in humans and birds, is a 

key physiological factor responsible for the development of gout. In recent 

years, the relationship between the gut microbiota and HUA has garnered 

significant attention from researchers. This study aims to explore the current 

research hotspots, knowledge gaps, and future research trends regarding the 

gut microbiota and HUA. 

Methods: We performed a thorough search of the literature on gut flora and 

HUA published between 2005 and 2024 using the Web of Science and PubMed 

databases. The resulting data were analyzed using VOSviewer, CiteSpace, and 

Bibliometrix. 

Results: Including 735 papers in total, the study found that the number of 

publications in the subject increased significantly between 2020 and 2024, 

with 2024 being the year with the highest number of publications. The 

primary research countries are highlighted as China and the United States, 

with institutions such as the University of California, San Diego, and Qingdao 

University making significant contributions. Sanjay K. Nigam and Chenyang Lu 

have made the most important contributions as authors. Keywords analysis 

highlighted high-frequency terms including “gastrointestinal microbiome,” 

“uric acid,” “hyperuricemia,” “inflammation,” “gout,” and “probiotics.” In the 

visualization map of the keyword timeline, emerging research hotspots include 

“diets,” “dietary fiber,” “fecal microbiota transplantation,” and “gut-kidney axis.” 

Conclusion: This study is the first to conduct a quantitative literature analysis 

in the field of gut microbiota in HUA, revealing that the core research 

hotspots include disease-related microbiota characteristics, probiotic therapy, 

microecological intervention, and the gut-distal target organ axis. The emerging 

hotspots focus on dietary supplementation, fecal microbiota transplantation 

(FMT) treatment strategies, and in-depth research on the above organ axes. 

Provide valuable guidance for future research directions. 

KEYWORDS 

gut microbiota, hyperuricemia, CiteSpace, VOSviewer, Bibliometrix, bibliometric, 
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1 Introduction 

Hyperuricemia (HUA) is a metabolic disorder characterized by 
elevated levels of uric acid (UA) in the bloodstream that exceed the 
normal physiological range (Li et al., 2020). UA, the final product 
of purine metabolism, is typically regulated by the body through 
excretion via the kidneys and intestines (Fathallah-Shaykh and 
Cramer, 2014). Elevated blood levels of UA, resulting in HUA, 
can occur due to increased production or decreased excretion. 
The global rise in HUA incidence, driven by lifestyle changes and 
the westernization of diets, has emerged as a significant public 
health issue. Notably, global research indicates that while the 
prevalence of HUA diers among regions and ethnicities, it is 
generally on the rise (Dehlin et al., 2020). The prevalence rates 
of HUA among adults in the United States, Finland, Australia, 
South Korea, and French Polynesia are reported to be 20.1%, 
48%, 16.6%, 11.4%, and 71.6%, respectively (Kim et al., 2018; 
Chen-Xu et al., 2019; Pathmanathan et al., 2021; Timsans et al., 
2023; Pascart et al., 2024). Additionally, HUA is more common in 
males than females, with its incidence rising with age. Clinically, 
HUA is a direct contributor to urological conditions, such as 
gout, kidney stones, and renal insuÿciency (Jordan et al., 2019; 
Narang et al., 2021). Moreover, it is linked to a heightened risk 
of cardiovascular diseases such as hypertension, coronary heart 
disease, atherosclerosis, and heart failure (Yu et al., 2017; Lee 
et al., 2019; Kimura et al., 2021; Zheng et al., 2024). HUA is 
also associated with insulin resistance and may contribute to 
the development of type 2 diabetes (Wan et al., 2016; Zhang 
Y. et al., 2023). Therefore, the management and treatment of 
HUA are vital for enhancing patient quality of life and preventing 
associated complications. 

The intestinal microbiota, a complex assemblage of microbial 
species in the human gut, is essential for the host’s metabolism 
and immune system, having co-evolved with humans for millennia 
(Thursby and Juge, 2017; Rinninella et al., 2019). The variety, 
homeostasis, and adaptability of the intestinal microbiota, as 
well as their mutualistic relationships with the host, have been 
influenced by a prolonged co-evolutionary process that dictates 
the complicated relationships between the gut microbiota and 
the health of the host (Luckey, 1972). The host benefits from 
various metabolic functions provided by the gut microbiota, 
which arise from the anaerobic fermentation of undigested dietary 
elements, like short-chain fatty acids (SCFAs), or metabolic 
products originating from both the microbes and the host 
(Clemente et al., 2012; Sun et al., 2025). Research has shown 
that changes in gut microflora composition and function are 

Abbreviations: HUA, hyperuricemia; UA, uric acid; WOS, Web of Science; 
SCFAs, short-chain fatty acids; XOD, xanthine oxidase; FMT, fecal 
microbiota transplantation; NLRP3, NOD-like receptor pyrin domain-
containing 3; TMAO, trimethylamine N-oxide; PI3K, phosphatidylinositol 
3-kinase; AKT, protein kinase B; mTOR, mammalian target of rapamycin; 
LPS, lipopolysaccharides; IL-1β, interleukin-1 beta; TNF-α, tumor necrosis 
factor alpha; CRE, creatinine; BUN, blood urea nitrogen; ALT, alanine 
aminotransferase; AST, aspartate aminotransferase; OAT1, organic anion 
transporter 1; OCT1, organic cation transporter 1; OCTN2, organic 
cation transporter N2; GLUT9, glucose transporter 9; OAT4, organic 
anion transporter 4; URAT1, urate transporter 1; NADPH, nicotinamide 
adenine dinucleotide phosphate; GSH-PX, glutathione peroxidase; MDA, 
malondialdehyde; DAO, diamine oxidase; D-Lac, D-lactate; HMANGO-
C, Hmong microbiome and gout, obesity, vitamin C; Uox-KO, urate 
oxidase knockout. 

associated with the onset of metabolic diseases, including obesity, 
diabetes, and cardiovascular disease (Xu et al., 2024). The 
connection between gut flora and HUA has recently attracted 
considerable interest from researchers and healthcare professionals 
(Zhou X. et al., 2024). Research demonstrates that the gut 
flora (such as Firmicutes and Actinobacteria) can metabolize 
UA into xanthine or SCFAs (Liu et al., 2023). Additionally, 
dysbiosis within the gut microbiota may compromise intestinal 
barrier integrity and increase permeability, which in turn can 
influence UA excretion (Xu et al., 2019; Chen et al., 2020; 
Wang et al., 2022). 

Researchers worldwide have made significant strides in 
exploring the connection between gut microbiota and HUA in 
recent years. Nonetheless, there have been no significant reports 
of bibliometric analysis or visualization studies in this field. The 
trajectory and progress of research on HUA and gut microbiota 
can be revealed through bibliometric analysis at a macro level. 
Consequently, we carried out a bibliometric analysis with the 
help of VOSviewer, CiteSpace, and Bibliometrix to investigate the 
research trends and emerging areas in the gut microbiome and 
HUA, thus making clear the themes that typify the junction of these 
two crucial research areas. 

