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Inositol plays many important roles in cellular processes through its 

various derivatives including phosphatidylinositol phosphates. Viruses use 

phosphatidylinositol phosphates for their replication in multiple processes 

including entry, formation of replication organelles, assembly and release. 

For these processes, viruses recruit phosphatidylinositol kinases to meet their 

demand of phosphatidylinositol phosphates. Inhibitors of phosphatidylinositol 

kinases have been shown to inhibit various viruses. The complexity of various 

types and isoforms of phosphatidylinositol kinases can be a problem in 

developing a broad-spectrum antiviral as different viruses use various types and 

isoforms of the enzyme. Inositol monophosphatase is an enzyme required for 

both de novo biosynthesis and intracellular recycling of inositol. It can provide 

a chokepoint to limit the availability of cellular inositol, phosphatidylinositol, 

and phosphatidylinositol phosphates. It can be a promising target for broad-

spectrum antiviral development. 

KEYWORDS 
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1 Introduction 

Inositol, hexahydroxy-cyclohexane, is a cyclic polyol which composed of a six-carbon 
ring, and each carbon is hydroxylated. There are nine stereoisomers of inositol (cis-, epi-, 
allo, myo-, neo-, scyllo-, L- chiro-, D- chiro-, and muco-inositol). Seven isomers are found 
in nature, except for epi- and allo-inositol, while myo-inositol (MI) is the most abundant 
form (Loewus and Loewus, 1983; Thomas et al., 2016). 

Inositol is found in both prokaryotes and eukaryotes. The primary role of inositol 
in prokaryotes is to regulate physiological osmolarity and cellular pH (Hazra and 
Nandy, 2016). Inositol is also essential for osmoregulation to protect the cells from 
hyperosmolarity in the mammalian brain and kidney cells (Garcia-Perez and Burg, 
1990; Dai et al., 2016). However, more diverse functions were observed in eukaryotes. 
Inositol serves as a precursor to several derived metabolites, including inositol phosphates 
(InsP), phosphatidylinositol (PtdIns), various forms of phosphorylated PtdIns or 
phosphoinositides (PPIns), and inositol pyrophosphates (PP-InsPs). 

PtdIns is a ubiquitous phospholipid found in the cytoplasmic leaflet of the plasma 
membrane, membrane-bound organelles, and endoplasmic reticulum (ER), where it is 
synthesized. It is also a precursor of PPIns, which act as second messengers in multiple 
signaling pathways and are involved in diverse biological processes, including actin 
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cytoskeletal organization, membrane dynamics, and lipid 
metabolism and transport. Moreover, the network of 
phosphorylated inositol derivatives coordinates the cellular 
response to nutrients and the balance between energy production 
and utilization on two primary metabolic pathways: AMP-activated 
protein kinases (AMPK) and the mammalian target of rapamycin 
(mTOR) (Tu-Sekine and Kim, 2022). PPIns also participate in 
immune cell functions, cellular stress response, apoptosis, and 
secretion (Chen et al., 1998; De Craene et al., 2017; Chhetri, 
2019; Bizzarri et al., 2023). PPIns levels are regulated by several 
phosphatidylinositol kinases (PIKs) and phosphatases, which are 
dierently distributed across various subcellular compartments. 
This distribution results in the dierent localization of PPIns and 
their roles in several metabolic pathways (Beziau et al., 2020). 

Viruses exploit host cellular pathways to enhance their 
replication (Fischl and Bartenschlager, 2011). Common targets 
manipulated by viruses include lipid metabolism and transport, 
as well as lipid-mediated signal transductions. Alterations in 
lipid metabolism and transport are required to redirect cellular 
lipids to favor viral replication and assembly. Additionally, viruses 
evade the host immune response by interfering with signal 
transduction mechanisms. Most viruses suppress interferon (IFN)-
induced transcriptional responses, including the Janus kinase 
(JAK)/signal transducers and activators of transcription (STAT) 
signaling pathways (Alcami and Koszinowski, 2000). For instance, 
the NS4B protein of the dengue virus (DENV) blocks IFN signaling 
by reducing the nuclear translocation of STAT1, thereby aecting 
the JAK/STAT pathway (Ezeonwumelu et al., 2021). The viral 
strategy for manipulating host cellular lipids or disrupting signal 
transductions can be mediated through inositol metabolism by 
targeting host PIKs, phosphatases, and their accessory proteins. 
For instance, viruses recruit phosphatidylinositol 4-kinases (PI4Ks) 
to establish phosphatidylinositol 4-phosphate (PI4P)-enriched 
replication organelles (ROs) to concentrate the lipids required for 
their replication within ROs (Berger et al., 2009; Berger et al., 2011; 
McPhail and Burke, 2023). 

Therefore, a comprehensive understanding of the importance 
of inositol, PtdIns, and PPIns metabolisms, especially the roles 
of PIKs involved in viral replication cycles can provide a novel 
approach for developing antiviral strategies. 

2 Biosynthesis of myo-inositol and 
its derivatives 

Organisms mainly rely on the cellular biosynthesis of MI, 
either the de novo synthesis from glucose or the catabolism of 
PtdIns, PPIn, and InsP (Gonzalez-Uarquin et al., 2020). However, 
inositol could also be acquired from food consumption. The 
intracellular inositol can be imported via inositol transporters 
(Gonzalez-Salgado et al., 2012). Inositol transporters, conserved 
across bacteria to animals, mediate uptake and regulate intracellular 
distribution. There are two groups of inositol transporters: sodium 
ion-coupled and proton-coupled, which are located in the plasma 
membrane (Schneider, 2015). SMIT1 and SMIT2, sodium/myo-
inositol transporters encoded by SLC5A3 and SLC5A11 (Hitomi 
and Tsukagoshi, 1994; Berry et al., 1995), share 43% amino acid 
sequence identity (Coady et al., 2002). SMIT1 mainly contributes 

to osmoregulation by controlling inositol accumulation in the cells 
of the brain and kidney. Upregulation of SLC5A3 was observed in 
hypertonic and high osmolarity conditions (Yamauchi et al., 1995). 
The preferred substrate of SMIT1 and SMIT2 is inositol, with a 
Km value of 55 µM and 120 µM, respectively (Coady et al., 2002). 
Both SMIT1 and SMIT2 show low aÿnity to glucose (Hager et al., 
1995; Coady et al., 2002). The mammalian proton-coupled inositol 
transporters (HMIT1) encoded by the SLC2A13 gene are highly 
expressed in the brain, and the upregulation results in hypertonic 
conditions (Uldry et al., 2001). The aÿnity for myo-inositol shows 
a Km value of 100 µM. HMIT1 also binds with scyllo-, chiro-, and 
muco-inositol (Uldry et al., 2001). 

Inositol can be generated de novo from glucose-6-phosphate 
(G6P) to inositol-3-phosphate [Ins(3)P] by myo-inositol 1-
phosphate synthase (MIPS, ISYNA1) (Eisenberg, 1967). Then 
the phosphate moiety is removed by inositol monophosphatase 
(IMPase, IMPA1, IMPA2) into free MI (Figures 1, 2) (Loewus et al., 
1980; Bizzarri et al., 2023). Both MIPS and IMPase contribute 
significantly to maintaining free MI for biosynthesis of various 
derivatives. Additionally, MI can activate p53, which results in the 
upregulation of ISYNA1 expression as positive feedback for MI 
generation (Bizzarri et al., 2023). 

MI derivatives are classified into two main categories: 
lipid-associated and soluble forms. Lipid-associated MI 
derivatives include PtdIns and phosphorylated forms 
(phosphoinositides/PPIns), while soluble derivatives comprise 
InsP and PP-InsPs. 

2.1 Biosynthesis of phosphatidylinositol 
and phosphoinositides 

The synthesis of PtdIns occurs in the endoplasmic reticulum 
(ER) through the condensation of free MI and a liponucleotide, 
cytidine diphosphate diacylglycerol (CDP-DAG), facilitated by 
CDP-diacylglycerol–inositol 3-phosphatidyltransferase (CDIPT or 
phosphatidylinositol synthase; PIS) (Loewus and Loewus, 1983; 
Eisenberg and Parthasarathy, 1987). Meanwhile, CDP-DAG is 
synthesized in the ER from phosphatidic acid and cytidine 
triphosphate via CDP-diacylglycerol synthase (CDS) activity 
(Blunsom and Cockcroft, 2020). PtdIns predominantly localize to 
cellular membranes, including the nucleus, ER, Golgi complex, 
endosomes, and lysosomes (De Craene et al., 2017), and 
account for 10–20% of total cellular phospholipids in eukaryotic 
cells, whereas PPIns comprise only ∼1% (Di Paolo and De 
Camilli, 2006; Balla, 2013; see Figures 1, 2). PtdIns can be 
phosphorylated by dierent PIKs on the hydroxyl groups at 
positions three, four, and five. There are three main types of 
PPIns, which contain one, two, or three phosphate groups. 
The seven members of PPIns include phosphatidylinositol 
3-phosphate (PI3P), phosphatidylinositol 4-phosphate (PI4P), 
phosphatidylinositol 5-phosphate (PI5P), phosphatidylinositol 3,4-
bisphosphate [PI(3,4)P2], phosphatidylinositol 3,5-bisphosphate 
[PI(3,5)P2], phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], 
and phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3]. 

