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Indwelling devices, such as double-J stents, are commonly used in urological

surgery and are often associated with a high risk of urinary tract infections (UTIs)

due to biofilm-related complications. In this study, we characterized 27 clinical

bacterial isolates from double-J catheters, including Staphylococcus spp.,

Enterococcus faecalis, Klebsiella pneumoniae, Escherichia coli, and Bacillus spp.,

to investigate their pathogenic potential. Our findings revealed that strong biofilm

producers (E. coli, S. aureus, and B. subtilis) exhibited robust extracellular matrix

synthesis. Notably, multidrug resistance was observed in E. coli, K. pneumoniae,

and E. faecalis. Mixed-culture experiments demonstrated that Bacillus spp.

enhanced the biofilm formation of uropathogens, suggesting a potential impact

on clinical outcomes. The characterization of the polymicrobial population

colonizing double-J catheters, as conducted in this study, is essential for

understanding the complexity and clinical behavior of biofilm-related infections

associated with medical devices. Additionally, our results highlight the clinical

relevance of underreported genera, such as Bacillus, which are often overlooked

in routine clinical diagnostics. Gaining insights into the interaction mechanisms

and survival strategies of several bacterial species colonizing double-J catheters

may help shift current paradigms in understanding catheter-related infections.
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Introduction

Urinary tract infections (UTIs) affect a large number of people, with prevalence varying

by age group, sex, and the presence of risk factors (Echverría-Zarate et al., 2006; Pigrau,

2013; Delcaru et al., 2016; Klein and Hultgren, 2020). The high incidence of UTIs, along

with increased recurrence rates and the potential for complications, contributes to the

cost of medical treatment, amounting to billions of dollars in healthcare expenditures

(Cepas et al., 2019). The primary cause of UTIs is the invasion of the urinary tract by

microorganisms known as uropathogens (UP). The leading etiologic agent in human
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UTIs is uropathogenic E. coli (UPEC), responsible for up to

80% of all cases (Ronald, 2002). Other microorganisms, such as

Staphylococcus spp., Proteus mirabilis, Proteus vulgaris, Klebsiella

spp., Enterococcus faecalis, and Pseudomonas aeruginosa, account

for the remaining 20% of infections (Nicolle, 2000; Flores-Mireles

et al., 2015).

The risk of developing an UTI significantly increases with the

use of indwelling devices, as they disrupt host defense mechanisms

and facilitate the access of UP to the bladder or the upper urinary

tract (Wu et al., 2015). The double-J stent is a commonly used

device in urological surgery, serving dual functions by providing

both support and drainage (Ozturk, 2015; Gauhar et al., 2022; Lin

et al., 2022). However, ureteral stents are often associated with

severe complications, primarily due to biofilm formation on the

stent surface, which can lead to infections. These infections may

result in bacteremia, renal function deterioration, pyelonephritis,

or even mortality due to sepsis (Ranganathan et al., 2009). Biofilms

developing on ureteral stents can originate from the urinary tract

microbiota or from contamination during stent insertion (Bossa

et al., 2017). The internal environment of ureteral stents provides

an ideal medium for bacterial adhesion, colonization, and biofilm

formation (Zumstein et al., 2017). An additional challenge with

these stents lies in diagnosis, as colonizing bacteria may not

be detected in urine or prostatic secretion samples (Klis et al.,

2009). Therefore, identifying the pathogenic bacteria involved in

double-J catheter colonization is crucial for effective treatment of

these infections.

Bacterial populations have the capacity to rapidly adapt to

changes in their environmental surroundings (O’Toole and Kolter,

1998; Monds and O’Toole, 2009). The ability of UP strains to cause

various types and severities of diseases depends on the expression

of multiple virulence traits, including biofilm formation, motility,

hemolytic activity, expression of several virulence genes related to

adhesin production, toxins, siderophores, and secretion systems,

among others (Blanco et al., 2002; Johnson, 2002). UP are often

found in a sessile state on the intra- and/or extraluminal surfaces of

urinary catheters removed from patients with UTIs (Li et al., 2023).

Over the years, several reports have shown that the majority

of biofilms formed on long-term catheters are polymicrobial,

with an average of 2–5 microbial species isolated per catheter,

predominantly comprising Gram-negative bacteria (Nicolle, 2012;

Azevedo et al., 2017; Chua et al., 2017; Flores-Mireles et al., 2019;

Zboromyrska et al., 2019). UP isolates from polymicrobial biofilms

in catheterized patients have exhibited significant resistance

to commonly used antibiotics, thereby increasing the risk of

developing severe infections (Croxall et al., 2011; Kazi et al.,

2015). In the context of the urinary tract, the presence of multiple

microorganisms in a midstream urine sample is often attributed to

contamination from periurethral or vaginal microbiota (Hooton,

2012; Kline and Lewis, 2016). Polymicrobial samples may also be

classified as negative cultures if they lack a single dominant species,

or they may be categorized as containing secondary pathogens or

doubtful pathogens, depending on the level of colonization. As a

result, the virulence and complexity of the often underestimated

polymicrobial colonization of double-J catheters remain poorly

characterized. In this context, this study aimed to investigate the

virulence-associated phenotypic traits and antimicrobial resistance

of bacteria isolated from double-J catheters, as well as to explore the

interactions within mixed biofilms formed by co-isolated bacterial

pairs. Through the comprehensive characterization of 27 isolates

from this complex niche, we analyzed the virulent potential and

interactions between known UP and understudied species such

as Bacillus spp. Such knowledge is crucial for better managing

catheter-associated infections, which significantly impact patient

outcomes and healthcare systems.

Materials and methods

Catheter processing and UP isolation

Samples were taken from eight double-J-type urinary catheters

provided by a specialized private urological center in San

Miguel de Tucumán, Argentina. In all cases, 30–60 days urinary

catheters were collected from adult male and female patients

without UTI symptoms and with a negative urine culture.

Each catheter was processed under sterile conditions to remove

adherent and non-adherent bacteria, as reported byMandakhalikar

et al. (2018). Briefly, to extract unattached cells, four washes

with physiological saline (PS) solution were performed. To

extract adhered bacteria from catheters, the vortexing–sonication–

vortexing (V-S-V) method was carried out (Mandakhalikar et al.,

2018). Both unattached and attached bacteria were concentrated by

centrifugation for 10min at 7012×g. Then, cells were resuspended

in PS and seeded with a Digralsky spatula onto Cystine Lactose

Electrolyte Deficient Agar (CLED-agar, Britania) plates. The plates

were incubated for 24–48 h at 37◦C to evaluate microbial growth.

Colonies with different morphologies were purified using the

quadrant streak method on CLED-agar medium. Pure isolates of

potential UP were preserved for subsequent identification.

Identification of UP isolates

To identify the obtained UP isolates, genomic DNA was

extracted using the organic solvent extraction method reported

by Sambrook et al. (1989). The extracted genomic DNA was

quantified using a NanoDrop spectrophotometer (UV/Vis nano

spectrophotometer, Nabi).

Then, amplification of the 16S rRNA gene was conducted and

sequenced to identify the genus of the obtained UP isolates (Sanger

sequencing, Macrogen Inc.). Moreover, the identification of UP

at the species level was carried out according to the standard

methods and recommendations of the International Committee of

Clinical Laboratories (CLSI, 2020). Standard biochemical tests and

confirmation by MALDI-TOF mass spectrometry techniques were

also used for identification (Bruker Daltonics; Perilla et al., 2009;

Murray et al., 2021).

Culture conditions

Isolates were routinely grown under aerobic conditions in BHI

medium at 37◦C with shaking (180 rpm) or in static growth
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at 37◦C on CLED-agar plates. Bacterial growth was monitored

by measuring the absorbance at 600 nm (A600 nm) to determine

turbidity in a liquid medium or by observing the appearance

of isolated colonies in a solid medium. MacConkey (Britania),

Luria Broth (LB, Sigma-Aldrich), M63 (in g/L: 2.0 ammonium

sulfate, 13.6 monopotassium phosphate, 0.005 ferrous sulfate

heptahydrate, 0.12 magnesium sulfate, 2.0 glycerol), Tryptic Soy

Broth (TSB, Britania), Brain Heart Infusion (BHI, Britania) and

urine media were used, depending on the assay. Human urine

media was prepared according to Eberly et al. (2020). Briefly,

urine was collected in equal volumes from male and female

healthy volunteers and filtered through a 0.22µm filter prior to

use. Healthy volunteers were classified as individuals who are

urologically asymptomatic, not menstruating, and those who have

not taken antibiotics in the last 90 days.

Biofilm formation and quantification

Biofilm formation was assessed by measuring the ability of cells

to adhere and grow in 96-well polystyrene plates using various

culture media (O’Toole and Kolter, 1998). Briefly, 24-h cultures

of all isolates were washed in PS, adjusted to an A600 nm of 1.0,

and then diluted to an A600 nm of 0.1 in the corresponding media.

