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Introduction: Improving ruminal fiber degradation is a key focus for enhancing
animal performance and reducing the environmental impact of ruminant
production systems. While dietary fat is typically recognized for impairing ruminal
fiber degradation, recent research suggests that specific fatty acids, such as
palmitic, stearic, and oleic, may have the potential to improve it. Since palmitic,
stearic, and oleic are major components of the membranes of ruminal mixed
bacteria, we hypothesize that supplying these fatty acids in proportions that
mimic bacterial composition will promote microbial flow and, consequently,
improve fiber degradation.

Methods: Diets were randomly assigned to 8 single-flow continuous culture
fermenters arranged in a replicated 4 X 4 Latin square with 6 days of adaptation
and 4 days of sampling. Treatments were: (1) a basal diet without supplemental
fatty acids (CON); (2) the basal diet plus 1.5% of palmitic acid (PA); (3) the basal
diet plus 1.41% of stearic acid and 0.09% of oleic acid (SO); and (4) the basal diet
plus 0.48% of palmitic acid, 0.95% of stearic acid, and 0.075% of oleic acid (PSO).
Data were analyzed using a mixed model considering treatment as a fixed effect,
and period and fermenter as random effects.

Results and discussion: Both PA and PSO diets improved fiber degradation,
increased the flow of short-chain fatty acids, and tended to increase microbial
flow compared to the other treatments. Although the supply of dietary fatty
acids did not change the total lipid content, they did alter the membrane fatty
acid profile. For example, PA and PSO increased the concentration of specific
fatty acids, such as anteiso C15:0, in the bacterial cell membranes, while SO and
PSO reduced unsaturated fatty acids compared to PA and CON. Additionally, PA
and PSO diets influenced the bacterial community, increasing populations of
Fibrobacter and Prevotella while reducing Ruminococcus and Butyrivibrio. Our
results indicate that including palmitic acid or a combination of palmitic, stearic,
and oleic acids in proportions resembling those found in ruminal mixed bacteria
improved ruminal fiber degradation, likely by partially modulating the rumen
bacterial community composition.
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1 Introduction

Ruminant animals, such as cattle, rely primarily on the
fermentation of carbohydrates into short-chain fatty acids (SCFA) in
the rumen as their primary energy source (Tedeschi et al., 2023).
Unlike other carbohydrates such as starch and sugars, fibrous
materials—measured as neutral detergent fiber (NDF)—are broken
down exclusively by microbial enzymes, mainly in the rumen (Flint
etal, 2012). The efficiency of fiber degradation not only affects animal
productivity, including milk and meat output, but also has major
implications for environmental sustainability. Poor NDF degradation
limits feed intake and reduces animal performance, including milk
and meat production (Oba and Allen, 1999). It also increases the
environmental impact of livestock systems by elevating enteric
methane emissions per unit of animal production and contributing to
greater methane and ammonia losses from manure (Hristov et al.,
2011). Consequently, there is substantial interest among nutritionists,
microbiologists, and other researchers in improving ruminal fiber
digestibility to enhance milk and meat production and mitigate the
environmental footprint of ruminant production systems (Adesogan
etal., 2019; Knapp et al., 2014).

Among the dietary factors that affect ruminal fiber degradation,
the inclusion of fat is recognized as a contributor. For decades, dietary
inclusion of fat-rich ingredients has been acknowledged to negatively
affect fiber digestibility (Palmquist and Jenkins, 2017). However,
recent studies exploring the effects of specific fatty acids on animal
physiology and production indicate the potential benefits of specific
fatty acids, such as palmitic, stearic, and oleic, in improving total-tract
fiber digestibility. For example, supplements rich in palmitic (de Souza
and Lock, 2018), palmitic and stearic (Piantoni et al., 2015a,b), or
palmitic and oleic acid (de Souza et al., 2021) have been shown to
increase total-tract fiber digestibility in dairy cows. In continuous
culture fermenters, Wenner et al. (2025) demonstrated that supplying
palmitic acid at 0.85% of dietary dry matter resulted in the greatest
NDF degradation compared to 0, 1.7, and 2.5%. Nevertheless, why
these three fatty acids promote fiber digestibility remains unclear. In
a recent review, Firkins et al. (2025) emphasized the need to better
understand how specific fatty acids interact with microbial consortia
and influence carbon partitioning within the rumen, as these
interactions may play a key role in enhancing fiber degradation.

Non-rumen bacteria are known to utilize at least three distinct
mechanisms to incorporate exogenous fatty acids into their cell
membranes (Yao and Rock, 2017), which help maintain membrane
homeostasis and enhance survival under different environmental
conditions (Zhang and Rock, 2008). In species like Escherichia coli,
exogenous fatty acids rapidly inhibit fatty acid synthesis and promote
their incorporation into the cell membranes (van den Berg et al,,
2024). One key advantage of utilizing exogenous fatty acids, rather
than relying solely on de novo synthesis, is the conservation of carbon,
which can be redirected to other cellular functions and favor microbial
growth (Zhang and Rock, 2008). Incorporating exogenous fatty acids
into ruminal bacterial membranes remains largely unexplored.
However, it recognized that palmitic, stearic, and oleic acids are major
fatty acids found in the cell mass of mixed ruminal bacteria,
comprising approximately 22, 43, and 2.1%, respectively (Or-Rashid
et al., 2007). Therefore, we hypothesize that providing a dietary
combination of fatty acids that mimic palmitic, stearic, and oleic
proportions in mixed rumen bacteria will enhance their incorporation
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into bacterial cell membranes, promoting bacterial growth and
increasing fiber degradation. Thus, this study aimed to examine how
altering the proportions of supplemental palmitic, stearic, and oleic
acids influences the fatty acid profile of bacterial membranes,
microbial flow, composition of the rumen bacterial community, and
fiber degradation.

2 Methods
2.1 Experimental design and diets

Diets were randomly assigned to 8 single-flow continuous
culture fermenters (Teather and Sauer, 1988), an in vitro system
that mimics the overall ruminal conditions. The treatments were
arranged in a replicate 4 x 4 Latin square design with four 10-day
experimental periods, consisting of 6 days for diet adaptation and
4 days for sample collection. The basal diet contained 50%
orchardgrass hay and 50% concentrate and was supplied at 40 g/
day [dry matter (DM) basis] in two equal daily offers (0800 and
1,600 h). The basal diet was chosen based on previous studies that
evaluated different nutrition strategies to modify fiber digestibility
and rumen fermentation in continuous culture fermenters
(Wenner et al., 2020; Roman-Garcia et al., 2021a; Li et al., 2022).
Treatments were: (1) a basal diet without supplemental fatty acids
(total basal fatty acids: 2.57% diet DM; CON); (2) the basal diet
plus 1.5% (DM basis) of supplemental palmitic acid (PA); (3) the
basal diet plus 1.41% stearic acid and 0.09% oleic acid (SO) in DM
basis of supplemental fatty acids; and (4) the basal diet plus 0.48%
of palmitic acid + 0.95% of stearic acid + 0.075% of oleic acid
(PSO) in DM basis of supplemental fatty acids. Treatment 2 was
used as a positive control based on our previous study (Sears et al.,
2024), in which the inclusion of 1.5% palmitic acid to the diet
increased NDF degradation by 3 percentage units compared with
a basal diet without supplemental fatty acids. Treatment 3
replicated the proportion of stearic and oleic acids found in mixed
rumen bacteria (Or-Rashid et al., 2007), while treatment 4
replicated the proportion of palmitic, stearic, and oleic acids found
in mixed rumen bacteria (Or-Rashid et al., 2007). All fatty acid
treatments were supplied using pure fatty acids (99% pure; Catalog
nos. P0500, S4751, and O1008; Sigma-Aldrich). Dietary ingredients
and nutrient supply are presented in Table 1. The concentrate was
ground to pass a 2 mm screen (Wiley mill; Thomson Scientific,
Philadelphia, PA), and the orchardgrass hay was pelleted.
Concentrate and hay were weighed into labeled plastic cups, and
then the fatty acid treatments were added and mixed with the diet.
Cups were sealed and stored at 4°C before administration.

