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Environmental gradients are important for bacteria community in marine ecosystems. 
However, the tipping points of environmental heterogeneity and ecological 
responses to disturbances in marine ecosystems are still unclear. In this study, 
we sampled seawater from different layers of Beibu Gulf to investigate bacterial 
composition, diversity, network complexity and stability, and environmental thresholds. 
Proteobacteria (40.38%), Cyanobacteria (27.35%), and Actinobacteria (18.24%) 
were dominant across all three layers. Alpha diversity was higher in the bottom 
layer (BL), and beta diversity were greater in the middle layer (ML). Deterministic 
processes significantly structured bacterial communities. The BL had the most 
complex network, while the ML showed the highest stability. Dissolved oxygen 
(DO) influenced bacterial dissimilarity and community stability, while NO3

− drives 
complexity. Segmented regression identified environmental stress thresholds: 
pH = 7.79, TN = 7.48 mg/L, and temperature = 27.9°C. DO thresholds for beta 
diversity were 6.31 mg/L, 6.25 mg/L and 5.93 mg/L across layers, and for βNTI 
were 6.57 mg/L and 6.24 mg/L in ML and BL. Tipping points for community stability 
occurred at DO levels of 6.71 mg/L, 5.80 mg/L and 5.94 mg/L. NO3

− thresholds 
of complexity appeared in the SL (at 0.003 mg/L) and BL (0.020 mg/L) samples, 
but not in ML. This study provides new insights into bacterial stress resistance and 
community maintenance in the subtropical Gulf marine environments.
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1 Introduction

Community assembly and species coexistence of marine microorganisms play important 
and indispensable roles in marine ecosystems, serving as the cornerstone for maintaining 
ecological balance and contributing significantly to environmental sustainability (Jiao et al., 
2020; Pan et al., 2022). Recent research has indicated that environmental factors significantly 
influence the assembly and coexistence of marine bacterial communities, driving microbial 
turnover and species diversity across diverse maritime regions (Lin et al., 2024; Niu et al., 
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2024). For instance, Li et al. (2021) found that the assembly processes 
of marine bacteria responds to the Chlorophyll a concentrations and 
N/P ratios in the Eastern Indian Ocean. Ren et al. (2019) found that 
the composition of marine planktonic bacterial communities across 
temperature gradients exhibited high heterogeneity in Daya Gulf. 
However, community assembly and species coexistence of marine 
bacterial communities remain poorly understood.

Community complexity and stability are intricately tied to species 
coexistence, because species interactions enhance ecosystem 
resilience, thereby affecting resistance to environmental stress (Feng 
et  al., 2017). Furthermore, the process of community assembly 
assumes a pivotal and irreplaceable role in shaping the complexity and 
ensuring the stability of ecological communities (Chen Z. et al., 2024). 
Ecosystem complexity is generally characterized by the diversity of 
species and interconnections within a system, whereas stability 
pertains to the capacity of the ecosystem to sustain its functional 
integrity and structural coherence in response to external 
perturbations (Pettersson, 2023). Numerous studies have shown that 
different degrees of environmental variation generally promote or 
inhibit species coexistence and affect ecological complexity and 
stability (Liu et al., 2021). For example, Naik et al. (2022) found that 
biotic factors contribute to the overall community stability of marine 
bacteria. Wang et  al. (2024) also demonstrated that prokaryotic 
plankton in the Yellow Sea and Bohai Bay showed greater network 
complexity and stability than microeukaryotes, primarily driven by 
temperature gradients. However, the tipping points for the bacterial 
community to resist community stress in subtropical Gulfs 
remain unclear.

Understanding environmental thresholds and their response 
mechanisms is crucial for identifying fragile tipping points in 
ecosystems. The environmental threshold refers to the critical point at 
which environmental factors cause abrupt shifts in community 
structure and function (Li et  al., 2017). Environmental threshold 
responsiveness could be  an important means to study microbial 
diversity and community stress resistance and to help determine the 
niche limit (Bardgett and Caruso, 2020). Segmented regression is an 
effective method for identifying environmental thresholds and is 
widely used in ecology (Toms and Lesperance, 2003). Cao et al. (2017) 
identified a pH threshold of 7.74 in plateau lake ecosystems, using 
segmented regression analysis, and when exceeding the threshold, 
cyanobacterial community structure was significantly altered and 
microbial abundance declined. Similarly, Ji et al. (2023) determined 
thresholds for TN (0.23 ± 0.091 mg/L), DIN (0.21 ± 0.084 mg/L), and 
NH4

+-N (0.09 ± 0.057 mg/L) in coastal seawater bacterial communities 
through the same method, and these tipping points corresponded 
with the bloom dynamics of Ceratium tripos and Skeletonema 
costatum. However, the tipping points for marine bacterial 
communities to environmental stress remain unknown, particularly 
in subtropical bay ecosystems.

