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and genomic traits of cryophilic
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isolated from cold-arid Antarctic
mineral soils
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Arthrobacter are commonly isolated from cold soil environments globally, including
those that regularly reach sub-freezing temperatures, suggesting that Arthrobacter
have significant potential for growth and activity under temperature and stress
extremes. Arthrobacter agilis strain Ant-EH-1 was isolated from nutrient-poor,
cold-arid mineral soils from Elephant Head, Antarctica and its growth and activity at
sub-freezing temperatures were characterized in this study. We observed different
optimal temperatures for cell division compared with aerobic heterotrophic respiration
in A. agilis Ant-EH-1. Cell division was observed from at least —5 °C to 30 °C, with
the optimal (fastest) growth rate occurring at 25 °C. Microbial respiration was
measured from =5 °C to 30 °C with optimal (maximum CO, produced) respiration
occurring at 5 °C. Cold temperature optima of respiration compared with cell
division could be indicative of adaptation to the cold and oligotrophic conditions
of Elephant Head, where increased cell division under in situ conditions could
lead to competition within the nutrient-poor soil matrix. The genome of A. agilis
Ant-EH-1 was consistent with observations of cold-adapted activity and included
genes related to cold stress, osmotic and oxidative stress, pigment biosynthesis,
and potential scavenging of components from necromass. Microscopy revealed
morphological differences in this isolate at sub-freezing temperatures, likely due to
membrane or lipid modifications. Currently there are a limited number of organisms
in culture that are capable of sub-zero growth, so characterisation of the growth
and activity of subfreezing adapted microbiota is critical for understanding the
ecology of Earth’'s cryosphere, has broad biotechnological potential, and can
also give insight into the limits for life on our planet or the potential for life on
other cold planetary bodies.
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Introduction

Arthrobacter species have been isolated from a broad variety of
environments including soil (Lee et al., 2003), food (Irlinger et al.,
2005), paintings (Heyrman et al., 2005), human clinical specimens
(Mages et al., 2008; Funke et al., 1998; Hou et al., 1998), sea water
(Chen et al., 2009), air (Li et al., 2004), ice (Liu et al., 2018; Kumar
etal, 2015; Margesin et al., 2004), glacier cryoconites (Margesin et al.,
2012), sub-glacial lakes (Singh et al., 2016), and Antarctic marine and
lake sediment (Pindi et al., 2010; Chen et al., 2005; Reddy et al., 20005
Han et al, 2021). They are frequently isolated from extreme
environments including the Antarctic and have a well-documented
tolerance to cold temperatures globally (Pindi et al., 2010; Reddy et al.,
2000; Dsouza et al., 2015; Gupta et al., 2004; Junge et al., 1998; Wang
et al., 2009; Reddy, 2002; Cho et al., 2019; Vodickova et al., 2022;
Mulkhia et al., 2021). Elephant Head, located in Ellsworth Land,
Antarctica, contains dry, ice-free soils and year-round sub-zero
temperatures. Previous microbial activity (acetate mineralization)
assays on soils from Elephant Head demonstrated that some, but not
all, soils contained microbiota that could be active at the sub-zero
conditions experienced in situ (Wood et al., 2024). Twenty-one
bacterial isolates were previously cultivated from dry permafrost soils
at Elephant Head as described in (Wood et al., 2024), with Arthrobacter
the most prevalent genus, comprising seven of the 21 cultivated
isolates. In this follow-up study, in order to determine whether these
cultivated organisms are genetically adapted to the cold, and capable
of activity in situ in the extreme Elephant Head environment, one
Arthrobacter isolate capable of sub-zero growth (=5 °C) was chosen
for further characterization of its cold adaptive capabilities and
genomic traits.

Methods
Isolation and characterization

Arthrobacter agilis strain Ant-EH-1 was isolated from cold, dry
surface soils collected from Elephant Head, Ellsworth Land, Antarctica
(79°49.106’S 83°18.139 W). The average summer atmospheric
temperature in Elephant Head is —10.3 °C, with a yearly average of
—20.3 °C (McKay et al., 2019). Surface soils where A. agilis Ant-EH-1
was isolated from (“Site 1,” 0-10 cm depth), warm above 0 °C for only
a few hundred hours during the year (an estimated ~500 h based on
“Site 3” located 0.3 km away). Moisture content of the soils is less than
0.5%. Total organic carbon and nitrogen content is low (<0.07 and
0.007%, respectively; Wood et al., 2024).