2.2 Continuous culture system operation

The inoculation of the continuous culture fermenters and
operation procedures were similar to previous studies (Lascano
etal., 2016; Roman-Garcia et al., 2021a,b; Sears et al., 2024). Briefly,
at the beginning of each period, ruminal content was collected
before morning feeding (0630 h) from two rumen-cannulated cows
fed a lactating diet. The cows received a diet of 50% forage and 50%
concentrate for at least 30 days before rumen collection. The rumen
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TABLE 1 Dietary ingredients and chemical compositions of diets.

Ingredient, % DM

10.3389/fmicb.2025.1624738

Treatment!

Orchard grass hay 50.0 49.3 49.3 493
Ground corn 18.6 18.4 18.4 18.4
Canola meal 15.0 14.7 14.7 14.7
Beet pulp 4.40 4.40 4.40 4.40
Wheat middlings 10.5 10.2 10.2 10.2
Palmitic acid 99.9% - 1.50 - 0.48
Stearic acid 99.9% - 1.41 0.95
Oleic acid 99.9% - - 0.09 0.075
Mineral and vitamin mix® 1.50 1.50 1.50 1.50
Nutrient Supply’, g/day (DM basis)
NDF 16.2 16.2 16.2 16.2
Crude protein 5.92 5.92 5.92 5.92
Starch 8.80 8.80 8.80 8.80
Total dietary fatty acids, mg/day 1.03 1.62 1.62 1.62
Palmitic acid 140 740 140 332
Stearic acid 16 16 580 392
Oleic acid 204 204 240 236
Palmitic + Stearic + Oleic 360 960 960 960

"The control (CON) was a basal diet composed of 50% orchardgrass hay and 50% concentrate (dry matter basis) without supplemental fatty acids. The control (CON) was a basal diet

composed of 50% orchardgrass hay and 50% concentrate (dry matter basis) without supplemental fatty acids. The control (CON) was a basal diet composed of 50% orchardgrass hay and 50%
concentrate (dry matter basis) without supplemental fatty acids. PA treatment supplied 1.5% of palmitic acid; SO treatment supplied 1.41% of stearic acid + 0.09% of oleic acid; PSO treatment
supplied 0.48% of palmitic acid +0.95% of stearic acid + 0.075% of oleic acid.

*Vitamin and mineral mix contained 35% dry ground corn, 25.0% white salt, 22% calcium carbonate, 9.1% Biofos (The Mosaic Co., Plymouth, MN), 4% magnesium oxide, 2% soybean oil, and

<1% of each of the following: manganese sulfate, zinc sulfate, ferrous sulfate, copper sulfate, iodine, cobalt carbonate, and selenium.

*Calculated from average nutrient composition and feeding rate.

digesta was collected from the ventral, central, and dorsal areas of
the rumen and then filtered through double-layered grade 60
cheesecloth into pre-warmed 39°C containers. The containers were
kept at 39°C in a pre-heated water bath and immediately
transported to the laboratory. Ruminal fluid was homogenized and
mixed with artificial saliva (Weller and Pilgrim, 1974) containing
0.4 g/L of urea in a 1:1 proportion and maintained at 39°C. The
ruminal fluid plus artificial saliva mixture was poured into each
fermenter until the overflow spout cleared. During the experiment,
fermenters were maintained at 39°C, carbon dioxide (20 mL/min)
was continuously infused to maintain anaerobic conditions, and the
fermenters’ content was uninterruptedly stirred by a central paddle
set at a speed of 50 rpm. Artificial saliva was continuously bubbled
with carbon dioxide to maintain the anaerobic condition and was
constantly delivered at a 10%/hour fractional dilution rate using
peristaltic pumps. The pH in the vessels was automatically measured
every 10 min, and values ranged between 6.23 and 6.79. On day 5
of each period, fermenters were dosed with 50 mg of ammonium
sulfate enriched with 10% "N (Catalog no. 348473, Sigma-Aldrich)
for microbial flow quantification. Additionally, the same ammonium
sulfate was added to the artificial saliva at 25 mg/L from day 5 until
the end of the experiment for a desired enrichment of 0.2% atom
excess. Samples of the outflow effluent were collected before the N
infusion to be used as background for microbial flow calculations.
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2.3 Sample collection and analysis

Diet samples were collected in the last 4 days of each period,
composited by period, and dried in a forced-air oven at 55°C for 72 h.
Outflow effluent was collected on ice on days 7-10 of each period to
prevent further fermentation. Four hundred mL of outflow effluent
per fermenter was frozen at —20°C and freeze-dried (FreeZone 12,
Labconco). Dried diet and outflow effluent samples were ground with
a Wiley mill (1-mm screen; Arthur H. Thomas) before analyses. Diet
and outflow effluent were analyzed for DM (method 934.01; AOAC
International, 2000), ash (method 942.05; AOAC International, 2000),
and NDF (Van Soest et al., 1991) with the use of heat-stable amylase
(Catalog no. FAA, Ankom Technology) and sodium sulfite (Catalog
no. S0505, Sigma-Aldrich). The NDF values were corrected for ash.
Dietary nitrogen was determined by the Kjeldahl method (method
988.05; AOAC International, 2000). Dietary starch was determined
according to Hall (2009), and the fatty acid content was determined
using the one-step method of Sukhija and Palmquist (1988) with
adaptations (Lock et al, 2013). NDF degradation was calculated
as follows:

in the outflow effluent,g / day
/NDF in the diet, g / day x100

NDE degradation,% :(NDF in the diet,g / day — NDF ]
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Twenty mL of effluent was added to a bottle containing 1 mL
of 6 N HCl and then frozen at —20°C. Samples were centrifuged
(15,000 x g, 4°C, 15 min), and the supernatant was used to quantify
SCFA using a gas chromatograph (Nexis GC-2030, Shimadzu
Corporation) equipped with a capillary column (30 m x 0.53 mm
i.d., 0.50 pm phase thickness, Restek). Crotonic acid (Catalog no.
113018, Sigma-Aldrich) diluted in toluene was used as an internal
standard, and chromatograph conditions were as follows: helium
1.7 mL/min; oven temperature was 110°C held for 2.1 min, which
was then increased by 25°C/min to 200°C; flame ionization
temperature 220°C; split injection ratio 1/20; injection volume,
1 pL. Peaks were identified by the comparison of retention times
with SCFA standards (catalog nos. A6283, 11754, 15,374, 240,370,
129,542, and CRM46975, Sigma-Aldrich; 149,300,025 and
108,110,010, Thermo Scientific). In the method used, isovalerate
co-elutes with 2-methylbutyrate, and the two could not
be distinguished in the present study.