Suspensions were loaded into multiwell plates and incubated under

static conditions at 30◦C for the specified times in each assay. Then,

unattached (planktonic) cells were removed, and wells were washed

three times with distilled water. The quantification of adherent cells

or biofilm biomass was performed as described by O’Toole and

Kolter (1998). Each condition was performed in quadruplicate, and

each experiment was repeated at least five times.

UP isolates were classified according to their biofilm formation

capacity after 72 h, following the Stepanovic criteria (Stepanovic

et al., 2007). The A595nm cut-off value (A595nmC) was defined

as the average value of the blank absorbance plus three

standard deviations. The blank was the non-inoculated medium.

Consequently, the following classification criteria were established:

A595nm ≤ A595nmC, non-biofilm producers (–); A595nmC < A595nm

≤ 2 fold A595nmC, weak biofilm producers (+); 2 fold A595nmC

< A595nm ≤ 4 fold A595nmC, moderate biofilm producers (++);

4 fold A595nmC < A595nm ≤ 8 fold A595nmC, strong biofilm

producers (+ + +); and A595nm > 8 fold A595nmC, robust biofilm

producers (++++).

Microscopy biofilm visualization

Selected isolates were grown under biofilm-forming conditions

in 6-well polystyrene plates containing M63 medium. Each well

was previously fitted with a sterile glass coverslip (provided by the

microscopy facilities). After 72 h at 30◦C, non-adherent cells were

gently removed, and the coverslips were washed with distilled water

and air-dried for 10min. For confocal laser scanning microscopy

(CLSM), biofilms were stained with 20µM DAPI (Sigma) in

0.1M Tris-HCl buffer (pH 8) for 10min (in dark conditions),

followed by distilled water washes. Samples were fixed with 4%

paraformaldehyde (for 20min), rinsed with PBS, and imaged using

a Zeiss LSM800 microscope. For scanning electron microscopy

(SEM), biofilms on coverslips were fixed with a 2.5% glutaraldehyde

and 2.5% paraformaldehyde (v/v) solution, dehydrated through an

acetone/ethanol series, and sputter-coated with gold using a JEOL

JFC-1100 ion coater. Samples were then mounted on aluminum

stubs and imaged with a Carl Zeiss SUPRA-55 SEM at resolutions

of 1.0 nm (15 kV) and 1.7 nm (1 kV) in high-vacuummode or 2 nm

(30 kV) in variable-pressure mode.

Colony morphotypes: amyloid-like fiber
and cellulose production

Colony morphology and dye-binding may serve as indicators

of several physiological and metabolic states in microbes (Martin-

Rodriguez et al., 2021). To analyze colony morphology, culture

plates supplemented with Congo Red (CR, Cicarelli) and Brilliant

Blue (BB, Sigma-Aldrich) were used, as described by Da Re and

Ghigo (2006). Briefly, BHI cultures of all isolates were grown

overnight (ON) at 37◦C, washed, and diluted to an A600 nm of

0.1 in PS. Subsequently, 5 µL of these suspensions were spotted

on LB-agar plates (low salt) supplemented with 40µg/mL CR

and 20µg/mL BB. Plates were incubated at 30◦C for 96 h and

monitored every 24 h. Colony phenotype analysis was performed

for each bacterial genus, as per previous reports. For E. coli

and K. pneumoniae, the analysis was according to Bokranz et al.

(2005): ras (red and smooth colonies) and pas (pink and smooth

colonies) morphotypes. For Staphylococcus spp. isolates, the results

were interpreted as reported by Arciola et al. (2002): reddish-

black colonies with a rough and dry consistency were considered

to be biofilm-related extracellular matrix-producing strains. The

morphology of E. faecalis strains was analyzed as reported by

Torres-Rodríguez et al. (2020), where strains with black and rough

colonies are considered biofilm producers, and strains with red

or white colonies are considered non-producers. For Bacillus spp.,

bacteria that bind CR dye have previously been classified as

producers of functional bacterial amyloid fibers (Romero et al.,

2010). The presence of amyloid-like fiber was denoted as “+.”

Cellulose production was assessed as described by White et al.

(2006). For this, BHI cultures of each isolate were grown ON at

37◦C, washed, and diluted to an A600 nm of 0.1 in PS. Subsequently,

5 µL of the isolates were spotted on LB-agar plates supplemented

with 50µg/mL Calcofluor White (CW, Sigma-Aldrich) dye. The

plates were incubated at 30◦C for 96 h and monitored every 24 h.

Cellulose production was qualitatively assessed by observing the

fluorescence of colonies when irradiated with UV light. Fluorescent

colonies were denoted as+.

Motility assay

Bacterial motility was assessed according to Ulett et al. (2006),

with minor modifications. Briefly, ON BHI cultures were washed

and diluted to anA600 nm of 0.1 in PS. Suspensions were then seeded

onto semi-solid LB-agar plates (0.3%) using a sterile toothpick.

The plates were incubated at 30◦C, and the colony diameter was

evaluated over time. Isolates with colony diameters between 0.5
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and 1 cm were denoted as “+” and those with diameters >1 cm

as “++.”

Hemolytic capacity

The isolates’ hemolytic activity was assessed on blood agar

plates using the method described by Gerhardt et al. (1994). Briefly,

isolates were grown ON in BHI medium, and then the cells were

washed and diluted to an A600 nm of 0.1 in PS. Aliquots of the

bacterial suspensions were plated on blood agar medium and

incubated for 24 h at 30◦C. A β-hemolytic reaction involves the

complete lysis of red blood cells, resulting in a clear area on the

agar surrounding the colony, known as total hemolysis. In contrast,

an α-hemolytic reaction occurs when the hemoglobin in red blood

cells is converted to methemoglobin, resulting in a greenish tint in

the agar surrounding the colonies. Finally, the absence of hemolysis

or discoloration is referred to as γ-hemolysis (Buxton, 2005).

Siderophore production assay

The siderophore production was determined using a qualitative

technique adapted in our laboratory, based on the color change of

Cromoazurol S (CAS, Sigma-Aldrich). Strains were cultured ON

in M9 minimal medium (Sigma-Aldrich) supplemented with 0.2%

glucose, with shaking at 37◦C. Subsequently, 5 µL aliquots of each

cell culture were seeded onto M9 minimal medium supplemented

with 0.2% glucose and incubated at 37◦C for 48 h. Then, an overlay

of semisolid CAS medium (Cromoazurol S, 60.5mg; piperazine

acid, 72.9mg; FeCl3, 1mM; dissolved in HCl at 10mM; 10mL of

this solution per 1 L) was poured onto the grown plates. Isolates

capable of producing siderophores exhibited a color change in the

CAS medium from blue to yellowish around the colony.

Hydrogen peroxide, acid, and human
serum tolerance assays

Stressor susceptibility was carried out according to Shea et al.

(2022). Briefly, bacterial cultures were incubated ON in BHI

medium at 37◦C. Cultures were normalized to 0.5McFarland (∼1.5

× 108 CFUmL−1) in 1mL of either BHI, BHI containing fresh 0.2%

H2O2, or BHI buffered to pH 7, 5, or 2.5. Samples were immediately

vortexed and incubated either for 15 or 60min at room temperature

for the H2O2 tolerance assay or for 1 h at 37◦C with aeration for

the acid tolerance assay. At each time point, suspensions were

serially diluted in PS to further determine CFU mL−1 in CLED-

agarmedium. For human serum tolerance, ONBHI cultures (1mL)

were pelleted by centrifugation, and 0.5 McFarland suspensions

were prepared in sterile PS. The suspensions were diluted 1:200

in either 100% human serum or 100% heat-inactivated human

serum (Sigma-Aldrich). The mixture was incubated for 1 h at 37◦C,

and then the number of CFU mL−1 was calculated by serially

diluting the bacterial-serum suspension and plating it on CLED-

agar medium. The CFU mL−1 of the bacterial inoculum was

calculated by serially diluting the bacterial suspension and plating

it on CLED-agar medium.

Antibiotic susceptibility

Antibiograms were performed for each UP using the disc

diffusion method on Müller-Hinton agar medium (MH-agar,

Britania; CLSI, 2020). The choice of antimicrobial agents is based

on national and international recommendations for urinary

infections in adults, covering both inpatient and outpatient settings

(WHO, 2022). The antibiotics (ATB) used for Gram-negative

and Gram-positive bacteria in this study were 10 µg norfloxacin

(NOR), 10 µg gentamicin (GEN), 300 µg nitrofurantoín

(NIT), 10/10 µg ampicillin/sulbactam (AMS), 1.25/23.75 µg

trimethoprim/sulfamethoxazole (SXT), 30 µg nalidixic acid (NA),

5 µg ciprofloxacin (CIP),10 µg ampicillin (AMN), 30 µg amikacin

(AKN), 30 µg ceftazidime (CAZ), 30 µg cefuroxime (CXM), and

10 µg imipenem (IMP). In addition, ATB specifically targeting

Gram-positive cocci were also tested: 1 µg oxacillin (OXA), 15 µg

erythromycin (ERY), clindamycin (CLI) 2 µg, 30 µg vancomycin

(VAN), and 30µg cefoxitin (FOX). Inhibition halos were measured

and interpreted according to the Clinical and Laboratory Standards

Institute (CLSI) guidelines (CLSI, 2020). Multi-drug resistance

(MDR) was defined as acquired non-susceptibility to at least one

agent in three or more antimicrobial categories (Siegel et al., 2006).

