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On July 23, 2022, the World Health Organization (WHO) officially declared the 
Mpox outbreak a “Public Health Emergency of International Concern” (PHEIC), 
highlighting the urgent need for effective prevention and control measures 
worldwide. To assist healthcare managers and medical professionals in efficiently 
and accurately identifying Mpox cases from similar conditions, this study proposes 
a lightweight deep learning model. The model uses EfficientNet as the backbone 
network and employs transfer learning techniques to transfer the pre-trained 
EfficientNet parameters, originally trained on the ImageNet dataset, into this model. 
This approach allows the model to have strong generalization capabilities while 
controlling the number of parameters and computational complexity. Experimental 
results show that, compared to existing advanced methods, the proposed method 
not only has a lower number of parameters (only 4.14 M), but also achieves 
optimal values in most performance metrics, including precision (95.92%), recall 
(95.69%), F1 score (95.80%), ROC AUC (0.998), and PR AUC (0.999). Furthermore, 
statistical analysis shows that the cross-validation results of this model have no 
significant differences (p > 0.05), which verifies the robustness of the method in 
Mpox identification task. Additionally, ablation experiments demonstrate that as 
the version of EfficientNet’s expanded network increases, the model complexity 
rises, with performance showing a trend of initially increasing before decreasing. 
In conclusion, the model proposed in this study effectively balances model’s 
complexity and inference accuracy. In practical applications, model selection 
should be based on the specific needs of decision-makers.
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1 Introduction

On July 23, 2022, the World Health Organization (WHO) officially announced that the 
Mpox outbreak was upgraded to a “Public Health Emergency of International Concern” 
(PHEIC),1 which is the highest level of alert issued by the WHO (Wilder-Smith and Osman, 
2020). As of August 4, more than 88 countries and regions around the world had reported 
Mpox infections, with the cumulative number of cases exceeding 26,000.2 Among the most 

1 https://news.un.org/zh/story/2022/07/1106492, 2022-07-23/2022-09-21.

2 https://www.sohu.com/a/574701774_162758, 2022-08-06/2022-09-23.
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affected countries, the United States, Spain and Germany reported 
over 7,100,3 4,500 and 2,800 cases, respectively.

In fact, Mpox virus is not a new virus that appeared recently (Di 
Giulio and Eckburg, 2004; Guarner, 2022). In the earlier stages, Mpox 
cases were only reported in a few regions, such as the Republic of the 
Congo and the United States, they were only considered localized 
events, which did not warrant global alarm or classification as a 
PHEIC. As the COVID-19 pandemic continues to worsen, the 
emergence of a new epidemic has once again raised alarms regarding 
global public health security. This not only introduces additional 
challenges to the epidemic prevention and control efforts of 
governments worldwide but also places considerable strain on the 
frontline medical personnel tasked with managing these crises 
(Saxena et al., 2023; Haque et al., 2024; Kameli et al., 2025). These 
challenges are especially pronounced in countries or regions with 
fragile healthcare systems, where the experience and medical 
resources to address an outbreak of Mpox are insufficient.

Compared with the previous Mpox outbreaks, the current one is 
characterized by broader geographic spread, higher infectivity, and 
notable regional variations. Between late June and early July, the 
number of confirmed infections surged by 77%, sparking considerable 
concern within the international community. Moreover, according to 
experts, significant differences have been observed in the presentation 
of Mpox cases between Africa and Western countries. For example, 
the duration of the symptom incubation period varies. This 
discrepancy complicates the global response, presenting significant 
challenges to implementing a unified global containment strategy and 
complicating protective measures.

Another significant feature of the current epidemic, with 
considerable potential risks, is the outbreak in many countries 
where Mpox had never been previously reported, posing a 
significant challenge for governments across various regions 
(Wallau et  al., 2022). This unusual phenomenon means that 
countries or regions that have never encountered the Mpox virus 
are now experiencing confirmed cases, creating a daunting 
challenge for those areas (Andrieu et al., 2025). A field survey 
conducted at a tertiary hospital in central China, along with 
random interviews with medical staff from the hospital’s 
dermatology department, revealed that nearly all of the medical 
personnel had never encountered the Mpox virus. This highlights 
the fact that the understanding of unfamiliar diseases among 
most medical staff is often limited to textbooks and other 
educational materials. The necessary skills and knowledge for 
medical and nursing work are built over time through clinical 
experience, meaning that medical professionals cannot readily 
form an effective understanding of diseases they have never seen 
before. As a result, the ongoing Mpox epidemic has presented 
substantial challenges for frontline medical staff, and 
misdiagnosis is a highly probable outcome.

