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Lower genital tract infections, particularly vulvovaginal candidiasis (VVC) and bacterial 
vaginosis (BV), are among the most prevalent infections in women worldwide, 
especially those of reproductive age. These conditions not only cause significant 
clinical symptoms but also severely impact women’s quality of life and mental 
health. Despite extensive research on the pathogens involved, substantial gaps 
remain in understanding the vaginal immune response and the complexity of the 
vaginal ecosystem, which is largely shaped by a Lactobacillus-dominated microbiota 
and the high concentration of lactic acid, contributing to the vagina’s unique 
acidic pH. This review explores the underlying pathophysiology of VVC, BV, and 
fungal-bacteria co-infections, as well as conventional and emerging treatments, 
including zinc, Lactobacillus spp., and lactic acid. The challenges of antifungal 
drug resistance are also discussed, in parallel with immune cell dysfunction and its 
potential link to the vaginal microbiota and ecosystem. Personalized treatments 
and approaches tailored to the individual vaginal environment are essential for 
maintaining eubiosis and preventing recurrent infections. Future research should 
prioritize modulating host and environmental factors rather than targeting pathogens 
alone, to develop targeted therapies that prevent reinfection, minimize side effects, 
reduce development of drug-resistance, and ultimately improve women’s health 
outcomes.
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1 Introduction

Lower genital tract infections and sexually transmitted infections (STIs) are among the 
most common primary reasons for women to visit the gynecology clinic. These conditions 
include a wide range of clinical manifestations, including bacterial vaginosis (BV), vulvovaginal 
candidiasis (VVC), aerobic vaginitis (AV), and STIs caused by Chlamydia, Neisseria 
gonorrhoea, Trichomonas, and human immunodeficiency virus (HIV) (Pramanick et al., 2019). 
BV and VVC are the two most prevalent vaginal infections globally and are particularly 
common among women of reproductive age (Arastehfar et al., 2021; Denning et al., 2018; 
Sobel and Vempati, 2024). Understanding the complexity of these infections is crucial to 
addressing the widespread health challenges they pose. These infections significantly affect 
women’s quality of life and mental health (Neal and Martens, 2022), underscoring the need 
for a deeper exploration into their underlying mechanisms to improve the management of 
these infections. While substantial research has focused on pathogens, there remains a notable 
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gap in our understanding of the human vagina’s physiological immune 
response. The unique acidic environment and diverse microbiota of 
the vagina further contribute to this complexity, with additional 
influences from factors such as ethnicity, socioeconomic status, and 
lifespan. To improve the treatment of VVC, in both its acute and 
recurrent forms, and its co-infections with anaerobic bacteria 
associated with BV, it is essential to investigate beyond the pathogens 
themselves. This requires examining the role of vaginal pH, lactic acid, 
and neutrophil (PMN) recruitment and dysfunction, as well as 
understanding how these factors influence the host’s immune 
response. Further research into how these elements interact in in vitro 
and ex vivo systems that mimic the human vaginal environment, along 
with studies involving human vaginal samples and patient-centered 
research, may lead to the development of novel, effective personalized 
therapies. Such advancements could ultimately improve women’s 
health outcomes by targeting individual vaginal ecosystems, 
preventing dysbiosis, and reducing infections.