Detection of genes encoding virulence
factors

The presence or absence of virulence-associated genes was

screened using PCR. For each bacterial genus, the following genes

were tested: for E. coli, hemolysin (hlyA), cytotoxic necrotizing

factor (cnf1), fimbria type I regulator (fimB), type 1 fimbria

(fimA), fimbria P (papA) and iron uptake related genes (iroN

and iutA); for K. pneumoniae, hemolysin (hlyA), type 1 fimbrial

subunit (fimA), the type 3 fimbrial adhesin (mrkD), enterobactin

(entB), and an outer membrane porin (ompK36); for E. faecalis,

gelatinase (gelE), sortase-type enzyme (srt), bacterial adherence

protein (efaA), collagen adhesin protein (ace), cytolicin production

activator (cylA); for Staphylococcus spp., staphylococcal enterotoxin

A (sea), slime production related protein (ica), argininemetabolism

related protein (argB, argC), lipase (gehC), fibrinogen binding

protein (sdrG) and for Bacillus spp., bacillus enterotoxins (entB,

entA), pore-forming toxin (cytK), hemolysin (hlyIII), sporulation

related -ATPase subunit (clpC), capsule synthesis protein (capA).

PCR reactions were performed using the primers and parameters

described in Supplementary Table S1. The PCR reaction mixture

(25 µL total) consisted of 12.5 µL of 2× SYBR Green PCR Master

Mix (Bio-Rad), 300 nmol of each forward and reverse primer,

and 10 ng of genomic DNA as the template. The amplification

protocol consisted of an initial denaturation step at 95◦C for

4min, followed by 35 cycles of denaturation at 95◦C for 15 s and

annealing/extension at 56◦C for 30 s. Fluorescence signals were

recorded at the end of each extension step, and amelt curve analysis

was performed to verify the specificity of the product. To confirm

amplification, 5 µL of the PCR product was analyzed on a 2%

agarose gel, with a 100 bp DNA ladder (Promega) included for size

reference. Positive and negative controls were included, consisting

of a 16S gene and a free-template tube, respectively.
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Bacterial interaction assays: colony
interaction, liquid medium co-culture, and
mixed biofilm formation

Bacterial interaction was evaluated in co-isolated pairs obtained

from the same catheter. Four co-isolated pairs were selected,

consisting of Bacillus strains with other UP: E. faecalis Ef5/B.

pumilus Bp1, S. epidermidis Se3/B. subtilis Bs1, S. epidermidis Se4/B.

subtilis Bs2, and K. pneumoniae Kp2/B. megaterium Bm2. For

colony interaction assays, a working protocol developed in the

laboratory was followed. Briefly, bacteria were grown overnight

(ON) at 37◦C in a BHI liquid medium with shaking (150 rpm).

Then, 5 µL aliquots of the cultures were taken and placed on

the surface of a solid BHI-agar medium plate, following the

scheme of one central bacterium and four concentric bacteria at

different distances. Bacteria (central or peripheral) were seeded

simultaneously or in a deferred manner (24 h after the growth

of the central colony). The interaction was analyzed qualitatively

over a period of 2 days at 30◦C, and changes in colony aspects,

such as growth, size, and morphology, were documented. For

liquid media co-culture assays, a previously described protocol

was carried out (Juarez and Galvan, 2018; Learman et al., 2019;

Gaston et al., 2020). Briefly, isolates were grown ON at 37◦C in

BHI, harvested by centrifugation, and adequately diluted in BHI

medium to an A600 nm of 0.1. Monospecies or mixed cultures

were grown under shaking conditions at 37◦C for varying times,

and viability was measured using appropriate media and ATB to

facilitate single-species identification in the interaction. For mono-

or multispecies biofilm assays, isolates were grown at 37◦C in

BHI and diluted to an A600 nm of 0.1. Cells of different bacteria

(alone or in co-culture) were grown in multiwell plates during

24 h at 30◦C. After incubation under static conditions, the non-

adherent fraction (planktonic cells) was removed, and total biofilm

biomass was quantified using the crystal violet technique (O’Toole

and Kolter, 1998). The non-adherent fraction containing a mixed

culture was quantified by CFU mL−1 using the appropriate media,

as mentioned earlier. To quantify microorganisms in the biofilm

biomass, adhered cells were washed three times with sterile PS and

incubated with 0.1% Triton X-100 for 10min. Biofilm cells were

extracted by scraping vigorously with a sterile tip. These bacteria

were resuspended in sterile PS and quantified by determining CFU

mL−1 using appropriate media, as mentioned before (Juarez and

Galvan, 2018).

Statistical analysis

Statistical analyses were performed using R (version 4.4.1)

and RStudio (version 2024.09.0+375). A significance level of α =

0.05 was set for all inferential tests. Prior to applying parametric

tests, the assumptions of normality and homogeneity of variances

(homoscedasticity) were assessed using the Shapiro–Wilk test

and Levene’s test, respectively. When these assumptions were

violated, such as with microbial counts spanning several orders

of magnitude and exhibiting heteroscedasticity, a logarithmic

transformation [log(x+1)] was applied to stabilize variances and

improve normality. A two-way analysis of variance (ANOVA) was

conducted to evaluate the effects of the independent variables

and their interaction with the response variable. Model residuals

were examined to verify the assumptions of normality and

homoscedasticity required for the analysis of variance (ANOVA).

When significant effects were detected, Fisher’s Least Significant

Difference (LSD) post-hoc test was used for pairwise group

comparisons. To explore multivariate patterns and identify

potential groupings among bacterial genera, a principal component

analysis (PCA) was performed. The phenotypic traits of the

bacterial genera were included as variables. All variables were

standardized, and PCA was conducted using a correlation matrix

to account for differences in measurement scales. A biplot based on

the first two principal components was generated to visualize the

distribution of observations and the contribution of variables to the

principal components, represented by the PCA loadings. Clusters

were visually identified and characterized using ellipses, and the

within-cluster sum of squares (WSS) was calculated to assess the

compactness of each cluster.

Results and discussion

Clinical isolates from double-J catheters
reveal polymicrobial colonization

A total of 27 bacteria were isolated from 8 catheters

(Table 1). Monobacterial isolates were obtained from three

catheters (catheters 1, 4, and 5), whereas multiple bacterial species

were recovered from the remaining catheters, confirming the

polymicrobial etiology of the double-J stents (Chatterjee et al., 2014;

Klis et al., 2014; Wang et al., 2021). The predominant bacterial

species were Bacillus spp., including B. pumilus, B. subtilis, and

B. megaterium (7 isolates, 27%), followed by Staphylococcus spp.,

including S. aureus and S. epidermidis (1 and 6 isolates, respectively,

27%). E. faecalis (5 isolates, 19%), K. pneumoniae (4 isolates, 15%),

and E. coli (3 isolates, 12%) were also identified (Table 1). All

patients had their catheters in place for a period of 1–3 months

and received ATB therapy prior to extraction. Despite negative

urine cultures (UC), both adhered and non-adhered bacteria were

isolated from all devices. This finding aligns with several reports

indicating that colonization of double-J catheters does not correlate

linearly with urine culture (UC) or prostatic secretion samples (Klis

et al., 2009). The identified species (except for Bacillus spp.) are

in agreement with prior literature concerning bacterial species in

catheters, which describes them as common urinary tract infection

(UTI) pathogens (Gould et al., 2010; Kart et al., 2017; Pérez et al.,

2017; Al-Qahtani et al., 2019). Although only 12% of the isolates

were UPEC, this bacterium is the most common pathogen in

both community-acquired and nosocomial urinary tract infections,

accounting for approximately 24%−39% of catheter-associated

urinary tract infections (CAUTIs; Jacobsen et al., 2008). It is widely

known thatK. pneumoniae is an opportunistic pathogen commonly

distributed in the perineum, which can easily colonize the urinary

tract and medical devices (Pérez et al., 2017). E. faecalis establishes

a symbiotic relationship with other UP and is frequently found

in the context of CAUTIs (Salm et al., 2023). Additionally, S.

aureus and S. epidermidis, which are normally present on the

skin surface, can enter the urinary tract during catheter placement
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(Klis et al., 2014; Badhan et al., 2016; Oliveira et al., 2018). Often,

the cause of this colonization may be that catheterization and its

manipulation promote ascending infections due to the presence of

commensal microorganisms in the surrounding skin of the urethra

or potential contamination resulting from the manipulation of

healthcare personnel (Kalsi et al., 2003; Chatterjee et al., 2014).