Beibu Gulf is located in the northwest region of the South China 
Sea and has abundant marine resources and complex microbial 
community structures (Li et al., 2020; Qin et al., 2024). In recent years, 
frequent human activities in the Beibu Gulf area have led to temporal 
and spatial environmental heterogeneity, potentially leading to an 
imbalance in resource distribution within the area (Lai et al., 2014). 
Therefore, to investigate the impact of environmental heterogeneity 
on marine microbial diversity and to identify the tipping points 
associated with resistance to environmental stress, we  collected 

seawater samples from various layers in the Beibu Gulf to (i)delineate 
the co-occurrence patterns of bacteria in the Beibu Gulf, (ii)reveal the 
main factors influencing marine microbial network complexity and 
stability in the Beibu Gulf, and (iii)explore the environmental 
inhibition and environmental thresholds of marine microbial 
community diversity, community complexity, and stability. Overall, 
this study provides new insights into marine microbial diversity and 
community stress resistance in the Beibu Gulf and provides an 
important ecological perspective for the observation of 
marine ecosystems.

2 Materials and methods

2.1 Sampling sites and environmental 
parameters

In total, 275 samples from 21 sites were collected from seawater 
at various depths during open cruises of Beibu Gulf on August 10, 
2021 (Figure  1). Seawater was sampled from each site, and the 
samples were divided into three categories: the surface layer (SL, 
3 ± 0.5 m), the middle layer (ML, 15 ± 0.5 m to 25 ± 0.5 m), and the 
bottom layer (BL, 30 ± 0.5 m to 40 ± 0.5 m). The SL, ML, and BL 
groups comprised 21, 16, and 19 sites, respectively. At each site, five 
replicate water samples were collected using a SBE 32 Carousel 
Water Sampler. All seawater samples were stored at 4°C before 
bacteria isolation and the analysis of environmental factors. For 
analyzing bacterial communities in seawater, a vacuum pump was 
employed to sequentially filter 1 liter of seawater from each sample 
through 3-μm filters (Port Washington, NY, United  States) to 
eliminate debris and larger organisms. The filtered samples were 
subsequently collected on 0.22-μm polycarbonate membranes 
(Millipore Corporation, Billerica, MA, United States). Environmental 
parameters of the samples were assessed using a portable meter (556 
MPS; YSI, United States) to measure temperature, salinity, pH, and 
dissolved oxygen (DO). Additionally, concentrations of phosphate 
(PO₄3−-P), nitrite (NO₂−-N), nitrate (NO₃−-N), and ammonium 
(NH₄+-N) were determined using a continuous flow analyzer (Seal-
AA3, Germany). Chlorophyll a (Chl-a) was measured according to 
established methods (American Public Health Association, 1926). 
Total organic carbon (TOC) was quantified using a TOC-VCPH 
analyzer (Shimadzu, Japan), and chemical oxygen demand (COD) 
was measured using alkaline potassium permanganate (KMnO₄). 
Dissolved inorganic nitrogen (DIN) was calculated as the sum of 
NO₂−-N, NO₃−-N, and NH₄+-N, while dissolved inorganic 
phosphorus (DIP) was represented by PO₄3−-P.

2.2 DNA extraction and PCR amplification

Genomic DNA extraction from seawater samples was conducted 
using the DNeasy PowerWater Kit (QIAGEN, United  States) in 
conjunction with 0.22-μm polycarbonate membranes, following the 
manufacturer’s instructions. The V3 and V4 regions of the 16S rRNA 
genes were amplified using the primer set 16S-F (5′-AGAGTT 
TGATCMTGGCTCAG-3′) and 16S-R (5′-TACGGYTACCTTGT 
TACGACTT-3′) (Cole et al., 2013). The PCR mixture, totaling 20 μL, 
comprised 2 μL of DNA template, 6 μL of ddH₂O, 10 μL of 2 × Taq 
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PCR Mastermix (TianGen, China), and 2 μL each of the forward and 
reverse primers. PCR amplification was performed using a Bio-Rad 
thermocycler (Hercules, CA, United  States) with the following 
protocol: an initial activation step at 94°C for 1 min, followed by 
35 cycles of denaturation at 95°C for 30 s, annealing at 56°C for 30 s, 
and extension at 72°C for 30 s, concluding with a final elongation step 
at 72°C for 10 min. Ultrapure water served as the negative control to 
eliminate the potential for false-positive results. The PCR products 
were validated using 2% agarose gel electrophoresis and visualized 
under UV light with a gel imaging system.

2.3 High-throughput sequencing

A clean library was generated following the standard Illumina 
library preparation protocols and subsequently sequenced on the 
Illumina MiSeq platform at Majorbio Co., Ltd. (Shanghai, China). 
Sequences containing low-quality reads were filtered out using the 
DADA2 denoising algorithm within the Qiime2 framework (Caporaso 
et al., 2010). For downstream analyses, amplicon sequence variants 
(ASVs) derived from the Illumina amplicon dataset were employed 
without applying arbitrary dissimilarity thresholds (Callahan et al., 
2017). Taxonomic assignment of ASVs was conducted by performing 
a local BLASTN search (with a cutoff E-value of 1e−10) against the silva 

16S database (Sun et al., 2022). All sequence data have been deposited 
in GenBank under the BioProject Accession number PRJNA1242707.