2 Vulvovaginal candidiasis

Vulvovaginal candidiasis affects approximately 75% of women at 
least once in their lifetime, with 5–10% developing recurrent VVC 
(RVVC), defined as four or more symptomatic episodes per year, 
potentially persisting for decades (Donders et al., 2022; Denning et al., 
2018; Neal and Martens, 2022; Rosati et al., 2020). Together, these 
infections account for half a billion cases annually (Roselletti et al., 
2023). Predisposing factors for VVC include diabetes mellitus, 
contraceptive use, broad-spectrum antibiotics, pregnancy, and host 
genetics (Denning et al., 2018; Tsega and Mekonnen, 2019). Genetic 
mutations, such as polymorphisms in TLR2 and mannose-binding 
lectin 2, have been linked to RVVC, possibly increasing susceptibility 
to infection and leading to a hyperinflammatory response to Candida 
colonization and invasion (Rosati et  al., 2020). However, no clear 
predisposing factors are identified in 20–30% of women with acute or 
recurrent infections (Rosati et al., 2020). Symptoms of VVC include 
irritation, itching, burning, redness, pain, dyspareunia, and vaginal 
discharge, which interfere with normal daily activities, and vary in 
severity among patients (Denning et al., 2018; Neal and Martens, 
2022). Beyond physical discomfort, VVC and RVVC significantly 
reduce quality of life, leading to psychosocial issues such as increased 
stress, anxiety, depression, and social isolation (Neal and Martens, 
2022). Acute and recurrent forms of VVC also globally contribute to 
a significant economic burden, affecting both healthcare systems and 
individuals. An annual treatment cost of at least $368 million has been 
estimated (Nyirjesy et  al., 2022), with global losses amounting to 
approximately $14 billion due to a decline in productivity (Neal and 
Martens, 2022). The most common pathogen responsible for VVC is 
Candida albicans, but infections caused by non-albicans Candida 
(NAC) species are rising, particularly in developing countries where 
these infections range from 21 to 72%. The primary NAC species 
associated with VVC include Candida glabrata, Candida krusei, 
Candida parapsilosis, Candida tropicalis, Candida dubliniensis, 
Candida lusitaniae, and Candida africana (Pramanick et al., 2019; 
Arastehfar et al., 2021; Tsega and Mekonnen, 2019; Dunaiski et al., 
2022; Monroy-Perez et al., 2016; Bitew and Abebaw, 2018; Mukasa 
et al., 2015; Brandolt et al., 2017; Waikhom et al., 2020; Khan et al., 
2018; Fakhim et al., 2020). VVC infections caused by C. albicans, and 

NAC species have also increased in postmenopausal women, and are 
primarily due to an imbalance in the vaginal microbiome, rather than 
being estrogen related. During the childbearing age, estrogen 
promotes the microbial balance (eubiosis) and a low vaginal pH. In 
postmenopausal women, decreased or absent estrogen secretion leads 
to thinner, less elastic vaginal tissues, depletion of lactobacilli, and an 
increase in pH, resulting in higher susceptibility to infections 
(Donders et al., 2022; Al Halteet et al., 2020; Kim and Park, 2017). 
Postmenopausal women with diabetes or those undergoing hormone 
replacement therapy have the higher risk for complicated VVC (Kim 
and Park, 2017). In symptomatic C. albicans-induced VVC, the 
pathogen activates inflammasome receptors in vaginal epithelial cells 
through the production of virulence and immuno-inflammatory 
factors, triggering the release of cytokines and a neutrophilic 
inflammatory response, which often fails to resolve the infection 
(Roselletti et al., 2017; Roselletti et al., 2019b; Roselletti et al., 2019a; 
Roselletti et  al., 2023; Cheng et al., 2024). The pathology of NAC 
species-induced VVC is currently poorly understood, however by 
contrast, tends to provoke less inflammation and PMN recruitment in 
in vitro and mouse models (Nash et al., 2016; Willems et al., 2018). 
Absence or significant reduction of PMN recruitment is also observed 
in vaginal samples from women with acute VVC caused by C. glabrata 
VVC (Roselletti et al., 2023).

3 Bacterial vaginosis and VVC 
co-infections

Bacterial vaginosis is a common vaginal disorder more than an 
infection, and it is characterized by a shift from protective, hydrogen 
peroxide-producing Lactobacillus species to a polymicrobial 
community dominated by anaerobic bacteria, including Gardnerella 
vaginalis, Atopobium vaginae, Prevotella, and Mobiluncus species 
(Abou Chacra et  al., 2021). The pathogenesis of BV remains 
incompletely understood, but key factors involve the disruption of the 
vaginal microbiome, and the subsequent loss of the acidic environment 
maintained by Lactobacilli (Chen et al., 2021). Gardnerella vaginalis 
plays a pivotal role in this process by forming biofilms on the vaginal 
epithelium, which provide a scaffold for the colonization of other 
anaerobes, and which are resistant to host immune responses and 
antibiotic treatments, contributing to the chronic and recurrent nature 
of BV (Chen et al., 2021; Onderdonk et al., 2016). Recent studies 
suggest that the host immune system plays a limited role in actively 
combating the microbial imbalance, contributing to the high 
recurrence rate following antibiotic treatment (Machado et al., 2015; 
Amabebe and Anumba, 2022). BV is often associated with specific 
symptoms such as fishy vaginal odor, thin grayish-white discharge, 
itching and irritation, although many women may be  completely 
asymptomatic (Kairys et  al., 2024). BV is also associated with an 
increased risk of STIs, preterm birth, and pelvic inflammatory disease, 
impacting women’s physical and mental health (Kairys et al., 2024). 
Addressing BV effectively requires considering both its physical and 
psychological effects. VVC and BV induce distinct clinical 
manifestations and pathologies, with VVC characterized by an 
aberrant inflammatory response and PMN accumulation and BV by 
a complete absence of PMN infiltration and epithelial apoptosis 
(Roselletti et al., 2023; Roselletti et al., 2019b; Roselletti et al., 2020). 
Despite these differences, 30% of VVC cases involve bacterial 
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co-infections, most commonly with G. vaginalis, which increases 
clinical severity and complicates diagnosis and treatment (Sobel et al., 
2013) (Figure  1). Interestingly, the predominant Candida species 
isolated during bacterial vaginal co-infection are C. albicans and 
C. glabrata (Pramanick et al., 2019). The co-occurrence of vaginal 
infections characterized by the overgrowth of C. albicans and 
G. vaginalis at the same time is completely understudied but poses 
significant therapeutic challenges, as antifungal treatments for VVC 
do not address the bacterial imbalance in BV, and vice versa (Sobel 
and Vempati, 2024). To find targets for intervention, it is important to 
fully characterize the underlying pathologies.

