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Microbes of diverse sizes and classifications collaborate to mediate a variety 
of biogeochemical processes. Although seasonal fluctuations in environmental 
variables generally influence microbial community dynamics, our comprehension 
of interdomain microbial co-occurrence patterns remains incomplete. Here, 
we analyzed high-throughput sequencing datasets of bacteria, pico-protists (0.8–
2 μm) and nano-protists (2–20 μm), and their seasonal changes in coastal marine 
ranching ecosystems. Our findings revealed that, in terms of trophic groups, pico-
protists predominantly comprised parasites, whereas nano-protists had a higher 
proportion of mixotrophs. Microbial communities shifted with seasona, mainly in 
response to temperature, dissolved oxygen, and salinity. Interdomain microbial 
networks showed the highest robustness and information transfer efficiency in 
autumn. This pattern was linked not only to environmental conditions but also to 
how specialized the protist communities became during that time. The seasonal 
harvesting of seaweed and stages of fish farming may have contributed to these 
changes. Our findings suggest that both natural seasonal cycles and mariculture 
activities together shape how microbial species interact, potentially affecting 
ecosystem stability and function.
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1 Introduction

Bacteria and protists constitute the bulk of the marine biomass and mediated a variety of 
fundamental biogeochemical cycles (Pace, 1997; Landry and Schroer, 2019; Bachy et al., 2022). 
Advances in molecular biology have greatly enhanced our understanding of marine microbial 
diversity and the environmental factors shaping community composition (Kirkham et al., 
2013; Sommeria-Klein et al., 2021). Bacteria are extremely abundant and diverse, and some 
taxa show distinct habitat preferences (Zinger et al., 2011; Flemming and Wuertz, 2019). 
Multigene phylogenies have divided protists into multiple supergroups, some exhibiting 
distinct geographic distribution patterns and variations in cell sizes (Baldauf, 2003; Massana, 
2011; Sommeria-Klein et al., 2021). Based on cell size, protists subdivide into pico-protists (< 
2 μm) and nano-protists (2–20 μm) (Sieburth et al., 1978; Caron et al., 2017). Pico-protists 
were considered to be predominantly phototrophic, with heterotrophic taxa accounting for 
only 20–30% of the abundance (Jürgens and Massana, 2008). Nano-protists have diverse 
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trophic modes and are key links in the food web, influencing the 
marine carbon cycle (Worden et  al., 2015). Interactions such as 
predation, competition, parasitism, and symbiosis occur among 
microorganisms across different sizes and taxonomic groups (Azam 
and Malfatti, 2007; Worden et  al., 2015; Caron et  al., 2017). 
Understanding and characterizing their diversity and co-occurrence 
patterns is essential for deciphering how these intricate microbial 
communities respond to environmental changes and contribute to 
broader ecosystem dynamics (Edwards and Richardson, 2004; Azam 
and Malfatti, 2007; Cavicchioli et al., 2019).

Species co-occurrence is primarily shaped by biological 
interactions, environmental filtering, and dispersal constraints (Berry 
and Widder, 2014). Ecological networks are the fundamental tools for 
exploring microbial co-occurrence patterns in ecosystems, which can 
identify potential interactions among organisms, detect keystone 
species, and pinpoint core components in ecosystems (Fuhrman, 2009; 
Fuhrman et al., 2015; Röttjers and Faust, 2018). Previous studies have 
revealed distinct differences between bacterial and eukaryotic network 
structures within the same environment, with some exhibiting even 
opposing responses to identical environmental changes (Zhu W. et al., 
2022; Chen et al., 2023). Thus, incorporating interdomain microbes 
and analyzing networks across multiple size fractions is vital for 
accurately assessing environmental influences on microbial 
co-occurrence patterns (Xue et  al., 2022; Shekarriz et  al., 2023). 
Currently, most network analysis tools were based on correlation 
methods, and study sample sizes were typically in the tens to hundreds, 
which might lead to spurious results (Friedman and Alm, 2012; Kurtz 
et al., 2015). The SPIEC-EASI (SParse InversE Covariance Estimation 
for Ecological Association Inference) algorithm, designed for 
amplicon sequencing data, employs sparse neighbor and inverse 
covariance selection techniques to improve the reliability of microbial 
ecological network inference and offer a more precise understanding 
of microbial community co-occurrence patterns (Kurtz et al., 2015).

Environmental filtering shapes microbial communities through 
both abiotic factors—such as temperature, salinity, and nutrient 
availability—and biotic factors, including the diversity and abundance 
of predators (such as nano-protists) and prey (such as bacteria and 
pico-protists) (Moran, 2015; García-Comas et al., 2016; Yang et al., 
2018; Sommeria-Klein et al., 2021; Guo et al., 2023). Microorganisms 
respond differently to environmental changes and are therefore 
classified as either habitat generalists, which adapt to flexibly to 
environmental fluctuations, or habitat specialists, which occupy 
narrow niches (Kneitel and Chase, 2004; Muller, 2019). Niche-based 
assessment contributes to disentangling microbial community 
co-occurrence patterns and better predicts ecosystem fate (Muller, 
2019). Recent findings indicated that microbial generalists act as 
keystone species supporting and connecting the anthospheric 
microbiome (Kim et al., 2025). Conversely, studies on sediments and 
bays suggested that specialists play a greater role in maintaining the 
stability of microbial co-occurrence networks (Mo et al., 2021; Yan 
et  al., 2022). A study on co-occurrence networks was shown that 
generalists and specialists had similar degrees of connections, 
indicating that both groups were important for network robustness 
(Xu et al., 2022). Nevertheless, it remains unclear whether generalists 
or specialists contribute more to the stability of co-occurrence patterns.