The interconversion of the seven PPIns is mediated by 
several families of PIKs and phosphatidylinositol phosphatases, 
whose variant isoforms are localized in dierent subcellular 
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FIGURE 1 

Biosynthesis and interconversion of phosphoinositides (PPIns), inositol phosphates (InsPs), and inositol pyrophosphates (PP-InsPs), mediated by 
various PIKs and phosphatases. The interconversion of seven PPIns is shown in the top panel. PIKs are represented in blue, while 
phosphatidylinositol phosphatases (PI phosphatases) are represented in red. Biosynthesis of InsPs and PP-InsPs is shown in the middle and bottom 
panels, respectively. CDP-DAG, cytidine diphosphate diacylglycerol; PI, phosphatidylinositol; PIS, phosphatidylinositol synthase; IMPase, inositol 
monophosphatase; DAG, diacylglycerol; PI-PLC, phosphatidylinositol phospholipase-C; INPP5, inositol polyphosphate-5-phosphatase; INPP4, 
inositol polyphosphate-4-phosphatase; IPMK, inositol polyphosphate multikinase; IPPK, inositol-pentakisphosphate 2-kinase; IP6K, inositol 
hexakisphosphate kinase; PPIP5K, diphosphoinositol-pentakisphosphate kinase; ITPK1, inositol-tetrakisphosphate 1-kinase; MINPP, multiple inositol 
polyphosphate phosphatase; HK, hexokinase; MIPS, myo-inositol 1-phosphate synthase. 

compartments, resulting in varied distribution of PPIns (Figure 1). 
This determines their specific roles in dierent biological processes. 

2.1.1 Phosphatidylinositol 3-kinases (PI3Ks) 
PI3Ks, membrane-associated PIKs, phosphorylate the inositol 

ring at the D3 position and comprise three subunits: p85 regulatory 
subunit, p55 regulatory subunit, and p110 catalytic subunit. PI3Ks 
were classified to three types, including type I, II, and III based on 
dierent structures and specific substrates (Katso et al., 2001). 

PI3K type I (PI3KCI) mainly generates PI(3,4,5)P3 from 
PI(4,5)P2, which is a second messenger in PI3K/Akt/mTOR 
pathway (Amzel et al., 2008). PI3K type I can be further divided 
into type IA and type IB. Type IA PI3Ks are heterodimers of a 
regulatory subunit p85 and a catalytic subunit p110. The catalytic 
subunit p110 can be p110α, p110β, or p110δ isoforms, and only 
p110γ catalytic subunit is found PI3K type IB (Engelman et al., 
2006). Based on dierent p110 catalytic subunits, PI3Ks can 
also be classified into four isoforms, including α, β, δ, and γ 
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FIGURE 2 

Schematic diagram illustrating the biosynthesis of myo-inositol (MI), phosphatidylinositol (PI), and various phosphoinositides (PPIns), along with the 
subcellular distribution of phosphatidylinositol kinases (PIKs), PPIns, viral target sites, and the targets of PIK inhibitors with antiviral activity (indicated 
by red letters and lines). SMIT1 and 2: sodium/myo-inositol transporters 1 and 2; HMIT, proton-coupled inositol transporter; PM, plasma membrane; 
ER, endoplasmic reticulum; TGN, trans-Golgi network; HK, hexokinase; MIPS, myo-inositol 1-phosphate synthase; G-6-P, glucose-6-phosphate; 
IMPase, inositol monophosphatase; CTP, cytidine triphosphate; PA, phosphatidic acid; DAG, diacylglycerol; CDP-DAG, cytidine diphosphate 
diacylglycerol; CDS, CDP-diacylglycerol synthase; PIS, phosphatidylinositol synthase; ROs, viral replication organelles; PI4KII (α and β), 
phosphatidylinositol 4-kinases type II; PI4KIII (α and β), phosphatidylinositol 4-kinases type III; PIKfyve, phosphatidylinositol 5-kinase; PI3KCI, 
phosphatidylinositol 3-kinase type I; PI3KC2, phosphatidylinositol 3-kinase type II; Vps34 or PI3KC3, vacuolar protein sorting 34 or 
phosphatidylinositol 3-kinase type III; PIP5KI, phosphatidylinositol-4-phosphate-5-kinase type I; ORPs, oxysterol-binding protein (OSBP)-related 
proteins; PI(3)phosphatase, phosphatidylinositol phosphatases. SARS-CoV (1 and 2), severe acute respiratory syndrome coronavirus; MERS-CoV, 
Middle East respiratory syndrome coronavirus; HCV, hepatitis C virus; DENV, dengue virus; ZIKV, Zika virus; JEV, Japanese encephalitis virus; CV, 
coxsackieviruses; CVB, coxsackievirus B; PV, poliovirus; RV, rhinovirus; EV68/71, enterovirus 68 and 71; EMCV, encephalomyocarditis virus; IAV, 
influenza A virus; EBOV, Ebola virus; ZEBOV, Zaire ebolavirus; HIV-1, human immunodeficiency virus-1; HSV-1, herpes simplex virus-1; CMV, 
cytomegalovirus; EBV, Epstein–Barr virus; and KSHV, Kaposi sarcoma–associated herpesvirus. 

isoforms. PI3Ks are activated dierently downstream of receptor 

tyrosine kinases (RTKs), G protein-coupled receptors and Ras 
GTPases (Yuan and Cantley, 2008; Vanhaesebroeck et al., 2010). 
Upon PI3K/Akt/mTOR pathway activation, PI3KCI produces 
PI(3,4,5)P3, which recruits Akt to the membrane by acting as 
the binding site. Akt is then phosphorylated by phosphoinositide-
dependent protein kinase-1 (PDK1), activating mTOR signaling 

that regulates cell proliferation, survival, and motility (Paplomata 

and O’Regan, 2014). 
PI(3,4,5)P3 is dephosphorylated at the D3 position by 

phosphatase and tensin homolog (PTEN), a tumor suppressor that 
function as PIP3-phosphatase, converting it back to PI(4,5)P2. 

This results in the inactivation of the PI3K/Akt/mTOR pathway 

(Csolle et al., 2020). Mutation of PI3Ks have been implicated in 

various human cancers. PI3KCI inhibition has become a target 

in cancer therapeutics, as PI3K inhibitors can reduce cellular 

proliferation and promote cell death (Yang et al., 2019). 
PI3K type II (PI3KC2) generates PI3P and PI(3,4)P2 from 

PI and PI4P, respectively, by phosphorylation at D3 position 

of the MI ring. PI3KC2 is resistance against wortmannin and 

LY294002 (Wang Y. et al., 2006). There are three isoforms, 
including PI3KC2α, PI3KC2β, and PI3KC2γ. PI(3,4)P2 produced 

by PI3KC2α promotes the maturation of clathrin-coated pits 
(CCPs) and facilitates membrane neck scission during clathrin-
coated vesicle formation (Schöneberg et al., 2017). Moreover, the 

endocytic pools of PI3P produced by PI3KC2α mediate endosomal 
signaling, including that of RhoA, Rac1, and Rap1 (Yoshioka, 
2021). PI3KC2β is also essential for the formation and maturation 

of CCPs through its recruitment via interaction with intersectin-1 

(ITSN1), which stimulates actin filament formation at CCPs (Russo 

and O’Bryan, 2012; Almeida-Souza et al., 2018). PI3KC2γ mediates 
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insulin-dependent production of endosomal PI(3,4)P2 that can 
extend the activation of endosomal Akt2 (Braccini et al., 2015). 

PI3K type III (PI3KC3) is involved in intracellular membrane 
traÿcking and autophagy. Its primary isoform, vacuolar protein 
sorting 34 (Vps34), phosphorylates PtdIns to generate PI3P, 
which is essential for the formation of early endosomes and 
autophagosomes (Li et al., 2024). Vps34 functions by forming 
two dierent complexes, which regulate the activity of dierent 
pathways. Complex I is involved in autophagy, whereas Complex II 
participates in endocytosis and membrane traÿcking for vacuolar 
protein sorting (Backer, 2008; Jean and Kiger, 2014). 

2.1.2 Phosphatidylinositol 4-kinases (PI4Ks) 
PI4Ks phosphorylate the D4 hydroxyl of the myo-inositol ring 

in PtdIns, producing PI4P. The produced PI4P then serves as a 
precursor for the synthesis of other PPIns. Moreover, PI4P can be 
exchanged for lipids being transported to the plasma membrane 
or organelle membranes. PI4Ks consist of four isoforms, which 
can be classified into two types based on domain organization and 
biochemical properties: type II (PI4KIIα and PI4KIIβ) and type 
III (PI4KIIIα and PI4KIIIβ) (Li et al., 2021). Distinct structural 
motifs in each isoform confer unique protein interactions, driving 
isoform-specific localization and functional roles (Clayton et al., 
2013; Boura and Nencka, 2015). See the details of PI4K domain 
organization in reference (Boura and Nencka, 2015). 