4 VVC treatment and antifungal drug 
resistance

Treatment of VVC and co-infections is critical, especially in 
pregnant women, as Candida colonization is linked to preterm birth, 
infant mortality, and neonatal invasive candidiasis (Tsega and 
Mekonnen, 2019). Co-infections with anaerobic bacteria, such as 
G. vaginalis, further increase the risk of pregnancy complications and 
STIs (Kairys et  al., 2024). Treatment in pregnant women remains 
challenging due to the risks associated with long-term fluconazole use 

and frequent recurrences after discontinuation, highlighting the need 
for safer, more effective, therapies (Neal and Martens, 2022). Current 
treatment guidelines for acute VVC recommend various prescription 
and over-the-counter (OTC) agents, typically azoles, administered 
topically or orally. However, treatment of RVVC is more complex, and 
differ from country to country, depending on regulatory factors. The 
standard approach generally involves 7–14 days of induction therapy 
with an oral azole, followed by weekly maintenance treatment for 
6 months (Donders et al., 2022). For NAC infections, boric acid is 
often recommended for the same duration (at least 7–14 consecutive 
days) (Neal and Martens, 2022; Centers for Disease Control and 
Prevention, 2021; Sobel et al., 2004). However, it is estimated that 50% 
of women with NAC infections are completely asymptomatic 
(Kennedy and Sobel, 2010). For this reason, the most recent guidelines 
recommend that long-term treatment be offered only to symptomatic 
women with no other identifiable cause, using not only boric acid but 
also nystatin or amphotericin B (Vieira-Baptista and Sobel, 2023). 
Despite these treatments, pharmacological control of VVC, RVVC, 
and co-infections, remains challenging due to antimicrobial therapy 
not eliminating the risk of re-infections and emergent antimicrobial 
resistance developing due to prolonged or repeated use of a single 
agent, mainly azoles (Agrawal et al., 2023; Marchaim et al., 2012; File 
et al., 2023). Symptom resolution is achieved in about 90% of women 