To decipher the co-occurrence pattern of multiple sized-
fractionated microbial communities, we conducted a study in Sansha 

Bay, Fujian Province, China. Sansha Bay is a semi-enclosed, bay-type 
marine ranching with a about 2.9-km outlet, featuring a polytrophic 
mariculture system that includes cage farming and algae cultivation. 
The culture pattern showed a distinct seasonality. Cage culture was 
mainly for large yellow croakers (Larimichthys crocea), with juveniles 
generally reared in nets in the spring and autumn of annually. Algae 
culture mainly consists of kelp (Saccharina japonica), cultured from 
December to May, and seaweed (Gracilaria lemaneiformis), cultured 
year-round. The waters are often in eutrophic conditions as a 
consequence of mariculture bait inputs. To determine how multiple 
sized-fractionated microbial communities respond to seasonal 
dynamics and mariculture activities, we investigated the diversity and 
structure of bacterial, pico-protist and nano-protist communities and 
quantified the contribution of environmental factors to microbial 
co-occurrence network structure. The aim was to: (i) identify 
functional differences among microbial communities across distinct 
size fractions; (ii) examine seasonal variations in habitat specialists 
and generalists; and (iii) determine how environmental variables and 
mariculture activities shape microbial co-occurrence patterns. 
We  hypothesized that microbial ecological functions significantly 
differ across various size-fractionated groups, and that specialists play 
a pivotal role in shaping interdomain microbial networks.

2 Materials and methods

2.1 Sample collection

Samples (n = 124) were collected from a near-enclosed 
mariculture bay at the water layer of the surface (0.5 m) and bottom 
(2–55.5 m) from the Sansha Bay, Fujian Province during four cruises 
(January, April, July, and October 2019, i.e., winter, spring, summer, 
and autumn) (Figure 1). Water samples were prefiltered through a 
200 μm pore mesh. A portion of water samples were directly filtered 
onto a 0.22 μm filter membrane (47 mm diameter; Millipore, 
United States) to obtain bacterial samples. Another portion of water 
samples were prefiltered through a 20 μm pore mesh and then 
sequentially filtered to 2 μm and 0.8 μm filter membranes (47 mm 
diameter; Millipore, United States) to obtain the samples of pico-
protists (0.8–2 μm) and nano-protists (2–20 μm). These filters were 
stored at −80°C until DNA extraction.

2.2 Measurement of environmental factors

Water temperature, salinity and depth were measured in situ with 
CTD (AML Base X, Canada). Dissolved oxygen (DO) were measured 
in situ with WTW (Multi3630 IDS, German). Nitrate (NO3-N), nitrite 
(NO2-N), ammonia (NH4-N), phosphate (PO4-P), silicic (Dsi), 
chlorophyll a (Chla), as well as dissolved total nitrogen (TN), total 
phosphorus (TP), were measured following the standardized method 
(Xie et al., 2020). Dissolved inorganic nitrogen (DIN) content was 
calculated by the sum of NO3-N, NO2-N, and NH4-N.

Water samples pre-filtered at 20 μm were fixed with glutaraldehyde 
at a final concentration of 0.1% (V/V) and the abundance of 
heterotrophic bacteria (HB), synechococcus (Syn) and photosynthetic 
picoeukaryotes (PPE) were run on a FACSAria flow cytometer 
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(Becton Dickinson, United States) equipped with laser emitting at 
488 nm (Marie et al., 1997, 2000). To measure the abundance of HNF 
(heterotrophic nanoflagellates) and PNF (pigmented nanoflagellates), 
water samples pre-filtered at 20 μm were fixed with glutaraldehyde at 
a final concentration of 0.5% (V/V), then stained with 4′6-diamidino-
2-phenylindole (DAPI), and filtered at low pressure (<100 mm Hg) 
onto 0.8 μm pore-size black nuclear pore filters (25 mm diameter; 
Millipore, United States). Filters were mounted to glass slides and 
stored at −20°C in the dark until observed by epifluorescence 
microscope (Leica Microsystems, Germany). Following Guo et al. 
(2020) methods, at least 50 randomly selected fields of view were 
examined for each sample.

Conversion of enumerated microbial abundance to carbon-
containing biomass with reference to survey data in the adjacent sea 
area. The abundance of HB and Syn was converted to the biomass 
using a factor of 20 fg C cell−1 and 178 fg C cell−1, respectively (Lee and 
Fuhrman, 1987; Charpy and Blanchot, 1998). The abundance of PPE 
was converted to biomass using a factor of 1,500 fg C cell−1 (Zubkov 
et  al., 1998). The abundance of HNF and PNF was converted to 
biomass using a factor of 4,700 fg C cell−1 (Chen et al., 2009).

2.3 DNA extraction, PCR amplification, and 
high-throughput sequencing

For protists, DNA was extracted using DNeasy PowerWater kit 
(Qiagen, United States), the V4 region of the 18S rRNA gene was 
amplified with primers TAReuk454FWD1 (5′-CCAGCA(G/C)
C(C/T)GCGGTAATTCC-3′) and TAReukREV3 
(5′-ACTTTCGTTCTTGAT(C/T)(A/G)A-3′) (Stoeck et al., 2010). A 
quintuple repetition of each sample was amplified as follows: 95°C 
for 5 min, 10 cycles of 94°C for 30 s, 47°C for 45 s, and 72°C for 
1 min, 25 cycles of 94°C for 30 s, 47°C for 45 s, and 72°C for 2 min, 
and a final extension at 72°C for 2 min. Forward and reverse primers 
were tagged with 2 bp links and 8 bp barcodes to allow the pooling 
of multiple samples in one run of sequencing and later differentiation 
of different samples (Kozich et al., 2013). The PCR products were 
purified using Agarose gel DNA Recovery Kit (Bioteke, China) and 
quantified by Nano-200 (Allsheng, China). Samples belonging to 
two size-fractionated were, respectively, mixed in equimolar 
concentrations to construct two individual amplicon libraries for 
sequencing using Illumina Hiseq  2500 platforms with PE250 

FIGURE 1

Location of sampling stations in Sansha Bay, Fujian province (China). The colors and symbols represent sampling seasons and water layers.
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strategy (Illumina, United States) according to standard protocols. 
The raw sequence data have been deposited in the NCBI Sequence 
Read Archive under the BioProject accession 
number PRJNA1252866.