The kinase domain of both type II PI4K isoforms contains 
a cysteine-rich (CCPCC) motif. Palmitoylation of this motif 
regulates their membrane association and enzymatic activity 
(Boura and Nencka, 2015). Moreover, type II PI4Ks are insensitive 
to wortmannin (Guo et al., 2003). PI4KIIα is the most abundant 
isoform, accounting for half of total PI4P synthesis. It is associated 
with membranes, primarily the trans-Golgi network (TGN) and 
late endosomes, which function in cargo sorting during TGN to 
late endosome traÿcking (Wei et al., 2002; Jovi et al., 2012; Boura 
and Nencka, 2015). PI4KIIβ, meanwhile, is primarily found inactive 
in the cytosol within heat shock protein 90 (Hsp90) stabilization. 
Upon palmitoylation, it associates with the membrane of the 
traÿcking vesicles and become active (Balla et al., 2002). 

PI4Ks Type III consist of two isoforms, PI4KIIIα (also 
known as PI4KA) and PI4KIIIβ (also known as PI4KB), both 
of which are membrane-associated proteins and wortmannin-
sensitive. PI4KIIIα mainly localizes in the ER, early cis-Golgi, and 
plasma membrane (Clayton et al., 2013). PI4KIIIα is recruited 
to the plasma membrane by association with other regulatory 
proteins, including TTC7, FAM126, and EFR3B (Nakatsu et al., 
2012; Lees et al., 2017). It is responsible for most of the PI4P 
generation at the plasma membrane. The generation of PI4P at the 
plasma membrane is important for maintaining lipid composition 
via the non-vesicular lipid transport. PI4P can be exchanged 
for lipids being transported, including phosphatidylserine (PS) 
from the ER to the plasma membrane (Nakatsu et al., 2012), or 
cholesterol from the ER to the TGN, mediated by the oxysterol-
binding protein (OSBP)-related proteins (ORPs; ORP5 and ORP8) 
(Delfosse et al., 2020; McPhail and Burke, 2023). 

PI4KIIIβ is primarily localized at the Golgi, TGN, and Golgi-
derived vesicles. Both PI4KIIIβ and PI4Ks type II are mainly 
responsible for PI4P generation at the Golgi and TGN. This 
produced PI4P plays a key role in lipid transport via multiple 
cargoes, including cholesterol, ceramide, and sphingolipid (Weixel 

et al., 2005; McPhail and Burke, 2023). A small GTPase, Arf1, 
acts as a recruiter for PI4KIIIβ to localize it to the Golgi for PI4P 
generation, which is crucial for vesicle formation and transport 
(Godi et al., 1999; Bilodeau et al., 2020). PI4KIIIβ also associates 
with the calcium binding protein neuronal calcium sensor-1 (NCS-
1) (Taverna et al., 2002) and the Rab11 GTPase (Graaf et al., 
2004), which are important in the recruitment of other lipid 
transport proteins. 

2.1.3 PIP4K/PIP5K family 
The members of the PIP4K/PIP5K family are classified into 

three distantly related groups: phosphatidylinositol-4-phosphate-
5-kinase type I (PIP5KI), phosphatidylinositol-5-phosphate 4-
kinase type II (PIP4K), and phosphatidylinositol-3-phosphate 5-
kinase type III (PIKfyve). Both PIP5KI and PIP4K are responsible 
for the generation of PI(4,5)P2. PIP5KI phosphorylates PI4P at 
the D5 position, whereas PIP4K phosphorylates PI5P at the D4 
position. Since the level of PI4P is much higher than that of PI5P, 
the major production of PI(4,5)P2 is mediated through PIP5KI 
activity (van den Bout and Divecha, 2009). PI(4,5)P2 is the most 
abundant bi-phosphorylated PPIn and is mostly found at the 
plasma membrane. 

PIKfyve is responsible for the generation of PI(3,5)P2 and 
PI5P. PI(3,5)P2 can be produced by phosphorylation at D5 
position of PI3P (McCartney et al., 2014). However, PIKfyve 
indirectly produces PI5P. It is shown that this enzyme generates a 
PI(3,5)P2 pool, which is then dephosphorylated by phosphatases, 
yielding PI5P (Zolov et al., 2012). PIKfyve is mainly involved 
in the maturation of endosomes from early endosomes to the 
TGN and lysosome transport (Rivero-Ríos and Weisman, 2022). 
PI(3,5)P2 is required for the recruitment of the eector protein 
sorting nexin-1, which participates in late endosome traÿcking 
(Rutherford et al., 2006). 

2.2 Biosynthesis of inositol phosphates 
and inositol pyrophosphates 

Soluble phosphorylated MI derivatives include inositol 
phosphates (InsPs), composed of inositol rings bearing one or 
more phosphate groups at distinct positions. When two phosphates 
occupy the same position, they form inositol pyrophosphates (PP-
InsPs) (Shah et al., 2017). Their biosynthesis pathways via lipid-
or glucose-dependent pathways, depending on precursor origin 
(Figure 1) (Tu-Sekine and Kim, 2022). 

In the lipid-dependent pathway, PI(4,5)P2 is converted into 
1,2-diacylglycerol (DAG) and Ins(1,4,5)P3 by phospholipase-
C (PLC) (Pattni and Banting, 2004). Ins(1,4,5)P3 could be 
dephosphorylated by inositol polyphosphate-5-phosphatase 
(INPP5) and inositol polyphosphate-4-phosphatase (INPP4) to 
Ins(1,4)P2 and Ins(4)P, respectively, for recycling to free MI by 
the activity of IMPase. Alternatively, Ins(1,4,5)P3 can be further 
phosphorylated by inositol polyphosphate multikinase (IPMK) 
into Ins(1,3,4,5)P4, Ins(1,3,4,5,6)P5, and finally by inositol-
pentakisphosphate 2-kinase (IPPK) into inositol-6-phosphate 
(InsP6). Then the activity of inositol hexakisphosphate kinase 
(IP6K) and diphosphoinositol-pentakisphosphate kinase (PPIP5K) 
can convert InsP6 to various PP-InsPs (Irvine and Schell, 2001; 
Tu-Sekine and Kim, 2022; Bizzarri et al., 2023). 
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The glucose-dependent InsP biosynthesis starts with the 
conversion of glucose to G6P. Then G6P is converted to 
inositol-3-phosphate [Ins(3)P] by MIPS activity (Eisenberg, 1967). 
The phosphate of Ins(3)P can be removed by IMPase to free 
MI or converted to Ins(3,4)P2 and higher InsP by inositol-
tetrakisphosphate 1-kinase (ITPK1) (Raboy and Bowen, 2006). 
The primary pathway in InsP and PP-InsPs biosynthesis is lipid-
dependent, only phosphate starvation stimulates the glucose-
dependent pathway (Desfougères et al., 2019). 

3 Phosphatidylinositol kinases and 
viral replication 

A common strategy for manipulating host cellular biological 
pathways involves hijacking the function of PIKs, which regulate 
numerous biological processes. The manipulation of PIKs 
by representative viruses from each group in the Baltimore 
classification system is described below and illustrated in Figure 2. 

3.1 DNA viruses 

3.1.1 Group I: double-stranded DNA (dsDNA) 
viruses 
3.1.1.1 Adenoviruses 

Adenoviruses are non-enveloped, icosahedral dsDNA viruses 
measuring 90–100 nm in diameter and containing a genome 
of approximately 30–37 kbp. They are members of the family 
Adenoviridae. Human adenoviruses belong to the genus 
Mastadenovirus and are usually associated with infections of 
the respiratory tract, intestinal tract, and eye (Burrell et al., 2017). 

The adenovirus E4-ORF1 gene encodes an oncoprotein that 
promotes viral replication, cell survival, and cellular transformation 
through activation of PI3K. E4-ORF1 interacts with the regulatory 
and catalytic subunits of PI3K, elevating their expression levels. 
PI3K activation requires the formation of an E4-ORF1–PI3K 
complex in the cytoplasm, which subsequently binds to the 
membrane-associated cellular protein Discs Large 1 (Dlg1). At 
the membrane, the resulting complex of three proteins activates 
PI3K, leading to downstream activation of Akt (Kong et al., 2014). 
Moreover, PI3K activation upon adenovirus interaction with αv 
integrins is required for adenovirus internalization. Wortmannin 
and LY294002, potent PI3K inhibitors, have demonstrated 
inhibition of adenovirus infection (Li et al., 1998). In addition, 
LY294002 inhibits activation of the Akt/mTOR pathway and 
induces early cytopathic eects and caspase-mediated cell death in 
adenovirus-infected cells (Rajala et al., 2005; Tong et al., 2014). 

3.1.1.2 Herpesviruses 
Herpesviruses are enveloped dsDNA viruses with highly 

complex virions and genomes, encoding approximately 70 to 
200 proteins. The Herpesviridae family is characterized by a 
dual life cycle, lytic and latent infection, which can establish 
lifelong persistence host cells. Eight human herpesviruses have been 
identified: herpes simplex viruses (HSV)-1 and -2, varicella-zoster 
virus (VZV), cytomegalovirus (CMV), Epstein–Barr virus (EBV), 

human herpesviruses (HHV)-6 and -7, and Kaposi sarcoma– 
associated herpesvirus (KSHV, also known as HHV-8). 