FIGURE 1

Distinct manifestations of vaginal infections. The healthy human vagina is characterized by a microbiota predominantly composed of Lactobacillus 
spp., which produce lactic acid and maintain an acidic environment, with absent host immune cell presence. Vaginal candidiasis (VVC) is characterized 
by a slight or no increase in acidic pH, an overgrowth of Candida, and a heightened host inflammatory response, primarily involving the recruitment of 
polymorphonuclear leukocytes (PMNs) that are unable to resolve the infection. This is mainly due to the involvement of proteins such as Pra1, pANCA 
antibodies, and heparan sulfate. During VVC, Lactobacillus spp. are still present, and no significant correlation with microbiome imbalance is observed. 
A decrease or complete absence of Lactobacillus spp. is associated with co-infections of Candida and anaerobic bacteria, as well as bacterial 
infections alone, inducing an increase in the vaginal pH. VVC, whether as a mono- or co-infection, is marked by an aberrant inflammatory response 
due to PMN accumulation, significant epithelial damage, and impaired infection resolution. In contrast, BV is characterized by the absence of PMN 
infiltration and the apoptosis of host cells.
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receiving RVVC maintenance therapy (Sobel et al., 2004), but more 
than 50% experience recurrence and re-infections after stopping 
treatment (Collins et al., 2020; Neal and Martens, 2022; Crouss et al., 
2018). Vaginal co-infections show further significant therapeutic 
implications and complicate treatments. Up to 74% of women with 
recurrent BV have Candida colonization, leading to symptomatic 
co-infection in around 30% of cases (Sobel et al., 2013; Redondo-
Lopez et al., 1990). Currently, it is not standard practice to treat both 
fungal and bacterial infections simultaneously (Sobel et  al., 2013; 
Balkus et al., 2011), leading to a cycle of recurrent VVC following BV 
treatment (Sobel and Vempati, 2024). This phenomenon, although not 
officially recognized in all medical guidelines, is well-known among 
patients and health care practitioners. As a result, many women with 
recurrent BV often self-use oral fluconazole for prophylaxis during 
symptomatic BV episodes (Sobel and Vempati, 2024). This unofficial 
practice contributes to the development of fluconazole resistance in 
C. albicans isolates, leading to refractory VVC episodes (Sobel and 
Vempati, 2024). Fluconazole-resistant C. albicans and azole-resistant 
NAC species are becoming increasingly problematic due to the 
indiscriminate use of antifungals. Despite progress in understanding 
azole resistance, effective solutions remain limited. Approximately 
7.3% of RVVC cases are associated with clinically defined fluconazole-
resistant C. albicans (File et al., 2023). Personalized therapy, taken into 
account both the role of fungal and bacterial pathogens, tailored to 
each woman’s medical history and resident Candida species, could 
help prevent reinfection, minimize side effects, and reduce the risk of 
drug-resistant pathogens. Drug resistance is particularly prevalent in 
developing countries, where the diagnosis of vaginal infections is often 
made on clinical symptoms rather than laboratory testing, and NAC 
species are a more common cause of VVC (Tsega and Mekonnen, 
2019; Bitew and Abebaw, 2018; Mukasa et al., 2015; Arastehfar et al., 
2021; Brandolt et al., 2017; Waikhom et al., 2020; Khan et al., 2018; 
Guzel et al., 2013). C. glabrata and C. krusei, the two most isolated 
NAC species, naturally resistant to fluconazole, are increasingly 
replacing C. albicans in these regions (Bitew and Abebaw, 2018). 
Treating azole-resistant vaginitis remains a clinical challenge. Boric 
acid, nystatin, amphotericin B, and flucytosine are possible alternatives 
for azole-resistant RVVC, but NAC infections are more difficult to 
manage due to their inherent or acquired resistance to common 
antifungals (Neal and Martens, 2022). Amphotericin B, although 
effective, is not routinely prescribed due to its high cost, difficulty of 
administration, and significant kidney toxicity (Tsega and Mekonnen, 
2019). Similarly, flucytosine remains effective against many Candida 
species, but it is also prohibitively expensive in many developing 
countries, and monotherapy is associated with rapid resistance 
development (Paavonen and Robert, 2020).

5 Preventive measures

Several strategies to develop a vaccine against Candida infections 
were tested, including inactivated yeast and protein-based 
formulations, trying to consider what type of immune response is 
protective under natural conditions (Vecchiarelli et al., 2012). Despite 
limited early success, recent advancements have renewed interest, with 
several peptide-based and DNA vaccines targeting specific Candida 
antigens in development. Among these, the immunotherapeutic 
NDV-3A vaccine has shown promise. It contains a recombinant 

C. albicans adhesin/invasin protein and utilizes an innovative delivery 
system to enhance immunogenicity. In an exploratory phase 2, 
randomized, double-blind, placebo-controlled trial conducted on 188 
women with recurrent vulvovaginal candidiasis (RVVC), aged 
18–55 years, who were using an approved method of birth control and 
presented with a clinically diagnosed active episode of VVC, NDV-3A 
was demonstrated to elicit a targeted immune response, significantly 
reducing the incidence and recurrence of VVC (Edwards et al., 2018). 
Specifically, the study showed that a single intramuscular dose of 
NDV-3A was safe, generated rapid and robust B- and T-cell immune 
responses, and reduced the incidence and frequency of symptomatic 
RVVC episodes for up to 12 months in women under 40 years of age 
(Edwards et al., 2018). This vaccine represents a transformative step 
toward a preventative strategy that could greatly improve the quality 
of life for those prone to VVC. Moreover, it also serves as an important 
tool for the prevention of disseminated candidiasis in neonates (Singh 
et al., 2022).