2.4 Statistical analysis

We calculated the Richness, Shannon, Simpson, and Chao1 
(Good, 1953; Kemp and Aller, 2004) indices, and using the Simpson 
index to represent the alpha diversity. The effect of environmental 
factors on prokaryotic communities was measured using the Mantel 
test. Bray–Curtis dissimilarity was calculated to refer to beta diversity. 
Both of alpha-diversity and beta-diversity were shown by boxplots 
using “ggplot2” package. Correlations were calculated using 
Spearman’s rank method. Use R package “ggplot2” for linear regression 
analysis. As mentioned earlier, null model analysis was performed to 
classify the community assembly process (Stegen et al., 2013). Based 
on phylogenetic and taxonomic characteristics, the beta diversity 
metrics using the β-nearest taxon index (βNTI) and Bray-Curtis-
based Raup-Crick, were generated for the evaluation of community 
assembly. Network analyses of prokaryotes were performed using 
“Hmisc” package, and visualized using Gephi 0.9.2 software. 
Spearman heatmaps were fabricated using “pheatmap” package to 
show the relationship between environmental factors and network 
properties, particularly complexity and stability. Using a segmented 

FIGURE 1

Distribution of 21 sampling sites of the Beibu Gulf in the Northwest of the South China Sea.
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regression analysis, we  determined that the relationship followed 
trend (Gunst and Mason, 2018) and established environmental  
thresholds.

3 Results

3.1 Composition and diversity of marine 
bacteria in Beibu Gulf

In this study, 275 water samples from different depths were 
collected from Beibu Gulf. Ultimately, 1,456,439 high-quality 
sequences were obtained. At the phylum level, Proteobacteria 
(40.38%) was dominant, followed by Cyanobacteria (27.35%), 
Actinobacteriota (18.24%), and Bacteroidota (9.71%) (Figure  2). 
Notably, as the sample depth increased, the relative abundance of 
Proteobacteria gradually increased, whereas that of Cyanobacteria 
consistently decreased. At the class level, Cyanobacteria (27.35%), 
Gammaproteobacteria (22.49%), and Alphaproteobacteria (17.89%) 
were dominant in all three sample groups (Figure 2). Furthermore, 
both Cyanobacteria and Gammaproteobacteria exhibited a vertical 
decrease in relative abundance with increasing seawater depth.

The Simpson index was used to assess the diversity of marine 
bacteria. The results revealed that the BL group exhibited the highest 
alpha diversity, followed by the ML and SL groups (Figure 3A). The 
ML group showed the lowest levels of beta diversity, followed by the 
SL group, with the BL group showing the highest levels (Figure 3B).

3.2 Assembly process of marine bacteria 
community in Beibu Gulf

NTI was performed to evaluate the relative importance of 
stochastic and deterministic processes in shaping the assembly of 
marine bacterial communities in different habitats. |βNTI| ≥ 2 and 
|βNTI| ≤ 2 represent dominant deterministic processes and stochastic 
processes in shaping the marine bacteria community, respectively. The 

proportions of βNTI values between > 2 or < −2 were 54.06, 56.75, 
and 54.61% for the marine bacteria community in SL, ML, and BL, 
respectively (Figure  4; Supplementary Table S1). Heterogeneous 
selection dominated the marine bacterial communities, accounting 
for 53.71, 56.32, and 54.12%, respectively (Figure 4; Supplementary  
Table S1). Deterministic rather than stochastic processes dominate the 
assembly of marine bacterial communities in different habitats. 
Additionally, ecological drift was second only to heterogeneous 
selection, accounting for 17.89, 24.31, and 23.90% of the variance. The 
importance of disp limit was higher in SL samples (24.52%) than in 
BL samples (17.83%) and ML samples (13.95%) (Figure  4; 
Supplementary Table S1). In general, deterministic processes 
contribute more to the dynamics of marine bacterial communities in 
different habitats than stochastic processes. Spearman’s correlation 
analyse was performed to explore the key drivers of βNTI. The results 
showed that DO (r2 = 0.25, p < 0.001) had the greatest impact on βNTI 
in the SL samples, TOC (r2 = 0.38, p < 0.001) and DO (r2 = 0.27, 
p < 0.001) had the significant effect on βNTI in the ML samples, 
whereas DO (r2 = 0.41, p < 0.001) had the strongest effect on alpha 
diversity in the BL samples (Supplementary Table S2). Collectively, 
these observations suggest that DO is the key factor for βNTI of 
marine bacteria across layers.

3.3 Network topological features of marine 
bacteria community in three layers

Three co-occurrence networks were constructed for each sample 
type (SL, ML, and BL) among bacterial OTUs (Figure 5). The BL 
network had the greatest average degree (8.144) and density (0.023), 
followed by the ML (average degree = 6.247 and density = 0.021) and 
SL networks (average degree = 5.363 and density = 0.015) 
(Supplementary Table S3). Moreover, the SL networks showed a 
greater number of modules (15) and modularity indices (0.719) than 
the ML (module = 12, modularity = 0.703) and BL (module = 4, 
modularity = 0.659) networks (Supplementary Table S3). The ML 
network had the highest clustering coefficient (0.514), whereas the BL 

FIGURE 2

(A) Relative abundance of marine bacteria in seawater samples from the Beibu Gulf in phylum level; (B) Relative abundance of marine bacteria in 
seawater samples from the Beibu Gulf in class level. SL: Surface layer water; ML: Middle layer water; BL: Bottom layer water.
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network had the lowest (0.460). Cohesion and robustness are regarded 
as network complexity and stability, respectively (Supplementary  
Table S3). The ML network had the highest complexity (0.678), 
followed by the BL (complexity = 0.470) and SL networks 
(complexity = 0.424) (Supplementary Table S3). However, the SL 
network had the highest stability (0.302), followed by the ML 
(stability = 0.294) and BL (stability = 0.290) networks 
(Supplementary Table S3).