Dry soil from Elephant Head was added to 1.5 mL of liquid media
Reasoner’s 2A broth (R2B), incubated for 1 week at 15 °C, and then
spread plated onto Reasoner’s 2A agar (R2A). The plate was incubated
at 15 °C for an additional week. Pink-coloured colonies of A. agilis
Ant-EH-1 were streaked for isolation and growth was characterized
on R2A agar and in R2B liquid media at —10, -5, 0, 5, 15, 25, 30, and
37 °C. Growth in liquid media was measured via optical density (OD)
at 600 nm using a spectrophotometer. Growth rate was calculated as
the change in OD over time during the exponential phase of growth.
Growth was also characterized on half strength and 1/10th strength
R2A as well as on R2A agar plates amended with NaCl (5, 8, and 10%)
at 15 °C to examine the salt tolerance of the isolate.
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Acetate mineralization radiorespiration
assay

Acetate mineralization by isolate A. agilis Ant-EH-1 was evaluated
by a radiorespiration assay using radiolabeled acetate (1,2-'*C) as a
carbon substrate. Microcosms were set up in 20 mL serum vials in
triplicate with triplicate autoclaved negative controls. Each 5 mL
volume microcosm contained: 4860 uL R2B media; 20 ulL 1,2-"*C
acetic acid (0.043 pCi (~95,000 disintegrations per minute, dpm));
20 pL of unlabelled acetic acid (3.75 M); and 100 uL of 5.45x106 CFU/
mL of A. agilis Ant-EH-1 liquid culture in R2B. Each microcosm also
contained a vial of 0.5 mL 1 M potassium hydroxide (KOH) as a
carbon dioxide trap. Sterile media (100 uL R2B) was added to negative
controls to give the same final volume to all incubations. Microcosms
were incubated at 30, 25, 15, 5, 0, and —5 °C. Measurements of KOH
radioactivity (correlating with CO, released) were taken periodically
by liquid scintillation spectrometry on a Beckman Coulter (CA, USA)
LS 6000SC and percent mineralization calculated as in Wood et al.
(2024) and Goordial et al. (2016a).

DNA extraction and sequencing

Arthrobacter agilis Ant-EH-1 was grown on R2A at 15 °C for
1 week. Isolated colonies were suspended in 750 pL of Powerbead
solution from the Qiagen DNeasy PowerLyzer PowerSoil kit and DNA
extraction followed manufacturers protocol. DNA was eluted with
100 pL of DNAse-free water. Library preparation was completed using
the Oxford Nanopore Rapid Sequencing Kit (SQK-RADO004) for use
with the flongle flow cell following manufacturers protocol (Oxford
Nanopore Technologies). A. agilis Ant-EH-1 DNA was loaded into
three flongle flow cells and three replicate 24-h sequencing runs were
carried out. High accuracy base calling was used for the first run and
fast base calling was used for subsequent runs.

Genome analysis for adaptive traits

Sequence data from three sequencing reactions were concatenated
together for assembly and analysis. Assembly was performed using
Canu (v 2.2) (Koren et al., 2017). Genes were annotated using Prokka
(v 1.14.6) (Seemann, 2014) and GhostKOALA (Kanehisa et al., 2016).
Completeness of metabolic pathways was visualized with KEGG
Decoder (Graham et al, 2018). Additional gene prediction and
functional annotation was performed within the Integrated Microbial
Genomes (IMG) platform developed by the Joint Genome Institute,
Walnut Creek, CA, USA (Markowitz et al., 2009). The complete
genome sequence of strain A. agilis Ant-EH-1 is available for public
access on the Joint Genome Institute Integrated (JGI)
Microbial Genomes & Microbiomes (IMG) under Gold Study ID:
Gs0160646. The 16S rRNA gene was amplified using PCR (primers
27F - 5-AGAGTTTGATCCTGGCTCAG-3" and 1492R - 5-TACG
GYTACCTTGTTACGACTT - 3’) and Sanger sequenced at The
Centre for Applied Genomics, Toronto, Canada. The Classifier tool of
the Ribosomal Database Project (RDPII) v 2.13 (Wang et al., 2007)
and the NCBI GenBank database were used to identify the isolate. The
sequence can be found on NCBI GenBank under accession number
0Q383637.
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Scanning electron microscopy