6 The vaginal microbiota

The human vagina is a unique environment, characterized by a 
microbiota predominantly composed of Lactobacillus spp., 
accounting for approximately 80% of the total microbial population 
(Pramanick et al., 2019). The vaginal pH is acidic, ranging between 
3.5 and 5, a unique feature among mammals (Miller et al., 2016; 
Pramanick et  al., 2019) (Figure  2). Five major groups of vaginal 
microbial communities have been identified, each varying in the type 
and number of Lactobacillus spp., bacteria, archaea, viruses, and 
fungi. Groups I, II, III, and V are characterized by lower microbial 
diversity, and are dominated by Lactobacillus spp.: Lactobacillus 
crispatus (Group I), L. gasseri (Group II), L. iners (Group III), and 
L. jensenii (Group V). Group IV, however, is characterized by greater 
diversity, with a lack of Lactobacillus dominance and a higher 
prevalence of anaerobic bacteria, increasing the risk of infections 
(Sun et al., 2023; Ottinger et al., 2024; Ravel et al., 2011; Wei et al., 
2024). Groups I, II, III, and V are more common in white and Asian 
women, while Group IV is predominantly found in Black and 
Hispanic women (Petrova et  al., 2015) (Figure  2). Despite the 
identification of these five main groups, the vaginal microbiome is 
highly variable across individuals due to factors such as sexual habits, 
menstrual hygiene, stress, geography, and socioeconomic status (Sun 
et  al., 2023). Additionally, the microbiome composition changes 
throughout different life stages, including puberty, pregnancy, 
postpartum, and menopause (Ottinger et al., 2024).

7 Vaginal pH and lactic acid

The physiological vaginal pH varies slightly depending on the 
microbial community group. Women in Group I have the lowest pH 
(around or below 4.0), while Group IV has the highest (around 5.4). 
Groups II, III, and V fall in between, with pH values of around 4.7, 
4.2, and 4.8, respectively (Ravel et al., 2011; Aldunate et al., 2013). In 
Group IV, the higher pH is due to the decreased presence of 
Lactobacillus spp., with L. iners being the only exception (Aldunate 
et al., 2013) (Figure 2). The acidic vaginal pH is primarily due to 
lactobacilli metabolites, with lactic acid being one of the most 
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significant. Lactic acid, a lipid-soluble, membrane-permeable 
carboxylic acid, exists in two forms based on the environmental pH: 
a neutral protonated form under acidic conditions and a charged, 
unprotonated lactate anion under neutral conditions (Aldunate et al., 
2013). It is the protonated form that provides protective activity for 
the host (Aldunate et  al., 2013). Physiological vaginal lactic acid 
concentrations range from 55 to 111 mM, and it is constituted by 
racemic DL-lactic acid isoforms, with higher concentrations as the 
pH becomes more acidic. Human metabolism produces only the 
L-isomer, with less than 15% of the total vaginal lactic acid coming 
from vaginal epithelial metabolism (Aldunate et  al., 2013), while 
Lactobacillus spp. produce different isomers: L. crispatus and L. gasseri 
produce both D- and L-lactic acids, L. iners produces only the 
L-isomer, and L. jensenii produces only the D-isomer (Tachedjian 
et al., 2017). The benefits of Lactobacillus spp. extend beyond lactic 
acid production and pH regulation, including the production of 
hydrogen peroxide, bacteriocins, competitive adherence to the 
vaginal epithelium, and immunomodulation (Mejia et al., 2023). In 
contrast to VVC, which typically involves a single pathogen inducing 
infection, BV represents a severe polymicrobial dysbiosis with the 
loss of protective Lactobacillus species and an overgrowth of 
anaerobic bacteria (Sobel and Vempati, 2024). In VVC, changes in 
the vaginal microbiota are associated with an increased 
pro-inflammatory response in vaginal epithelial cells due to surface 
exposure and invasion by the fungus. In cases of VVC co-infections, 
this response is compounded by the severe polymicrobial dysbiosis 
of BV, leading to increased inflammation and symptom severity 