The fatty acid profile of bacterial membranes was separated and
analyzed as previously described (Sears et al., 2024). Briefly, bacterial
cells from the effluent (500 mL) were isolated by centrifugation.
Samples were kept at 4°C overnight to allow the detachment of
bacteria from the feed particles and then centrifuged at 3500 x g for
5 min at 4°C to remove eukaryotes and feed particles. Subsequently,
the supernatant was centrifuged at 20000 x g for 30 min at 4°C and
resuspended once with NaCl solution (0.9%) containing Tween 80
(1 g/L; catalog no BP338-500, Fisher Scientific) and twice with
distilled water. An aliquot of the bacterial cell was reserved for
nitrogen (N) analysis, and the remaining cells were frozen, and 500 mg
was used to extract the lipids (Folch et al., 1957). Lipids were extracted
using methanol, chloroform, and a 2% NaCl solution. Lipid classes
were separated by a solid-phase extraction method using a vacuum
manifold kit (Catalog no. RE28298-VM, Restek) and aminopropyl
SPE columns (Catalog no. 60108-432, Thermo Scientific) (Agren
etal, 1992). After separation, samples were dried under N flow and
weighed to obtain the phospholipidic fraction. The fatty acid profile
of the phospholipidic fraction was determined using the two-step
method (Sukhija and Palmquist, 1988) and adaptations proposed by
Lock et al. (2013). The fatty acid methyl esters (FAME) were prepared
by adding 5% methanolic sulfuric acid to the samples. The FAME was
filtered through anhydrous sodium sulfate, solvents were removed
under nitrogen flux at 37°C, the FAME were weighed, and a 1%
solution with n-hexane prepared on a weight basis. The cis-10 C17:1
(catalog no. H8896, Sigma-Aldrich) diluted in toluene was used as an
internal standard.

Ammoniacal N in the outflow effluent was determined by
colorimetric analysis (Chaney and Marbach, 1962). Bacterial cells and
outflow effluent were analyzed for total N and "N isotopes. Dried
effluent samples (50 mg) were weighed, wetted with distilled water,
adjusted with 10 N NaOH to a pH > 10, and dried at 90°C for 16 h to
remove ammoniacal N (Hristov et al., 2001). Both bacterial and
effluent samples were analyzed for N enrichment according to
procedures described by Noftsger et al. (2003). The background N
levels were subtracted from the *N enrichment after N infusion to
determine the atom percentage excess (APE) of "N. Ammoniacal N
flow (g/day) was calculated as the product of ammoniacal N
concentration and total effluent flow. Non-ammonia N (NAN) flow
(g/day) was determined by subtracting ammoniacal N flow from
total N.
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Bacterial N flow was calculated using the formula:

Bacterial N flow,g / day = NAN flow, g/ day
x 1N APE of outflow effluent /!> N APE of bacteria

Bacterial N per NDF degradation was calculated by dividing
bacterial N flow by NDF degraded, while rumen undegradable protein
(RUP) and rumen degradable protein (RDP) were calculated
as follows:

RUP, % = non —ammonia N —bacterial N/ NAN x100

RDP,% =100—-RUP

Total genomic DNA was extracted from outflow samples using the
bead beating plus column method Yu and Morrison (2004), and DNA
was quantified using a Qubit Fluorometer. PCR was performed using
universal primers flanking the variable 4 (V4) region of the 16S rRNA
gene (Kozich et al.,, 2013). Samples were quantified with a Qubit
fluorometer, pooled on an equimolar basis, and sequenced with MiSeq
v3 kit (2 x 300 cycles, Illumina) according to the manufacturer’s
protocol. All sequences were demultiplexed on the Illumina MiSeq
system. Further, sequence processing was performed using mothur
v1.45.1 (Schloss et al., 2009) following the protocol described by
Kozich et al. (2013). Briefly, paired-end sequences were combined into
contigs, and poor-quality sequences were removed. Bacterial
sequences were aligned and classified using the SILVA 16S rRNA
database (Pruesse et al., 2007). All sequences were clustered into
operational taxonomic units (OTU) at 97% similarity using
uncorrected pairwise distances and the furthest-neighbor method.
OTU tables were first rarefied to the lowest sequencing depth across
samples and then normalized to relative abundance (% of total
sequences) for downstream analyses.

2.4 Statistical analysis

Parts of the microbiota statistical analyses were carried out in R
(vegan package). Total bacterial community structure (Bray-Curtis)
and composition (Jaccard) were calculated from normalized OTU
data and visualized by non-metric multidimensional scaling (NMDS)
plots. The PERMANOVA was run to determine the differences in
community structure and composition between treatments by using
the adonis function in vegan, with the Benjamini-Hochberg correction
for multiple comparisons.

Data for NDF degradation, ruminal N metabolism, fatty acids,
alpha diversity, and relative abundance were analyzed using the
MIXED procedure of SAS v.9.4 (SAS Institute, Inc. Cary, NC)
according to the following model:

Yijk =u+ Pi + f} +Tk +eijk,
where Y, = variable of interest, j1 = overall mean, p; = random
effect of period (i = 1 to 4), f; = random effect of fermenter (j = 1 to 8),

T, = fixed effect of treatment (k=CON, PA, SO, and PSO),
e;;. = residual error. The normality of the residuals was checked with
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normal probability and box plots and homogeneity of variances with
plots of residuals vs. predicted values. A protected least significant
difference was used for mean separation. Significance was declared at
p <0.05 and tendency at p < 0.10.

3 Results
3.1 In vitro NDF degradation and SCFA

The degradation of NDF and the flow of total and individual
SCFA are presented in Figure 1. Degradation of NDF was increased
with PA and PSO compared with CON and SO (p < 0.01). Similarly,
PA and PSO increased total SCFA flow (p =0.05), acetate flow
(p =0.05), and propionate flow (p = 0.05) compared to CON and
SO. PA increased butyrate flow compared with other treatments
(p = 0.05). Treatments did not affect the flow of valerate, isobutyrate
plus 2-methylbutyrate, and isovalerate.

3.2 Nitrogen flow

Bacterial N in the outflow effluent tended to be higher with PA
and PSO compared to the other treatments (p =0.08; Table 2).
Additionally, PA and PSO increased rumen degradable protein and
decreased rumen undegradable protein compared with CON and SO
(p = 0.02). The treatments did not affect the flow of ammoniacal N,
total N, bacterial N per unit of NDF digested, non-ammonia N, and
non-ammonia non-bacterial N.

3.3 Bacterial membrane fatty acid profile

The treatments did not alter total bacterial membrane flow
(Table 3). The flow of anteiso C15:0 increased with PA and PSO
compared to CON and SO (p = 0.02), while the flow of anteiso C13:0
tended to increase with PA and PSO compared to CON (p = 0.08). PA
increased the flow of C17:0 (p = 0.03), while PA and PSO tended to
increase the flow of C15:0 compared to CON (p =0.07). C14:0
decreased with the fatty acid treatments compared to CON (p = 0.04),
while PA decreased the flow of C18:0 compared to other treatments
(p =0.04). SO tended to decrease the flow of C13:0 compared to the
other treatments (p = 0.06), while it tended to increase the flow of
C18:1 cis-9 compared with PA and CON (p = 0.10). The flow of C18:1
cis-11 was decreased by PSO (p = 0.05) and the flow of C18:2 cis-9,
cis-12 was decreased by SO (p = 0.05) compared to CON. We observed
a tendency for SO and PSO to decrease the flow of C18:1 cis-7
(p =0.08) and C18:3 cis-9, cis-12, cis-15 (p = 0.08) compared to PA
and CON.