For bacteria, 16S rRNA gene sequences were obtained from the 
BioProject number PRJNA747131 and the Accession number 
SRP328863 (Zhu J. et al., 2022). Briefly, DNA was extracted using the 
FastDNA spin kit (MP Biomedicals, USA), the V3-V4 region of the 
16S rRNA gene was amplified with primers 341F (5′-CCTAYG 
GGRBGCASCAG-3′) and 806R (5′-GGACTACNVGGGTWTC 
TAAT-3′) (Liu et al., 2019). The triplicate PCR products were purified 
using GeneJET gel purification kit (Thermo Scientific, United States) 
and quantified by Qubit 2.0 fluorescence quantifier (Thermo Fisher 
Scientific, Waltham, United  States). PCR products were mixed in 
equal amounts and sequenced on THE Illumina HiSeq platform 
(Illumina, United States).

2.4 Sequence analysis

Sequencing data processing was performed on Mothur v.1.47.0 
following MiSeq standard operating procedure1 with the steps of 
sequencing data quality control, amplicon sequence variants (ASV) 
clustering, and species classification. Specifically, read pairs were 
aligned, and the tags and primers of reads were removed. To reduce 
sequencing and PCR error, reads with only one or two sequences were 
removed. Chimeras were detected using the UCHIME algorithm 
(Edgar et al., 2011), and if there were flagged chimeras, they were 
removed from all samples. The remaining high-quality reads with 
suitable lengths were clustered to distinguish ASVs. The SILVA nr 
v.138 database (Quast et al., 2012) and PR2 protist v4.14 database 
(Guillou et al., 2012) were used for bacterial and protist taxonomic 
assignment, respectively. To avoid distortion of the relative abundance 
of DNA sequences of microbes, non-bacterial or non-protistan 
sequences (e.g., “unknown,” Archaea, Nucleomorphs, Fungi, 
Streptophyta, and Metazoa) were removed. To minimize the 
occurrence of ASVs at both size-fractionated due to cell dislodging or 
filter clogging, ASVs were further filtered with reference to 
Deutschmann et al. (2023). For each ASV that appeared at both size-
fractionated, the ratio of its relative abundance at the nano-and pico-
protist communities was calculated, and when the ratio exceeded 2, 
the abundance of pico-protists was removed. When the ratio was 
lower than 0.5, the abundance of nano-protists was removed. Lastly, 
124 valid samples were obtained, including 40 winter samples, 30 each 
of spring and summer samples, and 24 autumn samples. A total of 
9,025 bacteria ASVs, 12,274 pico-protist ASVs, and 12,908 nano-
protist ASVs were retained.

Referring to previous literature reports (Adl et al., 2012; de Vargas 
et al., 2015b), the functional groups of pico-and nano-protist ASVs 
were annotated into photoautotroph, symbiont, parasites, heterotroph, 
and mixotroph. Here, mixotrophs refer to photosynthetic species that 
also ingest food by phagocytosis or osmotrophy, while symbiont refers 
to heterotrophic species that retain prey plastids or symbionts (Adl 
et al., 2019) (Supplementary Appendix A).

1 http://mothur.org/wiki/miseq_sop/

2.5 Statistical analysis

All statistical analyses were performed in R v.4.2.1 software (R 
Core Team, 2019), and visualized using the “ggplot2” R package 
(Wickham, 2016). The α-diversity indices, including Shannon, Chao1, 
and Pielou’s evenness, were calculated using the “vegan” R package 
(Oksanen et al., 2022). Differences in α-diversity among seasons were 
analyzed with multiple comparisons (LSD test), using the “agricolae” 
R package (Mendiburu, 2010).

Prior to multivariate statistical analyses, the ASV tables were 
Hellinger-transformed and the environmental variables were 
standardized to zero mean and unit variance by “vegan” R package 
(Oksanen et al., 2022). The β-diversity was calculated on the Bray-
Curtis distance metric and visualized with nonmetric 
multidimensional scaling (NMDS). The significant differences in 
microbial communities among water layers were tested by 
permutation multivariate analysis (PERMANOVA) of variance using 
the Bray-Curtis distance metric. To explore the correlations between 
environmental factors and their effects on microbial communities, 
Spearman correlation analysis and partial Mantel test were performed 
using the “microeco” R package (Liu et  al., 2020). For the partial 
Mantel test, the distance matrix of microbial communities was 
calculated using the Bray-Curtis method. Additionally, in order to 
reveal the biotic interactions between size groups, the affecting biotic 
factors for each size group did not contain the abundance data of the 
same size of the organisms. To further identify characteristic taxa, the 
linear discriminant analysis (LDA) effect size (LEfSe) was used to 
screen for classes that differed significantly between seasons 
(LDA > 4.0) and analyze.