2 Materials and methods 

2.1 Data collection 

We searched PubMed and the Web of Science Core Collection 
(WOS) for all studies on the gut microbiota and HUA published 
between 1 January 2005, and 31 December 2024. On 15 February 
2025, we completed all searches to prevent bias in the quantity of 
documents resulting from database upgrades (Zhu et al., 2025). 
Using the terms “gastrointestinal microbiomes,” “hyperuricemia,” 
and “uric acid” (as well as their MeSH synonyms), and adding 
a few more phrases that have been reported to be associated 
with the gastrointestinal microbiome (Yang et al., 2022), we 
expanded the scope of the searches. The terms for hyperuricemia 
and gut microbiota are provided in Supplementary Appendix 
1. 

2.2 Inclusion and exclusion criteria 

Inclusion criteria: All original articles and reviews in English 
related to “intestinal flora” and “HUA.” Exclusion criteria: 
Duplicated literature, literature not related to “intestinal flora” 
and “HUA” research, as well as meeting abstracts, proceeding 
papers, early access, editorial material, book chapters, retracted 
publications, and letters. In this study, Jingjing Yang and 
Jing Chen independently screened and excluded studies. Any 
discrepancies that arose were resolved by Dingxiang Li, who 
made the final decisions. A total of 735 papers were included, 
including 130 reviews and 605 original articles. Figure 1 
illustrates the flowchart of the literature search and screening 
process. 
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FIGURE 1 

Flowchart for data retrieval and filtering. 

2.3 Data analysis and visualization 

The export of the qualifying publications “Full Record and 
Cited References” is performed in either “Plain Text File” 
format, with the filename “download∗.txt.” The “Plain Text File” 
was loaded into VOSviewer, CiteSpace, and Bibliometrix1 for 
graphing. Before analysis, synonymous terms were unified using 
“thesaurus_terms.txt” in VOSviewer 1.6.19 to create thesaurus 
files. This process included synonyms (e.g., “gut microbiome” 
and “gastrointestinal microbiome”), singular and plural forms 
(e.g., “broiler chicken” and “broiler chickens”), and dierent 
expressions (e.g., “xanthine oxidase” and “Xanthine oxidase 
enzyme”). Excel 2021 software produces tables for sorting various 
counts. We used VOSviewer 1.6.19 to summarize the leading 
authors, co-cited authors, countries/regions, institutions, journals, 
co-cited references, keywords, and associated knowledge maps. 
For the dual-map overlay of journals, we employed CiteSpace V 
(version 6.3 R3, downloaded from https://citespace.podia.com/). 
The settings for CiteSpace V were configured as follows: cluster 
labels (12), journal labels (8), arcs α (3), citing journal titles (min 
pubs: 10), and cited journal titles (min cites: 10). 

1 https://www.bibliometrix.org/ 

3 Results 

3.1 Publication and citation trends 

A total of 735 publications addressing the gastrointestinal 
microbiome and HUA were analyzed for this research; 130 of 
these were reviews, while the remaining 605 were articles. Figure 2 
displays the trends in publications and annual citations for research 
on the gut microflora and hyperuricemia from 2005 to 2024. The 
bar graphs represent the number of publications, whereas the line 
graphs represent annual citations. Figure 2 illustrates that between 
2005 and 2012, fewer than 10 papers were published annually in 
the area of gut flora and HUA, reflecting a low level of research 
activity. From 2013 to 2019, there was a slow growth in the 
number of publications, with 15–35 papers published each year, 
and a corresponding increase in citations. Notably, there was a 
remarkable increase in the number of publications in the field from 
2020 to 2024, indicating that the interest of researchers in exploring 
the link between gut microbiota and HUA is growing, with 2024 
emerging as the peak year for publications. This trend demonstrates 
that the study of gut microbiota and HUA has received increasing 
attention over the past 5 years and is expected to continue to be a 
key area of research. 
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FIGURE 2 

Trends in publications and annual citations for research on the gut microflora and hyperuricemia from 2005 to 2024. 

3.2 Countries/regions and institutions 

A collective of 72 distinct countries/regions participated in 
the study of the gastrointestinal microbiome and HUA. China 
had the highest number of publications (n = 413), followed by 
the United States (n = 126), Japan (n = 24), Italy (n = 21), 
and Germany (n = 20) (Table 1). According to Table 1, the 

United States has the highest total number of citations (n = 6,591), 
which is much higher than the number of citations for China 
(n = 5,200) and other high-output countries. Figure 3 displays the 
international collaboration networks of nations/regions. This map 
includes 30 countries/regions, each having published at least five 
articles. The size of the nodes represents the volume of publications, 
with larger nodes indicating a higher number of publications. 

TABLE 1 Top 10 countries/regions and institutions investigating the intestinal microbiota and hyperuricemia. 

Rank Countries/regions Documents (N) Citations Institutions Documents (N) Location Citations 

1 China 413 5,200 University of California, San 

Diego 

25 United States 1,642 

2 United States 126 6,591 Qingdao University 18 China 263 

3 Japan 24 929 Zhejiang University 17 China 497 

4 Italy 21 908 China Agricultural 
University 

15 China 502 

5 Germany 20 890 South China Agricultural 
University 

15 China 91 

6 France 19 533 Zhengzhou University 14 China 284 

7 Egypt 18 175 China Agricultural 
University 

12 China 169 

8 Brazil 17 922 Ningbo University 11 China 143 

9 Canada 17 784 Sun Yat-sen University 11 China 179 

10 South Korea 17 795 Zhejiang Chinese Medical 
University 

11 China 272 
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FIGURE 3 

(A) The global publications’ geographic distribution map. (B) The global publications’ nations/regions collaboration map for the intestinal microbiota 
and hyperuricemia. 

FIGURE 4 

Collaborative network visualization of institutions involved in researching the intestinal microbiota and hyperuricemia. 

Nodes sharing the same color denote a cluster with significant 
collaboration. The arcs illustrate the cooperation between dierent 
countries or regions, with thicker arcs signifying stronger ties. 
The figure reveals that both China and the United States have 
collaborative relationships with several countries, with the most 
frequent collaboration between China and the United States. 

A total of 1,265 institutions researched gut microbiota and 
HUA. The top 10 institutions with the highest output published 
a total of 149 articles (Table 1). The University of California, San 
Diego (UCSD) ranked first in terms of the number of publications 

and citations, with 25 articles. Qingdao University and Zhejiang 
University followed with 18 and 17 articles, respectively. Notably, 
9 of the top 10 institutions in terms of publication volume are 
from China. Figure 4 shows the cooperative network among 
dierent institutions. The size of a node indicates the number of 
documents published by the institution. The larger the node, the 
more documents are published. The more curves there are, the 
more cooperative institutions there are; the thicker the curve, the 
closer the cooperation among the institutions. Figure 4 illustrates 
that the Chinese Academy of Sciences has the highest number 
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of collaboration linkages, indicating that this institution has the 
most extensive collaborative network. In terms of international 
collaboration, the UCSD has engaged in close collaborations with 
top-ranking institutions, such as Qingdao University and the 
Chinese Academy of Sciences. 

3.3 Authors and co-cited authors 

A total of 4,622 authors participated in studies on HUA and 
the gut flora (Table 2). Sanjay K. Nigam from the University 
of California, San Diego, was the top contributor, publishing 19 
papers. Subsequently, Chenyang Lu and Xiurong Su from Ningbo 
University each published nine papers. Additionally, we analyzed 
the number of co-citations among the authors. Most of the top 
10 co-cited authors were American. Nicola Dalbeth, Jing Wang, 
Zhuang Guo, Sanjay K., and Richard J. Johnson, with more than 80 
co-citations. Nigam was among the top five for co-cited. Notably, 
Sanjay K. Nigam ranked highly in both co-cited and publication 
output. Supplementary Figure 1 provides a visual representation of 
the analysis results, highlighting the associations among countries, 
aÿliations, and authors. 