3.4 Driving factors and thresholds of 
biodiversity, assembly and community 
stress resistance of marine bacteria

Spearman’s correlation and Mantel test analyses were performed 
to explore the key drivers of biodiversity, community complexity, and 
stability of marine bacteria. The results showed that pH (r2 = −0.51, 
p < 0.001) had the greatest impact on alpha diversity in the SL samples, 
TN (r2 = −0.42, p < 0.001) and PO4

3− (r2 = 0.41, p < 0.001) had the 
significant effect on alpha diversity in the ML samples, whereas 
temperature (r2 = −0.37, p < 0.001) had the strongest effect on alpha 
diversity in the BL samples (Supplementary Table S4).

The beta diversity of bacterial communities is determined by 
various water properties and nutrients. In the SL samples, the beta 
diversity was mostly influenced by salinity (r2 = 0.39, p < 0.001) and 
DO (r2 = 0.44, p < 0.001) (Supplementary Table S4). Temperature 
(r2  = 0.49, p  < 0.001) and DO (r2  = 0.59, p  < 0.001) had the most 
significant effects on alpha diversity in ML samples. In the BL samples, 
temperature (r = 0.40, p < 0.001), DO (r2 = 0.30, p < 0.001), and TN 
(r2  = 0.39, p  < 0.001) had the greatest effects on beta diversity 
(Supplementary Table S5). These results indicate that DO is the main 
driver of marine microbial beta dissimilarities.

The Spearman’s rank method was used to explore the key drivers 
of community complexity and stability in marine bacteria. In the SL 
samples, community stability was significantly influenced by DO 

(r2 = 0.23, p < 0.05), TP (r2 = −0.39, p < 0.001) and RD (r2 = −0.39, 
p < 0.001), while community complexity was influenced by NO2

−-N 
(r2 = 0.29, p < 0.01) and NO3

−-N (r2 = 0.27, p < 0.01) 
(Supplementary Table S4; Figure 6). In the ML samples, DO (r2 = 0.29, 
p < 0.01) and NH4

+-N (r2 = 0.44, p < 0.001) significantly affected 
community stability, whereas NO2

−-N (r2 = 0.53, p < 0.001) and 
NO3

−-N (r2 = 0.32, p < 0.01) had the strongest effects on community 
complexity (Supplementary Table S4; Figure 6). In the BL samples, 
community stability was significantly influenced by salinity (r2 = −0.39, 
p < 0.001) and DO (r2 = 0.26, p < 0.05), while community complexity 
was mostly influenced by DO (r2 = −0.39, p < 0.001) and NO3

−-N 
(r2 = −0.39, p < 0.001) (Supplementary Table S4; Figure 6). Collectively, 
these observations suggest that DO and NO3

−-N are key factors for 
community stability and complexity of marine bacteria, respectively.

The tipping points of marine bacteria responsive to crucial 
environmental variables in Beibu Gulf were determined using 
segmented regression analysis. Segmented linear regression analysis 
explored the environmental threshold of alpha diversity were pH = 7.79 
(r2 = 0.28, p < 0.001), TN = 7.48 mg/L (r2 = 0.21, p < 0.001) and 
temperature = 27.9°C (r2 = 0.18, p < 0.001) for the SL, ML, and BL 
groups, respectively (Figures  7A–C). Change points of DO were 
6.31 mg/L (r2 = 0.14, p < 0.001), 6.25 mg/L (r2 = 0.16, p = 0.008), 
5.93 mg/L (r2 = 0.25, p < 0.001) for the beta-diversity of marine bacteria 
in SL, ML, and BL, respectively (Figures 7D–F). For the correlation 
between DO and βNTI, the change points explored at 5.63 mg/L in SL 
(r2 = 0.19, p = 0.410), 6.57 mg/L in ML (r2 = 0.41, p < 0.001), and 
6.24 mg/L in BL (r2 = 0.45, p < 0.001) (Figures 7G–I). Segmented linear 
regression analysis also showed significant threshold on the correlation 
between DO and beta stability at 6.71 mg/L (r2 = 0.09, p = 0.001) in SL 
group, while insignificant change points were 5.80 mg/L (r2 = 0.17, 
p = 0.009) and 5.94 mg/L (r2 = 0.24, p < 0.001) in ML and BL, 
respectively (Figures 7J–L). For NO3

−-N correlated with community 
complexity, segmented analysis explored the change points at 0.003 in 
SL (r2 = 0.18, p = 0.006), 0.027 in ML (r2 = 0.24, p = 0.494), and 0.020 in 
BL (r2 = 0.20, p = 0.016) (Figures 7M–O).