To assess the environmental adaptability of microbial 
communities, the community-level niche breadth was calculated, 
which represents the average ecological tolerance of all taxa in a 
community. A higher niche breadth indicates a predominance of 
generalist species, while a lower value reflects a dominance of 
specialists with narrower ecological preferences (Pandit et al., 2009). 
This index was calculated as the mean of Levins’ niche breadth values 
for all taxa within a community (Pandit et al., 2009; Wu et al., 2018). 
Levins’ niche breadth index (B) was calculated following the 
description of Pandit et al. (2009) using the “spaa” R package (Zhang, 

2016): 
=

= ∑ 2

1
1/

N

j ij
i

B P , where Bj represents the habitat niche breadth of 

ASV j in a metacommunity; N is the total number of communities in 
the metacommunity; and Pij is the proportion of ASV j in resource 
state i, i.e., the abundance of ASV j in community i divided by the 
abundance of ASV j in the metacommunity. The B value ranges from 
[1, N] and the higher value indicates that the ASV j is widely and 
evenly distributed in the metacommunity. Community-level niche 
breadth was calculated for all seasons, and metacommunities were 
defined as the set of communities in each season. Differences in 
community-level niche breadth among communities were analyzed 
with the LSD test.

2.6 Ecological networks construction

All samples were used for network inference (n = 124). To focus 
on widespread interactions among community members and their 
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relative influence on network properties, ASVs shared by all 
seasons, presented in more than 1/3 of samples and with an average 
relative abundance greater than 0.001 were retained (nBac = 42, nPico-

protist = 85, nNano-protist = 100). Networks were generated using the 
“SpiecEasi” R package relying on sparse neighborhood and inverse 
covariance selection algorithms (Kurtz et al., 2015). Interdomain 
and intradomain networks were constructed independently using 
the sparse and low rank (SLR) method by setting parameters 
(nlambda = 20, minimum lambda ratio = 0.005, pulsar 
threshold = 0.05, number of representatives = 20) (Shekarriz 
et al., 2023).

Network topology parameters (i.e., degree, absolute, and 
betweenness centrality) were calculated using the “igraph” R package, 
and network modularization and visualization were performed using 
Gephi software. Referring to the code provided by Shekarriz et al. 
(2023), we analyzed the efficiency and random attack robustness of 
networks, which were proposed by Latora and Marchiori (2001) and 
Iyer et al. (2013), respectively. Normalized robustness (R) of a network 
was calculated by running iteratively for 10,000 times, using the 

formula σ
=

 =  
 

∑ 1
1 1N

iR
N N

, where N is the initial size of the network, 

σ is the relative size of the largest network component after node 
removal, and i is the number of vertex or vertices removed from the 
network. The vulnerability (V) of a network is related to the robustness 
calculated as = −0.5V R . Multiple comparisons of the network 
properties were conducted using the LSD test. Keystone species were 
identified as nodes with degree and betweenness centrality measures 
with values in the top 20 percentiles (Roume et al., 2015).

2.7 Partial least squares path model 
analysis

To further reveal the effects of environmental variables on 
microbial communities and microbial food web structure, a partial 
least squares path model (PLS-PM) was modeled using the “plspm” 
R package (Sanchez et al., 2024). The model included microbial 
community diversity, community-level niche breadth, and network 
information transfer efficiency. Network information transfer 
efficiency index reflects how effectively signals or interactions 
propagate through the microbial network, and can serve as a proxy 
for the functional coordination and resilience of the microbial 
system. Following García-Comas et  al. (2016) and Yang et  al. 
(2018), we also included the predator/prey biomass ratio (PPBR) as 
a proxy for the actual trophic transfer efficiency between predator 
and prey to assess its ecological relationship to mathematically 
inferred network connectivity and flow. To improve the reliability 
of the model, the PPBR was log10 transformed, run using 1,000 
bootstraps, and variables with loadings < 0.7 were removed. Based 
on the path coefficients, the direct and indirect effects of other 
potential variables on network robustness and information transfer 
efficiency were calculated. The performance of the model was 
evaluated using the Goodness-of-Fit (gof) measure. The final 
PLS-PM model included seven variables: water property 
(temperature, salinity, and DO), water nutrition (TN and TP), 
microbial community diversity (only pico-protist and nano-protist), 
community-level niche breadth (all three groups), PPBR (the 

biomass ratio of HNF/bacteria and HNF/PPE), network robustness, 
and network information transfer efficiency.

3 Results

3.1 Environmental condition of Sansha Bay

Environmental conditions varied more in temporal than in spatial 
variations, with little difference in environmental parameters between 
two depths in the same season (Supplementary Figure S1). The 
environment was nitrogen nutrient-rich, with average PO4-P, DIN, 
and nitrogen-to-phosphorus ratios (TN: TP) reaching eutrophic levels 
in autumn and winter, and middling nitrogen-rich nutrient levels in 
spring and summer (Supplementary Table S1). Temperatures, DO, 
PO4-P, and NH4-N in Sansha Bay were distinct in all seasons (p < 0.05, 
Supplementary Figure S1). Microbial biomass also fluctuated 
seasonally (p < 0.05). In winter, the abundance of pico-photosynthetic 
microorganisms (PPE and Syn) was at a low level, while the abundance 
of PNF reached its peak throughout the year. The abundance of HB 
and HNF showed a similar trend of being higher in winter and 
summer, and lower in spring and autumn (Supplementary Figure S1).

3.2 Diversity and structure of bacterial and 
protist communities

Departing from previous investigations by Ma et al. (2021) and 
Zhu J. et al. (2022) that focused on bacteria and protists (0.22–200 μm) 
diversity, here we delved into the diversity of pico and nano size-
fractionated protists. We provided a detailed description of changes in 
community composition and interdomain networks, aiming to 
elucidate the connections between protist and bacterial communities. 
The diversity indices of the three groups were significantly different 
(p < 0.05, Figure 2). The Shannon index and Peilou’s evenness index 
of the nano-protist community were the highest, followed by the pico-
protists and bacteria, while the chao1 index was the opposite. The 
α-diversity indices of bacterial and protist communities showed 
greater seasonal than depth variation (Figure 2). The pico-protist and 
nano-protist community diversity indices were comparable, both 
fluctuated upward over time and appeared to have complementary 
seasonal fluctuations to the bacteria (Supplementary Figure S2).