Human herpesviruses activate PI3K/Akt signaling at multiple 
stages of the viral life cycle to modulate the cellular environment 
in favor of viral replication, particularly influencing transcription, 
translation, cell cycle regulation, suppression of apoptosis, and 
evasion of the host innate immune response. A comprehensive 
review is available in reference (Liu and Cohen, 2015). The 
activation of PI3K/Akt signaling occurs during the entry step, 
following the binding of HSV-1 to cellular receptors (MacLeod and 
Minson, 2010). Similarly, this activation is observed upon EBV 
binding to CD21 on B cells (Barel et al., 2003), and during the 
interaction of KSHV glycoproteins with integrins (Naranatt et al., 
2003). In CMV infection, phosphorylation of the platelet-derived 
growth factor receptor α (PDGFR-α) triggers its interaction with 
the p85 subunit of PI3K, leading to Akt activation (Soroceanu et al., 
2008). Inhibition of PI3K activity by the PI3K inhibitor LY294002 
suppresses HSV-1 entry and fusion, as well as CMV early gene 
expression and genome replication (Johnson et al., 2001; Tiwari and 
Shukla, 2010; McFarlane et al., 2011). 

To maintain the latent stage of HSV-1, persistent PI3K 
activation is required and is mediated by nerve growth factor 
(NGF) binding to the TrkA receptor tyrosine kinase (RTK) 
(Camarena et al., 2010). Inhibition of PI3K leads to HSV-1 
reactivation. Moreover, EBV and KSHV are oncogenic viruses, 
and PI3K/Akt activation has been observed in malignancies 
associated with these viruses (Bhatt and Damania, 2012; Chen, 
2012). Additionally, aberrant activation of PI3K/Akt signaling is 
frequently observed in various types of cancer, often resulting 
from mutations or amplification of genes encoding PI3K 
catalytic subunits (Bowles et al., 2007). Therefore, targeting the 
PI3K/Akt signaling pathway represents a critical strategy for drug 
development aimed at treating both human malignancies and 
viral infections. 

In addition, increased PI4K and PIP5KI activities have been 
observed in EBV-infected B cells, resulting in elevated levels of 
PI4P and PI(4,5)P2. These phosphoinositides serve as precursors 
for the second messengers; 2-diacylglycerol and inositol 1,4,5-
trisphosphate, which are required for EBV-induced activation of 
human B cells (Suzuki et al., 1992). 

3.1.1.3 Poxviruses 
Poxviruses are large enveloped viruses that belong to the 

family Poxviridae and have brick-shaped or oval structures ranging 
from 220 to 450 nanometers in length. The Chordopoxvirinae 
subfamily includes several genera, among which the genus 
Orthopoxvirus comprises notable human pathogens such as variola 
virus (smallpox), vaccinia virus, cowpox virus, and monkeypox 
virus (MPXV) (Lane and Xiang, 2022). 

A previous study identified PI3P and PI4P binding sites 
on the H7 protein of vaccinia virus, which were found to 
be essential for viral membrane biogenesis (Kolli et al., 2015). 
Notably, inhibition of PI4KIIIβ using various bithiazole derivatives 
significantly reduced MPXV production (Martina et al., 2024). 
Moreover, PI3K/Akt activation was found to be elevated following 
infection with poxviruses, including vaccinia, cowpox (Soares 
et al., 2009), and rabbitpox (myxoma) viruses (Wang G. et al., 
2006), contributing to apoptosis suppression (Soares et al., 2009), 
enhanced viral mRNA translation (Zaborowska and Walsh, 2009), 
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and poxvirus morphogenesis (McNulty et al., 2010). Inhibition of 
PI3K, either through chemical inhibitors or deletion of its catalytic 
subunit, resulted in reduced late gene expression and decreased 
virus production (McNulty et al., 2010; Dunn and Connor, 2012). 

3.1.2 Group II: single-stranded DNA (ssDNA) 
viruses 

The viruses in this group have ssDNA genomes and replicate 
in the nucleus. Examples of viruses include the Anelloviridae, 
Circoviridae, and Parvoviridae families. Most Group II viruses 
contain circular genomes, except for parvoviruses. The family 
Parvoviridae consists of two subfamilies: Parvovirinae, which 
includes viruses that infect vertebrates, and Densovirinae, which 
infect insects. The virion is non-enveloped and possesses an 
icosahedral capsid surrounding its genome. A study using the insect 
parvovirus Junonia coenia densovirus (JcDV) demonstrated that 
the PI3K/Akt/TOR pathway is essential during the early stages of 
infection, likely facilitating the progression of host cells into a phase 
of the cell cycle suitable for viral replication and non-structural 
(NS) protein expression. Subsequently, the NS proteins appear to 
inhibit TOR activity, which suppresses cap-dependent translation, 
while promoting the preferential translation of viral mRNAs and 
enhancing viral replication (Salasc et al., 2016). 

3.2 RNA viruses 

3.2.1 Group III: double-stranded RNA (dsRNA) 
viruses 
3.2.1.1 Rotaviruses 

Rotaviruses are the most common cause of gastroenteritis in 
infants and young children. This genus belongs to the Reoviridae 
family. The virion is non-enveloped and contains a triple-layered 
capsid that encloses a segmented dsRNA genome. 

PI3K/Akt/mTOR signaling is essential for the rotavirus life 
cycle at multiple stages. The binding of the viral capsid to 
cell surface receptors triggers PI3K activation early in infection, 
leading to the phosphorylation of Akt and extracellular signal-
regulated kinase (ERK), which are crucial for the uncoating 
process. Subunit E of the V1 domain of V-ATPase directly 
interacts with phosphorylated PI3K, Akt, and ERK, facilitating 
proton gradient formation via ATP hydrolysis to acidify the late 
endosome, thereby enabling virus uncoating (Soliman et al., 2018). 
Moreover, rotavirus non-structural protein 1 (NSP1) interacts with 
the PI3K regulatory subunits (p85α and p85β) (Bagchi et al., 2013), 
leading to the activation of PI3K/Akt signaling. This promotes 
cell survival or suppresses premature apoptosis, thereby supporting 
viral production (Bagchi et al., 2010). 

In addition, the PI3K inhibitor LY294002 reduces viral 
production, as evidenced by decreased levels of viral RNA, protein 
synthesis, and infectious viral particles. These findings confirm 
that PI3K/Akt/mTOR signaling is essential for sustaining rotavirus 
infection (Yin et al., 2018). 

3.2.2 Group IV: positive-sense single-stranded 
RNA (+ssRNA) viruses 
3.2.2.1 Picornaviruses 

Picornaviruses are small, spherical, non-enveloped RNA 
viruses, and approximately 20–30 nm in diameter. They belong to 

the Picornaviridae family, which comprises five genera: Enterovirus, 
Rhinovirus, Hepatovirus, Cardiovirus, and Aphthovirus (Lin et al., 
2009). Their genome, approximately 7.5–9 kb in length, is enclosed 
within an icosahedral capsid (Tapparel et al., 2013). 

The replication of most picornaviruses impacts host lipid 
metabolism. The ROs of picornaviruses initially originate from 
the ER and TGN, establishing extensive contacts with both the 
ER and lipid droplets. These contacts are crucial for facilitating 
the transport of lipids necessary for viral replication (Pattni and 
Banting, 2004). Increased PI4P levels are also observed upon several 
picornavirus infections (Belov and van Kuppeveld, 2012). 

The viral 3A proteins of Aichivirus (AiV), bovine kobuvirus, 
poliovirus (PV), coxsackievirus B3 (CVB3), and human rhinovirus 
14 (HRV14) are found to associate with PI4KIIIβ (Greninger 
et al., 2012). The viral 3A protein modulates the recruitment of 
PI4KIIIβ by activating ADP-ribosylation factor 1 (Arf1) GTPase 
with guanine nucleotide exchange factor (GBF1). This leads to 
the accumulation of PI4KIIIβ at the ROs, creating PI4P-enriched 
membranes (Hsu et al., 2010). The increased PI4P levels at ROs 
facilitate lipid transport, mediated by lipid transport proteins, 
enriching sphingolipids and sterols, which are crucial for viral 
replication (Altan-Bonnet and Balla, 2012). ORPs mediate the 
transfer of sterol or PS from the ER to other cellular compartments, 
including viral ROs, by exchanging them for PI4P (Fuggetta et al., 
2024). These alterations are critical for several picornaviruses, 
including PV (Arita, 2014), coxsackievirus (CV) (Dorobantu et al., 
2014), rhinovirus (RV) (Spickler et al., 2013), AiV (McPhail et al., 
2017), enterovirus 68/71(EV68/71) (van der Schaar et al., 2013), 
and encephalomyocarditis virus (EMCV) (Dorobantu et al., 2016). 
In addition, a previous study showed that the recruitment of viral 
RNA-dependent RNA polymerase (RdRP) of EV71, AiV, and CVB3 
to the lipid bilayer of ROs is driven by the overall negative charge 
of the ROs rather than a specific interaction with PI4P (Dubankova 
et al., 2017). 

Moreover, activation of PI3K/Akt signaling during PV and 
RV attachment and entry has been observed, resulting in the 
suppression of apoptosis (Bentley et al., 2007; Autret et al., 2008). 
A similar mechanism has also been identified in cardioviruses, 
which suppress apoptosis to maintain infected cell viability. ECMV 
and coxsackievirus likewise activate PI3K/Akt signaling; however, 
this activation does not appear to be entry-dependent. Instead, it 
plays a crucial role in inhibiting apoptosis and promoting viral 
replication (Esfandiarei et al., 2004; Esfandiarei et al., 2007). An 
inhibitor of PI4KIII and PI3K, has demonstrated antiviral activity 
against several picornaviruses (Delang et al., 2012; Siltz et al., 2014; 
Cheong et al., 2023; Martina et al., 2024). 