3.4 Journal analysis 

Research papers on gut microbiota and HUA have been 
published in 369 dierent journals. Table 3 lists the top 10 
journals ranked by the number of articles and co-cited counts. 
The journal Nutrients published the highest number of research 
articles, totaling 24, followed by Frontiers in Microbiology and 
Food & Function, which published 21 and 18 articles, respectively. 
Furthermore, all 10 journals with the highest citation counts 
have been cited more than 350 times, with PLoS One leading 
the way with a total of 883 citations, followed by Scientific 

Reports and Nature, which have been co-cited 648 and 631 
times, respectively. According to the overlay visualization of 
journal maps (Supplementary Figure 2), studies published in 
veterinary/animal science journals predominantly cited papers in 
molecular biology/genetics journals. Similarly, research studies 
published in Molecular, Biology, and Immunology journals cited 
papers in Environmental, Toxicology, and Nutrition journals, as 
well as in Molecular, Biology, and Genetics journals and Health, 
Nursing, and Medicine journals. Furthermore, studies published in 
Medicine, Medical, and Clinical journals primarily cited papers in 
Molecular, Biology, and Genetics journals and Health, Nursing, and 
Medicine journals. 

3.5 Reference analysis 

Citation burst analysis identifies significant and impactful 
literature from a specific time frame by pinpointing studies that 
experience a spike in citations during that period. Figure 5 shows 
the top 20 references with the strongest citation bursts, including 
3 clinical studies, 15 experimental studies, and 2 reviews. The blue 
line depicts the timeline, and the red segments indicate the times 
when the references had bursts. Citation strength for the top 20 
references spanned from 3.55 to 17.67. The citation explosion in 
this field began in 2017. Furthermore, two reviews and three articles 
are presently experiencing a burst. 

3.6 Keyword analysis 

High-frequency keywords can indicate evolving research 
frontiers within certain knowledge domains. Using VOSviewer, 
we identified 3,421 keywords, 109 of which appeared at least 
10 times. Table 4 shows the top 20 high-frequency keywords. 
Among the keywords, “gastrointestinal microbiome” was the most 

TABLE 2 Top 10 authors with high productivity and co-citation in studies on the gut microflora and hyperuricemia. 

Rank Author Counts Institution Co-cited 
authors 

Citations Institution 

1 Sanjay K. Nigam 19 University of California, San 

Diego 

Nicola Dalbeth 140 University of Auckland 

2 Chenyang Lu 9 Ningbo University Jing Wang 120 Zhejiang University 

3 Xiurong Su 9 Ningbo University Zhuang Guo 115 Ministry of Education of the People’s 
Republic of China 

4 Kevin T. Bush 8 University of California, San 

Diego 

Sanjay K. Nigam 89 University of California, San Diego 

5 Jiaojiao Han 8 Ningbo University Richard J. Johnson 83 University of Colorado, Renal 
Diseases and Hypertension 

6 Zhixing He 8 Zhejiang Chinese Medical 
University 

Yu Wang 76 Shaanxi Normal University 

7 Yan Wang 8 Peking University N. Yamaoka 73 Teikyo University 

8 Chengping Wen 8 Zhejiang Chinese Medical 
University 

Nosratola D. Vaziri 72 University California, Irvine 

9 Jun Zhou 8 Ningbo University Peter J. Turnbaugh 67 Washington University 

10 Tiejuan Shao 8 Zhejiang Chinese Medical 
University 

Patrice D. Cani 67 University Catholique de Louvain 
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TABLE 3 Top 10 journals and co-cited journals for research on the gut microflora and hyperuricemia. 

Journals Documents (N) Citations 2023 IF Co-cited journals Co-citation 2023 IF 

Nutrients 24 656 4.8/Q1 PLoS One 883 2.9/Q1 

Frontiers in Microbiology 21 333 4.0/Q2 Scientific Reports 648 3.8/Q2 

Food & Function 18 242 5.1/Q1 Nature 631 50.5/Q1 

Frontiers in Nutrition 17 53 4.0/Q2 Nutrients 598 4.8/Q1 

Scientific Reports 16 1,089 3.8/Q1 Poultry Science 592 3.8/Q1 

Journal of Agricultural and 

Food Chemistry 

15 150 5.7/Q1 Food & Function 476 5.1/Q1 

PLoS One 15 704 2.9/Q1 Proceedings of the National Academy of 
Sciences of the United States of America 

455 9.4/Q1 

Frontiers in Cellular and 

Infection Microbiology 

13 90 4.6/Q2 Journal of Biological Chemistry 446 4.0/Q2 

Food Bioscience 12 27 4.8/Q1 Journal of Agricultural and Food 

Chemistry 

399 5.7/Q1 

Frontiers in Pharmacology 12 253 4.4/Q1 Frontiers in Microbiology 391 4.0/Q2 

FIGURE 5 

Top 20 references with the strongest citation bursts. 

TABLE 4 The top 20 most common keywords. 

Rank Keyword Occurrences Rank Keyword Occurrences 

1 Gastrointestinal microbiome 500 11 Growth-performance 58 

2 Uric acid 280 12 Chronic kidney-disease 57 

3 Hyperuricemia 159 13 Disease 57 

4 Inflammation 91 14 Xanthine-oxidase 51 

5 Gout 89 15 Diet 45 

6 Probiotics 80 16 Metabolomics 43 

7 Oxidative stress 73 17 Chain fatty-acids 42 

8 Obesity 64 18 Expression 41 

9 Metabolism 61 19 Broiler chickens 39 

10 Risk-factors 60 20 Insulin-resistance 38 
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FIGURE 6 

The co-occurrence network diagram of keywords related to gut microbiota and hyperuricemia. 

frequently appeared (n = 500), followed by “uric-acid” (n = 280), 
“hyperuricemia” (n = 159), “inflammation” (n = 91), “gout” 
(n = 90), and “probiotics” (n = 80). Figure 6 depicts the co-
occurrence of keywords that appeared more than 10 times. Each 
node’s size reflects how often it co-occurs, and the connections 
illustrate the relationships between these co-occurring keywords. 
Each link’s thickness reflects the frequency of co-occurrence 
between two keywords, with the same color representing a tighter 
cluster. Figure 6 results in the formation of five distinct clusters. 
Cluster 1, represented in red, concentrates on the pathogenesis 
within the field and its interactions with other diseases. This cluster 
encompasses 32 keywords, including gastrointestinal microbiome, 
UA, obesity, risk factors, diet, insulin resistance, and SCFA. Cluster 
2, depicted in green, highlights the role of probiotics in regulating 
UA levels and their importance in improving gut health and 
growth performance in broiler chickens. This cluster comprises 
30 keywords, such as probiotics, growth performance, broiler 
chickens, antioxidant activities, lactobacillus, immunity, inulin, and 
intestinal morphology. Cluster 3, shown in blue, addresses the 
molecular mechanisms pertinent to this field and the application 
of fecal microbiota transplantation. It includes 19 keywords, such 
as inflammation, oxidative stress, dysbiosis, NLRP3 inflammasome, 
and fecal microbiota transplantation. Cluster 4, illustrated in 
yellow, examines the mechanisms through which natural products 
modulate gut microbiota to ameliorate HUA and gout. This cluster 
includes 18 keywords such as hyperuricemia, gout, metabolism, 
xanthine oxidase, extract, polysaccharides, and pathway. Cluster 
5 (purple cluster) focuses on the interactions between this field 
and kidney diseases, including 10 keywords such as chronic 