The community structure of bacteria and protists also showed 
remarkable seasonal variations (Figure 3). The results of the Mantel 
test showed that temperature, DO and salinity had significant 
effects on bacterial and protist community structure. Among them, 
the bacterial and nano-protist community structure has the highest 
correlation with DO (Mantel’s rbac = 0.65 and rnano-protist = 0.74), 
while the pico-protist community structure has the highest 
correlation with temperature (Mantel’s r = 0.79). Biological factors 
also influenced microbial community structure, including PPE and 
PNF for bacterial communities (Mantel’s rPPE = 0.26 and 
rPNF = 0.19), PNF for pico-protist communities (Mantel’s r = 0.41), 
and Syn and PPE for nano-protist communities (Mantel’s rSyn = 0.43 
and rPPE = 0.14). PERMANOVA further revealed significant 
differences in the communities of all size-fractionated groups in the 
four seasons (R2 > 0.17 and p < 0.001), but there were no significant 
differences between depths and habitats (R2 < 0.02 and p > 0.05, 
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Supplementary Table S2). Based on the above results, subsequent 
analysis focused on the seasonal dynamics of 
microbial communities.

3.3 Seasonal dynamics of microbial 
community composition

The community composition showed pronounced seasonality 
(Figure 4). The bacterial community was mainly composed of the 
Alphaproteobacteria class of Proteobacteria phylum (65% ± 10%), 
followed by Actinobacteria phylum (25% ± 9%). The relative 
abundance of Alphaproteobacteria peaked in autumn. The 
Actinobacteria class and the Acidimicrobiia class in the 
Actinobacteria phylum showed opposite seasonal dynamics, with 
the relative abundance of the former reaching a minimum in the 
autumn (2% ± 1%) and the latter reaching a maximum in the 
autumn (8% ± 2%). Both had opposite responses to seasonal 
changes in environmental factors such as temperature, salinity, 
NO2-N, NH4-N, PPE biomass, and PNF biomass (Supplementary  
Figure S3). In addition, the average relative abundance of 

Cyanobacteria was highest in the summer (18% ± 13%) and below 
5% in the rest of the season, showing a positive correlation with 
temperature, salinity, PNF biomass, and HNF biomass, and a 
negative correlation with nutrient concentrations (Supplementary  
Figure S3).

Two size-fractionated protist community composition were 
similar at supergroup level that both were dominated by Alveolata 
(26–84%), followed by Hacrobia (4–40%) (Figure 4). In the pico-
protist community, two supergroups showed complementary seasonal 
dynamics, where the relative abundance of Stramenopiles peaked in 
the winter month (17% ± 8%), while Archaeplastida was higher in the 
other seasons, with the highest proportion in summer month 
(24% ± 11%). At the class level, the nano-protist communities 
contained a higher relative abundance of Dinophyceae (28% ± 11%) 
and a lower abundance of Syndiniales (27% ± 9%) than the pico-
protist communities (8% ± 7 and 45% ± 12% respectively), and the 
other dominant classes differed slightly between the two size-
fractionated communities. The response of dominant taxa to 
environmental factors was also essentially the same for both pico-
protists and nano-protists of the same taxon (Supplementary  
Figures S4, S5). The winter dominant taxa were negatively correlated 

FIGURE 2

Comparison of the α diversity of bacterial, pico-protist, and nano-protist communities in four seasons. Different letters indicate statistically significant 
differences (p < 0.05) based on LSD tests; groups sharing the same letter are not significantly different. Black asterisks represent the significance of 
differences between groups of bacterial, pico-, and nano-protist communities. Colored asterisks represent the significance of differences between 
water layers in the same season for a given taxon. Significance level: *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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with temperature, salinity, NO2-N, and Syn biomass, and positively 
correlated with DO, NH4-N, and PO4-P. The dominant taxa in other 
seasons were mainly positively correlated with temperature and 
negatively correlated with PO4-P.

The protist communities were trophically divided into 
photoautotroph, heterotroph, mixotroph, symbiont, parasites, and 
unknown (Figure  5). From ASV counts, heterotrophs had the 
highest percentage (31%), parasites and photoautotroph following 
(24 and 12% respectively), and symbionts were the least abundant 
(3%). From the relative abundance, parasites were the most abundant 
in the pico-protist community (46% ± 12%), while mixotrophs were 

the most abundant in nano-protist communities (31% ± 8%), and 
symbionts accounted for the lowest percentage in both communities 
(3% ± 4 and 3% ± 3% respectively). Although the relative abundance 
of each trophic group differed in the pico-and nano-protist 
communities, the seasonal trends were generally similar 
(Supplementary Figures S6, S7). Heterotrophs were most abundant 
in winter (9–69%), showing negative correlations with temperature, 
salinity, Chla, and Syn biomass, and positive correlations with PO4-P, 
NO3-N, and NH4-N. Parasites were abundant in autumn and winter 
(16–79%), and the correlations with other environmental factors 
were almost exactly opposite to those of the heterotrophs, except for 