FIGURE 3

(A) Alpha diversity (Simpson index) presented by boxplot; (B) Beta dissimilarity (Bray-Curtis distance) presented by boxplot. In the box plots, the upper 
whisker represents the maximum value, the upper line of the box represents the upper quartile, the center line inside the box represents the median, 
the lower line of the box represents the lower quartile, and the lower whisker represents the minimum value. Different lowercase letters represent 
significant differences (p < 0.05), and the same lowercase letters indicate no significant differences (p < 0.05). SL: Surface layer water; ML: Middle layer 
water; BL: Bottom layer water.
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4 Discussion

4.1 Proteobacteria dominated the Beibu 
Gulf and deterministic processes governed 
bacterial community assembly across 
habitats

Proteobacteria, cyanobacteria, actinobacteria, and Bacteroidetes 
were the predominant classes in seawater samples from the Beibu 
Gulf area. Recently, several studies have been conducted on marine 
bacteria, particularly in subtropical gulfs affected by anthropogenic 
activities (Yang et al., 2024). For example, Peng et al. (2024) found 
that Proteobacteria was the dominant bacterial phylum in the Beibu 
Gulf in both wet and dry seasons, followed by Bacteroidetes and 

Actinobacteria. Li et al. (2020) reported that Alphaproteobacteria 
and Gammaproteobacteria are the most abundant classes in Beibu 
Gulf seawater samples across a eutrophication gradient. Our results 
indicated that as the seawater samples were taken from the surface 
to the bottom, the relative abundance of Proteobacteria gradually 
increased, while the relative abundance of Cyanobacteria continued 
to decrease. Previous studies have demonstrated that the high 
photosynthetic activity of cyanobacteria enables them to grow and 
reproduce rapidly in shallow seawater (Bullerjahn and Post, 2014). 
Therefore, we inferred that the decline in cyanobacterial abundance 
in the bottom layer could be attributed to reduced light intensity 
and dissolved oxygen levels (Wang et al., 2021). Furthermore, the 
increased dominance of Proteobacteria in the bottom layer may 
be due to their metabolic versatility, which enables adaptation to 

FIGURE 4

Analysis of the marine bacterial community assembly in different layers. SL: Surface layer water; ML: Middle layer water; BL: Bottom layer water.
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reduced dissolved oxygen levels and organic matter deposition 
(Capo et al., 2020). Overall, the distribution of the dominant species 
in Beibu Gulf exhibited spatial heterogeneity.

Our findings suggest that biodiversity is significant in different 
habitats. Although BL samples are remote from direct nutrient inputs, 
they can become eutrophic through processes such as vertical mixing 

and settlement effects under certain circumstances. Reissmann et al. 
(2009) also showed eutrophication from vertical mixing in the Baltic 
Sea, because sediment organic matter decomposition provides nutrients 
to bottom-water microorganisms. The accumulation of these nutrients 
leads to an increase in microbial diversity in bottom layer waters. The 
research of Jørgensen (2000) has shown that sediments and dissolved 

FIGURE 5

(A–C) Co-occurrence network of the three groups. The node colors indicate species from the same module in each network. The lines indicate 
positive (pink) and negative (green) correlation coefficients. (A) SL: Surface layer water; (B) ML: Middle layer water; (C) BL: Bottom layer water. 
(D) Stability in different layers presented by boxplot. (E–G) Linear regression for DO associated with stability in different layers. (E) SL: Surface layer 
water; (F) ML: Middle layer water; (G) BL: Bottom layer water. (H) Complexity in different layers presented by boxplot. (I–K) Linear regression for nitrate 
associated with the complexity in different layers. (I) SL: Surface layer water; (J) ML: Middle layer water; (K) BL: Bottom layer water.

FIGURE 6

Correlations between stability, complexity, and environmental factors. (A) SL: Surface layer water; (B) ML: Middle layer water; (C) BL: Bottom layer 
water. Temp: temperature; pH: pH value; DO: Dissolved oxygen; NO2

−: Nitrite-nitrogen; NO3
−: Nitrate-nitrogen; NH4

+: Ammonium-nitrogen; TN: Total 
nitrogen; PO4

3−: Phosphorus; TOC: Total organic carbon; TIC: Total inorganic carbon; COD: Chemical oxygen demand; DIN: Dissolved inorganic 
nitrogen. *p < 0.05; **p < 0.01; ***p < 0.001.
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organic matter in bottom waters provide abundant nutrition, supporting 
the growth of a wider variety of microorganisms, particularly anaerobic 
and facultative anaerobic bacteria. This finding corroborates previous 
evidence that the relative abundance of Proteobacteria in the BL 
samples increased. Overall, our findings highlight the influence of 

environmental perturbations on the distribution and diversity of marine 
bacterial communities in the Beibu Gulf.