Three A. agilis Ant-EH-1 liquid cultures grown in R2B were
harvested for visualization with scanning electron microscopy
(SEM): (1) growth at —5 °C for 16 months with visible flocculation
(ODggo = 1.13); (2) growth at 5°C for 16 months with no
flocculation (ODgy = 1.57); (3) growth at 25 °C for 1 month with
flocculation (ODgy = 1.4). Cultures were grown at —5 °C and 5 °C
for extended periods to reflect the incubation period of the acetate
mineralization assay and obtain sufficient biomass for
SEM. Cultures were diluted in R2B to an ODg, of 1.0, and 1.5 mL
of each diluted culture was centrifuged at 4,000 rpm for 4 min.
Cultures without flocculation did not produce a visible pellet after
initial centrifugation and were additionally centrifuged at
10,000 rpm for 4 min. Harvested cells were washed twice in
(35mM K,HPO, and NaH,PO,) with
centrifugation for 4 min at 4,000 rpm for cultures with flocculation

phosphate buffer

and 10,000 rpm for cultures without flocculation. Washed pellets
were resuspended in 400 pL of phosphate buffer, of which 200 pL
was placed on a carbon planchet and incubated for 30 min to allow
cell adhesion. After adhesion, planchets were gently submerged in
0.075% ruthenium red and 2.5% glutaraldehyde in 100 mM HEPES
pH 7.3 for 30 min to fix cells, then washed once in 100 mM HEPES
pH 7.3 and twice in MilliQ water. Cells were then dehydrated by
submerging the planchets sequentially in 50, 70, 80, 90, 100%, and
a second round of 100% ethanol for 10 min each, followed by
drying with a Denton DCP-1 Critical Point Dryer (NJ, USA).
Planchets were then mounted on pin stubs with double-sided
carbon tape and coated in gold with a Denton Desk V TSC sputter
coater. Cells were imaged on a FEI Quanta FEG 250 SEM (OR,
USA) at the University of Guelph Molecular and Cellular Imaging
Facility (ON, CA).

10.3389/fmicb.2025.1620620

Results and discussion

Growth and activity characteristics of
Arthrobacter agilis Ant-EH-1

Arthrobacter agilis strain Ant-EH-1 grew on R2A media forming
bright pink, circular colonies on plates, and pink colouration in liquid
R2B media (Figure 1) and was capable of growth from —5 °C to 30 °C
on solid and liquid media. Optimum (fastest) growth rate based on
optical density occurred at 25 °C (Figure 1) in R2B media, a common
nutrient media for growth of oligotrophic organisms. This optimum
temperature is similar to other Arthrobacter isolates from polar
environments (Supplementary file 1). A. agilis Ant-EH-1 was capable
of growth at lower nutrient concentrations (two and ten-fold diluted
R2A), and maintained its viability in culture after 1 year (e.g., could
be re-streaked from R2A plates incubated at —5°C for 1 year)
indicating its ability to survive long periods of time at sub-zero
temperatures without the input of new nutrients. A. agilis Ant-EH-1
was previously observed to be halotolerant, capable of growth in
media supplemented with up to 8% NaCl (Wood et al., 2024), like
many other cryophilic organisms capable of sub-zero growth
(Goordial, 2021). Halotolerance is thought to be needed by microbiota
for activity and survival in permafrost, as solutes are concentrated into
brine veins at subfreezing temperatures.