3.4 16S rRNA gene data acquisition and
analysis

The sequencing of the bacterial 16S rRNA gene of the outflow
effluent generated an average of 47,216 high-quality sequences per
sample (Supplementary Table S1). Sequence coverage met a Good’s
coverage greater than 99.5% for all samples, implying that sampling
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provided sufficient OTU coverage to describe the bacterial
composition in each treatment accurately. There were no treatment
effects for the number of sequences and Good’s coverage.

3.5 Richness, diversity, and composition of
the bacterial communities

The indices to assess richness (Chao and Ace) of the bacterial
community were not affected by treatments (Figure 2). However, the
diversity of the bacterial community increased with PA and PSO
supplementation relative to the CON and SO treatments based on the
Inverse Simpson index (p = 0.01). Similarly, we observed that PA and
PSO tended to increase the Shannon index (p = 0.09) compared with
CON and SO. For beta-diversity analysis, we did not observe a
treatment effect on Bray-Curtis and Jaccard distances in the
PERMANOVA analysis (Supplementary Table 52). The non-metric
multidimensional scaling (NMDS) plot of the Bray-Curtis similarity
index showed overlapping points (Supplementary Figure SI),
indicating that treatments did not significantly affect the beta-diversity
composition of the bacterial community.

At the phylum level, a total of 14 bacterial phyla were identified;
Figure 3 shows the seven most abundant, which together represent
over 97% of the total relative abundance. Regardless of dietary
treatment, the bacterial community composition was dominated by
the phylum Bacillota (formerly Firmicutes; 50.2%) and Bacteroidota
(formerly Bacteroidetes; 33.3%). PA increased Bacteroidota compared
with the CON and SO (p = 0.01). PA and PSO increased Fibrobacterota
(formerly Fibrobacteres) when compared with CON and SO
(p = 0.05). In contrast, CON and SO increased Bacillota compared
with PA and PSO (p=0.04). The abundance of the phylum
Actinobacteriota, Pseudomonadota (formerly Proteobacteria),
Spirochaetota (formerly Spirochetes), and Verrucomicrobiota
(formerly Verrucomicrobia) was not affected by treatments.

Twenty-three bacterial families represented over 90% of the
abundance at the family level (Table 4). Prevotellaceae and
Lachnospiraceae had the largest relative abundance across all
treatments, accounting for 24.3 and 21.2% of total sequences,
respectively. PA and PSO increased the relative abundance of
Prevotellaceae compared with the other treatments (p =0.01). In
contrast, PA and PSO decreased the relative abundance of
Lachnospiraceae compared with CON and SO (p = 0.05). PA and PSO
increased the relative abundance of Fibrobacteraceae (p = 0.05) but
decreased the abundance of Ruminococcaceae (p = 0.04) compared
with CON and SO. The FA treatments did not affect the relative
abundance of the other families identified from the 16S
gene sequencing.

We identified 91 bacteria genera with over 0.1% relative
abundance. At the genus level, Prevotella, Lachnospiraceae_unclassified
and Butyrivibrio, were the most abundant genera, representing 15.8,
7.35, and 4.45% of the total sequences, respectively (Table 5). PA
increased the relative abundance of Prevotella (p < 0.01) Prevotella_
Unclassified (p = 0.05; compared to the other treatments). PA and
PSO increased the relative abundance of Prevotellaceae. UCG-003
(p = 0.02), Prevotellaceae_Ga6A1_group (p = 0.01), and Fibrobacter
(p = 0.05) compared to CON and SO. We observed a tendency for PA
and PSO to increase the relative abundance of Prevotellaceae_

YAB2003_group  (p=0.08), Prevotellaceae_UCG-001_group
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FIGURE 1

Effect of combinations of palmitic, stearic, and oleic acid on NDF degradation (A) and short-chain fatty acids (SCFA; B-H) flow in continuous culture
fermenters. The control (CON) was a basal diet composed of 50% orchardgrass hay and 50% concentrate (dry matter basis) without supplemental fatty
acids. PA treatment supplied 1.5% of palmitic acid; SO treatment supplied 1.41% of stearic acid + 0.09% of oleic acid; PSO treatment supplied 0.48% of
palmitic acid + 0.95% of stearic acid + 0.075% of oleic acid. For treatment effect, means without a common letter differ (p < 0.05). Isovalerate
co-elutes with 2-methylbutyrate, and the 2 could not be distinguished in the present study.
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TABLE 2 Effect of palmitic, stearic, and oleic acid combinations on N metabolism in continuous culture fermenters.

Treatments!
PA SO
Ammoniacal N, mg/dL 17.7 18.7 18.1 17.8 2.39 0.69
Effluent N flow
Total N, g/d 1.74 1.77 1.69 1.74 0.08 0.61
Bacterial N, g/d 0.68° 0.77¢ 0.68° 0.75* 0.05 0.08
Bacterial N per NDFD, g/kg’ 72.2 69.1 71.0 68.9 6.51 0.90
Non-ammonia N, g/d 1.17 1.21 1.18 1.20 0.05 0.65
Non-ammonia non-bacterial N, g/d 0.49 0.44 0.50 0.45 0.06 0.32
Rumen degradable protein, % 57.6" 66.1* 56.8" 64.6* 2.73 0.02
Rumen undegradable protein, % 42.4° 33.9° 43.2° 35.4° 2.73 0.02

"The control (CON) was a basal diet composed of 50% orchardgrass hay and 50% concentrate (dry matter basis) without supplemental fatty acids. The control (CON) was a basal diet
composed of 50% orchardgrass hay and 50% concentrate (dry matter basis) without supplemental fatty acids. The control (CON) was a basal diet composed of 50% orchardgrass hay and 50%
concentrate (dry matter basis) without supplemental fatty acids. PA treatment supplied 1.5% of palmitic acid; SO treatment supplied 1.41% of stearic acid + 0.09% of oleic acid; PSO treatment

supplied 0.48% of palmitic acid +0.95% of stearic acid + 0.075% of oleic acid.

2p-values refer to the ANOVA results for the main effect of fatty acid treatment.

*NDFD, neutral detergent fiber degradation.

““For treatment effect, means without a common letter within the same row differ (p < 0.05).

(p=0.07), and Oribacterium (p=0.09) compared to the other
treatments. Compared to CON and SO, PA and PSO decreased the
relative abundance of Ruminococcus (p =0.03). PA reduced the
abundance of Pseudobutyrivibrio (p = 0.10) compared to the other
treatments. PA and PSO reduced the abundance of Butyrivibrio
(p=0.01) and tended to decrease Lachnospiraceae_unclassified
(p =0.10) compared with CON. The relative abundance of the other
bacterial genera was not affected by dietary treatments.

4 Discussion

Recent research indicates that certain fatty acids, including
palmitic, stearic, and oleic acids, could enhance total-tract fiber
digestibility (de Souza and Lock, 2018; Piantoni et al., 2015a,b; de
Souza et al., 2021). Nevertheless, why these fatty acids improve fiber
digestibility is not well understood. Therefore, this study aimed to
examine how altering the proportions of supplemental palmitic,
stearic, and oleic acids—major fatty acids found in rumen bacterial
cells—influences the fatty acid profile of bacterial membranes,
microbial flow, composition of the rumen bacterial community, and
fiber degradation. To note, fatty acids are naturally present in
commonly used dietary ingredients, including those used in this
experiment. Ingredients such as forages, corn, and soybean meal
contribute to the background supply of fatty acids, primarily in the
form of unsaturated fatty acids (NASEM, 2021). For example, the
basal diet in this study contained 0.35, 0.04, and 0.51% of diet DM as
palmitic, stearic, and oleic acids, respectively. These background levels
contribute to the total fatty acid supply and should be considered,
along with the fatty acids added through treatment supplementation,
when interpreting the results.