kidney disease, metabolites, kidney, impact, uremic toxins, and 
progression. To study the trend of theme changes in the field, 
we constructed a topic evolution map and overlay visualization 
using the Bibliometrix package in the R software environment and 
VOSviewer (Figure 7). Figure 7 displays the topic evolution and a 
high-frequency keyword overlay map, with colors indicating the 
average publication year. The analysis revealed that from 2012 
to 2018, the field primarily focused on macro issues, including 
intestinal gut health status in HUA. From 2019 to 2024, the 
areas of “gut-kidney axis,” “SCFAs,” “antioxidant activities,” “fecal 
microbiota transplantation,” “probiotics,” “diet,” and “untargeted 
metabolomics” are notably emerging, as marked in yellow, focusing 
on intervention mechanisms between HUA and gut flora. 

Keyword clustering can visually present the topic distribution 
in the research field. In this study, the LSI clustering method of 
CiteSpace software was used to obtain a reasonable clustering graph 
(Figure 8, Q = 0.4542, S = 0.7577). A Q value exceeding 0.3 signifies 
a notable cluster structure. An S value above 0.5 suggests eective 
clustering, while values over 0.7 denote high reliability. As shown in 
Figure 8A, 10 major research clusters have been formed in this field. 
Dierent clusters contain distinct keywords and themes. Clusters 
with smaller label values encompass a broader range of keywords, 
indicating more diverse research content. The 10 clustering clusters 
are as follows: #0 gut microbiota, #1 hyperuricemic nephropathy, 
#2 intestinal morphology, #3 animal models, #4 gut-kidney axis, 
#5 chronic kidney disease, #6 gut microbiome, #7 systems biology, 
#8 gastrointestinal tract, and #9 fecal microbiota transplantation. 
Figure 8B is a timeline visualization map created by CiteSpace. 
The timeline visualization shows the first appearance time of each 
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FIGURE 7 

(A) The topic evolution map of hyperuricemia and gut flora. (B) Overlay visualization of hyperuricemia and gut flora. 

FIGURE 8 

(A) Keyword clustering graph of hyperuricemia and gut flora. (B) Timeline visualization graph of keywords of hyperuricemia and gut flora. 

important keyword and the dynamic changes of research hotspots, 
reflecting the evolution of research topics. As shown in Figure 8B, 
from 2005 to 2012, researchers have begun to recognize that gut 
microbiota may be related to UA metabolism (e.g., gut microflora, 
microbiome, and UA). However, the research is still in its infancy. 
From 2013 to 2018, this field focused on the changes in the gut 
microbiota and related mechanisms of hyperuricemia, as well as the 
changes in the gut microbiota associated with metabolic diseases 
and high levels of UA (e.g., gut microbiota, double blind, oxidative 
stress, and metabolic syndrome). Since 2019, the research focus 
in this field has shifted to the microbial intervention eects and 
mechanisms of hyperuricemia (e.g., probiotics, prebiotics, extract, 
diets, and therapy). In addition, the gut-kidney axis, hyperuricemic 
nephropathy, SCFAs, butyrate, etc., have become the focus of 
research in recent years. 

4 Discussion 

4.1 Basic information 

A total of 736 papers on HUA and gut flora were included 
in this study. The publication volume in this field can be divided 
into three phases: a low activity period (2005–2012), a slow 
growth period (2013–2019), and an active period (2020–2024). This 

increasing trend reflects the growing interest and contributions 
of researchers in the field. The advancement and use of new 
technologies like metagenomics and high-throughput sequencing 
undoubtedly aid the growth in this discipline (Qin et al., 2010; 
Weinstock, 2012). Several nations or institutions have repeatedly 
carried out gut microbiota-related initiatives and achieved ground-
breaking results, which have also oered direction and established 
the groundwork for the research into the connection between gut 
flora and HUA. For instance, the European Commission launched 
the Human Gut Metagenome Project in 2008, and the National 
Institutes of Health in the United States published the Human 
Microbiome Project (HMP) in 2007 (Turnbaugh et al., 2007; 
The Human Microbiome Project Consortium, 2012). 

4.1.1 Countries/regions and institutions 
China ranks first in the number of publications in this field, 

followed by the United States. The publication output of these 
two countries far exceeds that of others, indicating the significant 
interest of researchers in both countries and their substantial 
investment in research related to gut microbiota and HUA. 
Among the top 10 institutions in terms of publications, the top 
institution in terms of both publications and citations is UCSD 
in the United States, and the remaining 9 institutions are from 
China. UCSD has close collaboration with leading institutions 
such as Qingdao University and the Chinese Academy of Sciences. 
Professor Changgui Li from the Department of Endocrinology 
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and Metabolism at the Aÿliated Hospital of Qingdao University, 
Professor Huiyong Yin from the Chinese Academy of Sciences, 
and expert Robert Terkeltaub from UCSD worked together 
to discover dierentially abundant metabolites and pathways 
underlying infrequent gout flares (InGFs) and frequent gout flares 
(FrGFs) through metabolomics and to establish a predictive model 
via machine learning (ML) algorithms (Wang M. et al., 2023). 
Notably, Robert Terkeltaub contributed to the American College of 
Rheumatology’s gout management guidelines (Khanna et al., 2012). 
Additionally, Professor Changgui Li serves as co-chair of the Asia– 
Pacific Gout Consortium (APGC) 2 and plays a leading role in 
the field of gout and HUA, potentially laying the groundwork for 
collaboration among various organizations. 

4.1.2 Authors 
Analysis of authors and co-cited authors demonstrates that 

Sanjay K. Nigam is an influential writer who has made significant 
contributions to the fields of HUA and the intestinal microbiota. 
A 2015 review by Sanjay K. Nigam, published in Physiological 
Reviews, stands out as a representative work. This review 
underscores the essential functions of organic anion transporter 
1 (OAT1) and OAT3 in the metabolism and processing of gut 
microbiome metabolites (Nigam et al., 2015). These transporters 
are predominantly expressed in the proximal tubule cells of the 
kidney, where they facilitate the transport of organic anions, such 
as UA, from the bloodstream into cells, subsequently expelling 
them through the cell’s apical membrane into the urine. OAT1 
and OAT3 are particularly critical in the transmembrane transport 
of UA, a process they facilitate by exchanging dihydroxyacetate 
within the cell (Otani et al., 2017). In 2019, Sanjay K. Nigam’s team 
constructed a co-expression network of the gut-liver-kidney (GLK) 
axis, revealing interactions between transport proteins (e.g., OAT1, 
OAT3, and URAT1) and metabolizing enzymes (e.g., CYP4A11 
and UGT2B4) associated with UA metabolism, emphasizing the 
role of these genes in regulating UA levels and intestinal flora 
metabolite transport (Rosenthal et al., 2019). In 2020 and 2022, it 
was noted that OAT1 and OAT3 are involved in UA reabsorption 
and excretion in renal proximal tubules and interact with gut flora 
metabolites (e.g., indoleacetic acid and 4-hydroxyphenylacetic acid) 
to aect UA levels, which in turn aects the progression of CKD 
(Engelhart et al., 2020; Granados et al., 2022; Jamshidi and Nigam, 
2022). In 2023, it was found that gut microbiota metabolites, 
including tryptophan derivatives, could activate the host’s OATs 
and aryl hydrocarbon receptor (AHR), impacting UA secretion and 
excretion, thus creating a remote sensing and signaling mechanism 
between UA metabolism and intestinal flora, which is particularly 
important in chronic kidney disease (Nigam and Granados, 2023). 
In addition, loss of function of transporter proteins such as OAT1 
leads to changes in the composition and function of the intestinal 
flora, thereby aecting UA metabolism (Ermakov et al., 2023). 
The research of Professors Sanjay K. Nigam et al. revealed the 
core bridging role of OAT1/OAT3 in the interaction between UA 
metabolism and intestinal microbiota, constructed the theoretical 
framework of the GLK axis, and laid a revolutionary theoretical 
foundation for the mechanism research, prevention, and treatment 
of hyperuricemia and chronic kidney disease. 