Notably, several bacterial isolates adhered to different catheters

belonging to the Bacillus genus. It is well-known that human

infections caused by Bacillus spp., except for B. anthracis or B.

cereus, are rarely reported in the literature. The primary reason

for this can be attributed to the fact that most of these bacteria

are often considered laboratory contaminants with little to no

clinical relevance (Drobniewski, 1993; Fekete, 2015). However,

some reports described that Bacillus spp. has been isolated

from bacteremia, endocarditis, wounds, respiratory, urinary, and

gastrointestinal tract infections, food poisoning, and meningitis

(Drobniewski, 1993; Fekete, 2015). Therefore, the identification of

aerobic Gram-positive spore-forming bacilli at the species level,

the evaluation of their pathogenic potential, and the interpretation

of susceptibility ATB tests for these bacilli would be relevant in

elucidating their potential role in the mentioned infections (Klis

et al., 2014; Kandi et al., 2016).

Our data showed a high percentage of bacterial catheter

colonization. Several authors have reported that the catheter

colonization rate exceeds the urinary infection rate, indicating a

significant inconsistency between urinary infections and catheter

colonization. This discrepancy complicates the estimation of

stent colonization (Kehinde et al., 2004; Klis et al., 2009).

Therefore, a thorough study should be conducted regarding

the prevalence of etiological agents and their antimicrobial

susceptibility in double-J catheters to improve treatments for long-

term catheterized patients.

Clinical isolates exhibit multiple
virulence-associated phenotypes that
support potential catheter colonization

Measuring experimental phenotypic outcomes could predict

the UP potential infectivity. To understand the virulence strategies

of the isolated strains, we performed an extensive set of phenotypic

microbiological assays, which included evaluating biofilm

formation capacity, amyloid-type fiber production, cellulose, and

mucoid substance production as components of the extracellular

matrix, motility, siderophore production, and hemolytic capacity,

along with their ATB resistance profile. These phenotypes are

summarized in Table 2 and described below.

Biofilm formation
Since biofilm development is influenced by environmental

factors, such as nutrient availability, surface type, and shear forces,

assessing this trait in multiple growth media will allow us to

infer the versatility of bacterial populations and their potential to

form biofilms in various clinical contexts. Biofilm formation was

tested in M63, MacConkey, BHI, TSB, and urine culture media

at various time points. Results displayed in Table 2 show that the

TABLE 1 Clinical isolates obtained from double-J catheters.

Name Identification Source

Ec1 Escherichia coli Catheter 2—Adhered

Ec2 Escherichia coli Catheter

2—Non-adhered

Ec3 Escherichia coli Catheter

2—Non-adhered

Kp1 Klebsiella pneumoniae Catheter 8—Adhered

Kp2 Klebsiella pneumoniae Catheter 8—Adhered

Kp3 Klebsiella pneumoniae Catheter 8—Adhered

Kp4 Klebsiella pneumoniae Catheter 8—Adhered

Ef1 Enterococcus faecalis Catheter 2—Adhered

Ef2 Enterococcus faecalis Catheter 2—Adhered

Ef3 Enterococcus faecalis Catheter 2—Adhered

Ef4 Enterococcus faecalis Catheter

2—Non-adhered

Ef5 Enterococcus faecalis Catheter 3—Adhered

Ef6 Enterococcus faecalis Catheter 3—Adhered

Sa1 Staphylococcus aureus Catheter 1—Adhered

Se1 Staphylococcus epidermidis Catheter 4—Adhered

Se2 Staphylococcus epidermidis Catheter 5—Adhered

Se3 Staphylococcus epidermidis Catheter 6—Adhered

Se4 Staphylococcus epidermidis Catheter

6—Non-adhered

Se5 Staphylococcus epidermidis Catheter 7—Adhered

Se6 Staphylococcus epidermidis Catheter 7

–Non-adhered

Bm1 Bacillus megaterium Catheter

4—Non-adhered

Bm2 Bacillus megaterium Catheter 8—Adhered

Bp1 Bacillus pumilus Catheter 3—Adhered

Bs1 Bacillus subtilis Catheter 6—Adhered

Bs2 Bacillus subtilis Catheter 7—Adhered

Bs3 Bacillus subtilis Catheter

7—Non-adhered

Bs4 Bacillus subtilis Catheter

6—Non-adhered

biofilm formation ability of E. coli, S. epidermidis, and Bacillus

spp. strains varied depending on the culture medium used, being

higher in TSB, BHI, and urine medium. S. aureus, E. faecalis, and

the majority of the K. peumoniae isolates were considered strong

or robust biofilm formers in all tested media. Differences in the

ability to form biofilm among genera and conditions are typical

in clinical isolates (Grillo-Puertas et al., 2015; Del Pozo, 2018;

Uruen et al., 2020). It is well-known that biofilm formation is one

of the most relevant virulence mechanisms used by UP during

UTIs (Del Pozo, 2018; Klein and Hultgren, 2020; Lenchenko et al.,

2020). Indeed, it has been reported that microorganisms living
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TABLE 2 Virulence associated-phenotypes.

Biofilm formation Amyloid-
type fibers
production

Cellulose
production

Motility Hemolytic
capacity

Siderophore
production

MDR
phenotype

Culture conditions

UP isolate M63 LB MacConkey TSB BHI Urine LB+CR+BB LB+CW 0.3%BHI Blood
agar

CAS MH

E. coli Ec1 + + - ++ - ++ + - + γ + +

Ec2 ++ – – + + + + ++ + – + α + +

Ec3 + + + – – ++ + + + + – – + γ + +

K.

pneumoniae

Kp1 + + + ++ + + + + + + ++ + + + – + – γ – +

Kp2 + + ++ + + + ++ + + ++ + + + ++ – + – γ + +

Kp3 + + ++ ++ + + + + ++ + + ++ – + – γ – +

Kp4 + + ++ + + + ++ + + ++ + + + ++ – + – γ + +

S. aureus Sa1 + + + + + + ++ + + + + + + α – –

S.

epidermidis

Se1 – + – + + + + + + + ++ α – +

Se2 – + – + + + + + + + + + + + ++ α – +

Se3 – – – – ++ + + + + + ++ γ – +

Se4 – – + + + + + + ++ + + + + + – α + –

Se5 ++ + + + ++ ++ + + + + + – – β – –

Se6 – – ++ + ++ + + ++ α – +

E. faecalis Ef1 + + + + + + ++ + + + ++ + + + – + + α – +

Ef2 + + + – + + + + + + + + + + + + – + + α – +

Ef3 ++ – ++ + + + ++ + + + – + ++ α – +

Ef4 + + + – + + + + + + + + + + – + + α – +

Ef5 + + + + + + + ++ ++ + + + – + + α – +

Ef6 + + + + ++ ++ + + + + + + – + – γ – +

B. pumilus Bp1 – + – ++ ++ + + + + + + β – +

B.

megaterium

Bm1 – + – ++ ++ + + + + + – γ – –

Bm2 ++ + – ++ ++ + + + – – – γ + –

(Continued)
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in these structures are even more virulent and resistant to ATB.

Therefore, the ability of UP to form biofilms in urinary catheters

and the urothelium is a crucial factor for the persistence and

recurrence of UTI (Vuotto et al., 2017). Additionally, the release of

bacteria from biofilms into the bloodstream can lead to widespread

infections, especially in immunocompromised patients (Saint and

Chenoweth, 2003; Flemming and Wingender, 2010; Lazar and

Chifiriuc, 2010). The description of the isolates’ biofilm-forming

ability is insufficient to classify them as non-biofilm formers,

as in other circumstances, such as certain clinical settings, they

may have a greater capacity for adhesion and biofilm formation.

Studying biofilm formation under different in vitro conditions

provides valuable insights into the adaptability and persistence

strategies of clinical isolates. Such variability may reflect the

ability of these organisms to persist on medical devices or within

host niches, even under fluctuating conditions. In addition to

visualizing the biofilm structure, qualitative analysis was performed

using confocal laser scanning microscopy (CLSM) and scanning

electron microscopy (SEM) on four selected UP isolates in BHI

medium (Supplementary Figures S1, S2). Results showed that S.

aureus Sa1, E. coli Ec1, K. pneumoniae Kp2, and E. faecalis Ef5

strains were able to adhere to the glass surface. Although the

surface coverage of Sa1 and Ec1 was relatively lower compared to

Kp2, all these strains demonstrated a strong adhesion, presenting

characteristic agglomerates. The biofilm surface of the Sa1, Ec1,

and Kp2 strains showed a “Christmas tree forest” appearance

with internal water channels. These structures, characterized by

their towering growth and interconnected channels, allow for

efficient exchange of nutrients and waste, enabling the biofilm to

sustain itself over time (Quan et al., 2022). It is worth mentioning

that the Ef5 isolate was not able to form a structured biofilm.

