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Multi-omics analysis reveals the
alleviating effect of oxidation
remediation on tobacco
quinclorac stress

Binghui Zhang'?, Ting Yang?, Chenliang Cheng?, Tong Li*,
Ni Zhang?, Fei Wang®, Wencan Chen?, Zhiping Zhong?,
Zhaoxiang Liu* Gang Gu?*, Xiangmin Lin'* and Xiaofang Xie®**

!College of JunCao Science and Ecology, College of Life Sciences, Fujian Agriculture and Forestry
University, Fuzhou, China, 2Institute of Tobacco Science, Fujian Provincial Tobacco Company,
Fuzhou, China, *Jianning Branch of Sanming Tobacco Company, Sanming, China, *Changting Branch
of Longyan Tobacco Company, Longyan, China, °Fujian Key Laboratory of Crop Breeding by Design,
Fujian Agriculture and Forestry University, Fuzhou, China

The extensive use of the herbicide quinclorac has led to significant residues in
agricultural soil, posing adverse effects on crop safety and high-quality production.
In this study, using the tobacco variety CB-1 as material, we found that oxidizing
agent K,S,04 can significantly reduce quinclorac-induced phytotoxicity symptoms
in tobacco. Furthermore, we integrated biochemical methods, metagenomics,
metabolomics, and transcriptomics to investigate the effects of K,S,0g on
both quinclorac-contaminated soil and tobacco plants. Soil physicochemical
properties analysis showed that the incorporation of K,S,0g-based remediation
significantly mitigated the negative effects of quinclorac and largely restored
the soil properties affected by quinclorac stress. Metagenomic analysis found
that quinclorac significantly reduced soil species diversity, while K,S,0g-based
remediation soil exhibited higher richness of microbial communities, with increased
abundance of Sphingomonas and Bradyrhizobium, and decreased abundance
of Alphaproteobacteria. Differential gene expression analysis showed significant
up-regulation and down-regulation of genes under Cy,HsCLLNO; stress, which was
partially mitigated by K,S,0g treatment. Gene Ontology (GO) enrichment analysis
indicated that these genes were mainly involved in cellular processes, metabolic
pathways, and biological regulation. Metabolomic analysis further confirmed
significant changes in metabolite profiles, with K,S,0¢ treatment restoring many
metabolites to near control levels. Integrated metabolomic-transcriptomic analysis
revealed enrichment of differentially expressed genes (DEGs) and metabolites in
six key pathways: (1) lysine degradation, (2) stilbenoid diarylheptanoid and gingerol
biosynthesis, (3) arginine and proline metabolism, (4) phenylalanine biosynthesis,
(5) tyrosine metabolism, and (6) flavonoid biosynthesis. Additionally, the levels of
4-hydroxyphenylacetylglutamic and 5-aminovaleric acid were down-regulated,
along with the expression of genes associated with these metabolites, when
quinclorac residual soil was treated by K,SOg. The results of this study provide
a theoretical basis for the remediation of pesticide residue soil in rice tobacco
rotation areas, offering valuable insights for sustainable agricultural practices.
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1 Introduction

Herbicides play an important role in reducing weed damage and
promoting global food production security in current agricultural
practices (Li et al., 2024). Among them, quinclorac with the molecular
formula C,,H;CL,NO, is a growth hormone-like herbicide known for
its strong selectivity and long persistence, widely used to control
monocotyledonous weeds in rice fields (Kieling and Pfenning, 1990).
However, due to its relatively stable structure, quinclorac is difficult to
degrade and prone to residue in acidic soils of southern regions, which
may cause phytotoxicity on subsequent crops (Zang et al., 2020),
especially on Solanaceous crops such as tobacco, potato, tomato, and
eggplant (Qiuzan et al., 2018). In the rotation areas of tobacco-rice
cultivation in southern China, quinclorac leads to leaf deformities
(such as curling or narrowing) in tobacco plants, affecting both yield
and quality of tobacco leaves and causing significant economic losses
for farmers (Huang et al., 2021). Therefore, it is urgent to find solutions
for alleviating the toxicity caused by quinclorac.