Our results show that PA and PSO increased fiber degradation by
4 percentage units compared with CON and SO, while SO did not
affect fiber degradation compared with CON. Previous studies have
suggested that the impact of fatty acids on total-tract fiber digestibility
depends on the source of the fatty acid source (Weld and Armentano,
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2017). dos Santos Neto et al. (2021) indicated that feeding cows with
a palmitic acid-enriched supplement (1.81% diet DM; 85% palmitic,
2% stearic, and 7.5% oleic acid) increased total-tract fiber digestibility
by 4.5 percentage units while feeding a prill containing mixed fatty
acids (2.26% diet DM; 38% palmitic, 45% stearic, and 8% oleic acid)
did not affect NDF digestibility compared to a control diet without
supplemented fatty acids. Our previous research shows that when fatty
acids were fed at 1.5% of the diet (DM basis), palmitic acid increased
NDF degradation, stearic acid had no effect, and oleic acid reduced
NDF degradation compared to CON in continuous culture fermenters
(Sears et al., 2024). Compared with palmitic acid, fewer studies
investigated the inclusion of stearic and oleic acid-enriched
supplements into the diet of dairy cows. Interestingly, in our current
study, when stearic and oleic acid were supplied together without
palmitic acid, fiber degradation was not affected. Previously, feeding
stearic acid-enriched supplements to dairy cows tended to increase
total-tract fiber digestibility (Piantoni et al., 2015a,b) or not influence
fiber digestibility compared with a diet without supplemental fatty
acids (Boerman et al., 2017). Regarding oleic acid, increasing its
dietary concentration from 0.68 to 0.98% of diet DM had no effect on
NDF digestibility in dairy cows (de Souza et al., 2019). In contrast, our
previous study using a continuous culture system showed that
supplementing with an additional 1.5% oleic acid, raising the total
dietary concentration from 0.70 to 2.2% of diet DM, reduced NDF
degradation compared to the control diet (Sears et al., 2024). These
findings suggest that the impact of oleic acid on rumen fermentation
may be dose-dependent. Overall, the differences in fiber degradation
observed in the current study may be attributed to shifts in microbial
flow and community composition in response to the specific fatty acid
profiles of the supplements.

Rumen fermentation and the resulting quantity and profile of
SCFA produced depend on several factors, including the form and
availability of substrates, the rumen environment, the composition of
the microbial population, and the need to recycle reducing equivalents
generated during fermentation (Russell, 2002; Ungerfeld, 2020).
Interconversion of SCFA and their use in anabolic processes allow
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TABLE 3 Effect of palmitic, stearic, and oleic acid combinations on bacterial membrane fatty acid profile in continuous culture fermenters.

Treatment!
PA SO
Fatty acid, mg/d
C9:0 0.97 0.71 0.83 0.67 0.14 0.18
C10:0 3.35 2.23 3.91 2.33 0.89 0.68
C11:0 3.86 3.39 3.07 2.28 0.68 0.14
C12:0 119 102 107 84.0 152 0.44
iso C13:0 24.8 20.3 19.3 15.7 4.79 0.18
anteiso C13:0 2.78° 3.73 3.2 3.88° 0.44 0.08
C13:0 34.2° 29.9* 22.5 29.1° 3.70 0.06
iso C14:0 52.3 47.3 39.8 39.4 7.93 0.13
iso C15:0 105 85.6 92.4 90.2 11.8 0.23
anteiso C15:0 302° 405° 300 430° 383 0.02
C14:0 349° 287 270° 262° 26.1 0.04
C15:0 270° 379 306™ 343 43.1 0.07
iso C16:0 41.9 37.1 31.9 30.2 4.90 0.24
C16:0 1,261 1,611 1,573 1,350 217 0.17
iso C17:0 23.0 18.9 18.2 17.0 2.43 0.38
C16:1 cis-9 50.1 49.4 43.1 2.7 4.59 0.23
C17:0 90.2° 108 95.2° 91.4° 6.49 0.03
C18:0 204° 143° 222 195° 20.2 0.04
C18:1trans-9 45.1 45.9 40.6 37.1 5.59 0.68
C18:1 trans-11 19.6 19.6 16.5 16.7 4.12 0.85
C18:1 cis-7 15.6° 13.2% 10.3 10.1° 2.31 0.08
C18:1 cis-9 298° 323 412° 364 46.8 0.10
C18:1 cis-11 356° 309 281 216° 53.2 0.05
C18:2 cis-9, cis-12 248 223 125° 171% 50.9 0.05
C18:3 cis-9, cis-12, cis-15 18.9° 17.3* 11.1° 12.7° 3.70 0.08
C19:0 6.25 5.59 4.92 504 0.66 0.49
C20:0 3.32 2.39 2.49 4.13 0.74 0.35
C22:0 2.89 1.91 2.27 3.15 0.64 0.54
C24:0 2.78 1.83 2.13 2.85 0.61 0.63

"The control (CON) was a basal diet composed of 50% orchardgrass hay and 50% concentrate (dry matter basis) without supplemental fatty acids. The control (CON) was a basal diet
composed of 50% orchardgrass hay and 50% concentrate (dry matter basis) without supplemental fatty acids. The control (CON) was a basal diet composed of 50% orchardgrass hay and 50%
concentrate (dry matter basis) without supplemental fatty acids. PA treatment supplied 1.5% of palmitic acid; SO treatment supplied 1.41% of stearic acid + 0.09% of oleic acid; PSO treatment

supplied 0.48% of palmitic acid +0.95% of stearic acid + 0.075% of oleic acid.
2p-values refer to the ANOVA results for the main effect of fatty acid treatment.
““For treatment effect, means without a common letter within the same row differ (p < 0.05).

anaerobic bacteria to efficiently utilize metabolic intermediates
(Firkins et al., 2006). When supplemental fat is fed, effects on SCFA
concentrations have been inconsistent (Palmquist and Jenkins, 2017),
likely due to differences in the fatty acid profile of the supplement. For
example, de Souza et al. (2023) reported that feeding calcium salts of
palm oil (1.8% diet DM; 48% palmitic, 38% oleic, 6% linoleic acid)
increased ruminal concentrations of acetate and total SCFA compared
to calcium salts of soybean oil (1.8% diet DM; 17% palmitic, 21% oleic,
55% linoleic acid), highlighting the importance of fatty acid
composition in shaping fermentation outcomes. In our current study,
PA and PSO increased the flow of acetate, propionate, and total SCFA,
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while PA specifically increased the flow of butyrate compared to the
other treatments. In contrast, the supply of SO did not affect rumen
fermentation parameters compared to the control. The increase in
acetate flow observed with PA and PSO aligns with the improvement
in fiber digestibility, which is known to be positively associated with
acetate production (Chen et al.,, 2021). Similarly, Sears et al. (2024)
reported that supplementation with palmitic acid, compared to stearic
or oleic acid (all at 1.5% diet DM), increased propionate and total
SCFA flow in continuous culture fermenters. Because the basal diet
was identical across treatments (apart from the fatty acid profile),
we can rule out differences in nutrient supply, particularly
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without a common letter differ (p < 0.05). Error bars are the SEM.