Heterotrophic respiration of acetate was detected at all
temperatures tested from —5 °C to 30 °C (Figure 2A). By day 100 of
the incubation, 5 °C surpassed all warmer temperatures tested in total
percent acetate mineralized. Temperatures below 5 °C demonstrated
lag phases that were 50-80 days in length compared with warmer
temperatures which had short to no lag phase observed. Total acetate
respired in incubations at warmer temperatures (>5 °C) plateaued
quickly (day 15-40) compared to 5 °C which did not plateau by the
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FIGURE 1
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(A) Growth rate (h™!) of Arthrobacter agilis strain Ant-EH-1in R2A from 30 °C to -5 °C based on optical density measurements (600 nm).
(B) Arthrobacter agilis strain Ant-EH-1 colonies grown on R2A plate (top) and in liquid R2B (bottom).
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(A) Microbial activity assessed by the mineralization of radiolabeled acetate (1,2-C) to carbon dioxide (CO,) by Arthrobacter agilis strain Ant-EH-1.
Measurements are cumulative. Dashed lines show negative controls (sterile R2A media). Error bars show standard deviation of triplicate incubations.
Inset shows activity to day 466. (B) Cumulative percent mineralization of radiolabeled acetate to carbon dioxide by A. agilis Ant-EH-1 after 466 days.
Background levels in negative controls were subtracted from corresponding samples.

end of the experiment after 466 days (Figure 2A), inset. The highest
cumulative percent mineralization of acetate occurred at 5 °C (45%),
compared with all other temperatures tested (Figure 2B). The second
highest acetate mineralization was observed at 0°C with 5.6%
mineralization.

Arthrobacter genera have been cultivated from several Antarctic
environments, and many are capable of growth at cold temperatures
(0 to 5 °C) (Pindi et al., 2010; Chen et al., 2005; Reddy et al., 2000;
Dsouza et al., 2015; Gupta et al., 2004; Wang et al., 2009; Reddy, 2002;
Vodickova et al., 2022; Fong et al., 2001; Aislabie et al., 2013; Shen
et al, 2021). Arthrobacter agilis Ant-EH-1 was closely related
(similarity based on 16S rRNA gene) to other Arthrobacter from cold
environments, including Antarctica (Supplementary Figure S2). To
the best of our knowledge this is the first time that cell division has
been documented via optical density for an Arthrobacter species at
sub-zero temperatures as low as —5°C. Prior studies stopped
cultivation attempts at 4, 0 °C or —1 °C (Supplementary file 1), thus
it is possible these isolates could be capable of cell division at lower
temperatures. One prior study confirmed that an Arthrobacter species
was capable of activity (measured via carbon dioxide production)
down to —17 °C (Panikov and Sizova, 2006). A. agilis Ant-EH-1 had
a maximum growth rate at 25°C based on optical density
measurements but showed significantly higher levels of activity at
5°C based on radiorespiration assays. A. agilis Ant-EH-1 could
be classified as a eurypsychrophile based on its ability to grow from
—5 °C to 30 °C with a maximum growth rate above 20 °C (Raymond-
Bouchard et al., 2018; Cavicchioli, 2016). Eurypsychrophiles can
grow across a broad range of temperatures (temperature max > 30 °C,
min below 0 °C) and have optimum growth rates around 20 °C
(Raymond-Bouchard et al., 2018; Cavicchioli, 2016). However, fast
growth rate at warmer temperatures does not necessarily indicate that
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these conditions are preferred by A. agilis Ant-EH-1. As suggested by
Cavicchioli (2016) fast growth is not always better, especially in
oligotrophic conditions such as those that exist in Elephant Head
soils. Differences in activity and OD measurements suggests that
A. agilis Ant-EH-1 employs different growth strategies at different
temperatures. At warm temperatures it shows a rapid increase in
activity and OD which plateaus quickly. At colder temperatures
A. agilis Ant-EH-1 shows a slower initial increase in activity but then
is able to sustain an active population for longer. Future
transcriptomic analysis could help to determine if there is a different
growth strategy employed at cold temperatures versus the slowed
rates being a result of slowed kinetic reactions. This was demonstrated
previously in transcriptomic studies of Psychrobacter sp. which found
that it shifted from a fast-growing state at warmer temperatures
(6-22 °C) to a resource efficiency state at cold temperatures (<4 °C)
via downregulation of genes involved in energy metabolism (e.g.,
electron transport chain, TCA cycle) and biosynthesis (e.g., amino
acid, nucleotide, ribosome, peptidoglycan synthesis) and upregulation
of RNases and peptidases indicating a growth control response
(Bergholz et al., 2009).