2 https://ggwsxy.qdu.edu.cn/info/1171/3404.htm 

4.1.3 Journals 
A total of 736 documents appeared in 369 dierent journals, 

with major contributions from respected sources like Nutrients, 
Frontiers in Microbiology, and Food & Function. Interestingly, the 
Nutrients stood out as a primary focus, with a significant number 
of published studies and citations. This recognition confirms the 
Nutrients’ position as a significant outlet for sharing research 
findings in the field of gut microbiota and HUA and highlights the 
publication’s importance in this sector. 

4.1.4 References 
References with the strongest citation bursts analysis reveal 

the most influential references in the field. The citation boom 
period in this field is relatively concentrated, mainly occurring 
between 2017 and 2022. The citation research content that emerged 
at this stage was quite rich, including the description of the 
microbiota of clinical patients and microecological intervention 
strategies (including probiotics for lowering UA, dietary fiber 
for promoting the generation of SCFAs, tuna oligopeptides for 
repairing the intestinal barrier, etc.) (Guo et al., 2016; Shao 
et al., 2017; García-Arroyo et al., 2018; Han et al., 2020). 
Published in 2016 in Scientific Reports, the paper “Intestinal 
Microbiota Distinguish Gout Patients from Healthy Humans” 
experienced the strongest citation burst (strength = 17.67) 
between 2017 and 2021. This is a clinical cohort study, 
which revealed significant dierences in the intestinal microflora 
between gout patients and healthy individuals. Bacteroides 
xylanisolvens and Bacteroides caccae were more abundant in 
gout patients, whereas Bifidobacterium pseudocatenulatum and 
Faecalibacterium prausnitzii were less abundant (Guo et al., 
2016). The second strongest citation burst (strength = 13.27) 
article, titled “Combined Signature of the Fecal Microbiome 
and Metabolome in Patients with Gout,” was published by 
Shao et al. (2017) in the journal Frontiers in Microbiology. 
This study examined the fecal microbiome signatures and 
revealed an increase in pathogens, including Erysipelatoclostridium, 
Rhodococcus, Anaerolineaceae, and Bacteroides. The metabolome 
signatures included altered metabolites that may play a role in 
inflammatory responses, purine metabolism, and UA excretion 
(Shao et al., 2017). The third most intense citation burst 
(strength = 8.8) is an article titled “Alterations of the Gut 
Microbiome Associated With the Treatment of Hyperuricaemia 
in Male Rats,” published by Yu et al. (2018) in the journal 
Frontiers in Microbiology. The study investigates the eects 
of allopurinol and benzbromarone on the gut microbiota of 
male rats with hyperuricaemia, revealing specific alterations 
in bacterial genera and metabolic pathways associated with 
nucleotide and lipid metabolism (Yu et al., 2018). In addition, 
several papers that are still in the explosive period (2022– 
2024) indicate that the functional dierences of gout subtypes 
in the microbiota and the deepening of probiotic mechanisms 
in this field have been studied (Méndez-Salazar et al., 2021; 
Ni et al., 2021). 

4.2 Research hotspots and trends 

The analysis of keywords can highlight the essential topics, 
focal points, and trends in a research domain, aiding researchers 
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in grasping the knowledge framework and potential future 
directions of the field. By analyzing the high-frequency keywords, 
co-occurrence of keywords, keyword clustering, and timeline 
visualization maps in the research field of intestinal flora 
in hyperuricemia, the primary focuses of current studies can 
be identified. 

4.2.1 Features of the gut microbiota in individuals 
with HUA 

Through keyword co-occurrence and timeline visualization 
graphs, a large number of microbiota names, such as “gut 
microbiota,” “Bifidobacteria,” and “Escherichia coli,” were 
discovered, indicating that various types of microbiota have 
always been the focus of attention in this field. Multiple studies 
have shown that compared with healthy individuals, there are 
significant dierences in the diversity and composition of the gut 
microbiota in patients with HUA (Table 5 and Supplementary 
Table 1). These dierences are not only reflected in the “rise and 
fall” of specific bacterial genera, but also reflect the dual impact of 
the imbalance in the interaction between the microbiota and the 
host on metabolism and inflammation. Firstly, the enrichment of 
SCFAs-producing genera such as Alistipes, Faecalibacterium, and 
Roseburia has been repeatedly reported (Lin et al., 2021; Yuan et al., 
2022). These bacteria may constitute a compensatory mechanism 
by which the body attempts to alleviate hyperuric acid-related 
metabolic disorders by maintaining the integrity of the intestinal 
barrier and inhibiting inflammatory responses. Secondly, multiple 
studies have reported that serum UA levels are positively correlated 
with the abundance of Bacteroides in patients with HUA/gout 
(Guo et al., 2016; Shao et al., 2017; Méndez-Salazar et al., 2021). 
Although research reports have found that Bacteroides are one of 
the main enterotypes in the healthy population of South Korea, 
and 5-hydroxyisourate hydrolase, involved in the conversion of 
UA to allantoin, is enriched in this type of intestinal type (Lim 
et al., 2014). However, most studies have found that Bacteroides 
are involved in pro-inflammatory eects under disease conditions. 
For instance, B. caccae have been identified as biomarkers of 
inflammatory bowel disease (IBD) (Wei et al., 2001). Additionally, 
an increased presence of Bacteroides spp. has been linked to various 
autoimmune diseases, including systemic lupus erythematosus 
(Hevia et al., 2014), rheumatoid arthritis (Zhang et al., 2015), 
and type 1 diabetes (Davis-Richardson and Triplett, 2015). It is 
suggested that the amplification of Bacteroides may simultaneously 
trigger chronic inflammation. Third, the general reduction of 

TABLE 5 Changes in gut flora in patients with hyperuricemia and gout. 