Effect of combinations of palmitic, stearic, and oleic acid on bacterial alpha diversity index for richness (Chao and Ace; A-B) and diversity (Shannon and
Inverse Simpson; C-D) in continuous culture fermenters. The control (CON) was a basal diet composed of 50% orchardgrass hay and 50% concentrate
(DM basis) without supplemental fatty acids. PA treatment supplied 1.5% of palmitic acid (% DM); SO treatment supplied 1.41% of stearic acid + 0.09% of
oleic acid (% DM); PSO treatment supplied 0.48% of palmitic acid + 0.95% of stearic acid + 0.075% of oleic acid (% DM). For treatment effect, means
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carbohydrate availability, as the cause of variation in SCFA flow.
According to fermentation stoichiometry, carbon inputs must
be reconciled with carbon outputs in the form of SCFA, microbial
biomass, transport processes, and motility (Ungerfeld, 2020). De novo
fatty acid synthesis is a significant carbon sink, consuming both
carbon and reducing equivalents derived from fermentation
(Hackmann and Firkins, 2015b). If bacteria instead incorporate
exogenous fatty acids, they may redirect reducing equivalents into
other sinks, such as cellular biosynthesis or SCFA elongation. One
potential mechanism for disposing of excess reducing equivalents is
the elongation of SCFA. For instance, inhibition of methanogenesis
has been shown to increase the incorporation of hydrogen into longer
SCFA rather than acetate (Ungerfeld, 2015). Acetate can also be used
in the synthesis of butyrate via acetyl-CoA, and certain rumen bacteria
can generate butyrate through nonclassical pathways that help balance
redox status (Diez-Gonzalez et al., 1999; Hackmann and Firkins,

Frontiers in Microbiology

2015a). Overall, our results demonstrate that PA and PSO
supplementation enhanced NDF degradation and SCFA flow,
particularly acetate, propionate, and butyrate, whereas SO did not.
This suggests that palmitic and oleic acids, rather than stearic acid,
more effectively modulate rumen bacterial metabolism at the levels
tested. Since all fatty acid supplements were provided in the same
physical form and dose, the observed effects can be attributed to
differences in their fatty acid composition. Future studies using
carbon-labeled fatty acids are needed to confirm their specific roles in
bacterial metabolism and membrane incorporation.

Our results indicate that PA and PSO tended to promote
microbial flow compared to the other treatments. In mixed rumen
bacteria, microbial growth typically achieves only one-third to
two-thirds of the theoretical maximum because a substantial portion
of available energy is diverted to non-growth and maintenance
functions (Hackmann and Firkins, 2015b). While the effects of
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FIGURE 3

Effect of combinations of palmitic, stearic, and oleic acid on relative abundance of bacterial phylum in continuous culture fermenters. The control
(CON) was a basal diet composed of 50% orchardgrass hay and 50% concentrate (dry matter basis) without supplemental fatty acids. PA treatment
supplied 1.5% of palmitic acid; SO treatment supplied 1.41% of stearic acid + 0.09% of oleic acid; PSO treatment supplied 0.48% of palmitic acid +
0.95% of stearic acid + 0.075% of oleic acid. For treatment effect, means without a common letter differ (p < 0.05). Error bars are the SEM.

dietary carbohydrates and nitrogen on bacterial growth are well
established, the role of individual dietary fatty acids remains less
understood. Supplemental fat may enhance microbial protein
synthesis by reducing protozoal predation on bacteria or by
alleviating the energetic cost of de novo fatty acid synthesis (Hanigan
et al., 2013). In our previous study, we found that supplementing
palmitic acid (1.5% of diet DM) tended to increase bacterial nitrogen
flow, whereas stearic and oleic acids at the same inclusion level did
not (Sears et al., 2024). This suggests that the microbial response
depends on both the fatty acid profile and feeding level. Exogenous
fatty acids serve as precursors for membrane phospholipids, and their
incorporation can support bacterial growth (Yao and Rock, 2017). In
non-rumen bacteria like Escherichia coli and Listeria monocytogenes,
supplying 18-carbon fatty acids has been shown to enhance
membrane incorporation and growth rates, unlike shorter (<18C) or
longer (>18C) fatty acids (Herndon et al., 2020; Flegler et al., 2022).
Yao and Rock (2015) noted that many pathogenic bacteria rely on
exogenous long-chain fatty acids from the host to reduce reliance on
costly de novo synthesis, supporting growth in nutrient-limited
environments. Because of the continuous outflow of solids and
liquids in the rumen, microbes must reproduce rapidly to avoid
washout (Van Soest, 1994). As proposed by Firkins et al. (2025),
providing dietary fatty acids may offer bacteria membrane substrates,
allowing them to conserve carbon and reducing equivalents for cell
division. Our findings suggest that the supply of specific dietary fatty
acids may enhance the microbial flow of mixed rumen bacteria by
altering substrate availability and energy use for membrane functions.

Frontiers in Microbiology

The supply of exogenous fatty acids did not affect the total lipid
concentration (average of 12.5% of DM). Previous reports have shown
that total lipid content in the rumen bacterial mass ranges from 10 to
15% (Jenkins, 1993; Mitchell et al., 2023), and our observations for all
the treatments fall within this range. Bacterial lipids are located in
membranes and consist primarily of phospholipids, which contain a
hydrophilic phosphate head group and a hydrophobic tail of two fatty
acids (Gullett and Rock, 2021). Bacterial survival depends on
membrane lipid homeostasis and the ability to adjust lipid composition
in response to environmental conditions (Yao and Rock, 2017). The
lack of treatment effects on total bacteria phospholipids is not
surprising. The consistency in the phospholipid fraction across
treatments was expected, as significant modifications to membrane
fatty acids usually occur in response to environmental stressors, such
as acidic conditions or temperature (Zhang and Rock, 2017), which
were kept constant across treatments in our study. Additionally,
bacterial cells tightly regulate the balance between lipid and
macromolecular synthesis, ensuring that the membrane protein-to-
lipid ratio remains constant across different growth rates (Parsons and
Rock, 2013). Thus, our results align with previous literature, suggesting
that changes in the bacterial fatty acid profile are more likely related
to bacterial metabolism rather than to variations in the total
lipid fraction.

The supply of exogenous fatty acids primarily influenced the
composition of bacterial membrane lipids by increasing the abundance
of de novo synthesized odd- and branched-chain long-chain fatty
acids. Fatty acids in bacterial phospholipids can originate either from
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TABLE 4 Effect of palmitic, stearic, and oleic acid combinations on the relative abundance of ruminal bacterial families in effluent digesta.