Tedros Adhanom Ghebreyesus, the director general of WHO, has 
stated that some countries have limited access to diagnostic tools and 
vaccines, which complicates the tracking and prevention of the 
epidemic. This perspective underscores the critical importance and 

3 http://usa.people.com.cn/n1/2022/0926/c241376-32534032.html, 2022-

08-06/ 2022-09-24.

necessity of diagnostic tools (Tripathi et al., 2025). In recent years, 
artificial intelligence (AI) technology has rapidly developed and been 
applied across various fields, with most applications demonstrating 
the potential power of AI (Shi et  al., 2025; de Vries et  al., 2025; 
Aboulmira et  al., 2025). If AI is effectively utilized in epidemic 
prevention and control, it could provide diagnostic support for 
frontline workers, not only improving their work efficiency but also 
reducing the risks associated with prevention and control efforts.

To address this, some researchers have attempted to use artificial 
intelligence techniques for Mpox identification (Sitaula and Shahi, 
2022; Jaradat et al., 2023). Common models used for this task include 
CNN-based networks such as VGG, Xception (Mehmood et al., 2023), 
AlexNet (Pramanik et al., 2023), ResNet (Haque et al., 2023) series 
networks using residual connections to prevent overfitting, and 
DenseNet121 (Bala et al., 2023) that employ information-dense cross-
layer connections. Although these methods have made progress by 
optimizing the models through increased depth, they typically require 
significant computational resources and time (Almars, 2025) to 
achieve accurate detection and classification of Mpox, which fails to 
meet the efficiency requirements of clinical practice.

Therefore, some researchers have focused on lightweight model 
structures. Maqsood et al. (2024) proposed a hybrid multi-stage fusion 
and selection framework using the Transformer structure to extract 
image features, as well as Abdelrahim et al. (2024) proposed a hybrid 
ensemble model based on Transformer and SVM. In fact, although 
Transformer models have fewer parameters, the computational 
complexity of their internal self-attention mechanism increases 
exponentially, which presents a significant challenge for small devices. 
To deploy Mpox identification models on edge devices, Raha et al. 
(2024) used the MobileNetV2 network as the backbone to extract 
image features. This network has fewer parameters and can achieve 
higher inference efficiency. Furthermore, Al-Gaashani et al. (2025) 
optimized and improved the model based on progressive transfer 
learning. Almars (2025) proposed a lightweight model combining 
CNN, attention mechanisms, and genetic algorithms (GA), but the 
GA algorithm is inherently time-consuming, which fails to truly 
achieve high efficiency.

Given that existing methods fail to effectively balance high 
efficiency and accuracy, and inspired by related research (Ravi, 
2022; Wang et al., 2021; Arora et al., 2024; Kotwal et al., 2024), 
this study proposes a lightweight Mpox recognition model using 
transfer learning techniques. Specifically, on one hand, 
considered that the EfficientNet has achieved good results in 
various disease diagnoses due to its lightweight and scalability 
(Lee et al., 2025; Elhadidy et al., 2025; Alruwaili and Mohamed, 
2025), so the EfficientNet is utilized as feature extraction module 
of this model. This network combines the inverted bottleneck 
convolution (MBConv) module with the SE attention mechanism, 
effectively controlling the number of parameters and 
computational complexity, thus achieving a lightweight model. 
On the other hand, to ensure high performance in small sample 
scenarios, transfer learning techniques are employed to transfer 
the pre-trained EfficientNet parameters based on the large-scale 
ImageNet dataset to the model. This enhances the model’s ability 
to capture fine-grained features and reduces the risk of 
model overfitting.

To evaluate the effectiveness of the proposed method, multiple 
experiments will be conducted. This study focuses on evaluating the 

https://doi.org/10.3389/fmicb.2025.1627311
https://www.frontiersin.org/journals/microbiology
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performance differences of our model and its extension models in 
terms of precision, recall, F1 score, AUC, and time complexity. 
Additionally, the model’s robustness is assessed using 5-fold cross-
validation, and several advanced deep learning models (such as TMS 
and MobileNet) are chosen for comparison to validate the efficacy of 
the proposed model.