Flora Variations in 
abundance 

Flora Variations in 
abundance 

Bacteroides ↑ Clostridium ↓ 

Porphyromonadaceae ↑ Bifidobacterium ↓ 

Anaerolineaceae ↑ Ruminococcaceae ↓ 

Fusobacteria ↑ Coprococcus ↓ 

Prevotella ↑ Prevotellaceae ↓ 

Faecalibacterium ↑ Butyricicoccus ↓ 

Enterobacteriaceae ↑ Oscillibacter ↓ 

probiotics such as Bifidobacteria (Guo et al., 2016; Lin et al., 2021; 
Méndez-Salazar et al., 2021; Yang et al., 2021; Ul-Haq et al., 2022). 
Bifidobacteria are renowned for their probiotic properties and 
anti-inflammatory eects, and their depletion may contribute 
to the overall dysbiosis and elevated inflammatory levels in 
HUA patients (Ruiz et al., 2017). In addition, the imbalance of 
opportunistic pathogenic bacteria (such as Porphyromonas and 
Enterobacteriaceae) and SCFA-producing beneficial bacteria (such 
as Clostridium and Ruminococcus) further amplifies the risk of 
inflammation. It is worth noting that the abundance changes of 
Prevotella show contradictory results in dierent studies (Ul-Haq 
et al., 2022; Martínez-Nava et al., 2023). This discrepancy highlights 
the influence of confounding factors such as disease stage, diet, 
and testing methods on the dynamics of the microbiota (Wu et al., 
2011). In conclusion, the intestinal microbiota of patients with 
HUA shows a pattern of “pro-inflammatory-anti-inflammatory” 
bacterial growth and decline. This imbalance pattern may either 
be the result of metabolic disorders or exacerbate hyperuricemia 
and inflammation through gut-axis feedback. In the future, it 
is necessary to combine longitudinal cohorts and standardized 
analyses to clarify the causal roles and individual heterogeneity 
of the changes in the microbiota. Meanwhile, the specific 
mechanism of action of Bacteroides under dierent physiological 
and pathological conditions should be further explored to provide 
more comprehensive theoretical support for the prevention and 
treatment of hyperuricemia and related diseases. 

4.2.2 Mechanisms by which probiotics regulate 
uric acid levels 

Through high-frequency keywords, keyword clustering, and 
citation burst analysis, we found that “probiotics,” “prebiotics,” 
and “therapy” are important research topics in the field of gut 
microbiota in hyperuricemia. The mechanism of probiotics in 
treating HUA includes altering the composition of the intestinal 
microbiota. Probiotics regulate the composition of the gut 
microbiota by increasing the abundance of beneficial bacteria 
(such as Bifidobacteria, Prevotella, Firmicutes, and SCFA-producing 
bacteria) while reducing pathogenic or pro-inflammatory bacteria 
(such as Bacteroidetes and Enterococcus). For instance, researchers 
have shown that Lactobacillus plantarum LLY-606 and L. plantarum 
TCI227 enhance the production of SCFAs and decrease the 
abundance of harmful bacteria such as Escherichia/Shigella (Chien 
et al., 2022; Shi et al., 2023). This modulation of the gut microbiota 
is considered a key mechanism underlying the therapeutic eÿcacy 
of probiotics. Secondly, it inhibits the activity of XOD. XOD is a 
pivotal enzyme in the biosynthesis of UA. Several probiotic strains 
(including Lactobacillus rhamnosus Fmb14, L. plantarum Q7, and 
Lactobacillus DM9218) have been shown to inhibit XOD activity in 
the liver, subsequently reducing UA concentrations (Wang et al., 
2019; Ni et al., 2021; Cao et al., 2022; Li et al., 2022; Zhao et al., 
2022; Shi et al., 2023). Additionally, probiotics can modulate the 
expression of UA transporter proteins, such as ABCG2, GLUT9, 
and URAT1 (Zhao et al., 2022; Wang Z. et al., 2023). These 
observations underscore the potential of probiotics to exert a direct 
influence on UA metabolism. Furthermore, numerous probiotics 
demonstrate notable anti-inflammatory properties by diminishing 
the expression of pro-inflammatory cytokines, including IL-
1β, TNF-α, and IL-6. For instance, L. rhamnosus Fmb14 and 
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L. plantarum LLY-606 have been shown to downregulate IL-1β 
and TNF-α levels, thereby mitigating inflammation associated with 
HUA (Li et al., 2022; Shi et al., 2023). Supplementary Table 2 details 
the specific mechanisms. 

In addition, keyword co-occurrence reveals that the high-
frequency keywords “growth performance,” “broiler chickens,” and 
“probiotics” are linked to each other. It is indicated that adding 
probiotics to regulate the UA level in broilers and improve their 
growth performance and meat quality is also a research hotspot 
on this topic. For instance, studies have shown that Lactobacillus 
farciminis CNMA67-4R, Clostridium butyricum CBM 588, multi-
strain probiotics, and symbiotics (Bacillus subtilis, inulin, and 
Saccharomyces cerevisiae) significantly reduced the UA levels in 
the feces of broiler chickens, which is the primary substrate 
for ammonia production. Moreover, L. farciminis CNMA67-4R 
and the symbiotics decreased the urine nitrogen ratio in the 
feces, thereby leading to a reduction in ammonia emissions 
from the chickens (Such et al., 2021; Such et al., 2023). The 
reduction of ammonia emissions is of considerable importance 
for environmental protection and animal welfare, and it can 
also enhance the growth performance and immune function 
of broiler chickens. The timeline visualization map shows that 
“fecal microbiota transplantation,” “fermentation,” and “extract” 
are the key research topics in recent years. It indicates that, in 
addition to probiotics, other microbiota-based treatments [such 
as microbiota transplantation and microbial fermentation extracts 
(MFEs)] have received extensive attention. Liu et al. (2020) 
found that FMT eectively modulated the gut microbiota in 
rats with high-purine-induced HUA, leading to improvements in 
metabolic parameters. Furthermore, in patients with gout, washing 
microbiota transplantation decreases serum UA levels, is related 
to a reduction in both the frequency and duration of acute gout 
flares, lowers diamine oxidase and endotoxin levels, and helps 
improve their impaired intestinal barrier function (Xie et al., 2022). 
Treatment with Lactobacillus acidophilus fermented dandelion 
(LAFD) has been shown to restore imbalances in the gut microbial 
ecosystem and reverse alterations in Bacteroidetes/Firmicutes, 
Muribaculaceae, and Lachnospiraceae in HUA mice (Ma et al., 
2023). In addition, research indicates that certain MFEs did not 
exhibit systemic toxicity even at high doses, suggesting a favorable 
safety and eÿcacy profile for the treatment and prevention of HUA 
(Chen et al., 2017). In conclusion, the technique of bacterial colony 
transplantation and its associated microbial fermentation products 
hold promise for the treatment of HUA. 

However, in practical applications, probiotics face multiple 
challenges in the management of HUA. Firstly, ensuring a 
high viable bacterial count and stability of probiotics during 
processing, storage, transportation, and after passing through harsh 
gastrointestinal environments such as gastric acid and bile is 
crucial. Although encapsulation technology can enhance targeted 
delivery and viability, its eectiveness and repeatability still need to 
be optimized (Broeckx et al., 2016; Cassani et al., 2020; Sun et al., 
2023). Secondly, significant individual dierences in therapeutic 
eects exist, influenced by the composition of the host’s intestinal 
flora, genetic background, and lifestyle factors such as diet and 
medication (Sun et al., 2024; Wang Q. et al., 2024). This highlights 
the necessity of personalized strain and dosage selection. Finally, 
the current regulatory and standardization framework is still not 
perfect. There is a lack of unified standards for strain identification, 

evaluation, and quality control. It is urgent to implement stricter 
quality control procedures (such as ensuring the consistency 
between the actual content of the product and the label statement 
and preventing contamination) and adopt genomic assessment 
methods to verify the safety and accuracy of strains, to enhance 
product quality, safety, and consumer trust (Salvetti et al., 2016; 
Kolaˇ cek et al., 2017). 