Treatments!
PA SO
Prevotellaceae 22.5° 27.7 21.6° 25.2° 1.38 0.01
Lachnospiraceae 22.2° 19.8 22.8* 19.6° 1.25 0.05
Spirochaetaceae 3.83 3.12 3.69 3.31 0.45 0.88
Rikenellaceae 3.49 3.16 2.64 3.25 0.52 0.61
Ruminococcaceae 3.72° 2.89" 3.85 3.15% 0.33 0.04
Bifidobacteriaceae 2.84 2.90 3.81 4.19 1.54 0.34
Muribaculaceae 1.55 1.53 1.80 1.92 0.16 0.66
Christensenellaceae 1.23 1.50 1.06 1.49 0.15 0.41
Lactobacillaceae 3.01 2.30 3.13 2.23 0.42 0.29
Streptococcaceae 3.98 3.18 3.15 2.55 0.76 0.83
Veillonellaceae 3.89 3.65 491 4.49 0.43 0.54
F082 1.70 1.55 1.32 1.74 0.33 0.72
Atopobiaceae 2.39 2.58 299 2.83 0.44 0.46
Anaerovoracaceae 2.01 1.98 1.95 1.87 0.16 0.94
Oscillospiraceae 1.30 1.63 1.04 1.51 0.18 0.47
Selenomonadaceae 1.42 1.06 1.39 1.28 0.19 0.31
Acidaminococcaceae 1.31 1.24 1.12 1.15 0.15 0.60
Erysipelatoclostridiaceae 1.14 1.25 1.22 1.69 0.38 0.50
Fibrobacteraceae 0.68" 1.02* 0.69" 0.91* 0.08 0.05
Hungateiclostridiaceae 0.57 0.55 0.61 0.52 0.07 0.86
Erysipelotrichaceae 1.38 1.03 1.67 1.02 0.20 0.48
WCHBI1-41_fa 0.77 0.79 0.56 0.84 0.16 0.41

"The control (CON) was a basal diet composed of 50% orchardgrass hay and 50% concentrate (dry matter basis) without supplemental fatty acids. The control (CON) was a basal diet
composed of 50% orchardgrass hay and 50% concentrate (dry matter basis) without supplemental fatty acids. The control (CON) was a basal diet composed of 50% orchardgrass hay and 50%
concentrate (dry matter basis) without supplemental fatty acids. PA treatment supplied 1.5% of palmitic acid; SO treatment supplied 1.41% of stearic acid + 0.09% of oleic acid; PSO treatment
supplied 0.48% of palmitic acid +0.95% of stearic acid + 0.075% of oleic acid.

?p-values refer to the ANOVA results for the main effect of fatty acid treatment.

“For treatment effect, means without a common letter within the same row differ (p < 0.05).

endogenous biosynthesis via the type II fatty acid synthesis (FASII) (Lu and Rock, 2006; Jerga and Rock, 2009; Davis and Cronan, 2001).
pathway or through the direct incorporation of exogenous fatty acids  In contrast, Gram-positive bacteria such as Staphylococcus aureus and
(Erwin, 1973). FASII is a modular, enzyme-based system in which acyl ~ Listeria monocytogenes cannot bypass FASII inhibition entirely, due to
chains are elongated by two-carbon units, with intermediates bound  their requirement for branched-chain fatty acids such as anteiso-15:0,
to an acyl carrier protein (ACP). The final products, acyl-ACP  which are not readily available in the host environment (Parsons et al.,
molecules, are utilized in the synthesis of phosphatidic acid, the ~ 2011; Zhu et al, 2010). In these taxa, exogenous fatty acids only
precursor for all bacterial phospholipids (Yao and Rock, 2017). This  partially suppress FASII, and inhibition of the pathway leads to the
pathway is energetically costly; for instance, the synthesis of palmitate ~ accumulation of short-chain acyl-ACP intermediates, depletion of free
requires 8 acetyl-CoA, 14 NADPH, and 7 ATP molecules (Rock and ~ ACP, impaired phospholipid synthesis, and halted bacterial growth
Jackowski, 2002). To conserve carbon, many non-rumen bacteriahave ~ (Yao and Rock, 2017). This differential regulation underscores the
evolved mechanisms to utilize exogenous fatty acids, which are  complex interplay between external lipid availability and endogenous
activated through one of three characterized systems: acyl-CoA  fatty acid metabolism and suggests that, in certain bacterial taxa
synthetase, acyl-ACP synthetase, or fatty acid kinase (Yao and Rock,  exogenous lipid incorporation may shift carbon allocation, influence
2017). The metabolic fate of exogenous fatty acids and their interaction =~ membrane fluidity and structure, and ultimately affect microbial
with FASII is highly species-dependent. In members of the order ~ competitiveness and community composition.

Lactobacillales (e.g., Lactococcus, Streptococcus), exogenous fatty acids Rumen bacteria also synthesized de novo odd and branched-chain
can fully repress FASII, enabling complete reliance on environmental  fatty acids using amino acids and SCFAs and incorporated them into
lipids for phospholipid biosynthesis. This repression occurs via both  their cell membrane (Fievez et al., 2012). In our study, although we did
transcriptional regulation and biochemical feedback mechanisms that ~ not observe treatment effects on >16-carbon even-chain fatty acids,
reduce malonyl-CoA synthesis, potentially through inhibition of  our results indicate that PA and PSO increased the synthesis of
acetyl-CoA carboxylase by acyl-ACP or acyl-phosphate intermediates ~ odd-chain fatty acids (C13:0, C15:0, and C17:0) compared to other
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TABLE 5 Effect of palmitic, stearic, and oleic acid combinations on the relative abundance of ruminal bacterial genera in effluent digesta.

Treatments!
PA SO
Prevotella 14.4° 18.5° 13.6° 16.5® 1.03 0.01
Butyrivibrio 4.81° 4.17° 4.53® 4.32° 0.34 0.01
Prevotellaceae_Ga6A1_group 0.18" 0.36* 0.24° 0.42° 0.04 0.01
Prevotellaceae_UCG-003 2.42° 2.85° 2.33 2.85° 0.24 0.02
Ruminococcus 3.11° 2.15 3.24 2.44 0.24 0.03
Prevotellaceae_unclassified 2.68" 3.52° 2.75° 2.65° 0.24 0.05
Fibrobacter 0.67° 1.01° 0.67° 0.90° 0.08 0.05
Prevotellaceae_UCG-001 1.17° 1.39° 1.16° 1.40° 0.08 0.07
Oribacterium 0.82° 1.10° 0.92° 1.08* 0.14 0.09
Lachnospiraceae_unclassified 8.12° 6.79 7.70% 6.78" 0.53 0.10
Prevotellaceae_YAB2003_group 0.82° 1.17* 0.94° 1.14* 0.19 0.08
Pseudobutyrivibrio 0.97¢ 0.82° 0.99* 0.93* 0.06 0.10
Megasphaera 1.66 1.93 2.11 1.85 0.16 0.17
Acetitomaculum 2.54 2.73 3.70 2.23 0.52 0.19
UCG-004 0.42 0.29 0.39 0.30 0.04 0.22
Bifidobacterium 4.69 5.71 5.54 7.04 1.45 0.29
Prevotellaceae_UCG-004 0.41 0.27 0.36 0.33 0.05 0.29
Lactobacillus 2.96 227 3.08 221 0.67 0.30
Anaerovoracaceae_ge 0.88 0.77 0.93 0.71 0.15 0.37
WCHBI1-41_ge 0.77 0.79 0.56 0.84 0.12 0.40
Christensenellaceae_R-7_group 1.20 1.46 1.03 1.45 0.69 0.41
Clostridia_UCG-014_ge 1.17 1.20 0.78 0.98 0.24 0.42
Olsenella 2.13 2.32 2.78 2.57 0.54 0.43
RF39_ge 0.68 0.87 0.51 0.86 0.19 0.45
UCG-010_ge 0.18 0.22 0.16 0.21 0.04 0.48
Lachnospira 0.25 0.22 0.27 0.21 0.03 0.53
Rikenellaceae_RC9_gut_group 3.39 3.05 2.51 3.14 0.69 0.57
NK4A214_group 0.64 0.74 0.49 0.65 0.14 0.63
Muribaculaceae_ge 1.53 1.51 1.78 1.89 0.46 0.68
Lachnospiraceae_NK3A20_group 1.17 1.03 1.10 1.14 0.09 0.68
F082_ge 1.70 1.55 1.32 1.74 0.60 0.72
Saccharofermentans 0.54 0.51 0.59 0.49 0.10 0.75
Lachnospiraceae_XPB1014_group 0.15 0.16 0.13 0.16 0.03 0.84
Treponema 3.71 3.04 3.57 3.20 0.85 0.88
Ruminococcaceae_ge 0.04 0.04 0.03 0.04 0.005 0.88
Firmicutes_unclassified 0.11 0.12 0.12 0.13 0.02 0.93
Mogibacterium 0.46 0.49 0.43 0.47 0.07 0.94
Ruminococcaceae_unclassified 0.41 0.46 0.43 0.42 0.10 0.95
Lachnospiraceae_ge 0.84 1.01 0.92 0.89 0.15 0.96