Soil remediation is considered the primary method for reducing
the phytotoxicity of quinclorac on tobacco. The remediation process
for land pollution can be categorized into two types: in situ and ex situ
(Marcon et al., 2021). In situ remediation directly treats pollution
sources without extra costs, making it the optimal choice. It
encompasses three key strategies: bioremediation, physical
remediation, and chemical oxidation remediation (Bains et al., 2019;
He et al,, 2015; Sun et al,, 2017; Yu et al,, 2019). Physical remediation
has high costs and labor intensity. Additionally, when adsorbents
reach the saturation point over time it leads to pesticide residues
accumulating and losing their effectiveness (Dermont et al., 2008). In
contrast, chemical oxidation remediation shows great potential in
dealing with emerging pollutants. The oxidants used include ozone,
Fenton reagent, potassium permanganate (KMnO4), and persulfate
(Zeng et al., 2016). Among them, persulfate exhibits a higher redox
potential resulting in longer lifespan during reactions with organic
pollutants while facilitating better contact with pollutants (Yen et al.,
2011). It has been successfully applied in degrading various pollutants
such as PAHs (polycyclic aromatic hydrocarbons), PBDEs
(polybrominated diphenyl ethers), PNP (p-nitrophenol), and atrazine
(Chen et al., 2016, 2018; Peng et al., 2017; Song et al., 2019). To date,
there have been no reports on the use of the oxidizing agent K,S,04
for the remediation of soil contaminated with quinclorac.

Non-biological stressors such as pesticides can simultaneously
induce changes in crop rhizosphere microbiota (Daniel and Bernot,
2014), metabolites (Urano et al., 2010), and related genes. The
utilization of multi-omics analysis techniques combining rhizosphere
microbiome, metabolome, and transcriptome is an effective method
for exploring the mechanisms underlying plant stress alleviation. Wu
etal. (2021) successfully applied this approach in studying cucumber
response to hydroxybenzoic acid stress. However, there have been no
reports on the application of multi-omics analysis techniques to
investigate the mechanism by which sulfate mitigates quinclorac-
induced damage in tobacco leaves. In this study, we found that
oxidizing agent K,S,0; can significantly reduce phytotoxicity
symptoms of tobacco induced by quinclorac. To explore the
underlying mechanisms, we integrated biochemical methods,
rhizosphere microbiota, metabolome, and transcriptome to investigate
the effects of persulfate on both quinclorac-contaminated soil and the
tobacco plants. This included examining changes in soil characteristics
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and soil microbial community, and the expression and metabolism of
tobacco plant. The results of this study will provide a foundation for
the remediation of herbicide residues in soil within rice-tobacco
rotation areas.

2 Materials and methods
2.1 Plant materials and treatments

The main tobacco variety CB-1 in the tobacco-growing area of
Fujian province was used as experimental material. The pot
experiment was conducted from April to June 2024 at the Fujian Key
Laboratory of Crop Breeding by Design, situated within the
greenhouse of Fujian Agriculture and Forestry University. The
greenhouse environment was maintained at a 16-h day temperature
of 22 °C and an 8-h night temperature of 18 °C. The experimental
design comprised a control group (denoted as CK) without the
addition of either C,,H;CL,NO, or K,S,05 to the soil. The treatment
groups included soil added with 0.04 mg/kg C,,H;sCL,NO, (denoted as
C), and soil amended with both 0.04 mg/kg C,,H;Cl,NO, and 100 mg/
kg K,S,0; (denoted as CY). Each treatment involved five plants, with
three biological replicates for a total of 45 pots.

2.2 Sample collection

The samples were collected at 45 days post-treatment. This
included soil samples for soil characteristics, rhizospheric soil for
microbial community analysis, and tobacco leaves for gene expression
and metabolic profiling of the tobacco plants. For the microbial
community analysis, soil samples within a range of 1-4 mm around
the roots of the three treatment groups were collected, with
approximately 100 g per treatment group. Additionally, 100 g of soil
was collected from five pots per treatment group for soil characteristics
analysis. For gene expression and metabolic profiling of tobacco,
leaves in the 2nd-3rd positions from the top (counting from the
uppermost leaf) were selected for this study. A total of ten leaves,
sourced from five different plants, were collected as a sample. All
samples were collected with three biological replicates. Following
collection, the soil samples were stored at —20 °C, while the leaf
samples were stored at —80 °C until analysis.