3.2.2.2 Flaviviruses 
Flaviviruses, a genus within the Flaviviridae family, are 

enveloped spherical viruses approximately 50 nm in diameter. The 
genus includes diverse viruses, such as hepatitis C virus (HCV), 
dengue virus (DENV), Japanese encephalitis virus (JEV), Zika virus 
(ZIKV), West Nile virus (WNV), yellow fever virus (YFV), and 
tick-borne encephalitis virus (TBEV) (van den Elsen et al., 2021). 

The involvement of PIKs in viral replication was observed 
during HCV infection. PI4P, which is primarily localized to 
the ER membranes, exhibits increased expression and altered 
redistribution, forming a punctate pattern in the cytoplasm (Deng 
et al., 2010). It was found that HCV recruited PI4KIIIα to the 
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site of viral replication or the membranous web structure by 
directly interacting with viral non-structural protein 5A (NS5A) 
(Bishé et al., 2012). The membranous web is a complex structure 
of membranes derived from ER membranes, containing double-
membrane vesicles (DMVs) induced by HCV (Blanchard and 
Roingeard, 2018). The interaction of PI4KIIIα and NS5A results in 
enhanced PI4KIIIα activity and increased PI4P levels (Berger et al., 
2011). Impaired interaction between NS5A and PI4KIIIα leads to 
reduced PI4P levels and alters the morphology of the membranous 
web, resembling the phenotype observed when PI4KIIIα expression 
is silenced (Reiss et al., 2013). Additionally, the presence of PI4P 
at the TGN membrane is essential for HCV secretion (Bishé et al., 
2012). PI4KIIIα also regulates the phosphorylation status of NS5A 
and viral RNA replication (Berger et al., 2011; Reiss et al., 2013). 
A number of studies have revealed the involvement of PI4KIIIβ 
as an essential factor for the viral replication of dierent HCV 
genotypes (Borawski et al., 2009; Coller et al., 2012; Delang et al., 
2012; Zhang et al., 2012). The silencing of PI4KIIIβ results in 
the inhibition of HCV infection; however, it does not aect HCV 
membranous web formation (Tai and Salloum, 2011). 

The function of PI3Ks is also essential for HCV replication. 
HCV NS5A can interact with the regulatory subunit p85 of 
PI3K, thereby freeing the catalytic subunit p110, allowing PI3K to 
generate PI(3,4)P2 and PI(3,4,5)P3. This leads to Akt recruitment 
and activation of the PI3K/Akt signaling pathway, which drives 
cell survival and suppresses apoptosis. The irregular activation 
of the PI3K/Akt signaling pathway results in the development of 
hepatocellular carcinoma (Bishé et al., 2012; Cheng et al., 2015). 
There are a number of PI4KIII inhibitors with antiviral activity 
against HCV genotype 1b, including PIK-93, Enviroxime, and AL-
9, which have shown inhibitory eects on both PI4KIIIα and 
PI4KIIIβ (Borawski et al., 2009; Delang et al., 2012). PIK-93 and 
AL-9 also inhibit certain types of PI3Ks. 

Moreover, PI4KIIIβ was identified as an essential factor in 
ZIKV replication. PI4P is enriched at ZIKV ROs, and treatment 
with the PI4KIIIβ inhibitor, bithiazole, was found to inhibit ZIKV 
replication (Martina et al., 2021). Particularly, enriched PI4P 
contributes a negative charge to the lipid bilayer and mediates 
electrostatic interaction between NS1 and the ER membrane (Ci 
et al., 2021). The overexpression of a lipid phosphatase, Sac1, which 
dephosphorylates PI4P, disrupted NS1-induced ER membrane 
remodeling and impaired ZIKV replication. The electrostatic 
interaction between NS1 of flaviviruses is crucial for the induction 
of ROs by binding to negatively charged lipids and might also 
be applicable to other flaviviruses (Martina et al., 2021). ZIKV 
and other flaviviruses, such as DENV and West Nile virus 
(WNV), form convoluted membranes and vesicle packets within 
the ER as their ROs, while HCV forms double-membrane vesicles 
(Mazeaud et al., 2021). 

However, the replication of DENV is independent of both 
PI4KIIIα and PI4KIIIβ (Heaton et al., 2010; Delang et al., 2012). 
Silencing of PI4KIIIα had no eects on DENV replication (Reiss 
et al., 2011). WNV infection is also independent of PI4P, as 
no alterations in PI4P distribution and colocalization with viral 
double-stranded RNA (dsRNA) have been observed. The treatment 
with PIK-93, a PI4K inhibitor, had no eect on WNV replication 
(Martín-Acebes et al., 2011). Nevertheless, both DENV and WNV 
manipulate host lipid metabolism. Fatty acid synthase (FASN) 
is recruited to the replication sites of both DENV and WNV, 

and treatment with FASN inhibitors such as Cerulenin and C75 
significantly inhibited viral replication (Mackenzie et al., 2007; 
Heaton et al., 2010). Moreover, itraconazole and posaconazole 
have been shown to inhibit DENV and ZIKV by targeting 
oxysterol-binding protein (OSBP) function in the redistribution of 
cholesterol (Meutiawati et al., 2018). 

Flaviviruses usually activate apoptosis in the late stage of 
infection; however, they also initiate survival signaling to create 
and prolong a favorable cellular environment for their replication 
through PI3K/Akt/mTOR pathway. Upon interaction with DENV 
serotype 2 (DENV-2) and Japanese encephalitis virus (JEV), 
apoptosis is inhibited by activating the PI3K/Akt pathway at an 
early stage of viral infection (Lee et al., 2005). However, PI3K/Akt 
signaling is not required for JEV and DENV-2 replication, as 
LY294002, a PI3K inhibitor, has no eects on viral RNA replication, 
viral protein expression, and virion production (Lee et al., 2005). 
Furthermore, PI3K signaling regulates the type I IFN (IFN-I) 
response, which is important for controlling WNV infection. The 
inhibition of PI3Ks by 3-methyl adenine (3-MA), Wortmannin, 
and LY294002 increased viral production (Wang et al., 2017). 

3.2.2.3 Coronaviruses 
Coronaviruses are members of the family Coronaviridae and 

are characterized as large, spherical, enveloped viruses that feature 
prominent spike (S) glycoproteins protruding from their envelope. 
They have an approximate diameter of 118–140 nm. Their genome 
consists of +ssRNA, ranging from 25 to 32 kb and containing 
7–10 open reading frames (ORFs) (Chen et al., 2020). Three 
coronaviruses have caused severe disease in humans: severe acute 
respiratory syndrome coronavirus 1 (SARS-CoV-1), Middle East 
respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-
2. 

PI4KIIIβ was identified as being involved in the entry of SARS-
CoV-1, mediated by angiotensin I-converting enzyme 2 (ACE2) 
receptors (Yang et al., 2012). Silencing of PI4KIIIβ resulted in 
the inhibition of SARS-CoV-1 entry. PI4KIIIβ is important for 
regulating lipid membrane composition; an increase in PI4P levels 
in the organelle membrane is also favorable for SARS-CoV-1 
(Yang et al., 2012). Moreover, PIKfyve, the lipid kinase responsible 
for PI(3,5)P2 production, which regulates early endosome to late 
endosome maturation, is crucial for SARS-CoV-2, MERS-CoV, and 
murine hepatitis virus (MHV) entry. Inhibition of PIKfyve by 
apilimod significantly reduces viral entry (Ou et al., 2020). 

Furthermore, PI3K also participates in MERS-CoV 
replication by regulating cell proliferation and apoptosis 
through the PI3K/Akt/mTOR signaling pathways. Wortmannin, 
a PI3K inhibitor, also inhibited MERS-CoV infection 
(Kindrachuk et al., 2015). 

3.2.3 Group V: negative-sense single-stranded 
RNA (−ssRNA) viruses 
3.2.3.1 Ebolaviruses 

The Ebolavirus genus belongs to the Filoviridae family 
of viruses. It includes five species: Bundibugyo ebolavirus 
(BDBV), Zaire ebolavirus (ZEBOV), Reston ebolavirus (RESTV), 
Sudan ebolavirus (SUDV), and Taï Forest ebolavirus (TAFV) 
(Jain et al., 2021). 

During viral entry, Ebolaviruses (EBOV) rely on the interaction 
between its viral glycoprotein and the host cellular protein 
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Niemann-Pick C1 (NPC1), which is located in late endosomes and 
lysosomes. PIKfyve, which is responsible for PI(3,5)P2 production 
to regulate endosome maturation, thus mediates the transport of 
EBOV to NPC1-positive late endosomes (Qiu et al., 2018). The 
inhibition of PIKfyve using apilimod was also shown to inhibit the 
entry of ZEBOV (Kang et al., 2020). 

Moreover, the interaction between viral VP40 and the plasma 
membrane is critical for the assembly and budding of EBOV. 
This step requires high concentrations of PI(4,5)P2, PI3P, and 
PI(3,4,5)P3. Especially, the enrichment of PI(4,5)P2 at the plasma 
membrane, which is mainly generated by PIP5KI, changes the lipid 
composition and induces membrane curvature during assembly 
and budding (Gc et al., 2016; Johnson et al., 2016). 