4.2.3 Microecological interventions 
Keyword co-occurrence and timeline visualization analysis 

reveal that “polysaccharides,” “diet,” and “dietary fiber” are 
important research topics in this field, indicating that both 
traditional Chinese medicine (TCM) and dietary patterns regard 
the intestinal flora as the hub target for regulating HUA. They 
exert their eects through a two-way intervention strategy: 
on the one hand, they inhibit “dangerous bacteria” such as 
Bacteroidetes and Enterobacteriaceae that produce endotoxins 
and promote inflammation; on the other hand, they increase 
beneficial bacterial species such as Lactobacillus, Bifidobacterium, 
and Roseburia that produce SCFAs and strengthen the gut-kidney 
axis. Ultimately, they jointly reduce the UA load, decrease oxidative 
stress and inflammation, and achieve multi-layered benefits from 
the structure of the microbiota to the host’s metabolic-immune-
kidney function. 

The active ingredients of TCM and the intestinal flora 
synergistically intervene in UA homeostasis through a 
“bidirectional metabolism-regulation” model. Some bioactive 
ingredients in TCM are not eectively absorbed in the digestive 
tract, causing low bioavailability (Gong et al., 2020). On the one 
hand, TCM is first enzymatically hydrolyzed by the microbiota to 
generate more easily absorbed active metabolites, such as baicalin 
being converted into baicalein before entering the bloodstream 
(Noh et al., 2016), and the host metabolism is indirectly regulated 
through SCFAs and other microbiota products (Wang et al., 2017); 
on the other hand, active ingredients reshape the structure of the 
microbiota. Tea polyphenols, berberine, etc., can inhibit harmful 
bacteria, promote the growth of beneficial bacteria, improve 
microecology, and UA metabolism (Yan et al., 2020; Chen Q. 
et al., 2023; Wang L. et al., 2023). This bidirectional network 
provides new ideas for explaining the mechanism of action of TCM 
and developing microbiogenic therapies. However, most of the 
existing evidence remains at the animal model level, and the causal 
chain has not yet been fully verified in the human body. Among 
polyphenols, resveratrol (from Polygonum cuspidatum) was shown 
to increase Lactobacillus spp. and SCFA-producing bacteria (e.g., 
Clostridium and Bifidobacterium), while reducing Bacteroides 
and pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α) (Zhou 
Y. et al., 2024). Chlorogenic acid (from Lonicera japonica) was 
observed to inhibit TMAO-synthesizing bacteria (Faecalibaculum 
and Blautia) and activate the PI3K/AKT/mTOR pathway, 
reducing renal fibrosis and oxidative stress (Zhou et al., 2022). 
Furthermore, ferulic acid (from Ligusticum chuanxiong) remodeled 
gut microbiota in HUA rats, while inhibiting the TLR4/NF-κB 
pathway to reduce UA absorption (Zhang N. et al., 2023). Among 
flavonoids, quercetin (from Taxillus chinensis) reduced hepatic 
XOD activity and enhanced purine degradation in HUA mice, with 
Lactobacillus aviarius implicated in UA metabolism modulation 
(Li D. et al., 2023). Myricetin-Nobiletin Hybrid (from waxberry 
and Citrus reticulata) regulated glycerophospholipid metabolism 

Frontiers in Microbiology 12 frontiersin.org 

https://doi.org/10.3389/fmicb.2025.1620561
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-16-1620561 August 11, 2025 Time: 19:45 # 13

Yang et al. 10.3389/fmicb.2025.1620561 

FIGURE 9 

Mechanism of probiotics and TCM in regulating gut microbiota to alleviate hyperuricemia. Probiotics and TCM components influence gut 
microbiota by promoting beneficial bacteria and inhibiting harmful ones, while also modulating metabolic pathways to lower UA levels, reduce 
inflammation, and enhance gut health. Created by FigDraw. 

and increased norank_f_Muribaculaceae abundance in HUA mice, 
ameliorating renal damage (Li Y. et al., 2023). Saron flavonoid 
extract (from Crocus sativus) reversed HUA-induced dysbiosis 
by enriching beneficial genera (Roseburia and Clostridium sp.) 
and suppressing pathogens (Alloprevotella and Parabacteroides) 
in rats, while enhancing antioxidant activity (Chen et al., 2022). 
Regarding alkaloids, berberine (from Coptis chinensis) upregulated 
colonic ABCG2 and reduced Bacteroidetes in HUA rats, enriching 
Lactobacillus and promoting UA excretion (Chen Q. et al., 2023). 
The classification of active ingredients in TCM, as well as their 
mechanisms of action and targeted bacterial communities, is 
shown in Supplementary Table 3. 

In addition, diuretic and turbidium-reducing herbs have 
also demonstrated consistent eects in animal models, such as 
enhancing probiotics, reducing pathogenic bacteria, and lowering 
UA. Kidney tea has been observed to significantly enhance the 
abundance of Roseburia and Enterorhabdus, while reducing the 
abundance of Ileibacterium and UBA1819 in HUA model mice 
(Chen Y. et al., 2023). In addition, Chicory promotes probiotic 
growth and pathogen reduction to aid UA excretion in HUA 
quail (Bian et al., 2020). Additionally, Camellia sinensis increases 
the abundance of Ruminococcus and Lactobacillus, decreases the 
abundance of Bacteroides and E. coli, and regulates UA metabolism 
in HUA mice (Wu et al., 2022). Although preclinical studies 
based on rodent models suggest that TCM and its components 

may intervene in HUA by regulating the intestinal flora and UA 
metabolism, there is still significant uncertainty regarding its 
clinical transformation. The key limitation lies in the lack of high-
quality clinical trials to verify the mechanism of action mediated 
by microorganisms. It is diÿcult to establish a causal relationship 
in multi-component compound prescriptions where specific 
components drive microbial changes and mechanically reduce 
UA. The methodological heterogeneity existing in preclinical 
studies (such as dierences in HUA induction regimens, 
administration doses/dosage forms, and microbiota analysis 
techniques) restricts the direct comparability and universality 
of the results. Furthermore, the long-term sustainability impact 
of significant baseline microbiota dierences among individuals 
on intervention responses and induced changes urgently needs 
in-depth exploration. Future research should enhance high-quality 
clinical trials, adopt uniform standards, systematically evaluate 
the impact of TCM on HUA, and take into account individual 
dierences in microbiota to formulate personalized treatment 
plans. Figure 9 demonstrates the mechanisms by which probiotics 
and TCM mitigate HUA through modulation of the gut microbiota. 