Cell envelope characteristics of A. aqgilis
Ant-EH-1 across a temperature gradient

As the A. agilis Ant-EH-1 genome contained genes associated
with cold-adaptive membrane and cell wall modifications, cultures
grown at —5, 5, and 25 °C were visualized with SEM to identify
potential temperature-dependent changes to the cell envelope. At all
temperatures, cultures contained aggregated cells coated in
extracellular polymeric substance (EPS)-like material (Figure 3). EPS
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FIGURE 3
SEM images of A. agilis Ant-EH-1 grown at (A) 25 °C; (B) 5 °C; (C) -5 °C

have an array of functions in mediating cell--environment interactions,
including formation of biofilms and aggregates and protection against
environmental stressors (Costa et al., 2018). They are proposed to act
as a cryoprotectant by limiting ice crystal formation and lowering the
freezing point of water, among other potential mechanisms (De
Maayer et al., 2014). Elevated EPS production at low and sub-zero
temperatures has been observed in psychrophilic and psychrotolerant
bacteria (Marx et al., 2009; Caruso et al., 2018), including A. agilis
strain L77, a psychrotroph isolated from a subglacial lake (Singh
etal., 2016).

Cells grown at 5 °C and —5 °C had nodule-like features partially
(5 °C) or completely (=5 °C) covering the cell envelope (Figure 3),
which may indicate cell wall modifications associated with cold
adaptation. For example, dense nodular encrustations were observed
in the psychrophile Planococcus halocryophilus Orl grown at —15 °C
as a result of peptidoglycan accumulation and calcium carbonate
biomineralization (Mykytczuk et al., 2016). The genes associated
with these accumulations in P. halocryophilus, peptidoglycan
synthase (ftsI) and carbonic anhydrase (cab), were both identified in
the A. agilis Ant-EH-1 genome. While the prominence of these
nodules at —5 °C compared to 5 °C suggests a role in cold adaptation,
it is unconfirmed whether these features were exclusive to A. agilis
Ant-EH-1 grown at cold temperatures as thick EPS matrices at 25 °C
may have obscured surface features. Additional transcriptomic and
microscopic analyses are warranted to further investigate potential
cold adaptive strategies.

Frontiers in Microbiology

General genome characteristics and cold
adaptive and stress response genes in
Arthrobacter agilis Ant-EH-1

The Arthrobacter agilis Ant-EH-1 complete draft genome is
3,764,186 bp in length with 68.04% GC content. There were 5,935
protein encoding genes predicted, of which 3,236 were assigned a
predicted function and the remaining annotated as hypothetical
proteins (Table 1). Consistent with other psychrophiles and cryophiles
the organism had genomic traits associated with cold adaptation,
stress response, and DNA repair. While many of the genes and
pathways are found in non-extremophilic organisms as well, these
traits have been identified as being important in cryophiles and they
are often present in multiple copies, or with redundant pathways as
described below.

Cold and stress response

The Arthrobacter agilis Ant-EH-1 genome contains genes that
facilitate general stress response (universal stress proteins, Kvint et al.,
2003) as well as genes that facilitate cold adaptation via osmotic
tolerance, oxidative stress, membrane and cell wall alterations,
carotenoid biosynthesis, and DNA repair (Table 2; Supplementary
materials). Coding regions for cold shock protein (cspA) were present
in the genome. CspA can act as RNA chaperones and help with
unfolding misfolded proteins and preventing misfolding during and
after cold shock (Gottesman, 2018; Zhang and Gross, 2021). A. agilis
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TABLE 1 Genome features of Arthrobacter agilis strain Ant-EH-1.

Attribute Value

Genome size (base pairs) 3,764,186

Protein coding bases 3,163,122 (84.03%)

G + C content 2,561,211 (68.04%)

Scaffold count 6
No. of genes 6,015
Total predicted protein coding genes 5,935
rRNA genes 11
16S rRNA 3
tRNA genes 46
Protein coding genes with predicted 3,236
function

Protein coding genes without predicted 2,699

function

Ant-EH-1 also has coding sequences for a variety of other chaperone
proteins which can assist with protein folding under stressful
conditions (cIpB, dnaJ, dnaK) (Alam et al., 2021; Maillot et al., 2019).