Furthermore, it has been identified that PI3KC1 and Akt 
activation participates in the regulation of ZEBOV entry through 
modulation of Rac1, which is the regulatory protein involved 
in endocytosis. Inhibition of PI3K or Akt activation resulted in 
reduced viral entry (Saeed et al., 2008). 

3.2.3.2 Orthomyxoviruses 
Viruses of the Orthomyxoviridae family are characterized 

by segmented −ssRNA genomes and surface glycoproteins 
hemagglutinin (HA) and neuraminidase (NA), which are crucial 
for viral entry, subtype distinction, and infectivity. Their genomes 
typically consist of 6 to 8 RNA segments, each packaged into 
ribonucleoprotein (RNP) complexes that encode essential proteins 
for replication (Foster et al., 2018). Influenza A, B, and C viruses 
are the most notable orthomyxoviruses, responsible for seasonal 
influenza and periodic pandemics in both humans and animals. 

Activation of PI3K/Akt signaling by influenza A virus (IAV) 
occurs at multiple stages of viral replication and can have either 
pro-viral or anti-viral eects. Binding of IAV to sialic acids on the 
host cell surface, followed by endocytosis, requires activation of 
PI3K/Akt signaling to facilitate viral internalization (Ehrhardt and 
Ludwig, 2009). PI3K/Akt signaling activation is initiated through 
clustering of RTKs, such as the epidermal growth factor receptor 
(EGFR) (Eierho et al., 2010). However, PI3K signaling triggered 
by pathogen recognition receptors also lead to host innate immune 
responses activation (Ayllon et al., 2012). Moreover, IAV directly 
activates PI3K/Akt signaling through interaction between its N1 
protein and the p85 regulatory subunit of PI3KCI, ultimately 
leading to inhibition of apoptosis (Hale et al., 2006; Shin et al., 
2007). Although only early PI3K activation was observed with 
influenza B virus infection (Ehrhardt et al., 2007). 

During viral assembly, the viral ribonucleoprotein (vRNP) 
of IAV must be transported from the nucleus to the plasma 
membrane. IAV has been shown to induce cellular PI4P levels 
and alter its localization via ATG16L1, which is essential for 
autophagosome formation, thereby promoting vRNP traÿcking 
(Alemany et al., 2025). 

3.2.4 Group VI: single-stranded RNA-reverse 
transcription (RT) viruses 
3.2.4.1 Retroviruses 

These viruses belong to the family Retroviridae. The virions 
of retroviruses contain reverse transcriptase, which converts 
their RNA genome into DNA that subsequently integrates 
into the host genome. Examples of retroviruses include the 
human immunodeficiency virus (HIV), which causes acquired 

immunodeficiency syndrome (AIDS), the human T-lymphotropic 
virus (HTLV), which is associated with certain types of 
leukemia and lymphoma, and murine leukemia virus (MLV) 
(Chameettachal et al., 2023). 

PtdIns kinases are identified to be involved in the human 
immunodeficiency virus-1 (HIV-1) replication cycle. The 
interaction of HIV-1 with the cell surface receptor CD4 can activate 
PI3K/Akt signaling pathways, which are important in HIV-1 entry, 
increasing cell survival and viral spread, and interfering with the 
immune response (Hamada et al., 2019; Pasquereau and Herbein, 
2022). PI3KCI, α isoform (with the p110α catalytic subunit), 
which is responsible for PI(3,4,5)P3 generation, is identified as a 
crucial factor for HIV-1 entry and fusion. PIK-75, a PI3K p110α 
isoform-specific inhibitor, can inhibit HIV-1 entry (Hamada et al., 
2019). Additionally, the negative factor (Nef) of HIV-1 interacts 
with p85, a regulatory subunit of PI3K, which is required to 
activate Nef-associated p21-activated kinase (PAK) (Wolf et al., 
2001). The activation of PAK suppresses apoptosis and T cell 
development, leading to facilitated viral replication (Wolf et al., 
2001). The inhibition of PI3K showed reduced HIV-1 production 
(Linnemann et al., 2002). 

PIP5KI, which is responsible for PI(4,5)P2 production, 
is also involved in HIV-1 entry and assembly. PI(4,5)P2 is 
required for actin cytoskeleton remodeling, regulating endocytosis 
and thereby viral entry (Ling et al., 2006; Gonzales et al., 
2020). PI(4,5)P2 also mediates the binding of Gag polyprotein 
precursors (Pr55Gag) to the plasma membrane in viral assembly. 
Particularly, the downregulation of PIP5K1α and PIP5K1γ 
isoforms impairs the targeting of Pr55Gag to the plasma membrane 
(Gonzales et al., 2020). 

3.2.5 Group VII: dsDNA-RT viruses 
These viruses possess a dsDNA genome and utilize reverse 

transcriptase to replicate their genome from transcribed RNA. An 
example is the Hepadnaviridae family. 

3.2.5.1 Hepadnaviruses 
These enveloped viruses are characterized by a partially dsDNA 

genome and preferentially infects and replicates within liver 
cells. They are associated with both acute and chronic hepatitis, 
which can progress to cirrhosis and liver cancer. The most well-
known member of this group is hepatitis B virus (HBV), a 
major human pathogen. 

Activation of PI3K/Akt/mTOR signaling is observed during 
HBV entry. However, transient treatment with the PI3K inhibitor 
LY294002 has no eect on the entry process, suggesting that HBV-
induced Akt activation is not essential for viral entry. Notably, 
prolonged treatment with PI3K/Akt/mTOR inhibitors, including 
LY294002, an Akt inhibitor, and rapamycin, results in increased 
levels of HBV capsids and capsid DNA, thereby enhancing viral 
replication (Xiang and Wang, 2018). 

HBx, a protein encoded by HBV, stimulates viral replication and 
contributes to the development of HBV-associated hepatocellular 
carcinoma (HCC). HBx has been found to activate PI3K/Akt 
signaling; however, this activation leads to a reduction in HBV 
replication. Although Akt activation by HBx appears to negatively 
regulate HBV replication, it is also essential for the suppression 
of apoptosis, which may support persistent, non-cytopathic HBV 
replication. Akt modulates HBV replication by decreasing the 
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activity of the transcription factor hepatocyte nuclear factor 
4α (HNF4α). These findings highlight the crucial role of HBx 
in balancing HBV replication and host cell survival through 
PI3K/Akt signaling (Rawat and Bouchard, 2015). Additionally, 
Akt1 activation is among the most consistent features observed in 
HBV-induced HCC (Boyault et al., 2007). 

4 Phosphatidylinositol kinases as an 
antiviral target 

The biosynthesis of PtdIns and its phosphorylated derivatives 
involves a range of cellular biological processes. As obligate 
parasites, viruses rely on host cellular machinery to support 
their replication. A common strategy employed by viruses to 
manipulate these processes and create a favorable environment 
for their replication involves regulating the functions of PIKs and 
the expression levels of PPIns (Figure 2). Modulating these PIKs 
is crucial for viral entry, fusion, genome replication, translation, 
assembly, and release across multiple viral families (Buchkovich 
et al., 2008; Dunn and Connor, 2012), highlighting PIKs as 
promising antiviral targets. 

Several pan- or isoform-specific PI3K, PI4K, and PIKfyve 
inhibitors, include LY294002, PIK-75, PIK-93, enviroxime, 
bithiazole derivatives, CUR-N399, and apilimod, have 
demonstrated antiviral activity against multiple viruses (Table 1 
and Figure 2) (Walker et al., 2000; Delang et al., 2012; Martina 
et al., 2021; Li et al., 2024). 

LY294002 is a PI3K inhibitor that has demonstrated potent 
anti-tumor activity (Hu et al., 2000; Bar et al., 2005; Chang et al., 
2015; Abdallah et al., 2020). However, in cancer study, it exhibited 
unfavorable pharmacological properties, such as limited solubility, 
short half-life, and o-target activities, that impede the achievement 
of therapeutic levels and may result in undesirable clinical eects 
(Gupta et al., 2003). Additionally, SF1126, a prodrug consisting of 
LY294002 conjugated to an RGDS (Arg-Gly-Asp-Ser) peptide, has 
demonstrated favorable pharmacokinetics and good tolerability in 
animal models (Garlich et al., 2008). Moreover, phase I clinical trials 
of SF1126 in patients with malignancies confirmed its tolerability 
and demonstrated eÿcacy across multiple types of human cancers 
(Chiorean et al., 2009; Mahadevan et al., 2012). 

A study in mice demonstrated that PIK-75, a PI3K inhibitor, 
eectively suppressed tumor cell growth (Huang et al., 2022). 
However, it also targets other kinases, including DNA-dependent 
protein kinase (DNA-PK), raising concerns about o-target eects 
and poor solubility, which hinder the achievement of therapeutic 
concentrations (Jamieson et al., 2011; Talekar et al., 2012). Notably, 
the maximum serum concentration (Cmax) reached approximately 
8 µM in mice, exceeding the IC50 values observed in in vitro 
antiviral assays against IAV and HIV-1 (Table 1), suggesting 
potential use in antiviral treatment. Furthermore, the development 
of a PIK-75 nanosuspension improved solubility and enhanced 
activity in both in vitro assay and mouse models (Talekar et al., 
2013). 