2.3 Investigation of soil physical and
chemical properties

The collected soil samples were initially purified to remove
impurities, and then passed through a 2 mm mesh for homogenization.
The air-dried soil samples were subsequently analyzed for their
properties and nutrient content. The organic matter was analyzed
according to the NY/T1121.6-2006 method; pH was determined using
the NY/T1377-2007 method; total nitrogen level was measured
following the NY/T53-1987 method; total phosphorus content was
assessed based on the NY/T88-1988 method; total potassium
concentration was determined according to the NY/T87-1988
method; available nitrogen were evaluated using the method described
in LY/T 1228-2015; available phosphorus levels were evaluated using
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the NY/T1121.7-2006 method; and available potassium concentration
was measured following the NY/T889-2004 method. Soil particle size
measurements were carried out according to the NY/T1121.3-
2006 method.

2.4 Metagenomic analysis reveals changes
in soil microbial communities

The high-throughput metagenomic sequencing technology was
used to investigate changes in soil microbial communities under three
treatments. Initially, microbial DNA was extracted and purified from
soil samples using a bacteria and fungi genomic extraction kit (Omega
D3350-02; Solarbio D2300-100T). The resulting DNA fragments were
generated through ultrasound treatment, followed by purification,
end-repair, 3’-end adenylation, and ligation with sequencing adapters.
Subsequently, agarose gel electrophoresis was employed to select
appropriately-sized fragments for PCR amplification library
construction. Metagenome sequencing was performed on the Illumina
Hiseq2500 platform following standard protocols. After data
processing and statistical analysis, including low-quality data filtering,
output data generation, and quality control statistics, the metagenome
assembly was carried out using MEGAHIT software while QUAST
software (Tang and Borodovsky, 2014) evaluated the assembly results
by removing contig sequences shorter than 300 bp. Additionally,
MetaGeneMark software was used for coding region identification
and removal of redundant data. Finally, prediction analysis of tobacco
rhizosphere microbial community structure and alpha diversity under
different treatments was conducted on BMK Cloud.!

2.5 Transcriptomic analysis

RNA-Seq was used for the treatments and their control to
investigate the potential mechanism underlying K,S,04-mediated
C,0HsCLNO, stress mitigation. Total RNA of samples (C, Y, CK) was
extracted using the TRIzol reagent (Invitrogen, USA). RNA
sequencing (RNA-Seq) and data processing were performed with the
Mlumina HiSeq platform at Biomarker Technologies Co.,
LTD. (Beijing, China) according to Cho et al. (2016). The RNA-Seq
data have been submitted in the NCBI Sequence Read Archive (SRA)
under the accession number PRJNA1221589.

After excluding reads containing adapter, poly-N, and low-quality
sequences, the remaining clean reads were aligned to the reference
genome in Sol Genomics Network database.” Subsequently, these
aligned reads were assembled and quantitatively analyzed using
StringTie software to determine the fragments per kilobase of exon
per million fragments mapped (FPKM) values. DEGs were identified
using a false discovery rate (FDR) < 0.01 and |Fold change| > 1.5
while calculating FDR and Fold change (FC) for all genes. Additionally,
GO and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses were performed for the three comparison groups:
CKvs. C, CK vs. CY, and C vs. CY.

1 www.biocloud.net

2 https://solgenomics.net/organism/Nicotiana_attenuata/genome
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2.6 Widely targeted metabolomics analysis

The metabolites of leaf samples at 45 days post-treatment (C, CY,
and CK) were analyzed using widely targeted metabolomics methods.
Freeze-dried leaves were homogenized using a mixer mill (MM 400,
Retsch, Germany), and the leaf powder was pooled from each
biological replicate sample, 100 mg of this powder was extracted
overnight at 4 °C with 0.6 mL of 70% aqueous methanol. The extracts
were subjected to analysis using ultra-performance liquid
chromatography with electrospray ionization coupled to tandem mass
spectrometry (UPLC-ESI-MS/MS) at Biomarker Technologies Co.,
LTD. (Beijing, China).