(Sobel and Vempati, 2024). Vaginal microbial perturbations are 
associated with adverse outcomes such as preterm birth, pelvic 
inflammatory disease, urinary tract infections, and STIs (Mejia et al., 
2023), similar to the complications seen in VVC and BV. This suggests 
a connection between various vaginal infections and microbiome 
composition. Changes in the microbiome not only affect pH but may 
also influence the progression to more serious conditions and 
infections. Lactic acid, with an acid dissociation constant of solution 
(pKa) of 3.9, is significantly more concentrated in the vagina than in 
other parts of the body (Foucher and Tubben, 2023; Aldunate et al., 
2013). The vaginal distinct acidity raises concerns about the 
limitations of current cell line and mouse models for studying vaginal 
infections, as these models typically have a neutral vaginal pH 
(Roselletti et al., 2019a). To more accurately reflect the human vaginal 
environment, adjustments to model systems are needed. Further 
research is needed to understand how lactic acid concentrations and 
isomers vary across different microbial communities over the 
lifespan, and whether targeting its modulation could help maintain a 
balanced vaginal microbiome, preventing the progression to 
immunopathology, inflammatory diseases, or infections.

8 The dual role of lactic acid

Lactic acid has well-documented protective effects against 
pathogens. At vaginal physiological concentrations, it shows potent 
virucidal activity against HIV (Aldunate et al., 2013; Tachedjian et al., 

FIGURE 2

The unique human vaginal environment. The human vagina is characterized by a microbiota predominantly composed of Lactobacillus species, which 
helps maintain an acidic vaginal pH, a unique feature among mammals. Five major groups of vaginal microbial communities have been identified: 
Groups I, II, III, and V: These groups are characterized by lower microbial diversity and are predominantly dominated by Lactobacillus spp. Group IV: 
This group exhibits greater microbial diversity, with a lack of Lactobacillus dominance and a higher prevalence of anaerobic bacteria, which increases 
the risk of infections. Groups I, II, III, and V are more commonly found in white and Asian women, while Group IV is predominantly observed in Black 
and Hispanic women. The physiological vaginal pH varies slightly depending on the microbial community group. Women in Group I tend to have the 
lowest pH (around or below 4.0), while Group IV has the highest pH (around 5.4). The pH values for Groups II, III, and V fall in between.
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2017) and inhibitory effects against Herpes Simplex virus types 1 and 
2 (HSV-1 and HSV-2) (Tachedjian et  al., 2017), and Chlamydia 
trachomatis (Edwards et  al., 2019). It also protects against 
BV-associated bacteria such as Escherichia coli, G. vaginalis, Neisseria 
gonorrhoeae, and Group B Streptococcus (Plummer et  al., 2021; 
Tachedjian et al., 2017). Notably, lactic acid’s protective effects are 
distinct from its acidity alone and surpass those of acetic acid 
(Tachedjian et  al., 2017; Aldunate et  al., 2013). However, several 
studies have not found a correlation between a protective effect of 
lactic acid or Lactobacilli against Candida species in VVC (Tachedjian 
et al., 2017). This may be explained by the fact that yeast are highly 
tolerant to low pH levels (Lourenco et al., 2018). The impact of lactic 
acid on the host remains controversial, and still not fully understood. 
In the vagina, Lactobacilli are associated with a non-inflammatory 
environment (Tachedjian et al., 2017; Sakai et al., 2004; Nikolaitchouk 
et al., 2008; Kyongo et al., 2012), while dysbiosis and infections are 
associated with inflammation and a higher risk of STIs (Tachedjian 
et  al., 2017). Some studies suggest lactic acid may have 
pro-inflammatory effects on immune and vaginal epithelial cells 
(Witkin et al., 2011; Mossop et al., 2011). Additionally, acidic pH has 
been shown to reduce the motility and viability of immune cells like 
monocytes, macrophages, and lymphocytes potentially compromising 
their role in preventing HIV transmission (Olmsted et  al., 2005). 
Although this study did not specifically examine lactic acid, it raises 
important questions about its effects, particularly in combination with 
acidic pH, on immune cell function in the vaginal environment, 
suggesting that its role may not always be protective. Further research 
is needed to clarify the role of lactic acid in the host and explore its 
therapeutic potential in combination with other molecules or its 
involvement in vaginal infections.