PIK-93 primarily inhibits PI4KIIIβ and also targets PI3Kγ and 
PI3Kα. In a mouse model, combination treatment with PIK-93 and 
a monoclonal antibody suppressed tumor growth and enhanced 
immune cell activity, thereby improving the eÿcacy of cancer 

immunotherapy (Lin et al., 2023). The IC50 or EC50 values of PIK-
93 in in vitro antiviral assays against several viruses (Table 1) were 
below 1 µM, suggesting potential as an antiviral agent; however, 
data on its Cmax are still lacking. 

Enviroxime is an antiviral agent that targets the viral 3A 
protein of rhinoviruses and enteroviruses, thereby blocking 
viral replication (Heinz and Vance, 1995). It primarily inhibits 
PI4KIIIβ and exhibits some activity against PI4KIIIα. Enviroxime 
has also shown potential inhibition of various genotypes of 
HCV, coronaviruses, rubella virus, and MPXV. Despite its 
potent antiviral activity in in vitro assays, clinical trials revealed 
unfavorable pharmacokinetics, undesirable side eects, and 
limited eÿcacy (Miller et al., 1985; Garrido et al., 2021). Plasma 
levels of enviroxime were notably low, with concentrations 
around 4 ng/ml (approximately 0.01 µM) (Bopp and Miner, 
1982), substantially below the antiviral IC50 values (Table 1). 
However, co-administration of enviroxime with disoxaril 
synergistically inhibited coxsackievirus B1 (CVB1) replication 
in mice (Nikolaeva-Glomb and Galabov, 2004). 

Bithiazole, a compound composed of two linked thiazole rings, 
primarily inhibits PI4KIIIβ. Derivatives bearing aliphatic or polar 
functional groups on the right side of the bithiazole scaold exhibit 
broad-spectrum antiviral activity against various viral families, with 
IC50 values in the low micromolar range (Table 1). Furthermore, 
antiviral assays using a human-derived respiratory tissue model 
(MucilAir) demonstrated eective inhibition of human rhinovirus 
A16 (HRV-A16), suggesting potential for treating respiratory viral 
infections (Martina et al., 2024). 

CUR-N399 is a PI4KIIIβ inhibitor that exhibits potent broad-
spectrum antiviral activity against various genera of picornaviruses 
in low nanomolar concentrations, displays mild toxicity, and 
confers protection against lethal EV71 infection in mice (Cheong 
et al., 2023; Cheong et al., 2023), suggesting potential utility 
in antiviral therapy. Notably, a phase I clinical trial of CUR-
N399 has been conducted to evaluate its safety, tolerability, and 
pharmacokinetic profile in healthy adults (NCT05016687). 

Although apilimod demonstrated potent in vitro antiviral 
activity against various viral families, its poor pharmacokinetics, 
characterized by low plasma concentration and poor bioavailability, 
led to ineÿcacy during clinical trials (Sands et al., 2010; Krausz 
et al., 2012). A single oral dose of apilimod dimesylate at 15 mg 
yielded a Cmax of approximately 225 ng/mL (0.368 µM) at 1 h; 
however, by 6 h, the concentration dropped below 50 ng/mL 
(0.008 µM) (Ikonomov et al., 2019), which is lower than the desired 
eective concentration required for viral inhibition (Table 1). 

PIK inhibitors, such as PIK-75, PIK-93, bithiazole derivatives, 
and CUR-N399, demonstrate antiviral activity against various 
viruses and possess favorable pharmacological properties, 
highlighting their potential as candidates for antiviral therapy. 
However, their inhibitory eects remain limited to specific viral 
families or select members within the same genus. Most reported 
activity targets picornaviruses; certain flaviviruses; coronaviruses; 
influenza viruses; other RNA viruses, such as ZEBOV, rubella 
virus, human parainfluenza virus, and respiratory syncytial virus 
(RSV); retroviruses such as HIV-1; and DNA viruses including 
HSV, HCMV, and MPXV. 
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TABLE 1 Inhibitors of phosphatidylinositol kinases with board-spectrum antiviral activity. 

Inhibitors Targeted PIKs Virus group and 
species or strain 

Findings References 

LY294002 PI3Kα, PI3Kδ, 
PI3Kβ 

HAdV-2 Inhibits viral entry, conc. 100 µM (SW480 cells) Li et al., 1998 

HAdV-19 Inhibits Akt activation, conc. 20 µM (HCF cells) Rajala et al., 2005 

HSV-1 Inhibits viral entry, conc. 0.05–0.5 mM (RPE, HeLa and CF 

cells) 
Tiwari and Shukla, 2010 

HCMV Inhibits virus replication, conc. 10 µM (HFFF2 cells) McFarlane et al., 2011 

conc. 1–20 µM (HEL fibroblasts) Johnson et al., 2001 

CyHV-2 Inhibits virus replication and protein expression (GiCF 

cells) 
Song et al., 2024 

RVA-SA11 Inhibits virus replication, conc. 1, 5 µM (Caco2 cells) Yin et al., 2018 

CVB Promotes CVB3-induced CPE and apoptosis Chen et al., 2014 

IAV 

A/WSN/33 (H1N1) 
Reduces virus replication, attenuates lung injury in mice Tang et al., 2023 

HIV-1 Inhibits viral entry, conc. 3–10 µM (TZM-bl cells) Hamada et al., 2019 

PIK-75 PI3Kα IAV Inhibits virus replication in A549 cells Perwitasari et al., 2015 

A/Anhui/1/2013 (H7N9) IC50: 0.04 µM 

A/California/04/09 

(pdmH1N1) 
IC50: 0.32 µM 

A/Philippines/2/82-X79 

(H3N2) 
IC50: 0.40 µM 

HIV-1 Inhibits viral entry, conc. 3–30 nM (TZM-bl cells) Hamada et al., 2019 

PIK-93 PI4KIIIβ, PI3Kγ, 
PI3Kα 

AiV inhibits virus replication, EC50: 0.60 µM (HeLa cells) Greninger et al., 2012 

CVB3 Inhibits virus replication, conc. 1 µM (BGM kidney cells) Schaar et al., 2012 

EV71 Inhibits virus replication, conc. 0.25 µM (RD cells) Xiao et al., 2017 

HRV Inhibits virus replication, (Cells) mean EC50 ± SD Mello et al., 2014 

HRV-C15 (HeLa) 285 ± 258 nM 

(HAE) 225 ± 103 nM 

HRV-C11 (HeLa cells) 90 ± 10 nM 

(HAE) 342 ± 81 nM 

HRV-C25 (HeLa) 57 ± 33 nM 

HRV-C24 (HeLa) 75 ± 9 nM 

HRV-A16 (HeLa) 574 ± 115 nM 

(HAE) 127 ± 50 nM 

PV Inhibits virus replication 

Mean EC50 ± SD: 0.14 ± 0.0086 µM (RD cells) 
Arita et al., 2011 

HCV Inhibits virus replication 

(Huh-7.5) mean IC50 ± SD 

(Huh-7) mean EC50 ± SD 

Borawski et al., 2009; 
Delang et al., 2012; 
Delang et al., 2018 

Genotype 1a (Huh-7.5) 0.098 ± 0.05 µM 

(Huh-7) 0.47 ± 0.1 µM 

Genotype 1b (Huh-7.5) 0.05 ± 0.01 µM 

Genotype 1b (Huh 5–2) (Huh-7) 0.28 ± 0.07 µM 

Genotype 1b (Huh 9–13) (Huh-7) 0.17 ± 0.1 µM 

Genotype 2a (Huh-7.5) 0.39 ± 0.04 µM 

(Huh-7) 5.8 ± 0.5 µM 

Genotype 4a (Huh-7) 0.72 ± 0.01 µM 

SARS-CoV-2 Inhibits viral entry, conc. 0.1–10 µmol/L (293T-ACE2 

stable cell lines) 
Moore et al., 2022 

(Continued) 

Frontiers in Microbiology 11 frontiersin.org 

https://doi.org/10.3389/fmicb.2025.1620775
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/


fmicb-16-1620775 August 22, 2025 Time: 12:23 # 12

Jitobaom and Auewarakul 10.3389/fmicb.2025.1620775 

TABLE 1 (Continued) 

Inhibitors Targeted PIKs Virus group and 
species or strain 

Findings References 

Enviroxime 

(LY122772) 
PI4KIIIβ, PI4KIIIα MPXV (VeroE6) EC50: 4.75 µM Martina et al., 2024 

CVB1 Combination of 50 mg/kg enviroxime and 

3.125–6.25 mg/kg disoxaril synergistically inhibits virus 
replication in mice 

Nikolaeva-Glomb and 

Galabov, 2004 

CVB3 Inhibits virus replication, EC50: 0.7 µM Martina et al., 2024 

EV68 (HeLa) EC50: 0.154 µM 

EV71 EC50: 0.0303 µM 

HRV14 EC50: 0.11 µM 

HRV16 (HeLa) EC50: 0.042 µM 

HRV54 EC50: 0.120 µM 

PV1 EC50: 0.19 µM 

PV (L2OB and RD) MIC of 0.06 µg/ml Al-khayat and Ahmad, 
2012 

Rubella virus (HeLa and WISH) MIC of 0.125 µg/ml 

HCV Inhibits virus replication 

(Huh-7) mean EC50 ± SD or only EC50 indicated 

Delang et al., 2012; 
Delang et al., 2018 

Genotype 1a 0.49 ± 0.07 µM 

Genotype 1b 0.22 µM 

Genotype 1b (Huh 5–2) 0.33 ± 0.1 µM 

Genotype 1b (Huh 9–13) 0.22 ± 0.06 µM 

Genotype 2a 2.3 ± 0.8 µM 

Genotype 4a 0.20 ± 0.1 µM 

HCoV-229E (Huh7) EC50: 4.75 µM Martina et al., 2024 

SARS-CoV-2 (VeroE6) EC50: 0.57 µM 

Bithiazole 

derivatives 
PI4KIIIβ Dierent substituents on bithiazole derivatives showed varying antiviral activity 

across various viruses and cell types. 
(Cells) Ranges of EC50 or IC50 values 

(Martina et al., 2021; 
Martina et al., 2024) 