FIGURE 3

Non-metric multidimensional scaling analysis (NMDS), pairwise comparisons of environmental factors, and mantel tests for the correlations between 
the bacterial, pico-protist and nano-protist community and each environmental factor. (A–C) NMDS analysis of bacteria, pico-protist and nano-protist 
communities of all stations. The color of the scattered dots represents the season of the station, and the shape of the scattered dots represents the 
water layer of the station. (D) Interactions across environmental factors and their relationship with bacteria, pico-protist, and nano-protist 
communities. The thickness of the line indicates the mantel correlation between the environmental factor and the microbial communities, and the 
color of the line indicates the significance level of the mantel correlation. The intensity of the filled color of the squares indicates the correlation 
between the environmental factors, ranging from red (negative interaction), and white to blue (positive interaction). Asterisks indicate significance level: 
*p < 0.05; **p < 0.01; ***p < 0.001. Temp, Temperature; DO, dissolved oxygen; Sal, salinity; PO4-P, phosphate; NO2-N, nitrite; NH4-N, ammonia; Dsi, 
silicic; NO3-N, nitrate; DIN, dissolved inorganic nitrogen; TP, total phosphorus; TN, total nitrogen; Chla, chlorophyll a; HB, heterotrophic bacteria; Syn, 
Synechococcus; PPE, photosynthetic picoeukaryotes; HNF, heterotrophic nanoflagellates; PNF, pigmented nanoflagellates.
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no significant correlation with PO4-P. Photoautotrophs, on the other 
hand, were relatively abundant in the warmer summer and autumn 
(6–45%) and were negatively correlated with PO4-P. Seasonal 
dynamics of the mixotrophs differed between the two size-
fractionated communities. Pico-mixotrophs were lowest in winter 
(4% ± 3%) and showed positive correlations with temperature and 
salinity, and negative correlations with phosphate and DO. Nano-
mixotrophs, in contrast, were most abundant in winter (37% ± 7%), 
and consisted mainly of the red tide species Heterocapsa rotundata 

(25% ± 5%), which showed the opposite environmental correlation 
to the pico-mixotroph.

3.4 Seasonal structure and topological 
characteristics of microbial networks

To evaluate the structural properties of seasonal microbial food 
webs, bacteria-pico-protist-nano-protist interdomain networks (BPN 

FIGURE 4

Average relative abundance of major (A) bacterial phylum and protist supergroup, and (B) class microbial taxonomic groups in four seasons. W, winter; 
Sp, spring; Su, summer; A, autumn.
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networks) were constructed using the SpiecEasi method (Figure 6; 
Table 1). Comparing the networks in the four seasons, the autumn 
network had the lowest modularity coefficient, average path length, 
the highest average degree, and clustering coefficient, and was also the 
most robust (Vmean = 0.085) and nodal efficient in information transfer 

(μ = 0.41). The summer network was completely opposite, vulnerable 
(Vmean = 0.100), and inefficient in the transfer of information 
(μ = 0.37).

There were no significant differences in the specific contributions 
of bacteria, pico-protists, and nano-protists to the structural properties 

FIGURE 5

Community compositions of pico-and nano-protists, grouped by trophic modes. Refer to Supplementary Appendix A for trophic mode classification.

FIGURE 6

Seasonal interdomain network patterns, network analysis of robustness, and information transfer efficiency. (A) The interdomain network was inferred 
using SpiecEasi analysis with bacteria, pico-, and nano-protist represented by node colors. N, number of ASVs; E, number of edges. (B) Vulnerability 
(V) inferred from randomized attack robustnes, and the significance p value of the difference in vulnerability. (C) Network seasonal efficiency 
distribution curves in increasing order of average efficiency, with dots representing each node in the network and labeled with the mean (μ) and 
standard deviation (σ) of each curve. Significance level: *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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of the BPN networks, such as absolute edge weight, degree, and 
betweenness (Supplementary Figure S8). The network had the highest 
percentage of nano-protists (34–52%), followed by pico-protists 
(46–28%), and the lowest by bacteria (20–32%). Network keystone 
species analysis showed that the nano-protist Dinophyceae class were 
keystone species in all four seasons, and the pico-protist MAST-4 class 
in winter, spring, and summer (Supplementary Table S3). These results 
indicated that protists were important foundational components of 
the interdomain network structure.

The role of bacteria in the network was non-negligible. In BPN 
networks, although bacteria constituted a small percentage, they were 
mostly keystone species (33–55% of the keystone species in the 
networks). In particular, the Rhodobacteraceae family were keystone 
species in all four seasons, and the Cyanobacteria in spring, summer, 
and autumn (Supplementary Table S3). It was also worth noting that 
the network analysis without distinguishing seasons revealed that the 
inclusion of bacteria improved the robustness and information 
transfer efficiency of the networks (Supplementary Figure S10). The 
bacteria-nano-protist interdomain network (BN network) was the 
most rubust and efficient among the interdomain networks, followed 
by the BPN network and the bacteria-pico-protist interdomain 
network (BP network). Therein, the average edge weights and degrees 
of bacteria were significantly higher than those of protists. In 
summary, these results highlighted crucial and highly connected 
keystone roles of bacteria in enhancing the robustness and efficiency 
of the Sansa Bay protists networks.

3.5 Drivers of microbial network structure

To investigate the reasons for the stability and efficiency of the 
microbial network in autumn, we calculated community-level niche 
breadth, which can reflect the community’s ability to adapt to the 
environment, and also used trophic transfer efficiency as 
represented by the PPBR. The microbial community niche breadth 
of all three taxa in autumn was the lowest of the year (Figure 7A), 
indicating that the microbial communities had a narrow 
environmental tolerance in autumn, which promoted the functional 
specialization of the community. Furthermore, complex trophic 
relationships existed between bacteria and nano-protists, and 
between pico-protists and nano-protists. The results of PPBR 
showed that the ratio of biomass of HNF to bacteria was significantly 
lower than that of HNF to PPE, with the ratio of biomass of HNF 
to PPE in autumn being significantly higher than that in other 
seasons (Figure 7B). These suggested that trophic transfer efficiency 

between pico-and nano-sized organisms was particularly high 
in autumn.