Dierent dietary patterns significantly influence the 
composition and function of gut microbiota, which in turn 
aects the management of HUA. A study has demonstrated that 
dietary patterns characterized by high intake of animal protein, 
fat, and alcohol are positively correlated with the prevalence of 
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HUA, whereas diets abundant in fruits, vegetables, legumes, and 
grains are inversely associated with HUA prevalence (Teng et al., 
2015). The key components of these dietary patterns regulate 
UA levels through specific interactions with gut microbiota and 
their metabolic outputs. For example, Western dietary patterns, 
characterized by elevated intake of saturated fats and animal 
proteins, induce dysbiosis of the intestinal flora (Huang et al., 2013). 
The microbiota characteristics of animal models induced by long-
term high-fat and high-fructose diets also support this view (Zhang 
N. et al., 2023). This dysbiosis increases intestinal permeability 
and stimulates the release of pro-inflammatory mediators (e.g., 
LPS, TNF-α, and IL-1β) and diminishes the production of SCFAs, 
particularly butyrate, which has anti-inflammatory properties and 
may enhance renal UA excretion (Chu et al., 2021; Li et al., 2021; 
Xu et al., 2021). In addition, researchers have found that SCFAs 
enhance the excretion of intestinal UA by activating peroxisome 
proliferator-activated receptor γ (PPARγ), which binds to the 
ABCG2 promoter (Adeyanju et al., 2021; Li M. et al., 2023). 
Conversely, the Mediterranean dietary (e.g., fruits, vegetables, 
nuts, whole grains, and beans) pattern, abundant in vitamins, 
minerals, polyphenols, dietary fiber, and monounsaturated fatty 
acids (MUFAs), fosters the proliferation of Bifidobacteria and 
Lactobacillus, and improve gut health by increasing the production 
of SCFAs while mitigating cells inflammatory responses lowering 
concentrations of TMAO, thus exerting a favorable eect on 
UA reduction (Chrysohoou et al., 2011; Chatzipavlou et al., 2014; 
Cariello et al., 2020; Soldán et al., 2024). Research has demonstrated 
that in hyperuricemia nephropathy rats, there was a significant 
increase in Blautia, Enterococcus, and Faecalibaculum associated 
with TMAO production. TMAO activates PI3K/AKT/mTOR 
signaling pathway, induces local inflammatory reaction in the 
kidney, aggravates kidney fibrosis, destabilizes UA transport 
proteins, and diminishes the kidney’s UA excretion capacity 
(Zhou et al., 2022). In addition, The Dietary Approaches to 
Stop Hypertension (DASH) diet, which emphasizes plant-
based foods rich in whole grains, fruits, vegetables, and low-fat 
dairy products, has been shown to significantly enhance the 
abundance of beneficial gut microbiota such as Bifidobacterium 
and Lactobacillus, while reducing the prevalence of harmful 
bacteria, including LPS-producing Enterobacteriaceae. These 
beneficial microbial populations contribute to the reduction of UA 
levels through the production of SCFAs and the inhibition of XOD 
activity (Martínez et al., 2010; Gong et al., 2018; Ashaolu, 2020; 
Aslam et al., 2020). These findings underscore the significant role of 
dietary patterns in managing HUA by modulating the composition 
and function of the gut microbiome. Furthermore, selecting diets 
rich in dietary fiber and polyphenols may aid in lowering UA levels 
and alleviating symptoms in individuals with HUA. 

4.2.4 Quadruple-axis synergistic regulation of 
uric acid homeostasis by gut microbiota 

Timeline visualization analysis revealed that “liver,” “kidney,” 
“gut-kidney axis,” etc. have also been research hotspots in 
recent years. It has attracted much attention in recent years 
that the gut microbiota, through a multi-dimensional network 
composed of four axes including gut-kidney, gut-liver, gut-
joint, and gut-brain, collaboratively regulates UA homeostasis 
in distant organs. On the gut-kidney axis, probiotics (such 

as L. rhamnosus) directly upregulate colonic UA transporters 
(such as ABCG2), accelerating UA excretion to reduce blood 
UA (Wang H. et al., 2024). Its metabolites, SCFAs, indirectly 
maintain UA balance by strengthening the intestinal barrier and 
inhibiting the TLR4/NLRP3 inflammatory pathway (Bi et al., 2024; 
Wang Q. et al., 2024; Lv et al., 2025). In the gut-liver axis, 
specific strains (Lactobacillus reuteri and Lactobacillus johnsonii) 
also promote UA excretion by enhancing barrier function and 
transporter protein expression, while further reducing blood UA 
by utilizing purine metabolism and using UA as a carbon source 
(Kasahara et al., 2023; Hussain et al., 2024; Han et al., 2025). The 
combination of probiotics with ursolic acid and oleanolic acid 
can reshape the structure of the microbiota, synergistically inhibit 
liver inflammatory pathways, and optimize UA metabolism (Ma 
et al., 2020). On the gut-joint axis, the barrier disruption mediated 
by TLR4/NLRP3 inflammation hinders UA excretion, while 7-
ketocholic acid promotes epithelial repair by inhibiting FXR (Li 
et al., 2024; Wang Q. et al., 2024). Probiotics enrich Lactobacillus 
and Faecalibacterium through tryptophan metabolism, enhance the 
UA transport function of the colon, and indirectly reduce the risk 
of hyperuricemia. The gut-brain axis enhances the barrier through 
strains such as L. reuteri, upregulates the production of ABCG2 
and SCFAs, transmits signals to the central nervous system via 
the vagus nerve, and regulates the synthesis and excretion of UA 
(Cryan et al., 2019; Wang et al., 2020; Hussain et al., 2024). In 
conclusion, the collaborative network of microbiota, metabolites, 
transport proteins, and distal organs provides a new microbiogenic 
intervention strategy for hyperuricemia. 

4.3 Strengths and limitations 

As the first thorough systematic bibliometric analysis of the 
gut microbiota and HUA, our work oers a wealth of insights 
and directions for academic investigators and clinical professionals 
alike. However, this study has the following limitations. Firstly, 
the research data were sourced solely from the WOS and 
PubMed databases, possibly resulting in incomplete data and 
outcomes. Secondly, as the bibliometric analysis tool of this study 
relies primarily on English literature, it may neglect non-English 
literature, potentially impacting a comprehensive understanding 
of global research activities. Thirdly, existing research shows that 
dierences influence variations in gut microbiota characteristics 
among HUA patients in study subjects, sample sizes, detection 
methods, geographic locations, and dietary habits. The gut 
microbiota composition in animal models of HUA varies, likely 
due to dierences in animal types and preparation methods. 
These variations may lead to inadequacies in concluding. Finally, 
bibliometric analysis needs to keep pace with actual research 
activities, and the updating of citation data takes time, potentially 
resulting in inadequate responsiveness to emerging research 
areas or hot topics. 

5 Conclusion 

In this extensive bibliometric analysis, we employed CiteSpace, 
VOSviewer, and Bibliometrix to systematically analyze a substantial 
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corpus of research concerning HUA and the gut microbiota. 
Overall, our research has revealed four important research hotspots 
in this field, including microbiota characteristics, probiotic therapy, 
microecological intervention, and the gut-distal target organ axis. 
The focus of emerging hotspots is on dietary supplementation, 
microbiota transplantation treatment strategies, and extensive 
research on the organ axes discussed above. Moreover, although 
the modulation of the gut microbiota to improve HUA and 
its related diseases shows great potential, there are still some 
shortcomings in understanding broader mechanisms, long-term 
eects, and clinical applications. Future research should consider 
conducting large-scale, long-term clinical trials to assess the eÿcacy 
and safety of dierent microbiome therapies and utilize multi-
omics technologies (including but not limited to proteomics and 
transcriptomics) to explore a wide range of molecular mechanisms 
to address these gaps. 
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