Metabolic data from each sample were analyzed using hierarchical
cluster analysis (HCA), principal component analysis (PCA), and
K-means clustering. HCA and PCA analyses were performed using
Software R and GraphPad Prism v9.01 (GraphPad Software Inc., La
Jolla, CA, USA), respectively. DEMs among samples from different
groups were identified based on the following criteria: VIP > 1, |Fold
change| > 1, and p value <0.01. The Venn diagram illustrates the
quantitative relationship among different comparison groups. The
Kyoto Encyclopedia of Genes and Genomes (KEGG) compound
database’ was utilized for annotating the different metabolites which
were then mapped onto the KEGG pathway database.! Pathways
containing significantly regulated metabolites underwent further
analysis through metabolite sets enrichment analysis (MSEA).
Significance assessment was conducted by calculating p-values
obtained from hypergeometric tests.

2.7 Integrated multi-omics analysis

The Spearman test method (Heinen and Valdesogo, 2020) was
employed to conduct correlation analysis among metabolomics,
transcriptomics, and microbiota. Results meeting the criteria of a
p-value <0.05 and a Spearman correlation coefficient |r| > 0.8 were
chosen for constructing a correlation network.

2.8 Quantitative real-time PCR (qRT-PCR)
analysis

Total RNA was isolated from plantlets using TRIzol reagent
(Invitrogen) according to the manufacturer’s protocol. The
extracted RNA was then reverse-transcribed into complementary
DNA (cDNA), which was used for quantitative real-time PCR
(qRT-PCR) analysis with SYBR Premix ExTaq (Takara). The
expression of the Actin gene was employed as an internal control.
The experiment was conducted with three biological replicates,
each comprising three individual plants, and each sample was
analyzed in triplicate. The relative gene expression levels were
determined using the 2744 method (Livak and Schmittgen,
2001), and the primer sequences used for qRT-PCR are provided
in Supplementary Table 1.

3 https://www.kegg.jp/kegg/compound/
4 https://www.kegg.jp/kegg/pathway.html
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3 Results

3.1 Oxidizing agent K,S,0g reduces
phytotoxicity symptoms in tobacco
induced by C,,H;CI,NO, herbicides

In comparison to the control (CK) (Figure 1A), tobacco
seedlings exposed to C;,HsCL,NO, herbicides exhibited leaf curling/
narrowing and stunted growth (Figure 1B). Notably, K,S,04
treatment significantly alleviated these symptoms (Figure 1C),
suggesting  its role in

potential mitigating  herbicide-

induced damage.

3.2 Impacts of C,,H;CI,NO, and K,S,05 on
soil physicochemical properties

The physicochemical analysis of the soil (Figure 2) showed
C,0HsCLNO, stress significantly reduced available nitrogen,
phosphorus, and potassium (C vs. CK; Figures 2F-H). Importantly,
K,S,0s application (CY) counteracted these reductions, restoring
available nitrogen and potassium to near-CK levels (Figures 2EH).
Soil particle analysis (Figures 21-]) further revealed that C;oHsCLLNO,
altered granular structure (>0.01 mm vs. <0.01 mm), while K,S,0s
rehabilitated proportions to CK-equivalent states. These results
demonstrate K,S,0s's dual capacity to alleviate herbicide damage and
restore soil functionality.

3.3 Influence of K,S,0g and C,,HsCLNO, on
rhizosphere microbial communities

Metagenomic sequencing of root-associated communities yielded
364,770,378 clean reads from nine samples (treatments C, CY, and the
control CK; Supplementary Table 2). Assembly generated 1,133,605
contigs (N50 > 680 bp), with open reading frame (ORF) prediction
identifying 2,265,851 ORFs, confirming dataset robustness for
further analysis.

Alpha diversity analysis using Shannon, Simpson, and Inverse-
Simpson indices demonstrated that C,;H;CLLNO, (C) exposure
significantly reduced microbial diversity relative to CK. In contrast,
K.,S,0s (CY) amendment not only reversed this decline but enhanced

10.3389/fmicb.2025.1625585

diversity beyond control levels (Figures 3A-C), indicating effective
mitigation of herbicide impacts on soil microbiota.