Based on the previous results, key water property factors 
(temperature, DO, and salinity), water nutrition (TN and TP), and 
related biological factors (diversity, community-level niche breadth, 
PPBR) that shaped the microbial community structure were selected to 
construct a PLS-PM model. This model was used to investigate the direct 
and indirect drivers influencing microbial food web stability and the 
efficiency of information transfer within Sansha Bay (gof = 0.722, 
Figure  8A; Supplementary Table S4). Water property was found to 
significantly influence not only microbial community diversity (path 
coefficient = 0.50, p < 0.01) and community-level niche breadth (path 
coefficient = −0.45, p < 0.01), but also microbial network robustness 
(path coefficient = 0.83, p < 0.01) and information transfer efficiency 
(path coefficient = −0.76, p < 0.01). The influence of water nutrition on 
microbial networks was weaker than that of water property and was 
completely opposite. Considering the total effects, the drivers 
demonstrated opposing impacts on microbial network robustness and 
information transfer efficiency (Figure  8B). Among all factors, 
community-level niche had the strongest influence on microbial network 
structure, followed by PPBR, and then water nutrition.

4 Discussion

4.1 Differences in the response of two 
sized protist communities to seasonal 
changed

The α-diversity of pico-protist and nano-protist communities 
showed similar seasonal trends and structure (Figure  2; 
Supplementary Figure S9), whereas there were differences in 
composition (Figure 4), in particular the proportion of parasites and 
mixotrophs in the communities. Similar to the results of the Tara 
Oceans expedition for the oceans (de Vargas et al., 2015a), the pico-
protist communities had a higher percentage of parasites compared to 
the nano-protist communities (Figure 5). On the one hand, this may 
be inflated due to the higher rDNA copy number in some marine 
alveolate lineages, specifically the clonal abundance of Syndiniales, the 
dominant class of the pico-community, overestimates the cellular 
abundance (Not et al., 2009; Massana, 2011). On the other hand, the 
parasites released hundreds of small, non-phagocytic dinospores into 
the water column after killing their host (Guillou et al., 2008; Siano 
et al., 2011). However, because the parasite hosts encompass a wide 
range of organisms from flagellates to fish, even studies suggesting that 

TABLE 1 Topological properties of the bacteria-pico-protists-nano-protists interdomain networks in different seasons.

Season Winter Spring Summer Autumn

Modularity 0.377 0.421 0.449 0.369

Average path length 2.946 2.806 3.054 2.716

Average degree 2.372 3.018 2.790 3.153

Graph diameter 6 5 7 5

Graph density 0.013 0.014 0.013 0.016

Clustering coefficient 0.126 0.120 0.137 0.167

Degree centralization 0.080 0.192 0.130 0.163

Small world index 19.321 15.115 17.441 18.299
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Syndiniales may not always be unequivocally host-specific, it was 
difficult to find a clear association between the parasites and the 
potential host and to elucidate the drivers of seasonal dynamics of 
parasites (Guillou et  al., 2008; Käse et  al., 2021). In addition, the 
trophic modes of protists may be  flexible and influenced by 
environmental factors (Flynn et al., 2019). We acknowledged that 
categorizing taxa into discrete functional groups may oversimplify the 
ecological complexity and plasticity inherent in protists.

Mixotrophs are important components of microbial food webs 
(Stoecker et al., 2017). Previous studies confirmed that mixotrophic 
protists could obtain nutrients through direct ingestion of bacteria or 
algae (Flynn et al., 2019), and coastal PNFs were important grazers of 
Synechococcus populations (Tsai et al., 2007; Chan et al., 2009). This 
trophic relationship likely accounts for the significant correlations 
observed between nano-protist communities and Synechococcus 
biomass, and between bacterial communities and PNF biomass 
(Figure  3D). Some mixotrophic protists may also pose risks to 
aquaculture systems (Flynn et al., 2018). For example, the mixotrophic 
flagellate Heterocapsa pygmaea (Millette et al., 2017), identified as a 
keystone species in the spring, summer, and autumn interdomain 
networks (Supplementary Table S3), was the dominant species in a 
harmful algal bloom near Sansha Bay (Wu et  al., 2022). Another 

mixotroph, Karlodinium veneficum, a keystone species in the autumn 
interdomain network (Supplementary Table S3), is known to cause 
fish kills during its blooms (Place et al., 2012). However, no algal 
blooms or fish kills occurred during our sampling, despite the relative 
abundance of Heterocapsa genus exceeded 20% in winter and the 
relative abundance Karlodinium veneficum exceeded 10% at several 
mariculture stations. The macroalga Gracilaria lemaneiformis widely 
cultured in Sansha Bay, has been shown to effectively inhibit harmful 
algal bloom formation, likely through trophic competition, 
allelopathic interactions (Yang et al., 2015)., and shading effects that 
suppress microalgal growth (Xie et al., 2021).

4.2 Habitat specialists promoting robust 
and efficient microbial networks

It is generally assumed that network efficiency varied inversely 
with robustness because edges that contain more connections between 
nodes make the network more resilient to attacks, but less efficient at 
creating the shortest paths between two nodes (Rodrigue, 2020). 
However, in our study, the autumn microbial network showed the 
highest robustness and the highest efficiency (Figure 6). The PLS-PM 

FIGURE 7

Seasonal (A) community level ecological niche breadth and (B) predator/prey biomass ratio (PPBR). Different letters indicate statistically significant 
differences (p < 0.05) based on LSD tests; groups sharing the same letter are not significantly different. The numbers below the box indicate the mean 
values.
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results revealed that the overwhelming effects of community-level 
niche breadth on the network’s robustness and efficiency than 
environmental factors (Figure 8). Given that protists had the narrowest 
ecological niche breadth in autumn (Figure 7A), we speculated that 
the remarkable specialization of protists in autumn was an important 
driver of rubust and highly efficient interdomain microbial networks.