Thus, it was not possible to reconstruct the 3D structure. In

SEM assays (Supplementary Figure S2), the Ec1 strain showed a

significant coverage of the glass surface. In addition, a delicate

layer encapsulating groups of cells interspersed by channels was

observed (indicated by an arrow in the insert), probably indicating

the presence of an extracellular matrix, as previously described for

this genus (Cui et al., 2020). In the Ef5 isolate, a large number

of cell clusters surrounded by abundant extracellular material

were found. Finally, the Kp2 isolate formed a strong biofilm with

protrusions that rose from the surface, as observed by CLSM. Pili,

curli, or nanotube-like structures were observed, with abundant

extracellular matrix surrounding the bacteria (arrows in inserts of

Supplementary Figure S2). These appendages have been reported

to play essential roles during cell adhesion and biofilm formation

(Busscher et al., 2008; Rodrigues and Elimelech, 2009). Regarding

the Sa1 isolate, it was unable to form a structured biofilm in this

assay, as dispersed cells were observed (Supplementary Figure S2).

The discrepancies observed in the biofilm formation ability among

the different isolates on polystyrene and glass surfaces were not

surprising since surface topography is a parameter that significantly

influences microbial adhesion (El Abed et al., 2012).

Colony morphotypes
The assessment of colonies’ morphology and dye-binding

capacity can be used to describe, identify, and characterize
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microorganisms, serving as an indicator of microbial physiology

and metabolism. Binding to CR and BB dyes, as well as the

interpretation of the obtained results, is specific to each bacterial

genus. Table 2, Supplementary Figure S3 show the phenotypes of

bacterial colonies obtained on LB plates supplemented with CR

and Brilliant Blue. When curli or other amyloid-like fibers were

studied, it was observed that only Escherichia, Staphylococcus,

and Bacillus exhibited a colony morphotype characteristic of

fiber or adhesion-type component production. Based on the

morphotype classification, E. coli isolates showed a ras phenotype

(Supplementary Figure S3), indicating moderate production of

fimbriae curli and cellulose. S. epidermidis isolates Se1, Se2,

Se3, and Se6 exhibited clear, flat, circular colonies with rough

edges at 24 h, which turned red, wrinkled, and irregularly shaped

by 96 h (Supplementary Figure S3). According to the colony

morphotype, Staphylococcus spp. isolates were considered as

matrix producers (Arciola et al., 2002). In contrast, Bacillus

isolates Bp1, Bs1, Bs2, Bs3, and Bs4 exhibited dark or red

colonies with central black halos and rough, irregular, and lobed

margins (Supplementary Figure S3). Thismorphotype indicates the

production of TasA proteins (Romero et al., 2010), which are the

major amyloid-type proteins of the biofilm matrix in Bacillus spp.

(Chapman et al., 2002; Branda et al., 2006; Bohning et al., 2022).

K. pneumoniae or E. faecalis strains were characterized by white

colonies with pink or reddish centers and a mucoid appearance

(Supplementary Figure S3). The distinctive mucoid morphology

of K. pneumoniae isolates indicated a high capsule production

(Table 2). This phenotype was reported as one of the main virulence

factors of K. pneumoniae involved in adhesion to host cells and

biofilm formation (Vernet et al., 1995; Cavalcanti et al., 2019). The

presence of a pigmented ring that stands out in the Ef5 isolate was

consistent with biofilm formation capacity (Torres-Rodríguez et al.,

2020).

Cellulose production is another relevant extracellular matrix

component for biofilms and several virulence traits, as it provides

an important physical barrier to antimicrobials (Matz et al., 2008;

Mulcahy et al., 2008; Hansen and Vogel, 2011). In addition to the

observed RC colony morphotypes, cellulose production was also

visualized on LB-agar plates supplemented with CW, as described

in the Materials and Methods section. As shown in Table 2, except

for E. coli, all bacterial genera produced cellulose, as evidenced by

the formation of fluorescent colonies when they were irradiated

with UV light (Supplementary Figure S3). No fluorescence was

observed in E. coli colonies after irradiation; only the Ec3 isolate

showed slight fluorescence in the center of its colony, as expected

for its rasmorphotype.

Colony morphology depends on numerous environmental

factors, such as media composition, temperature, and humidity,

among others, which lead to the expression of specific genes or

intercellular communication processes that control this process

(Bokranz et al., 2005; Da Re and Ghigo, 2006; Kaiser et al., 2013;

Sydow et al., 2022). Analysis of these components under various

conditions could determine the potential high capacity of the

isolates to form a biofilm inUTIs. Although the correlation between

morphology, expression of extracellular components, and biofilm

formation capacity has been noted in some bacterial isolates (i.e.,

B. subtilis and S. epidermidis strains), it has not been generalized

across all bacterial genera. Although K. pneumoniae and E. faecalis

strains exhibited a strong biofilm-forming ability, they did not

produce amyloid-type fibers under the tested conditions (Table 2).

Bacterial motility
In some pathogenic bacteria, motility plays a crucial role in

the initial phase of infection (Josenhans and Suerbaum, 2002),

likely to overcome the electrostatic repulsion between cells and

surfaces (Pratt and Kolter, 1998; Walker et al., 2007). In addition,

motility contributes to the colonization of different environmental

niches by facilitating the spread of the infectious agent, which is

crucial in the context of UTI (Josenhans and Suerbaum, 2002).

As observed in Table 2, all isolates exhibited significant motility

capacity, except for K. pneumoniae, S. epidermidis strains Se4 and

Se5, B. megaterium, and E. faecalis strain Ef6. Although both S.

aureus and S. epidermidis lack flagella and, therefore, are considered

non-motile bacteria, it was observed that Sa1, Se1, Se2, and Se3

isolates exhibited significant motility. Recent studies have reported

flagellum-independent forms of motility in microorganisms of this

genus (Pollitt and Diggle, 2017). For instance, spreading involves

a sliding movement, where bacteria spread radially outward from

an inoculation site, forming multiple layers of densely packed

cells (Henrichsen, 1997; Kaito and Sekimizu, 2007). E. faecalis is

also regarded as a non-motile bacterium due to the absence of

flagella. However, in this study, most E. faecalis isolates showed

motility, with the exception of the Ef6 strain. It demonstrated

an E. faecalis migration mechanism, where the synthesis and

secretion of extracellular polysaccharides were required (Ramos

and Morales, 2019). Therefore, when cells are grown on semisolid

agar, they penetrate and invade the medium, creating a “colony

impression” (Ramos and Morales, 2019). This mechanism is

relevant for translocation through monolayers of human epithelial

cells, conferring adaptive advantages during infection, as it enables

them to translocate from the urinary tract to the bloodstream

and colonize distant anatomical sites (Muscholl-Silberhorn et al.,

2000; Ubeda et al., 2010; van der Heijden et al., 2014). In general,

it has been described that environmental isolates of B. subtilis

exhibit robust motility (Kearns and Losick, 2003), in agreement

with the exacerbated motility shown by the strains used in this

study. There is a complex relationship between motility and

biofilm formation, which depends on environmental conditions

or bacterial requirements. A study conducted on B. cereus strains

reported that bacterial motility influenced biofilm formation

through three mechanisms: (1) motility is necessary for the bacteria

to reach adequate surfaces to form biofilm; (2) motility promotes

the recruitment of planktonic cells to invade the preformed biofilm;

and (3) motility is involved in biofilm spreading and propagation

(Houry et al., 2010). Based on the observed motility of B. subtilis, it

could be assumed that motility is necessary for the bacteria to reach

adequate surfaces to form biofilm (Dunne, 2002; Grillo-Puertas

et al., 2015).

Siderophore production
Iron, a vital nutrient required for bacterial growth, is

highly restricted within human hosts (Hood and Skaar, 2012;

Subashchandrabose and Mobley, 2015). Most UP strains encode

several iron acquisition systems, such as siderophores, to acquire
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iron sequestered by the host (Garcia et al., 2011). Here, we tested

siderophore production by the studied clinical isolates using the

CAS assay described previously. All E. coli and B. subtilis strains,

including Kp2 and Kp4, Se4, and Bm1, were able to produce

siderophores (Table 2, Supplementary Figure S4A). It was reported

that siderophore production by different UP is an important

characteristic that contributes to the potential virulence of these

isolates, relevant in the catheter context (Danese et al., 2000; Yue

et al., 2003; Zou et al., 2023).

Hemolytic capacity
Hemolysins are proteins secreted by bacteria that constitute

another important virulence factor in UTIs. These toxins can

disrupt host cell signaling cascades, altering the inflammatory

response and inducing cell death (Guyer et al., 2002; Wiles et al.,

2008). It is well-known that α-hemolysin, HlyA, can stimulate

epithelial barrier rupture, leading to bacterial translocation from

the urinary tract to the bloodstream (Whelan et al., 2023). Table 2

shows that 19.2% of the isolates exhibited total hemolysis (β

hemolysis) with defined lysis zones (Supplementary Figure S4B).