9 Lactobacillus spp. and lactic acid as 
treatments for vaginal infections

Lactobacillus spp. and lactic acid play vital roles in maintaining 
vaginal health and have been explored as treatments for infections like 
BV and VVC (Abavisani et al., 2024). Lactic acid’s key strength lies in its 
ability to restore and maintain the acidic vaginal pH and inhibiting 
pathogen growth (Barrientos-Duran et al., 2020). Research shows that 
lactic acid, in gel or suppository form, is particularly effective in treating 
BV when used with antibiotics, helping to restore the microbiome and 
reduce symptoms (Plummer et al., 2021; Abbasi et al., 2022). It has also 
shown promise in prophylactic use, helping to prevent BV and VVC 
recurrences by maintaining a stable vaginal environment (Werner et al., 
2022). However, lactic acid alone is often insufficient and may require 
combination with other treatments for optimal efficacy (Werner et al., 
2022). Lactobacillus spp., particularly L. crispatus and L. jensenii, 
dominate a healthy vaginal microbiome and are crucial for lactic acid 
production. Probiotics containing Lactobacillus strains can help 
re-establish a balanced vaginal microbiome and reduce harmful 
pathogen overgrowth (Liu et al., 2023; Cribby et al., 2009). Probiotics 
are effective in treating BV and may reduce recurrences when used with 
antibiotics (Chen et al., 2022). For VVC, they can be, but are not always, 
associated with antifungal effects, stabilizing the microbiome and 
preventing Candida overgrowth, although the evidence is less robust 
(Akinosoglou et al., 2024; Gaziano et al., 2020; van de Wijgert and 
Verwijs, 2020). However, the use of Lactobacillus probiotics has several 

limitations. While generally beneficial, probiotics can sometimes disrupt 
the vaginal microbiome, leading to imbalances or even irritation. 
Introducing external bacteria, such as L. crispatus, may disturb the 
natural balance of the vaginal ecosystem, potentially causing dysbiosis 
or overgrowth of beneficial bacteria, which can outcompete other 
essential microbes. The vaginal microbiome varies significantly between 
individuals, meaning what works as a beneficial probiotic for one 
woman might have adverse effects for another (Pagar et al., 2024; Chee 
et al., 2020). Moreover, the probiotic market is poorly regulated, leading 
to inconsistencies in product quality, concentration, and viability (van 
de Wijgert and Verwijs, 2020) and may result in side effects such as 
irritation or allergic reactions. Probiotic formulations also often contain 
additional components, like adjuvants, that can cause sensitivities or 
discomfort in some women. Additionally, the effects of probiotics are 
typically temporary (van de Wijgert and Verwijs, 2020), necessitating 
continuous use for sustained benefits, which may not always be practical 
or beneficial (Liu et al., 2023). Considering these aspects, both lactic acid 
and Lactobacillus probiotics could be promising treatments, but only 
when used as part of a broader, personalized strategy carefully tailored 
to each woman’s unique vaginal microbiome and specific infection.

10 The immunomodulatory role of zinc

Our own research has introduced zinc supplementation as a 
promising therapeutic strategy for C. albicans-induced VVC 
(Roselletti et al., 2023). During infection, C. albicans expresses a zinc-
binding protein, Pra1, which helps the yeast capture zinc from its 
environment, particularly when the nutrient is limited (Citiulo et al., 
2012), as it is in the vaginal mucosa (Roselletti et al., 2023). Pra1 
expression is linked to local inflammation and PMN recruitment, 
which drives the immunopathology of VVC. Because Pra1 is used by 
the yeast to capture zinc, its expression is negatively regulated by this 
micronutrient. Zinc supplementation effectively inhibits Pra1 
expression, reducing PMN infiltration and inflammation in both 
in vitro and in vivo models at neutral and acidic pH (Roselletti et al., 
2023) (Figure 3). In a pilot study, five out of six women who applied a 
zinc-containing vaginal gel for 3  months did not experience 
recurrence (Roselletti et al., 2023). From a therapeutic perspective, 
Pra1 is an attractive target for treating C. albicans-induced VVC, 
offering significant improvements in quality of life for affected women. 
However, many NAC species, such as C. glabrata and C. krusei, have 
lost the PRA1 gene during evolution (Roselletti et al., 2023) (Figure 3), 
limiting the efficacy of zinc treatment in such cases and posing a 
significant challenge for future treatment. Moreover, zinc may not be a 
viable option for fungal-bacterial vaginal co-infections due to its 
ineffectiveness against bacteria (Roselletti et al., 2023), as PRA1 gene, 
is unique to the fungal kingdom. These observations underline the 
critical need to find new targets for intervention in VVC infections, 
suggesting the possibility of directly targeting the host inflammatory 
response to treat VVC while reducing antifungal usage.