Multiple environmental ecology studies have demonstrated that 
microbial specialists play a crucial role in biological interactions 
(Finke and Snyder, 2008; Yan et al., 2022; Li et al., 2024; Zhou et al., 
2024). Synthetic community experiments further revealed the 
mechanism of microbial specialists’ roles. Specialists established a 
clearer functional division of labor by utilizing specific resources, such 
as specific carbon sources, nitrogen sources, or microhabitats (Huang 
et al., 2019). Specialization reduced the competitive pressure caused 
by overlapping resources, which made the species interaction more 
reciprocal or neutral, thus enhancing the stability of the network 
structure (Bai et al., 2015). When environmental stress increased, 
specialists played a more crucial role in stabilizing ecological networks 
(Li et  al., 2023). Moreover, specialization also reduced redundant 
connections and improved the efficiency of information transfer (Tsoi 
et al., 2019; Wang et al., 2024).

Differently from protists, bacteria contributed to BPN networks 
not only by specialization. On the one hand, season-independent 
network construction revealed that the inclusion of bacteria 
contributed to a robust microbial network, evidenced that bacteria 
worked to connect members of the community and thereby exchange 
metabolites or were consumed. For example, Rhodobacteraceae, 
identified as key species in all four seasonal BPN networks 
(Supplementary Table S3), were known to have multifaceted and 
mutually infochemical exchanges with phytoplankton, such as diatoms 
and dinoflagellate, and their interactions dynamically change 
according to the physiological state of the phytoplankton (Amin et al., 
2015; Seymour et  al., 2017). On the other hand, the community 

diversity of more generalist bacteria was excluded from the PLS-PM 
analysis due to low loadings. This implied that a select few bacteria, 
which possess specific relationships with phytoplankton and protist 
communities, emerged as the keystone species of the interdomain 
microbial network. However, most generalist bacteria contributed 
minimally to the interdomain network structure, as their increased 
diversity did not translate into more efficient resource utilization 
compared to that of specialists (Finke and Snyder, 2008).

4.3 Synergistic effects of integrated 
multi-trophic mariculture and the natural 
environment

Despite the presence of macroalgae farms that absorbed a portion 
of the excess nutrients from cage cultures, the waters of Sansha Bay 
remained persistently eutrophic (Xie et al., 2020). PLS-PM results 
revealed that the total effect of water nutrients (TN and TP) on 
microbial network structure exceeded water quality property 
(Figure 8). This anthropogenic eutrophication resulted in significant 
changes in microbial community structure (Kiersztyn et al., 2019; 
Chen et al., 2024). PLS-PM results also showed significant effects of 
HNF predation on network robustness and information transfer 
efficiency (Figure 8), suggesting that predatory relationships were 
central to microbial food webs. HNFs as major predators of pico-sized 
microorganisms were controlled by food supply (Lin et al., 2016), 
playing a top-down control role in the microbial food web. Such 
biological interactions were critical for maintaining the stability of 
bacterial communities (Liu et al., 2022).

The community structure of marine microorganisms was 
determined by various abiotic and biotic environmental factors such 
as temperature, salinity, and nutrients (Logares et al., 2009; Sunagawa 
et al., 2015; Dai et al., 2022). In cultured waters, dissolved organic 

FIGURE 8

Contribution of biotic and abiotic factors to bacteria-pico-protists-nano-protists interdomain network robustness and efficiency. (A) Partial least 
squares path model (PLS-PM). Each long box represents a latent variable and each parameter in a long box represents an explicit variable and its 
loading. Red and blue paths represent paths with significant positive and negative impacts, respectively; gray paths are not significant. Numbers 
represent path coefficients after 1,000 bootstraps. “gof” indicates the goodness of fit. (B) The total effects of the latent variables on interdomain 
network robustness and efficiency. Temp, Temperature; DO, dissolved oxygen; Sal, salinity; TN, total nitrogen; TP, total phosphorus; PPBR, the 
predator/prey biomass ratio; Bac, bacteria; Pico, pico-protists; Nano, nano-protists.
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matter (DOM) released from macroalgae and fish culture was also a 
key factor influencing the microbial community structure (Yang et al., 
2015; Luo et al., 2024; Ou et al., 2024). In Sansha Bay, year-round 
cultured Gracilaria lemaneiformis provided a steady input of 
polysaccharides while inhibiting phytoplankton blooms (Yang et al., 
2015; Ou et al., 2024). After Saccharina japonica was harvested in May, 
there was less complex DOM remaining in autumn, and the resources 
available to microbes tended to be simpler, reducing the microbial 
community ecological niche (Tanentzap et al., 2019; Huang et al., 
2024). Larimichthys crocea also experienced a rapid growth period in 
autumn (midway through the 8–13 month rearing cycle), and it had 
a continuous and steady input of metabolites, creating a predictable 
pattern of nutrient supply (Luo et al., 2024). Moreover, compared to 
summer, there were barely any typhoons in autumn, the hydrological 
conditions were stable, and physical perturbations had little effect on 
the microbial community structure (Nguyen et al., 2021).

5 Conclusion

This study elucidated the impact of mariculture activities and 
seasonal variations on marine microbial diversity and interdomain 
microbial networks in Sansha Bay. Our results show that pico-protists 
were predominantly composed of parasites, whereas nano-protists 
mainly mixotrophs. Despite the presence of multiple red tide species and 
parasitic taxa, the integrated multi-trophic mariculture system in the 
study area may help reduce the risk of algal blooms or fish kills events. 
The microbial community showed pronounced seasonality, primarily 
driven by temperature, dissolved oxygen, and salinity, alongside marked 
shifts in interdomain network structures. The autumn network was both 
the most robust and efficient, associated with narrower niche breadths 
among protists, suggesting a strong role of specialization in stabilizing 
microbial interactions. These findings highlight the importance of 
ecological niche differentiation and microbial interactions in 
maintaining network structure and function under environmental and 
anthropogenic influences. Our work contributes to the understanding 
of microbial food web dynamics in coastal aquaculture systems and 
provided a theoretical basis for enhancing the important role of 
microbial food webs in the biogeochemical cycle and energy flow 
through the optimization of maricultural modes.
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