Taxonomic profiling (Supplementary Table 3) identified 4
kingdoms, 185 phyla, 305 classes, 495 orders, 928 families, 2,818
and 12,641
communities (96.05-97.99% relative abundance), with archaea

genera, species. Bacteria dominated microbial
constituting the remainder (Figure 3D). Five core bacterial phyla-
Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, and
Gemmatimonadetes-collectively represented 83.42-87.29% of relative
abundance across treatments (Figure 3E). Notably, C,,Hs;CLLNO,
reduced the abundance of beneficial genera including Acidobacteria,
Chloroflexi, Gemmatimonadetes, Bradyrhizobium, Actinobacteria,
Verrucomicrobia, Candidatus-Rokubacteria, and Sphingomonas, while
K,S,04 treatment uniquely restored their prevalence (Figure 3F).
These genus-specific shifts substantiate K,S,0y’s capacity to rehabilitate
functional soil microbiomes compromised by quinclorac stress.

3.4 Influence of K,S,0g and C;iH;CLLNO, on
gene expression profile and metabolites in
tobacco leaves

To elucidate the mechanism by which K,S,0; alleviates
C,HsCLNO, stress, we integrated transcriptomic and metabolomic
analyses of tobacco leaves under CK, C, and CY treatments. PCA
distinguished the C group from CK and CY (Figure 4A). Notably,
C,0HsCLNO, stress (C vs. CK) induced 3,019 down-regulated and
2,146 up-regulated genes, while K,S,04 supplementation (CY vs., C)
reversed this trend, up-regulating 851 genes and down-regulating 627
genes (Figure 4B). Crucially, 71 DEGs were common across all
comparisons (CK vs. C, CK vs. CY, C vs. CY; Figure 4C). Go
enrichment confirmed that DEGs were primarily associated with
stress response pathways, including cellular process (GO:0009987),
metabolic process (GO:0008152), biological regulation (GO:0065007),
localization (GO:0051179), response to stimulus (GO:0050896),
(GO:0023052). C,oH:CLNO,
expression in these pathways (down-regulated > up-regulated in CK

signaling Critically, suppressed
vs. C), while K,S,0; restored expression levels, directly supporting its
role in mitigating phytotoxicity (Figure 4D).

Metabolite profiling revealed distinct clustering among CK, C,
and CY groups (Figures 5A-C), validating data robustness.

We identified 1,396 metabolites, dominated by terpenoids (17.9%),

FIGURE 1

The morphology of tobacco leaves under three treatment. (A) Control soil without the addition of C;oHsCLNO; or K;S,QOs. (B) The soil was treated with
0.04 mg/kg Ci,HsCLNO,. (C) The soil was treated with 0.04 mg/kg C;,HsClLNO, and 100 mg/kg K,S,0g
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lipids (11.6%), organic acids (9.03%), sugars/alcohols (8.88%), and
amino acids (8.88%) (Figure 5C).

OPLS-DA
(Figures 6A-C), and volcano plots quantified metabolites change: CK
vs. C had 62 increased and 71 decreased metabolites, while C vs. CY
showed 36 increased and 26 decreased metabolites, indicating K,S,04’s
normalization effect (Figures 6D-F). Among 203 differentially

confirmed significant inter-group differences
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expressed metabolites (DEMs), seven were shared across all
comparisons (Figure 6G). K-means clustering demonstrated that
C,0HsCLNO, stress specifically depleted metabolites in cluster 3 and
cluster 4 but elevated those in cluster 2 and cluster 5. Remarkably,
K,S,04 supplementation (CY) restored these metabolites to near-
control (CK) levels (Figure 6H), highlighting its efficacy in rescuing
stress-disrupted metabolic pathways.
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3.5 Integrative analysis of metagenome,
transcriptome, and metabolome