11 Immune cell dysfunction in VVC

While it is known that Pra1 and other immuno-inflammatory 
molecules play a role in PMN recruitment during VVC (Roselletti 
et al., 2023; Gabrielli et al., 2016; Richardson et al., 2018), why the 
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PMNs are not able to clear the infection is unclear (Cheng et al., 2024; 
Kalia et al., 2019; Ardizzoni et al., 2021). One hypothesis is that the 
vaginal environment in VVC induces neutrophil dysfunction (Cheng 
et al., 2024). Heparan sulfate, a proteoglycan found on mammalian cell 
surfaces (Sarrazin et al., 2011), has been identified as a key contributor 
to this dysfunction, binding to CD11b on PMNs and impairing 
reactive oxygen species (ROS) production and NETosis, thereby 
reducing C. albicans clearance (Yano et al., 2017; Yano et al., 2014). 
estrogen may exacerbate this process by increasing heparan sulfate 
expression, and it has been shown that heparinase III can restore 
neutrophil activity in VVC-susceptible mice (Yano et  al., 2017). 
Additionally, neutrophil hyperactivation, triggered by fungal virulence 
factors such as Pra1, candidalysin, and Secreted aspartyl proteinases 
(SAPs), can cause tissue damage through excessive NET formation, 
protease release, and ROS production (Roselletti et  al., 2019a; 
Roselletti et al., 2023; Cheng et al., 2024). While these responses are 
meant to neutralize C. albicans, their premature release may result in 
tissue injury rather than effective pathogen clearance. This 
hyperactivation, compounded by the presence of markers like 
perinuclear anti-neutrophil cytoplasmic antibodies (pANCA), 
contributes to the inflammatory damage observed in VVC, suggesting 
a misalignment in the timing and location of neutrophil responses, 
worsening the infection (Cheng et al., 2024; Ardizzoni et al., 2020). 
Despite these insights, more research is needed to fully understand the 

role of neutrophil dysfunction in the pathophysiology of human 
VVC. Much of the current knowledge on VVC pathology is based on 
studies using cell lines and mouse models at neutral pH. While 
informative, these models do not accurately reflect the acidic vaginal 
environment characteristic of human VVC, which is shaped by a 
unique concentration of lactic acid (Roselletti et al., 2019a; Roselletti 
et al., 2023). PMNs are essential and effective immune cells in systemic 
candidiasis and other mucosal infections, such as oral candidiasis. 
However, they fail to provide protection in the vaginal environment, 
suggesting that this unique and specific setting plays a primary role in 
their impaired function.

12 Discussion and future implications

Acute and recurrent VVC infections are the most common 
vaginal infections globally, particularly among reproductive-age 
women. These conditions severely impact women’s quality of life, 
contributing to significant psychosocial and economic burdens across 
all income regions. Despite extensive research into the pathogens 
involved, the physiological immune response of the human vagina 
remains poorly understood and underexplored. This gap in knowledge 
can be attributed, in part, to the unique acidic vaginal environment, 
the extremely high physiological levels of lactic acid, and its highly 

FIGURE 3

Effect of zinc supplementation on C. albicans during VVC. During VVC infection, C. albicans expresses and releases a zinc-binding protein, Pra1, which 
is linked to local inflammation and PMN recruitment, driving the VVC immunopathology. Since Pra1 facilitates zinc capture by the yeast, its expression 
is negatively regulated by zinc availability. Zinc supplementation effectively inhibits Pra1 expression, reducing PMN infiltration, inflammation, and 
reinfection in humans. From a therapeutic perspective, Pra1 is an attractive target for treating C. albicans-induced VVC, potentially improving the 
quality of life for affected women.
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diverse microbiome, influenced by factors such as ethnicity, 
socioeconomic status, and age. To advance our understanding, it is 
essential to study the effects of the acidic vaginal environment on host 
immune cells using models that closely mimic the human vaginal 
environment. These studies should include not only Lactobacilli and 
lactic acid but also local factors like estrogen, bacteria, mucus, and 
released metabolites. A deeper understanding of these elements could 
clarify critical targets for developing personalized therapies. Such 
strategies would be  tailored to each woman’s unique vaginal 
microbiome and specific infection profiles, aiming to support 
individual vaginal ecosystems, prevent dysbiosis, and improve health 
outcomes by addressing imbalances before they result in infection.
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