"The control (CON) was a basal diet composed of 50% orchardgrass hay and 50% concentrate (dry matter basis) without supplemental fatty acids. The control (CON) was a basal diet
composed of 50% orchardgrass hay and 50% concentrate (dry matter basis) without supplemental fatty acids. The control (CON) was a basal diet composed of 50% orchardgrass hay and 50%
concentrate (dry matter basis) without supplemental fatty acids. PA treatment supplied 1.5% of palmitic acid; SO treatment supplied 1.41% of stearic acid + 0.09% of oleic acid; PSO treatment
supplied 0.48% of palmitic acid +0.95% of stearic acid + 0.075% of oleic acid.

2p-values refer to the ANOVA results for the main effect of fatty acid treatment.

“For treatment effect, means without a common letter within the same row differ (p < 0.05).
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treatments. Linear odd-chain fatty acids are formed when
propionyl-CoA, rather than acetyl-CoA, is used as the primer
(Vlaeminck et al., 2006). Since we observed increased propionate flow
with PA and PSO, the increase in linear odd-chain fatty acids may
be linked to the greater propionate concentration. We also observed
an increase in anteiso C13:0 and C15:0 with PA and PSO
supplementation. The synthesis of anteiso fatty acids is driven by
2-methylbutyburate (Vlaeminck et al., 2006). Supply of isoacids
(isovalerate, isobutyrate, and 2-methylbutyrate) in continuous culture
fermenters resulted in higher *C recovery in anteiso branch-chain
fatty acids than iso odd-chain or iso even-chain branch-chain fatty
acids highlighting the importance of 2-methylbutyrate for ruminal
bacterial lipid synthesis (Mitchell et al., 2023; Roman-Garcia et al.,
2021a,b). However, due to the co-elution of isovalerate with
2-methylbutyrate in our GC procedure, we could not assess whether
the greater flow of anteiso fatty acids was associated with
2-methylbutyrate. Additionally, the composition of odd- and
branched-chain fatty acids varies by bacterial taxa. Cellulolytic
bacteria contain high levels of iso fatty acids, while higher proportions
of anteiso and linear odd-chain fatty acids are associated with bacteria
specialized in the fermentation of pectin and sugars (Vlaeminck et al.,
2006). Therefore, changes in bacterial fatty acid flow may reflect
alterations in the bacterial community in addition to substrate
availability. Altogether, our data suggest that the supply of dietary fatty
acids, particularly those containing palmitic acid or a profile that
mimics the proportions of 16- and 18-carbon fatty acids in mixed
rumen bacteria, may promote greater incorporation of exogenous
fatty acids into the bacterial cell membranes, helping maintain
membrane homeostasis and potentially conserving energy for
other functions.

In our study, supplementation with PA and PSO increased the
relative abundance of bacteria from the genera Fibrobacter and
Prevotella, while reducing the abundance of Ruminococcus and
Butyrivibrio. The genera Fibrobacter and Ruminococcus are well
known for their cellulolytic activity, playing key roles in the
degradation of cellulose in the rumen (Forano et al., 2008; Flint
et al., 2008). Conversely, Prevotella and Butyrivibrio primarily
contribute to the breakdown of non-cellulosic plant polysaccharides
such as hemicellulose and pectin (Avgustin et al., 1997; Krause et al.,
2003). The association between the increased abundance of
Fibrobacter and Prevotella and the enhancement in fiber digestion
may be explained by their ability to act synergistically within a
microbial consortium. While Fibrobacter specializes in degrading
crystalline cellulose through tightly associated surface-bound
enzymes, it also releases soluble sugars that can be cross-fed to other
members of the microbial community, including Prevotella. In turn,
Prevotella can degrade other structural carbohydrates such as
arabinoxylans and pectins, contributing to a more comprehensive
breakdown of plant fiber. Additionally, the removal of fermentation
intermediates and the production of growth-promoting metabolites
by Prevotella may facilitate the activity and persistence of Fibrobacter
in the rumen ecosystem. Another potential explanation for the
observed microbial shifts is that the affected genera respond
differently to the presence of exogenous fatty acids due to variations
in their metabolic pathways. Previous studies have highlighted
differences in fatty acid metabolism strategies among various
non-rumen bacterial species (Yao and Rock, 2017), suggesting that
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the specific pathway used can influence how fatty acids are utilized
or tolerated. Further investigation into the fatty acid metabolism
pathways employed by the genera affected in the present study will
help to clarify this hypothesis.

Supplementation with SO had a neutral effect on rumen
fermentation or bacterial composition. We did not observe
differences between the SO and CON treatments for fiber
degradation or SCFA. Similarly, previous studies that supplemented
dairy cows with stearic acid-enriched supplements did not observe
changes in total tract fiber digestibility in dairy cows (Piantoni et al.,
2015a,b; Boerman et al, 2017). Stearic acid is typically the
predominant fatty acid reaching the duodenum, as it is the final
product of rumen biohydrogenation of unsaturated fatty acids
present in the diet (Jenkins et al., 2008). Additionally, in our current
study, the supply of SO did not alter the bacterial composition or
microbial flow compared to CON. A previous study reported that
stearic acid had a neutral effect on rumen fermentation and bacterial
composition, while oleic acid modified bacterial composition and
reduced fiber degradation when purified supplements were fed at
1.5% of diet DM in continuous culture (Sears et al., 2024). This
suggests that the feeding level may influence oleic acid’s impact on
rumen function. Our data indicate that 18-carbon fatty acids may
only positively affect rumen fermentation when combined with
palmitic acid.

5 Conclusion

Our results indicate that including palmitic acid and a
combination of palmitic, stearic, and oleic acids in proportions
resembling those found in ruminal mixed bacteria improved ruminal
fiber degradation. The improvement in fiber degradation is linked to
changes in the rumen bacterial community, such as an increased
relative abundance of Prevotella and Fibrobacter. Additionally, PA and
PSO enhance the flow of short-chain fatty acids, such as acetate and
propionate, which correlates with improved fiber degradation. We also
observed that palmitic acid and a combination of palmitic, stearic, and
oleic acids tended to increase microbial flow and modify membrane
fatty acid composition. In contrast, stearic and oleic acids alone had
minimal impact on fiber degradation and bacterial composition. Our
data suggests that within the combinations of fatty acids tested in the
supplemental fat, only when stearic and oleic acids are combined with
palmitic acid, they can positively influence rumen fermentation and
nutrient degradation.
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