The structure of the remaining sections is as follows: Section 2 
presents the dataset, model approaches, and process framework 
employed in this study. Section 3 provides a detailed analysis of the 
results from the baseline model and other comparison models. Section 
4 concludes the paper with a summary and discussion.

2 Data and methods

2.1 Dataset introduction

Due to patient privacy concerns, obtaining a large amount of 
publicly available image data for Mpox virus diagnosis is challenging 
(Jahan et al., 2025). Fortunately, the small-scale Mpox Skin Lesion 
Dataset (MSLD) is openly accessible on the Kaggle platform. Kaggle 
is a comprehensive platform offering machine learning competitions, 
dataset sharing, and code collaboration, which significantly facilitates 
academic research and is widely recognized for its high credibility. 
The MSLD dataset consists of two types of images: Mpox-related and 
non-Mpox-related images, collected from news reports, online 
portals, and publicly accessible case reports across multiple media 
platforms. The dataset has been anonymized to protect personal 
privacy, eliminating the need for participant informed consent. For 
these reasons, this study selected the MSLD dataset as the foundation 
for the proposed analysis.

As previously mentioned, the MSLD dataset includes both 
Mpox and non-Mpox images, with the non-Mpox images 
primarily consisting of two diseases—chickenpox and measles—
that share highly similar clinical symptoms with Mpox. In clinical 
practice, diseases with similar manifestations to Mpox are more 
prone to misdiagnosis by healthcare professionals compared to 
diseases with more distinct differences. Consequently, when 
applying artificial intelligence for the identification of Mpox, it is 
crucial for both researchers and models to prioritize diseases such 
as chickenpox and measles, which are more likely to lead to 
misdiagnosis by clinicians.

2.2 Method

The research framework of Mpox recognition is shown in 
Figure 1, which illustrates that the study is primarily divided into two 
modules: the data processing module and the training and verification 
module. The first module, as shown in the Figure 1A, is used for 
expanding the data scale. The second one, shown in the Figure 1B, is 
used for training and validating the model. It is worthy to emphasize 
that, the model’s performance is continuously evaluated throughout 
the training process. The second module is therefore divided into two 
key components: training and verification. Firstly, the training dataset 
is input into the model, allowing the model’s performance to gradually 
stabilize over multiple iterations. Secondly, to assess whether the 
model is overfitting during training, the validation set provides critical 
feedback. Specifically, if the loss exhibits a pattern of first decreasing 
and then increasing, it indicates potential overfitting. In such cases, 
further training should be stopped to prevent overfitting. Finally, the 
test set is used to evaluate the model’s final performance and its 
effectiveness in real-world scenarios.

2.2.1 Data augmentation
One of the key characteristics of deep learning technology is its 

ability to learn the similarities and differences between various 
samples from large-scale datasets (Tigrini et  al., 2025). When the 
sample size is small, it becomes challenging for the model to learn 
rich, deep-level features (Zhang et al., 2025). However, the MSLD 
dataset is relatively small, consisting of only 228 skin disease images 
captured in various environments, including 102 images of Mpox and 
126 images of non-Mpox. Directly mining features from such a 
limited dataset may lead to overfitting, as the lack of feature diversity 
can hinder the model’s ability to generalize. As a result, data 
augmentation techniques are employed. These techniques serve two 
primary objectives: (1) to expand the scale of the dataset, and (2) to 
enrich the information contained within the dataset (Ribas et al., 2025; 
Dong et al., 2024).

Data augmentation is a method that increases data diversity 
without altering the intrinsic features of the original data. In the study, 
these methods included cropping the image into half-up, half-down, 
half-left, and half-right sections, as well as extracting pixel values 
along horizontal and vertical intervals. Other techniques applied 
included Gaussian blur, brightness adjustment (both brightening and 
darkening), flipping, adding noise, and rotating the images by 90° and 

FIGURE 1

Flowchart of Mpox identification. (A) is the process of data preprocessing and splitting, and (B) is the process of modeling and validation.
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180°, among others. This technique has been successfully applied in 
numerous fields, especially in the field of image processing (Yang et al., 
2023; Lin et al., 2025). For instance, it resulted in a 7% improvement 
in model performance for plant disease diagnosis (Cap et al., 2022) 
and a 9.46% improvement when combined with tumor segmentation 
studies (Zhang et al., 2022). The categorical features of the augmented 
images remain visually consistent with the original images, with 
minimal changes in classification.