Partial hemolysis (α hemolysis) was carried out by 42.3% of the

isolates, while the remaining 38.5% did not present hemolytic

capacity. As observed in Table 2, Staphylococcus strains exhibited

partial or total hemolysis capacity. It is well-known that hemolytic

capacity is one of the most common virulence factors of coagulase-

positive (S. aureus) and coagulase-negative (S. epidermidis)

staphylococci (Moraveji et al., 2014). In E. faecalis isolates, only

partial hemolysis was observed, in agreement with several studies

that describe this genus as not being able to produce total hemolysis

(Stepien-Pysniak et al., 2019; Torres-Rodríguez et al., 2020). It

is worth mentioning that four out of the five isolates exhibiting

total hemolysis belong to the Bacillus spp. genus. Similar results

were obtained with Bacillus strains isolated from river water

samples with fecal contamination, where all isolates presented total

hemolytic capacity (Ostensvik et al., 2004). The pathogenicity of

Bacillus spp. has been poorly investigated, except for B. cereus,

a known pathogen whose pathogenic potential has been related

to the secretion of several virulence proteins, such as hemolysins

phospholipases, cytotoxin K (CytK) and proteases (Ramarao and

Sanchis, 2013; Jessberger et al., 2015), and diverse motility factors,

such as those involve in swimming and swarming (Senesi et al.,

2010).

Taken together, the ability to form biofilms and produce

extracellular components, such as capsules and cellulose, along

with virulence factors like hemolysins and siderophores, are critical

elements in the pathogenicity of UP associated with colonization

of double-J catheters. These factors not only facilitate the

adhesion and colonization of devices but also confer resistance to

antimicrobial treatments, complicating the resolution of infections.

Double-J catheter-associated isolates
exhibit prevalence of MDR phenotype

Knowledge of the ATB susceptibility (AS) pattern of clinical

isolates is necessary to characterize the microorganism, as it

provides valuable context for understanding their clinical relevance

and potential treatment challenges. Therefore, antibiograms

using conventional ATB were performed for each isolate

(Supplementary Table S2). Results in Table 2 show that E. coli

and K. pneumoniae isolates exhibited a multidrug-resistant

(MDR) phenotype. E. coli strains were resistant to 6 out of 12

antibiotics tested, with K. pneumoniae isolates susceptible only

to imipenem and amikacin (Supplementary Table S2). Both

species have frequently been reported to carry plasmids encoding

extended-spectrum β-lactamases (ESBLs), which confer resistance

to third-generation cephalosporins and other antibiotics of the

β-lactam class (Paterson, 2006; Garau, 2008; Chen et al., 2013;

Pendleton et al., 2013; Mazzariol et al., 2017). Although ESBL

production was not specifically tested in our study, resistance

to second- and third-generation cephalosporins supports this

possibility. The preserved susceptibility to imipenem suggests

that carbapenems may remain effective despite increasing reports

of carbapenem-resistant strains (Logan and Weinstein, 2017).

Regarding the Staphylococcus genus, only Se1, Se2, Se3, and Se6

showed an MDR phenotype (Table 2). Multi-drug-resistant S.

epidermidis is increasingly recognized as a cause of opportunistic

infections, particularly in patients with indwelling medical devices

(Otto, 2009). These infections can be difficult to treat due to

biofilm formation and the ability of S. epidermidis to acquire

resistance genes through horizontal gene transfer. Our results

are in agreement with those reported by Socohou et al. (2020),

who found that S. epidermidis strains isolated from the surfaces of

medical materials exhibited high susceptibility to gentamicin and

ciprofloxacin. Regarding E. faecalis strains, all isolates exhibited

a multidrug-resistant (MDR) profile (Supplementary Table S2).

The observed resistance of E. faecalis isolates to ERY, CLI,

OXA, and FOX is clinically concerning, particularly in hospital

settings. Notably, two strains (Ef5 and Ef6) exhibited resistance

to vancomycin (VAN) and erythromycin (ERY), indicating

a vancomycin-resistant enterococci (VRE) phenotype. VRE

infections are increasingly reported in catheterized patients and

raise a serious therapeutic challenge due to limited treatment

options (Rivera and Boucher, 2011; Arias and Murray, 2012;

Dalhoff, 2012; Sievert et al., 2013). Resistance to macrolides and

lincosamides is particularly problematic in patients allergic to

β-lactams, as it restricts alternative therapeutic options. Moreover,

the persistence and spread of such resistant strains increase the risk

of hospital outbreaks that are difficult to control.

Results show that Bacillus spp. presented limited resistance

to the tested ATB. Particularly, only the Bp1 strain exhibited

resistance to several antimicrobials, including CAZ, ERY, CLI,

OXA, and FOX, while the Bm1 and Bs3 strains were resistant only

to AMP. Similar results were found in B. pumilus and B. subtilis

by Adamski et al. (2023). Additionally, since most Bacillus species

are not considered human pathogens but rather saprophytic skin

microorganisms, antimicrobial susceptibility studies are typically

not performed for this genus (Kalsi et al., 2003; Chatterjee

et al., 2014). As environmental organisms, Bacillus are not

frequently subjected to the selective pressures found in hospital

settings, where the continuous use of ATB often leads to the

development of resistance (Stenfors Arnesen et al., 2008). This

limited exposure may contribute to the observed lower rates of

resistance compared to other pathogens commonly encountered in

healthcare environments.
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Genotypic analysis evidences the presence
of key virulence determinants among
clinical isolates

The ability of UP isolates to cause different diseases is mediated

by multiple virulence factors, including the expression of genes

associated with the production of adhesins, toxins, siderophores,

and secretion systems, among others (Blanco et al., 2002; Johnson,

2002). These factors are involved in the colonization of specific

host surfaces, evading immune defenses, or causing direct damage

to cells and tissues (Johnson, 2002). A genotypic analysis of

some virulence-associated genes facilitates the identification of

different phenotypic traits that may contribute to the persistence

and severity of infections. E. coli isolates harbored genes encoding

iron acquisition systems (iutA and iroN) and the hemolysin-

encoding gene hlyA. Additionally, the Pap fimbriae (papA) and

cytotoxic necrotizing factor (cnf-1) genes were detected in all

isolates, suggesting a highly virulent phenotype. The iutA and

iroN genes are known to enhance bacterial survival by facilitating

iron acquisition in iron-limited environments, such as the human

body (Johnson et al., 2005). Kanamaru et al. (2003) reported the

prevalence of putative uropathogenic virulence factors in 427 E.

coli strains, finding a significant prevalence rate of the iroN gene

in the UTI isolates. The presence of hlyA and cnf-1 further suggests

that these isolates have the potential to cause severe infections, as

both genes are associated with tissue damage and inflammatory

responses, as typically observed in UPEC (Rendon et al., 2007;

Totsika et al., 2012). Soto et al. (2007) reported that the papA and

hlyA genes were present in 42% and 36% of the UPEC strains

analyzed, respectively. It is worth mentioning that 50% of UPEC

produce α-hemolysin, and its expression is strongly associated with

symptomatic UTIs (Pigrau, 2013).

All K. pneumoniae isolates were positive for all virulence genes

tested (Table 3), indicating their potential to cause infections by

adhering to host tissues and evading the immune system. OmpK36

expression has been linked to ATB resistance (Wyres et al., 2020),

consistent with theMDR profile previously described for this genus

(Table 2, Supplementary Table S2). Additionally, the combination

of adhesion factors and hemolysin suggests that these strains

may be particularly adept at establishing infections, especially in

immunocompromised patients (Paczosa and Mecsas, 2016).

The S. aureus isolates exhibited virulence genes associated with

the accessory gene regulator (agr) system, including argC and geH.

This system is involved in the expression of toxins and surface

proteins that aid in immune evasion and tissue invasion (Novick

and Geisinger, 2008). The agr system is a well-documented key

virulence regulator in S. aureus, controlling the production of

toxins, such as hemolysins and proteases (Novick and Geisinger,

2008). Additionally, the sdrG gene, associated with fibrinogen-

binding proteins that contribute to biofilm formation and immune

evasion, was observed in this isolate. The presence of this

gene indicates an enhanced biofilm-forming capacity, exhibiting

strong resistance to immune clearance and ATB treatment (Kong

et al., 2016). S. epidermidis isolates also contained the agrC,

geH, and sdrG genes, all of which are associated with biofilm

formation (Kavanaugh and Horswill, 2016). This ability enhances

the survival of S. epidermidis on indwelling medical devices, such

as catheters and prosthetic joints (Otto, 2009). The presence of

these virulence factors suggests that these S. epidermidis isolates

may be well-adapted and capable of causing persistent infections

in healthcare settings.

Except for Ef6, all E. faecalis isolates were positive for gelE,

efaA, ace, and cylA genes. The presence of these virulence factors

highlights the pathogenic potential of E. faecalis. Gelatinase,

encoded by the gelE gene, is a protease that degrades host

tissues and promotes biofilm development by facilitating bacterial

adhesion (Hancock and Perego, 2004). The Ace protein is involved

in adhesion to extracellular matrix proteins and plays a crucial role

in host tissue colonization and the formation of biofilms onmedical

devices (Singh et al., 2010). EfaA is also involved in bacterial

adherence and is considered essential for biofilm formation during

infection (Nallapareddy et al., 2005). The expression of these genes

is consistent with the considerable biofilm formation observed

in these isolates. Finally, cytolysin (cylA) is involved in the lysis

of red and white blood cells, contributing to immune evasion

and tissue destruction (Hancock and Gilmore, 2006). This result

is in agreement with the partial hemolytic capacity exhibited by

these isolates.