To reveal the core metabolic pathways modulated by K,S,0s in
alleviating C;o,HsCLNO; stress, we conducted an integrative analysis
of metagenome and transcriptome. KEGG analysis identified DEGs
and DEMs co-enriched in six key metabolic pathways, including lysine
degradation, stilbenoid diarylheptanoid and gingerol biosynthesis,
arginine and proline metabolism, phenylalanine biosynthesis, tyrosine
metabolism, and flavonoid biosynthesis (Figures 7A-C). A total of 159
DEGs were identified in the six common metabolic pathways, which
were classified into 6 clusters by K-means analysis based on their
similar expression patterns. Critically, C,,HsCL,LNO, stress (C vs. CK)
significantly suppressed gene expression in cluster 2 and cluster 4, while
inducing expression in cluster 6. Strikingly, K,S,05 supplementation
(CY) effectively reversed these stress-induced alterations, restoring
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expression levels in these clusters close to those observed in the control
(CK) (Figure 7D). This restoration pattern strongly supports K,S,Os’s
role in counteracting C;0HsCL.NO,-induced dysregulation within
these critical pathways. Additionally, compared to control (CK), genes
in cluster 1 showed decreasing expression in both C and CY treatments,
while genes in cluster 3 exhibited increasing expression in both
treatments, though CY induced more pronounced changes than C
alone. Among the seven DEMs identified in these six common
metabolic pathways, most displayed significantly altered levels under
C10HsCLNO; stress (CK vs. C) but were restored towards control levels
by K,S,0s supplementation (CK vs. C, CK vs. CY) (Figure 7E).

A multi-omics correlation network highlights K,S,0s-mediated
regulatory interactions. To elucidate the interplay among metabolomics,
transcriptomics, and microbiota, we constructed a correlation network
comprising 7 common DEMs, 159 DEGs, and microbial taxa with
relative abundance greater than 1% (Figure 7F). The network consists of
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79 nodes and 173 edges (96 positive, 77 negative). This included gene-
microbe (50 nodes, 112 edges), gene-metabolite (18 nodes, 22 edges),
and microbe-metabolite (2 nodes, 3 edges) interactions. Notably, a
significant negative correlation was identified between the metabolite
5-Aminovaleric Acid and the microbe Sphingomonas regulated by seven
genes (NewGene_3900, Nitab4.5_0000215g0020, Nitab4.5_0000791g0070,
Nitab4.5_0000006g0050, Nitab4.5_0001220g0050,
Nitab4.5_0000107g0090, and NewGene_21840). Furthermore,
4-Hydroxyphenyacetylgultamic Acid exhibited a significant negative
correlation with Bradyrhizobium and Alphaproteobacteria regulated by
Nitab_4.50002015 g00700 and Nitab450006992¢00700, respectively.
These specific regulatory axes underscore the complex interplay between
the microbiome, gene expression, and metabolite levels potentially
modulated by K,S,0s in mitigating stress.

3.6 gRT-PCR validation

To verify the reliability of the transcriptome data, we selected six
genes that showed significant correlations with both the metabolome
and microbiome for qPCR validation. Compared with the CK group,
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the C and CY groups showed consistent trends, with four genes
up-regulated and two genes down-regulated. Notably, the gene
expression profile of the CY group was more closely aligned with that
of the CK group compared to the C group. This observation serves as
further evidence of the efficacy of the K,S,0; treatment. The
expression patterns of these six genes obtained through qRT-PCR
were highly consistent with those from RNA-seq (Figure 8),
confirming the reliability of the transcriptome-based differential gene
expression analysis.

4 Discussion

Chemical oxidation remediation technology involves the
utilization of chemical oxidants to expedite the degradation of
pollutants in soil. This technology presents more advantages compared
to physical remediation and bioremediation (Dermont et al., 2008),
and it has demonstrated extensive application prospects in the field of
contaminated site remediation. When compared with conventional
oxidants such as Fenton reagent, ozone, and KMnOy, persulfate-based
strategies offer a superior redox potential and a longer half-life in soil
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Differential expression metabolites analysis of samples. (A—C) OPLS-DA and (D—F) volcano plot analysis were performed for the comparisons of CK vs.
C, Cvs. CY, and CK vs. CY. (G) Venn diagram showing the numbers of common and specific DEMs among different comparisons. (H) Line graph and
clustered heat-map visualization of significant differentially metabolites based on k-means clustering.