Community assembly was intricately intertwined with species 
composition, as they collectively offer insights into the processes 
underpinning the emergence and persistence of biodiversity within 

FIGURE 7

(A–C) Segmented regressions for the dominant environmental factors associated with alpha dissimilarity in the different layers. (A) SL: Surface layer 
water; (B) ML: Middle layer water; (C) BL: Bottom layer water. (D–F) Segmented regressions for DO associated with beta dissimilarities in different 
layers. (D) SL: Surface layer water; (E) ML: Middle layer water; (F) BL: Bottom layer water. (G–I) Segmented regressions for DO associated with βNTI in 
different layers. (G) SL: Surface layer water; (H) ML: Middle layer water; (I) BL: Bottom layer water. (J–L) Segmented regressions for DO associated with 
stability in different layers. (J) SL: Surface layer water; (K) ML: Middle layer water; (L) BL: Bottom layer water. (M–O) Segmented regressions for nitrate 
associated with the complexity in different layers. (M) SL: Surface layer water, (N) ML: Middle layer water, (O) BL: Bottom layer water.
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ecological systems (Bonte et al., 2024). In this study, we employed a 
null-modeling-based framework to investigate the assembly process of 
marine bacterial communities. Our findings revealed that deterministic 
processes play a pivotal role in driving the turnover of the marine 
bacterial community across all three layers, with heterogeneous 
selection regarded as the dominant factor. Heterogeneous selection is 
a deterministic concept pertaining to distinct environmental selective 
forces that can propel a community toward increased dissimilarity 
(Dini-Andreote et al., 2015). Qin et al. (2024) found that deterministic 
rather than stochastic processes dominated the assembly of marine 
Vibrio communities in different habitats in Beibu Gulf. Yang et al. 
(2024) also found that deterministic assembly processes predominantly 
shape microbial communities in the subtropical estuaries of Beibu 
Gulf. Yuan et al. (2021) and Yan et al. (2024) found that strong selective 
pressures shape the heterogeneous selection of marine bacterial 
communities. Our research showed that βNTI was significantly 
correlated with most water properties, especially DO. Previous studies 
have demonstrated a strong correlation between water properties and 
marine bacterial communities (Chun-Yi et  al., 2012). Therefore, 
we propose that deterministic processes play a dominant role in the 
microbial community assembly through heterogeneous selection, and 
DO regulate the community assembly in the Beibu Gulf region.

Stochastic processes also play a role in driving the structure of 
microbial communities (Yuan et al., 2019). Notably, our findings show 
that stochastic processes, particularly ecological drift, also play an 
important role in the bacterial communities in the middle and bottom 
layers of seawater, accounting for 45.94, 43.24, and 45.39% in the three 
layers, respectively. This effect is due to several factors. First, ecological 
drift may be more pronounced owing to reduced microbial dispersal, 
dominance of physical mixing, and a more homogeneous distribution 
of environmental factors that limit selective pressures in deeper water 
layers (Zhao et al., 2022). Secondly, the connectivity and mobility of 
seawater are positively correlated with ecological drift (Dini-Andreote 
et  al., 2015; Zeng et  al., 2019). Shi et  al. (2018) indicated that 
deterministic processes are more likely to occur at larger scales, whereas 
stochastic processes tend to occur at local scales. Therefore, the 
microbial community structure in Beibu Gulf enhances the influence 
of stochastic processes, particularly ecological drift, by vertical mixing. 
Conversely, the relatively low homogenizing dispersal and homogeneous 
selection observed across all layers indicate the environmental 
heterogeneity among communities (Soininen and Graco-Roza, 2024). 
This implies that the bacterial communities in the Beibu Gulf are highly 
susceptible to the environmental disturbances. Overall, these findings 
highlight the dominant role of deterministic processes in shaping the 
marine bacterial community assembly across different water layers and 
underscore the contribution of stochastic processes in regulating the 
microbial community structure in the Beibu Gulf.

4.2 Nutrient and water properties affecting 
the diversity and community of marine 
bacteria

The cohesion index was regarded as an index to reflect community 
complexity, reflecting strong interactions between microorganisms 
within a network. In the present study, the ML network exhibited the 
highest clustering coefficient (0.514) among the various components 
of the bacterial community. These results suggest that the bacterial 

community in the middle layer (ML) experienced the strongest 
interactions and highest degree of community complexity. These 
results imply that the middle layer provides an environment conducive 
to enhanced niche sharing and more frequent interspecific interactions 
among marine bacteria than other layers (Capo et al., 2020). This may 
be because the middle layer was less affected by these drastic changes, 
providing more stable living conditions for the microorganisms, 
which, in turn, facilitated the formation of a more complex community 
structure. The surface layer is significantly affected by sunlight, 
temperature fluctuations, and ocean surface disturbances, whereas the 
bottom layer is influenced by low-oxygen conditions and accumulation 
of organic matter (Hu et  al., 2021). In contrast, ML had a stable 
habitat, which was also supported by the fact that the ML has the 
highest proportion of positive edges (97.55%). Therefore, the middle 
layer exhibited higher community complexity.

Robustness, a measure of network stability, was found to 
be significantly higher in the SL network (0.302) than in the other 
layers, suggesting that the bacterial community in the SL has greater 
community stability. This may be due to the stable oxygen supply and 
high primary productivity in the surface layer, which could result in 
the highest stability of the surface microbial community (Terrence 
et al., 2005; Tengfei et al., 2021). All three networks were dominated 
by positive correlations, highlighting the crucial role of mutualistic 
symbiosis and cooperation in sustaining ecosystem functions. 
Symbiotic relationships are essential for maintaining the stability of 
microbial community (Liu et al., 2022). These results suggest that the 
SL community showed stronger species interactions, resistance, and 
resilience, which enhanced the adaptability of bacteria to 
environmental pressures.