Among the analyzed Bacillus species, only B. subtilis (Bs1

and Bs4) exhibited hlyA and sdrG genes. This was unexpected

since Bacillus spp. are generally regarded as environmental bacteria

with limited clinical relevance (Turnbull, 1996). However, recent

studies by Bianco et al. (2020) and Fayanju et al. (2024) identified

specific virulence genes in B. subtilis strains that contribute to their

pathogenicity. In addition to virulence factors, the antimicrobial

resistance profiles of Bacillus strains play a critical role in

determining their pathogenicity and potential impact on indwelling

device contexts.

Clinical isolates display di�erential survival
under host-mimicking stress conditions

In the urinary tract, bacteria are exposed to various host-

mediated stress responses, including osmotic stress, pH changes,

reactive oxygen species (ROS) generated by the immune

system, and nutrient limitation (Agace et al., 1995). Therefore,

pathogens develop adaptive advantages to cope with these

environmental stressors.

All isolates were exposed to pH levels of 7, 5, and 2.5 for 2 h to

simulate the expected pH ranges that bacteria may encounter in the

gut, urine, or during neutrophil attack, respectively (Figure 1). The

results showed that both Gram-positive and Gram-negative isolates

exhibited significant decreases in viability when exposed to pH 2.5.

Only Ec2, Sa1, Bs1, and Bs4 strains were tolerant to all tested pH

conditions (Figure 1A). The decreased viability when exposed to

pH 2.5 is consistent with previous findings that show that acidic

conditions can severely compromise bacterial membrane integrity

and metabolic function in both bacterial genera (Cotter and Hill,

2003; Foster, 2004).

To study oxidative stress, the survival of the tested

isolates exposed to H2O2 was evaluated. E. coli and K.

pneumoniae strains (both Gram-negative bacteria) were

highly sensitive to 0.2% H2O2 even after 15min (Figure 1B).
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FIGURE 1

pH, H2O2, and human serum tolerance assays. (A) A total of 108 CFU mL−1 of each isolate was inoculated into BHI containing 0.2% H2O2 and

maintained statically at room temperature. Samples were taken and serially diluted at 0, 15, and 60min. (B) From an overnight culture, the isolates

were diluted to 108 CFU mL−1 in BHI bu�ered to pH 7 (control), 5, or 2.5, as indicated. Cultures were incubated for 2 h at 37◦C with aeration. (C)

Isolates were cultured overnight in BHI, washed, and then resuspended in PBS. Then, 108 CFU mL−1 was added to 100% complete human serum and

heat-inactivated human serum. Samples were incubated statically at 37◦C for 60min. After incubation, the CFU mL−1 was determined. Data

represent the mean ± SD of at least four independent experiments. A one-way ANOVA was performed with the Fisher test, yielding a p-value of 0.05.
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TABLE 3 Presence of virulence factor coding genes.

UP isolate Genes

fimA fimB iutA iroN papA cnf-1 hlyA

E. coli Ec1 – + + + + + +

Ec2 – + + + + + +

Ec3 – + + + + + +

fimA entB mrkD ompK36 hlyA

K. pneumoniae Kp1 + + – + +

Kp2 + + – + +

Kp3 + + – + +

Kp4 + + – + +

sea ica agrB argC geH sdrG

S. aureus Sa1 – – – + + +

S. epidermidis Se1 – – – + + +

Se2 – – – + + +

Se3 – – – + + +

Se4 – – – – + +

Se5 – – – – + +

Se6 – – – + + +

gelE srt efaA ace cylA

E. faecalis Ef1 + – + + +

Ef2 + – + + +

Ef3 + – + + +

Ef4 + – + + +

Ef5 + – + + +

Ef6 – – – – –

entA entB cytK clpC sdrG hlyA

B. pumilus Bp1 – – – – – –

B. megaterium Bm1 – – – – – –

Bm2 – – – – – –

B. subtilis Bs1 + + – + + +

Bs2 – – – – – –

Bs3 – – – – – –

Bs4 + + – + + +

However, Gram-positive bacteria were more tolerant to the

mentioned stress, displaying variable susceptibility when

exposed for up to 1 h (Figure 1B). The higher resistance in

Gram-positive isolates could be due to differences in their

cell wall structures and antioxidant defense systems (Imlay,

2013).

Complement-mediated killing is also a crucial innate

immune defense that can be assessed by measuring bacterial

survival in human serum. Only E. coli isolates Kp1, Kp3, and

Se5 strains were partially susceptible to serum (Figure 1C).

This is in agreement with the fact that, although the immune

pressure of serum complement, all virulent pathogens capable

of inducing active infections have evolved immune evasive

strategies that primarily target the complement system

(Sharma et al., 2020).

The significant resistance to exogenous stressors observed

in many isolates implies that these bacteria may have a high

survival rate during infections, potentially leading to chronic or

recurrent infection.

Principal component analysis of
phenotypic diversity

The Principal Components Analysis (PCA) plot provides

a visual summary of the relationships between five different
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bacterial genera (color- and shape-coded by taxonomic group)

based on eleven phenotypic traits: antimicrobial resistance,

biofilm formation, hemolytic capacity, motility, siderophore

production, virulence factor coding genes, curli production,

cellulose production and H2O2, pH 2.5, and human serum

tolerances (Figure 2). The variable “pH 5 resistance” was excluded

from the PCA since all bacteria were tolerant (constant value). The

X-axis (PC1) explained 27% of the variance, while the Y-axis (PC2)

explained 23%, together accounting for 50% of the total variance,

which allowed an adequate interpretation of the characteristics

associated with virulence (Figure 2).

Based on PCA loadings, PC1 primarily distinguished bacteria

by traits such as antimicrobial resistance (−0.45), biofilm formation

(−0.27), and virulence factor coding genes (−0.25) on the

left side vs. curli production (0.47), hemolytic capacity (0.46),

motility (0.31), and H2O2 resistance (0.26) on the right side.

PC2 differentiates bacteria based on human serum resistance

(0.48), cellulose production (0.47), and biofilm formation (0.27;

upper quadrant) vs. siderophore production (−0.45) and pH 2.5

resistance (−0.43; lower quadrant). It is important to highlight that

biofilm formation contributes equally to both components of the

PCA. Both components may reflect a balance between pathogenic

potential and the host’s defenses.

Each bacterial genus was enclosed within shaded ellipses,

representing the clustering tendency for each bacterial group.

The within-cluster sum of squares (WSS) for each group was

calculated to reflect the internal variability of the clusters formed

by the algorithm.

PC1 segregated the bacteria along the x-axis, positioning

the clusters of Klebsiella (WSS: 1.53), Enterococcus (WSS: 1.56),

and Escherichia (WSS: 3.12) to the left. These clusters were

associated with antimicrobial resistance and the presence of

virulence factor-coding genes. The distinction among these genera

was marked by PC2, which separated the bacteria along the y-

axis. Enterococcus and Klebsiella were located at the top of the

graph, linked to biofilm formation and cellulose production. In

contrast, Escherichia was positioned at the bottom of the graph

associated with siderophore production and resistance to pH 2.5.

Our results confirmed that Klebsiella and Enterococcus isolates,

with robust and strong biofilm-forming abilities, respectively, were

resistant to multiple antimicrobials, suggesting a direct relationship

between antimicrobial resistance and biofilm-formation capacity

(see Tables 1, 3). Although the UP isolates were derived from

patients who had not received antibiotic therapy in the 10 days

preceding the device removal procedure, it is essential to consider

the potential impact of previous extended antimicrobial treatments,

which may have contributed to the observed resistance. Antibiotic

therapy is crucial for the treatment of UTI, but the rising prevalence

of MDR UP in recent years represented a significant challenge to

their effective management (Peng et al., 2018). On the other hand,

the combination of increased motility with a high prevalence of

virulence factors observed in Enterococcus strains suggested that

these isolates may be particularly difficult to treat, becoming a

significant risk in clinical settings.

Staphylococcus (WSS: 2.84) was clustered in the right center

of the graph. According to PC1, this genus is associated with

hemolytic capacity, motility, and curli production. Regarding PC2,

this cluster was associated with cellulose production, resistance to

human serum, and biofilm formation.

The most heterogeneous group was Bacillus (WSS: 3.99), with

its members distributed across three quadrants of the biplot.