matrices (Yen et al., 2011; Zeng et al., 2016). Previous studies have
primarily focused on the degradation of polycyclic aromatic
hydrocarbons (PAHs) (Chen et al., 2016) and atrazine (Chen et al.,
2018) by persulfate. In this study, we innovatively integrated
physiological, biochemical, and multi-omics analysis methods.
We comprehensively investigated the effects of potassium persulfate
(K,S,0s) on remediating quinclorac-contaminated soil from multiple
perspectives, including the impact of the oxidant on plant phenotypes,
soil physicochemical properties, and the environmental micro-
ecosystem. The results showed that oxidant K,S,0s can successfully
remediate quinclorac-contaminated soil. It not only mitigates
quinclorac-induced phytotoxicity, but also replenishes essential soil
nutrients (nitrogen, phosphorus, potassium) that are depleted under
quinclorac stress (Figure 2). This recovery of soil fertility is vital for
sustainable agricultural practices (Daniel and Bernot, 2014), thereby
providing new perspectives on addressing a critical challenge in the
soil remediation paradigms for rice-tobacco rotation systems.
Secondary metabolic pathways play a crucial role in enabling
plants to survive non-biological stress by regulating the levels of
secondary metabolites and related gene expression (Lasky et al., 2014).
This study integrated transcriptomic and metabolomic analyses to
reveal that the DEGs and DEMs identified under quinclorac stress and
K,S,0s-mediated stress mitigation were enriched in six metabolic
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pathways: diphenyl ethylene diterpenoid biosynthesis, gingerol
biosynthesis, arginine and proline metabolism, phenylalanine
biosynthesis, tyrosine metabolism, and flavonoid biosynthesis
(Figures 7A-C). Of these metabolic pathways, the arginine and proline
metabolism directly link with ethylene synthesis through their
competition for the common precursor S-adenosylmethionine
(SAM), which is essential for both pathways, and through the
regulatory interactions that influence the expression of key genes
involved in each process (Zhao et al., 2024). All these pathways play a
crucial role for regulating secondary metabolites and other protective
mechanisms (Arruda and Barreto, 2020; Batista-Silva et al., 2019;
Chong et al., 2009; Landi and Gould, 2015; Sharma et al., 2019; Tzin
and Galili, 2010). Furthermore, most of the DEGs and DEMs
(Figures 7D,E) involved in these pathways exhibited more similar
expression levels in the comparison of CK vs. CY treatment compared
to CK vs. C, indicating that K,S,Os application reversed the
suppression of these pathways, largely restored the expression of most
genes and the levels of key metabolites in these pathways towards
those observed in the control. Moreover, it is reported that quinclorac
can act as an auxin agonist to activate auxin signaling pathways in
plants, leading to growth regulation and inhibition in susceptible
species such as tobacco (Song et al., 2022). In this study, we found that
at least eight auxin response factor or related genes were up-regulated
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Association analysis of metabolome, transcriptome, and microbiome. (A—C) KEGG enrichment analysis for the DEGs and DEMs in three comparisons:
CKvs. C, CKvs. CY, and C vs. CY. The x-axis represents the enrichment factor (Diff/Background) of different omics in this pathway, while the y-axis
represents the names of KEGG pathways. The red-blue gradient indicates the degree of enrichment from high to low, as represented by p-value. The
shape of bubbles represents different omics, and the size of bubbles represents the number of differential metabolites or genes, with larger bubbles
indicating a greater quantity. (D) Line graph and clustered heat-map visualization of 159 significant differentially expressed genes based on k-means
clustering. (E) Six shared metabolic pathways in the three comparison groups. (F) The correlation among 7 DEMs, 159 DEGs and the relative abundance
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in CK vs. C group, but down-regulated in C vs. CY treatment, which
indicates that K,S,0s treatment reduces the interference of quinclorac
on hormone signal transduction.

Quinclorac exposure significantly reduced microbial diversity,
disrupting the balance of beneficial taxa such as Acidobacteria,
Gemmatimonadetes, Actinobacteria and Chloroflexi. However,
K,S;0s addition remarkably enhanced microbial richness and
restored key beneficial genera such as Sphingomonas and
Bradyrhizobium (Figure 3). Multi-omics network analysis elucidated
the theoretical implications of these microbial shifts, revealing strong
correlations between the

restored genera (Sphingomonas,

Bradyrhizobium), (5-aminovaleric  acid,
4-hydroxyphenylacetylglutamic acid), and differentially expressed
genes (DEGs; e.g., Nitab4.5_0000215¢g0020, Nitab4.5_0000791g0070)