Understanding the relationship between environmental variables 
and microbial community structure is an important goal in microbial 
ecology research (Shen et  al., 2015). Previous studies have 
demonstrated a close association between marine bacterioplankton 
and environmental factors, with these communities responding 
rapidly to changes in variables such as temperature, nitrogen, and 
dissolved oxygen (DO) in oceanic environments (Sampaio et al., 2022; 
Zhao et al., 2024). This study identified pH, TN, and temperature as 
the primary factors influencing alpha diversity in the SL, ML, and BL 
groups. Additionally, DO was found to have a substantial impact on 
beta diversity across all three habitats, whereas temperature was 
significantly correlated with beta diversity in BL samples. These 
findings align with those of previous research on the relationship 
between environmental variables and microbial community structure. 
Peng et  al. (2024) reported that temperature and DO are critical 
environmental factors that affect bacterial communities in Beibu Gulf. 
Temperature, which is a driver of microbial diversity, was also noted 
by Gusareva et al. (2019) in the Global Ocean System Survey. Jing et al. 
(2019) found a significant positive correlation between the coastal 
bacterioplankton community in the Yellow Sea and both temperature 
and COD, suggesting that COD levels may influence bacterioplankton 
community structure and diversity. Overall, this study demonstrated 
that nutrient and water properties significantly shape the alpha and 
beta diversities of microbial communities across distinct habitats in 
Beibu Gulf.

Previous studies have consistently confirmed that environmental 
factors have a crucial influence on the structure of marine bacterial 
communities (Letscher et al., 2015; Lindh et al., 2016). Our research 
indicated that DO and NO3-emerges as the crucial determinant of the 
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stability and complexity of marine bacterial communities, respectively. 
Dissolved oxygen (DO) is a crucial environmental factor that affects 
the survival and metabolism of marine microorganisms. Higher DO 
levels help to sustain aerobic microorganisms, thereby maintaining a 
relatively stable bacterial community structure (Ye and Shi, 2020). In 
contrast, a decrease in DO may lead to the proliferation of anaerobic 
microorganisms, causing dynamic shifts in the microbial community 
and reducing its stability (Jørgensen, 2000). Moreover, DO is closely 
linked to organic matter decomposition and redox conditions, which 
likely influence the stability of bacterial communities (Chen Y. et al., 
2024). DO plays a dominant role in community stability, whereas 
community complexity was significantly influenced by nitrate levels. 
As an essential inorganic nitrogen source, nitrate also plays a key role 
in driving the nitrogen cycle in marine ecosystems by affecting 
bacterial metabolic pathways and community composition (Hong, 
2013). Higher nitrate levels may support the coexistence of diverse 
microbial groups with different metabolic capabilities, such as 
nitrifying bacteria, denitrifying bacteria, and facultative anaerobes (Yi 
et al., 2018), thereby increasing community diversity and interactions 
and enhancing the complexity of the marine microbial community. 
Overall, DO and nitrate plays dominant roles in the stability and 
complexity of the marine bacterial community, respectively.

4.3 Dissolved oxygen and nitrate gradient 
regulate community stress resistance of 
marine bacterial communities in Beibu Gulf

Environmental changes regulate the community diversity and 
stress resistance. Our research indicates that pH, TN, and temperature 
are the main driving factors controlling the alpha diversity of marine 
bacterial communities in SL, ML, and BL. According to the segmented 
regression analysis, we observed that alpha diversity within the three 
layers exhibited a declining trend before the tipping points but 
exhibited a rebound post-threshold. This may be  caused by 
pronounced environmental filtering under lower environmental 
conditions (Song et  al., 2019). Therefore, we  consider pH = 7.79, 
TN = 7.48 mg/L, and temperature = 27.9°C to be  the respective 
thresholds of maximum environmental stress for the SL, ML and BL 
groups. Beyond the tipping point, strengthened interspecies 
interactions may drive a resurgence in biodiversity (Gorter et  al., 
2020). Wan et  al. (2021) also found that 20.9 to 25.2°C as the 
bacterioplankton community threshold, but lower than our research. 
This difference may be caused by the unique climate and temperature 
variations in subtropical gulfs compared to temperate regions.

DO mainly drive the beta dissimilarity in marine bacterial 
communities in Beibu Gulf. The results of the segmented regression 
analysis show that DO exhibits a promoting effect on beta diversity 
across three layers. Beman and Carolan (2013) also found that DO is 
positively correlated with the beta diversity of bacterial communities. 
An increase in DO may lead to enhanced niche differentiation and 
metabolic pathway diversity, ultimately promoting an increase in beta 
diversity. However, according to the results of the segmented 
regression analysis, the promoting effect of DO on beta diversity 
across all depth layers significantly decreased after the tipping points 
of 5.93 mg/L-6.31 mg/L. This might be because DO reaches a certain 
threshold and the bacterial community has already adapted to higher 
oxygen levels. At this tipping point, any further increase in DO had a 
diminished effect on community promotion, as the bacteria had 

already reached their optimal growth state under the current DO 
conditions. Therefore, we  can consider DO concentrations of 
6.31 mg/L, 6.25 mg/L and 5.93 mg/L as the optimal growth thresholds 
for the bacterial communities in the SL, ML and BL, respectively. Shen 
et al. (2023) also found that most aerobic denitrifiers have an optimal 
growth state when the DO is 3–5 mg/L. In this study, the DO threshold 
was higher. This may have been caused by the higher dissolved oxygen 
background in Beibu Gulf (Zheng et  al., 2023), where bacterial 
communities may have evolved a stronger adaptation to higher 
oxygen conditions.