In dry permafrost environments, water activity is low because
aridity and freezing temperatures maintain any water present as
vapour or ice. Liquid water present under these conditions may
be due to porosity and mineral substrate composition, as well as the
presence of solutes. Solutes will become concentrated in liquid water
films and pockets present at sub-zero temperatures in the soil
matrix, resulting in high solute concentrations which bind to water
molecules and further reduce water availability for use by
microorganisms (Devoie et al., 2024). One of the most well
understood adaptations to osmotic stress is the accumulation of
compatible solutes, or small organic molecules within the cell which
help to maintain turgor pressure, depress the freezing point of
intracellular water to prevent ice crystal formation, and prevent
protein aggregation (Chattopadhyay, 2002; Chin et al., 2010; Roberts,
2005). Genes for the import or synthesis of compatible solutes
glycine betaine, proline, and trehalose were present (glycine betaine
transport related genes [betL, opuD, opuCB, gbuA), proline/betaine
transporter (opuAC), trehalose synthase (treS, treZ, treY)] (Table 2).
Inorganic cations including sodium (Na*) and potassium (K*) ions
can become toxic to the cell if accumulated to high concentrations.
A. agilis Ant-EH-1 contains genes for Na+/K + antiporters (nhaA,
nhaP, nhaD, mnhABCDEF) which transport Na + and K + out of the
cell and uptake H* in order to maintain intracellular pH and cell
volume while avoiding cytotoxic Na*/K* accumulation (Vimont and
Berche, 2000; Bremer and Kramer, 2019; Padan and Schuldiner,
1994; Padan and Schuldiner, 1994).

Metabolism and adaptations for growth in
oligotrophic conditions

Carbon utilization and storage

Arthrobacter agilis Ant-EH-1 carries out aerobic heterotrophic
growth. Its genome encodes for complete glycolysis, pyruvate oxidation,
tricarboxylic acid (TCA) cycle, and oxidative phosphorylation
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TABLE 2 Cold adaptation and stress response genes present in the
Arthrobacter agilis strain Ant-EH-1 genome.

Gene Number of CDS?

Cold shock and general stress

Cold Shock Protein (cspA) 3
Universal stress protein 10
Chaperone proteins (clpB, dnaj, dnaK, surA) 3,2,4,1
SOS-Response Transcriptional Repressor (lexA) 2
Osmotic stress

Sodium/proton antiporter related genes (nhaA, 2,3,1,1,2
subunit A, subunit C, subunit D, nhaG)

Potassium/proton antiporter related genes (subunit 1,3,2
khtT, yhaU, nhaP2)

Osmoprotectant import ATP-binding protein (osmV) 2
Glycine Betaine ABC-Type Transporter (betL, opuD, 1,1,1,1
opuCB, gbuA)

Proline/betaine transporter 2
Osmoregulated proline transporter (opuE) 2
Oxidative stress

Superoxide dismutase [Mn] 2
Catalase 3
Lipoyl- Dependent Peroxiredoxin (osmC) 1
Putative Peroxiredoxin 2
Glutaredoxin-Like Protein (nrdH) 1
Thioredoxin 1 (trxA) 6
Thioredoxin Reductase (trxR) 2
Peptide Methionine Sulfoxide Reductase (msrA/msrB) 2
Mycothiol Acetyltransferase 4
Organic hydroperoxide resistance related genes 2
Membrane/cell wall alterations
3-Oxoacyl-[Acyl-Carrier-Protein] Synthase I, II, III 2,51
3-oxoacyl-[acyl-carrier-protein] reductase (fabG) 8
All-trans-phytoene synthase/15-cis-phytoene synthase 2
Carotenoid Biosynthesis

15-cis-phytoene synthase 2
Bisanhydrobacterioruberin hydratase 1
Dolichol-phosphate mannosyltransferase 1
DNA repair

DNA Replication and Repair Protein (recN, recE, recO) 4,2,2
Excinuclease ABC Subunit A, B, C (uvrA, uvrB, uvrC) 7,2,3
ATP-Dependent DNA Helicase uvrD/pcrA 9
Deoxyribodipyrimidine Photo-Lyase (phr, phrl) 1
A/G - Specific Adenine Glycosylase (mutY) 1
Formamidopyrimidine-DNA Glycosylase (mutM, fpg) 1
DNA-3-Methyladenine Glycosylase I (tagl) 1
Methylated-DNA-[Protein]-Cysteine 2
S-Methyltransferase (ogt)

*CDS, coding sequences.
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TABLE 3 Nutrient stress genes present in the Arthrobacter agilis strain
Ant-EH-1 genome.