Using PC1 as a reference, all members were associated with curli

production (except Bm2). Regarding PC2, all members clustered

based on cellulose production (except Bm2) and human serum

resistance (except Bm2 and Bs3). B. subtilis was linked in the

bottom right, associated with siderophore production and pH 2.5

resistance (PC2). Additionally, they were associated with peroxide

resistance, motility, and total hemolytic capacity. Due to the

variability of the Bacillus cluster, a key characteristic that cannot

be fully appreciated is the strong biofilm formation, as all bacteria

of this genus exhibit this trait. This ability could also allow it to

persist in medical or industrial environments, though it is rarely

associated with human infections. The high curli production and

strong biofilm formation observed in both Staphylococcus and

Bacillus suggest a robust capacity for adhesion and colonization

on both abiotic and biotic surfaces. These microbial attributes may

have implications for their virulence, potentially increasing the risk

of systemic infections.

Bacillus spp. modulate uropathogen
behavior in polymicrobial interactions

Polymicrobial interactions can modify the pathogenic potential

of one organism over others. Therefore, microbes co-existing in

complex communities must employ diverse mechanisms, such as

cross-feeding, cooperation, competition, and immune modulation,

to not only shape the composition of the bacterial community but

also influence interactions with the host, affecting the progression

from colonization to infection (Gaston et al., 2021). Although

an exhaustive characterization of each isolate grown as a pure

culture was conducted, it is essential to study their behavior in

polymicrobial systems. As mentioned before, in five of the eight

catheters, more than one bacterial species was isolated (Table 1).

Notably, Bacillus spp. was present in four catheters, allowing us

to study its role in interactions with microorganisms typically

regarded as pathogens. Therefore, we investigate the interaction

between four co-isolated pairs obtained simultaneously from the

same catheter: Ef5/Bp1, Kp2/Bm2, Se3/Bs1, and Se4/Bs2 (see

Table 1). First, we performed interaction assays in a solid medium,

with deferred and simultaneous inoculation of the isolates. As

shown in Figures 3A, B, Bp1 inhibits the growth of Ef5 when

inoculated simultaneously and when inoculated first in deferred

assays. However, when Ef5 was first inoculated, a change in the

colony complexity was observed in the interaction zone, denoted

by the loss of the characteristic wrinkling of the Bp1 colony.

Regarding Kp2/Bm2, Kp2 induced slight transparency in the Bm2

colony within the interaction zone, which can be interpreted as an

inhibition of Bm2 during the simultaneous growth of both bacteria.

This phenotype was exacerbated when Kp2 growth first occurred in

the deferred assay (Figure 3A).

When S. epidermidis/B. subtilis interactions were analyzed,

the results showed that, in both cases, S. epidermidis enhanced
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FIGURE 2

Principal components analysis. Antimicrobial resistance (AR), biofilm formation (BF), hemolytic capacity (HC), motility (M), siderophore production

(SP), virulence factor coding genes (VFCG), curli production (CuP), cellulose production (CeP), H2O2 resistance (HPR), pH 2.5 resistance (pHR), and

human serum resistance (HSR).

the motility of B. subtilis when the bacteria grew simultaneously.

Notably, this effect was more robust in the Se4/Bs2 pair. When

B. subtilis strains Bs1 and Bs2 were grown 24 h prior to their

counterparts, they significantly inhibited the growth of Se3 and

Se4, respectively (Figure 3A). The observed behaviors between

these bacteria were not surprising since it was recently described

that B. subtilis actively responds to the presence of S. epidermidis

in its proximity by two strategies: antimicrobial production and

the development of a subpopulation with a migratory response

(Hernandez-Valdes et al., 2020). However, in this study, these

behaviors depend on the moment in which the interaction

occurs. Control of single colonies’ growth at 24 and 48 h is

shown in Supplementary Figure S5. Interspecies interactions vary

significantly depending on whether the bacterial strains grow

individually or share the same growth location. In deferred assays

(e.g., Ef5, Bp1, and Bs1), the potential production of metabolites,

including antimicrobial compounds or other agents that alter the

local environment, may lead to the observed inhibition of the

counterpart upon its arrival. However, this potential metabolite

production may be modified in the presence of the other strain

when both grow simultaneously, resulting in a different type of

interaction. This observation raises the possibility that colonization

order influences physiological adaptations and virulence expression

in each species, potentially affecting the progression and severity of

infection in the host.

Since bacteria in clinical settings are generally found in mixed

cultures or communities that share a common environment,

we decided to perform co-culture assays in agitated and static

liquid media. Growth curves (A560nm) and viable cell counts

(CFU mL−1) for both mixed and monocultures are shown in

Figure 3B. In general, mixed cultures in all pairs, except for the

Kp2/Bm2, displayed higher A560nm values than monocultures after

24 h (p < 0.05). However, different results were observed when

viable cell quantification was assessed. In mixed culture, Ef5

and Bp1 exhibited a lower viability compared to their respective

monocultures (see inset tables). In the Se3/Bs1 and Se4/Bs2 pairs,

the viable cells of S. epidermidis strains in mixed culture decreased

by at least one order of magnitude, suggesting that B. subtilis

may exert an inhibitory effect on the growth of S. epidermidis.

This inhibition may be attributed to the production of secondary

metabolites by B. subtilis, such as surfactins or antimicrobial

peptides, which have been previously reported as antimicrobial

substances (Gonzalez et al., 2011; Hernandez-Valdes et al., 2020).

Conversely, in the Kp2/Bm2 pair, Kp2 viability remained unaffected

when grown in mixed culture after 24 h, while Bm2 CFU mL−1

increased in mixed cultures.

Considering that co-isolated pairs were attached to the

catheters, the biofilm formation of the four co-isolated pairs

was evaluated on polystyrene plates after 24 h in mixed and

axenic cultures (Figure 3C). The results showed that biofilm
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FIGURE 3

Interaction of co-isolated pairs. (A) In the colony interaction assay, aliquots of the co-isolated pair were inoculated simultaneously or 24h

post-growth at 30◦C (deferred) on BHI-agar plates. Bold letters in the name pair indicate the central bacterium. (B) Growth curves (A560nm) of axenic

or mixed (Ef5/Bp1, Kp2/Bm2, Se3/Bs1, and Se4/Bs2) were conducted in BHI with agitation for 24h. Inset: Isolate viability in axenic or mixed

conditions. (C) Biofilm formation (A595nm) and (D) cell viability (CFU mL−1) were determined for the four co-isolated pairs after 24h of growth. Data

represent the mean ± SD of at least four independent experiments. For each co-pair interaction assay, di�erent letters indicate significant

di�erences, as determined by one-way ANOVA performed with the Fisher test, with a p-value of 0.05.

formation was enhanced in three of the four co-isolate pairs

(Kp2/Bm2, Se3/Bs1, and Se4/Bs2) compared to single-species

biofilms (Figure 3C). To assess the contribution of each isolate

to biofilm formation, bacterial viability was determined in the

biofilms (Figure 3D). As expected, in the co-cultures, where

increased biofilm formation was observed, the number of viable

cells was higher than in the monocultures. Different studies

demonstrated that B. subtilis often facilitates biofilm development

by producing extracellular polymeric substances (EPS), which

provide structural support and protection to cohabitating species

within the biofilm matrix (Vlamakis et al., 2013). Regarding

the Ef5/Bp1 pair, Ef5 viability remained similar in mixed and
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single-species biofilms, while the number of viable Bp1 cells

was reduced in the mixed culture compared to the monoculture

(Figure 3D). This may be due to the production of antimicrobial

peptides since Enterococcus spp. is one of the most frequent

producers of bacteriocins (Almeida-Santos et al., 2021). Our

results showed that interactions between the different co-isolated

pairs reflected a combination of competitive, inhibitory, and

cooperative behaviors in biofilm formation, consistent with the

description of microbial cohabitation in this lifestyle (Luo et al.,

2021).

The role of Bacillus spp. in these dynamics, particularly

its ability to enhance biofilm formation and inhibit certain

pathogens, highlights the complexity of polymicrobial interactions

in complex environments, such as double-J catheters. The order

of colonization may not only determine which microorganism

dominates the niche but also have a direct impact on the

patient’s clinical outcome. If a virulent bacterium colonizes first,

it may alter the environment, either promoting or limiting

subsequent colonization by other species, thereby influencing

the overall virulence of the infection. Conversely, simultaneous

colonization could lead to complex interspecies interactions with

potentially unpredictable consequences for infection progression

and treatment efficacy. These findings underscore the need to

investigate the role of polymicrobial colonization in clinical

infections and its impact on host response and the efficacy of

antimicrobial treatments.

Conclusion

The characterization of phenotypic and genotypic traits of

UP isolates obtained from double-J catheters enhances the

understanding of the potential virulence of these bacteria in

clinical settings. The observed virulence factors and interactions of

Bacillus spp. suggest that this genus may serve as an opportunistic

pathogen, highlighting its potential clinical relevance in co-

infections of the urinary tract. Overall, this study provides a

foundation for advancing knowledge of bacterial pathogenesis

associated with indwelling devices, providing crucial insights for

the effective clinical management and treatment of multi-bacterial

urinary infections.
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