βNTI reflects the phylogenetic structural differences in 
communities and serves as an important ecological indicator for 
microbial community assembly mechanisms (Xun et  al., 2019; 
Gundersen and Vadstein, 2024). As the key influencing factor of βNTI 
(Supplementary Table S2), DO concentration exhibits a biphasic effect 
on community assembly. According to the results of the segmented 
regression analysis, DO showed significant tipping points in ML and 
BL. Before the tipping point, community assembly transitions from 
strong heterogeneous selection to stochastic processes. However, 
heterogeneous selection becomes strengthened again after the tipping 
point. This might caused by the functional redundancy of microbial 
community. When environmental stress in a moderate level, 
functionally redundant microbial taxa would maintain community 
structure through compensatory regulation (Louca et al., 2018; Chen 
et  al., 2020), thereby reducing phylogenetic dissimilarity and 
exhibiting a higher degree of stochasticity (Biggs et  al., 2020). 
Therefore, our study suggests that tipping points at 6.57 mg/L and 
6.24 mg/L were phylogenetic stress thresholds in BL in ML.

Similarly, as a main driving factor controlling the stability of 
marine bacterial communities, DO also show the tipping points across 
three layers. This indicates that when the DO reached the response 
threshold for stability, the bacterial community exhibited the strongest 
species interactions, resistance, and resilience. This may be due to the 
fact that, prior to reaching the tipping point, increasing DO fosters the 
growth and metabolic activity of aerobic microorganisms, thereby 
enhancing community stability (Dvergedal et al., 2020). After reaching 
the tipping point of 5.94 mg/L-6.71 mg/L, according to the niche 
saturation effect, oxygen is no longer the main limiting factor and will 
not significantly alter the microbial niches (Pincheira-Donoso et al., 
2018). The LS group had the highest threshold, indicating that marine 
bacterial communities exhibit greater adaptability to habitats with 
higher DO contents, contributing to the maintenance of ecosystem 
stability (Zhu et al., 2023).

Our research also indicated that NO3-serves as a main driving 
factor controlling community complexity. According to the segmented 
regression analysis, significant tipping points of NO3-responding 
community complexity also appeared in the SL and BL samples at 
0.003 mg/L and 0.020 mg/L, respectively. This result suggests that the 
bacterial communities in these two groups had the strongest 
interactions when they reached their tipping points (Karimi et al., 
2017). The absence of a community complexity threshold in the 
middle layer might be due to an environmental buffering effect (Cai 
et  al., 2017). ML is generally more stable than SL and BL and 
experiences less disturbance from external environmental changes. As 
a result, it might cause the absence of community complexity 
threshold within the middle layer in the regression analysis. In 
summary, this study demonstrates that bacterial community diversity, 
community assembly, and environmental resistance are concurrently 
driven by multiple environmental factors, such as pH, TN, 
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temperature, DO, NO3
−, etc. Even when a single variable exhibits a 

significant effect, its explanatory power with respect to the response 
variable is limited, resulting in a relatively low R2 value. Consequently, 
despite the low R2 value obtained from piecewise regression analysis, 
the results remain statistically significant given the significant p values 
(p < 0.05). Overall, the diversity, community stability, and complexity 
of the marine bacterial communities in Beibu Gulf are primarily 
regulated by dissolved oxygen and nitrate. The bacterial communities 
in different water layers exhibited distinct environmental adaptations 
and ecological response patterns.

5 Conclusion

In the present study, the spatial distribution of marine bacteria in 
different habitats was determined using high-throughput sequencing. 
Proteobacteria were the most abundant phyla in the seawater of Beibu 
Gulf. Alpha diversity was higher in the bottom layer, beta diversity was 
higher in the middle layer, and the water properties were important 
for the diversity of marine bacteria. Deterministic processes dominate 
marine bacterial community assembly. DO was the main factor 
affecting bacterial dissimilarity and community stability, whereas 
complexity was mainly influenced by NO3

−. Thresholds of pH = 7.79, 
TN = 7.48 mg/L, and temperature = 27.9°C marked maximum 
environmental stress for SL, ML and BL communities, while DO 
concentrations of 6.31 mg/L, 6.25 mg/L and 5.93 mg/L were 
thresholds for beta diversity and 6.57 mg/L and 6.24 mg/L were 
thresholds for βNTI in ML and BL. DO concentrations of 6.71 mg/L, 
5.80 mg/L and 5.94 mg/L were thresholds for community stability 
corresponding to peak community interactions. Nitrate-responsive 
complexity thresholds emerged at 0.003 mg/L in the SL and 
0.020 mg/L in the BL but were absent in the middle layer. Overall, 
these findings constitute a scaffold upon which to better understand 
the bacterial community structure and community stress resistance 
responses to changes in environmental factors.
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