Gene Number of CDS

Carbon utilization

Galactose degradation (galM, galK, galT, galE) 3,3,1,3%
Glycogen degradation (glgP, malQ, glgX, pgm) 2,2,2,1%
Trehalase 3
Chitinase A1 1
Bifunctional chitinase/lysozyme 2
Carbon starvation protein 4
Carbon storage

Amylosucrase 3
Polyphosphate kinase 5
Polyphosphate glucokinase 2
Trehalose synthesis (treS, treX, treY, treZ) 4,2,3,3
Glycogen synthesis (glgA, glgB, glgC) 1,33

CDS, coding sequences, * indicates a complete pathway.

pathways, as well as a near-complete pentose phosphate cycle pathway
(1 enzyme missing, transaldolase) (Table 3), though as this is a draft
genome it is unclear whether this pathway is truly incomplete or
instead reflects genome incompleteness. The A. agilis Ant-EH-1
genome also encodes for a complete glyoxylate shunt pathway
(isocitrate lyase, AceA; and malate synthase, GIcB). The glyoxylate shunt
bypasses the release of carbon dioxide (CO,) during the TCA cycle and
may help conserve carbon in limiting environments. It was previously
also identified in a bacterial isolate from nutrient-poor dry permafrost
soils in University Valley, Antarctica where it was thought to help with
carbon conservation in ~150,000-year-old permafrost (Goordial
et al., 2016b).

The A. agilis Ant-EH-1 genome contains coding sequences for the
degradation of a variety of carbon compounds including a complete
gluconeogenesis pathway, complete pathways for galactose and glycogen
degradation, chitinases (chitinase Al, and bifunctional chitinase/
lysozyme) for degradation of chitin and peptidoglycan, and trehalase for
trehalose degradation (Table 3). Genetic traits associated with the ability
to use carbon substrates derived from the degradation of cellular material
(e.g., necromass components) were found to be a major component of
the community metagenome in Elephant Head, Antarctica, soils from
which A. agilis Ant-EH-1 was isolated (Wood et al., 2024). The isolate
also has coding sequences for carbon starvation protein (cstA) which has
been shown to regulate the cAMP-CRP-dependent carbon starvation
response (Schultz and Matin, 1991). Genes for trace gas metabolisms of
atmospheric hydrogen, carbon monoxide, and methane were not found
within the genome (Leung and Greening, 2020; Bay et al., 2021).

A. agilis Ant-EH-I contains genes to synthesize compounds such
as trehalose, glucan, glycogen, and polyphosphates (Table 3), which
can be used for carbon and energy storage to enable survival in
oligotrophic conditions. Other Antarctic Arthrobacter species are
known to store carbon as glycogen (Dsouza et al., 2015). Trehalose
may additionally serve as a protectant against numerous stressors
including cold and desiccation, as well as a reserve of carbon (Dsouza
et al., 2015; Elbein et al., 2003; Chen et al., 2011).

Frontiers in Microbiology

10.3389/fmicb.2025.1620620

Conclusion

Arthrobacter agilis strain Ant-EH-1 is capable of cell division at
—5°C and has an optimum growth temperature of 25 °C. Though
optimal cell division occurs at 25 °C, the highest amount of microbial
respiration (activity) was measured at 5°C. Its cold-active
physiological traits were consistent with genome composition which
encodes for functions related to cold adaptation including cold shock
proteins, molecular chaperones, compatible solute transporters,
oxidative stress response genes, and carotenoid biosynthesis genes.
A. agilis Ant-EH-1 is also adapted for survival in oligotrophic
conditions as demonstrated by genomic traits and its growth on low
nutrient media (ten-fold diluted R2A). Its genome contains coding
sequences for the catabolism of a variety of carbon compounds
including components of cell walls from necromass. Its genome also
contains genes for the synthesis of carbon and energy storage
molecules such as trehalose, and polyphosphates. The ability of
A. agilis strain Ant-EH-1 to divide and be active at —5 °C supports
that the cold dry soils of Elephant Head contain viable microbial life
which may be active in their environment, despite the difficulty in
detecting such life in bulk soil analyses.
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