MPXV (VeroE6) EC50: 3–11 µM 

EV68 (HeLa) EC50: 0.41–3.22 µM 

EV71 (VeroE6) EC50: 0.05–0.03 µM 

HRV2 (HeLa) IC50: 0.39–9.70 µM 

HRV14 (HeLa) IC50: 0.48–15.30 µM 

HRV16 (HeLa) EC50: 0.145–1.6 µM 

YFV (VeroE6) EC50: 1.05–1.52 µM 

ZIKV (VeroE6) EC50: 1.88–4.59 µM 

(Huh-7) EC50: 1.64–6.51 µM 

(Huh-7) IC50: 0.51–13.79 µM 

HCoV-229E (Huh-7) EC50: 0.55–0.94 µM 

SARS-CoV-2 (VeroE6) EC50: 0.57–9.67 µM 

(Calu3) EC50: 2.71–11.2 µM 

(Calu3) IC50: 1.57–7.45 µM 

CUR-N399 PI4KIIIβ Enterovirus A, B, C, D EC50: 2.5–53 nM Cheong et al., 2023 

Human rhinovirus A, B EC50: 2.8–53 nM 

Apilimod PIKfyve HRV14 Inhibits virus replication 

(HeLa) IC50: 12.3 µM 

Baker et al., 2024 

HRV1B (HeLa) IC50: 0.52 µM 

(Continued) 
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TABLE 1 (Continued) 

Inhibitors Targeted PIKs Virus group and 
species or strain 

Findings References 

HCoV-229E IC50: 0.04 µM 

HCoV-OC43 IC50: 0.007 µM 

MERS-CoV Reduces viral entry, conc. 10–1,000 nM 

(HeLa/hDPP4 cells) 
Ou et al., 2020 

SARS-CoV-2 (VeroE6) EC50 < 6.9 nM Su et al., 2022 

(VeroE6) IC50 ∼10 nM Kang et al., 2020 

Reduces viral entry, conc. 10–1,000 nM 

(293/hACE2 cells) 
Ou et al., 2020 

MHV Reduces viral entry, conc. 10–1,000 nM (HeLa/mCEACAM 

cells) 

ZEBOV Reduces viral entry, IC50 ∼50 nM 

(MA104 cells) 
Kang et al., 2020 

Various IAV strains (MDCK) IC50: 3.8–24.6 µM Baker et al., 2024 

IAV 

PR8 A/Puerto 

Rico/8/1934(H1N1) 

Inhibits body weight loss in BALB/c mice 

Dose: 2 mg/mL daily 

IBV 

Florida/4/2006 

(MDCK) IC50: 16.4 µM 

RSV A2 Inhibits body weight loss in BALB/c mice 

Dose: 2 mg/mL daily 

(HEp-2) IC50: 19.6 µM 

PIV3 C243 strain (LLC-MK2 7.1) IC50: 31.1 µM 

AiV, Aichivirus; BGM, bualo green monkey; CPE, cytopathic eect; CVA21, coxsackievirus A21; CVB, coxsackievirus B; CVB3, coxsackievirus B3; CyHV-2, cyprinid herpesvirus 2; EV68, 
enterovirus 68; EV71, enterovirus 71; HAdV-2, human adenovirus 2; HAdV-19, human adenovirus 19; HCMV, human cytomegalovirus; HCoV-229E, human coronavirus 229E; HCoV-OC43, 
human coronavirus OC43; HCV, hepatitis C virus; HIV-1, human Immunodeficiency virus type 1; HSV-1, herpes simplex virus type 1; HRV, human rhinoviruses; HRV14, human rhinovirus 
14; HRV-A16, human rhinovirus A16; HRV-C, human rhinovirus C; IAV, influenza A virus; IBV, influenza B virus; MIC, minimal inhibitory concentration; MHV, mouse hepatitis virus; 
MPXV, monkeypox virus; PIV3, human parainfluenza virus type 3; PV, poliovirus; PV1, poliovirus type 1; RVA-SA11, simian rotavirus SA11; RSV A2, respiratory syncytial virus A2; ZEBOV, 
Zaire ebolavirus. 

5 Inositol monophosphatase as a 
broad-spectrum antiviral target 

Although viruses within the same genus may share similarities, 
their replication depends on distinct PIK subtypes. For instance, 
DENV and WNV, both flaviviruses, do not require PI4K activity, 
unlike HCV. Interestingly, PI3K inhibition has been shown to 
enhance WNV production by suppressing PI3K signaling, which in 
turn impairs the IFN-I response (Wang et al., 2017). Additionally, 
the PI3K inhibitor LY294002 increases HBV replication (Xiang and 
Wang, 2018). Notably, viral genotype influences PIK dependency: 
dierent HCV genotypes exhibit diering reliance on PI4KIIIα 
or PI4KIIIβ isoforms, resulting in variable sensitivity to their 
corresponding PI4KIII inhibitors (Delang et al., 2012). 

Our previous study on the elucidation of the antiviral 
mechanisms of ivermectin (IVM), an antiparasitic agent with 
potent broad-spectrum antiviral activity, demonstrated the 
inhibition of IMPase as one of its antiviral mechanisms (Jitobaom 
et al., 2024). IMPase generates free MI for both de novo inositol 
biosynthesis from glucose and the recycling of PPIns and InsPs. 
IVM binds to IMPase and inhibits its activity, resulting in the 
overall reduction of cellular myo-inositol levels, and inhibits virus 
replication of DENV-2, ZIKV, and SARS-CoV-2 (Jitobaom et al., 
2024), which modulate PIKs dierently. The inhibition of IMPase 
activity might provide a broader antiviral approach. 

6 Future outlook 

Compare to the use of PIK inhibitors, which may face an 

issue with the complexity of PIK subtypes, targeting IMPase 

may provide a benefit of broader coverage, as it aects all 
types of PtdIns. This may naturally result in broader eects on 

multiple cellular processes and increase the risk of side eects. 
Interfering with cellular machinery always carries the risk of 
detrimental eects on essential cellular functions, which may 

lead to adverse outcomes. However, our recent finding that 
ivermectin can inhibit IMPase, along with the well-established 

mechanism of lithium involving inhibition of IMPase, suggest 
that inhibiting this enzyme does not necessarily result in serious 
adverse eects (Jitobaom et al., 2024). Both ivermectin and 

lithium have been extensively used. While ivermectin is considered 

to have a good safety profile (Canga et al., 2008), lithium is 
characterized by a narrow therapeutic window (Gitlin, 2016). 
This dierence suggests that the higher toxicity of lithium may 

involve additional mechanisms. Both ivermectin and lithium 

may act through multiple mechanisms, and it remains to 

be determined whether novel IMPase inhibitors with higher 

specificity might result in reduced adverse eects and improved 

safety profiles. 
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Another aspect of non-antiviral eects of IMPase inhibitors is 
that some may be beneficial. Both ivermectin and lithium exhibit 
anti-inflammatory activity (Seth et al., 2016; Murru et al., 2020; 
Qaswal et al., 2021; Zaidi and Dehgani-Mobaraki, 2022). This is 
because PtdIns, PPIns, and InsP are involved in the inflammatory 
signaling pathways. An anti-inflammatory eect may be beneficial 
in the treatment of viral diseases, as it helps mitigate tissue 
damage, illustrated by the use of steroid in COVID-19 therapy 
(Bahsoun et al., 2023). 

Host-targeting and drug repurposing for antiviral development 
are an area intensely pursued by many research groups, particularly 
during the COVID-19 pandemic. Several drugs were evaluated in 
clinical trials but were found to be ineective. Multiple factors 
contributed to these failures, including dierences in SARS-CoV-
2 cell entry mechanisms between cell lines used for antiviral testing 
and human lung tissue, which likely explained the lack of clinical 
eÿcacy observed with chloroquine (Das et al., 2021). In many 
cases, in vitro IC50 values exceed the concentrations achievable 
in vivo. The fact that these repurposed drugs were not specifically 
developed for this indication contributes to their low potency and 
the lack of clinical eÿcacy. 

Identification of antiviral mechanisms can provide therapeutic 
targets for the development of novel drugs with enhanced potency 
and clinical eÿcacy. Structure-based drug design, coupled with 
advancement in artificial intelligence, can accelerate drug discovery 
by leveraging knowledge of specific target enzymes. Eective broad-
spectrum antivirals are critical for mitigating and controlling 
pandemics. Strengthening eorts in this area should be considered 
an important component of the preparedness for future pandemics. 
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