(Figure 7F). These metabolites played a central role in the intricate

key  metabolites

interplay among soil properties, microbial communities, and plant
health—fundamental to agricultural sustainability (Rybnikova et al.,
2017). This demonstrates how K,S,0s reestablishes critical ecological
interactions by mitigating quinclorac-induced disruptions to soil
structure, nutrient availability, and microbial diversity. The results
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indicate that K,S,0s fosters a beneficial microbial environment, which
crucially modulates plant stress responses through lysine degradation
and flavonoid biosynthesis pathways—a novel mechanistic synergy in
herbicide remediation. Based on these findings, a hypothetical model
was proposed to illustrate the mechanism by which K,S,0s alleviates
herbicide damage (Supplementary Figure S1). This enhancement
potentially improves nutrient cycling and mitigates phytotoxicity
(Sessitsch and Mitter, 2015; Wu et al., 2021), while emphasizing the
utility of multi-omics techniques in exploring such complex ecological
relationships (Qian et al,, 2015; Timmusk and Wagner, 1999).
However, more specific mechanistic insights require further in-depth
research to fully elucidate the underlying processes.

Quinclorac is an auxinic herbicide widely used to control
monocotyledonous weeds, particularly in rice cultivation systems.
However, its persistence in acidic soils has raised significant concerns
due to its phytotoxicity toward subsequent crops, especially
Solanaceous species such as tobacco, potato, tomato, and eggplant
(Grossmann, 1998; Qiuzan et al.,, 2018). It is reported to be absorbed
by plant roots and transported to shoots, where it induces ethylene
and cyanide production, alters plant hormone levels, and causes
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oxidative stress, ultimately inhibiting growth in sensitive plants (Song
etal., 2022). In this study, we demonstrated that quinclorac exposure
led to severe growth inhibition in tobacco seedlings, evident through
deformities in leaves and roots. This finding is consistent with
previous reports that have highlighted the adverse effects of the
herbicide on crop health and yield (Huang et al., 2021). When K,S,0s
was introduced into the soil contaminated with quinclorac, it
effectively mitigated these detrimental impacts. The crops in the
treated soil were able to resume normal growth patterns, which
strongly underscores the potential of K,S,Os as a promising
remediation agent for quinclorac-contaminated soil. This outcome
vividly demonstrates the practical feasibility of the method. Notably,
when applying this method in field environments, a comprehensive
consideration of numerous complex factors is necessary. These
factors encompass the soil'’s pH value, its physical and chemical
properties, the soil microecological environment, diverse climatic
conditions, and the cost of implementation. To reduce costs,
minimize environmental impact, and effectively reduce phytotoxicity
of the herbicide, we employed a “hole application” method in our
field experiments. Before tobacco transplantation, selectively treated
only the planting holes and the adjacent soil of the plants with
K,S,0s. This targeted approach not only minimizes resource
utilization but also reduces potential negative impacts on the broader
environment. The results clearly demonstrated that following the
K,S,0s treatment, the plants showed superior growth, and their root
systems were more robustly developed throughout both the seedling
and mature stages (Supplementary Figure S2). Undoubtedly,
additional in-depth exploration is required to formulate a more
comprehensive and optimized utilization method for this treatment.
Future field-scale studies should carefully address spatial
heterogeneity, the effects of rainfall, and long-term microbiome
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resilience to further enhance soil remediation strategies. This will
allow us to fully realize its potential and maximize its benefits in
agricultural practices.

5 Conclusion

This study demonstrates that the oxidizing agent K,S,Os
effectively mitigates the adverse effects of quinclorac herbicide on
both agricultural soil and tobacco plants. The integration of
biochemical, metagenomic, metabolomic, and transcriptomic
analyses demonstrated that K,S,Os significantly mitigated the
quinclorac-induced alterations in gene expression and metabolite
profiles, bringing them close to control level. Specifically, K,S,0s
increases the abundance of beneficial microbial flora such as
Sphingomonas and Bradyrhizobium, while decreasing harmful
bacteria. Additionally, it modulates key metabolic pathways
affected by quinclorac, such as arginine and proline metabolism,
lysine degradation, and flavonoid biosynthesis. Furthermore,
K,S,0s suppresses the quinclorac-induced increase in auxin
response factor and related genes, thereby mitigating its
interference with hormone signal transduction. This research offers
a comprehensive approach to remediate pesticide-contaminated
soils in rice-tobacco rotation systems, supporting sustainable
agricultural practices.
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