After augmenting the dataset, the enhanced data is randomly 
divided into three subsets: the training set, validation set, and test set, 
with a distribution ratio of 6: 2:2. The training set is used to train the 
model, the validation set is employed to assess whether the model is 
overfitting, and the test set is used to evaluate the model’s 
generalization ability.

2.2.2 Model
To achieve fast inference capabilities, high stability and accuracy, 

this study proposes a deep learning model for Mpox identification task 
based on transfer learning techniques, as shown in Figure 2. This study 
faces the challenge of small sample data, requiring a good balance 
between model performance, efficiency, and stability in the model 
design. The great advantages of EfficientNet in handling small sample 
data made the network popular in both academia and industry 
(Kumari et al., 2024; Wang et al., 2024; Vasavi et al., 2025). Therefore, 
the EfficientNet network is employed as our model’s backbone to 
extract local features, and the EfficientNet’s pre-trained weight 
parameters are transferred to our model with the utilization of transfer 
learning technology. It is worth noting that the pre-trained parameters 
of EfficientNet were obtained from the ImageNet dataset. Since this 
dataset focuses on larger object sizes, whereas the lesions in this study 
are much smaller, limited the network capability in extracting fine-
grained features. Therefore, during model training, the network 

parameters are not directly frozen, but instead, fully involved in the 
model optimization process.

This model is composed of multi-layer neural network stacked 
sequentially, with the core component, the backbone, consisting of 
multiple MBConv networks. Specifically, as shown in Figure 2, the 
model consists of the following contents:

2.2.2.1 Stage 1
As the starting stage for feature extraction, it utilizes a 

convolutional layer with the kernel size of 3 × 3 and the stride of 
2 × 2. This layer performs initial down-sampling and feature 
extracting on the input image, rapidly compressing the spatial 
dimensions of the image while focusing on basic textures, edges, 
and other information. It is followed by Batch Normalization layer 
(BN) and the Swish activation function. BN normalizes each batch 
of data, accelerating model convergence and alleviating the 
vanishing gradient problem. Swish, with its smooth nonlinear 
transformation characteristics, enhances the model’s ability to 
express complex features, laying the foundation for subsequent 
deep feature extraction.

2.2.2.2 Stage 2–Stage 9
Composed of multiple MBConv modules, these stages form the 

core feature extraction part of the Backbone. The structure of the 
MBConv module is shown in Figure 3. Taking the MBConv, with 
the kernel size of 3 × 3 and the stride of 1 × 1, as an example, the 
MBConv module follows the flow with “expansion, depth 
convolution, attention enhancement, and projection compression.” 
Firstly, it expands the channel with a 1 × 1 convolution to broaden 
the feature learning dimensions. Then, a 3 × 3 depthwise 
convolution is applied to reduce computational cost while focusing 
on local lesion features (e.g., morphology and distribution of 

FIGURE 2

The model’s structure proposed in the study.
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pustules). Thirdly, the Squeeze-Excitation (SE) attention 
mechanism is integrated to focus on feature channels highly 
correlated with Mpox diagnosis and suppress irrelevant 
information. The mechanism uses global average pooling layer to 
compress the spatial dimensions and adaptively learns the dynamic 
weights of different channels. Finally, a 1 × 1 convolution is used 
for projection compression of the channel information, outputting 
refined features.

The MBConv modules of different stages adjust the kernel size 
(e.g., Stage 4 and 6 use 5 × 5 kernels to capture broader spatial 
dependencies) and repetition count based on the network depth 
requirements, progressively extracting lesion features from shallow to 
deep, and from local to global.

2.2.2.3 Stage 10
As the feature integration and classification output stage of the 

model, the high-dimensional feature vector extracted by the backbone 
is first flattened and mapped to the classification dimension using a 
Fully Connected (FC) layer, establishing the relationship between 
features and categories. A Dropout layer is inserted in between, 
randomly turning off some neurons’ information during training to 
effectively alleviate overfitting in small-sample scenarios and improve 
generalization ability. Finally, another FC layer outputs the 
classification prediction.

Through the collaborative operation of all layers, this model, 
leveraging the advantages of the EfficientNet architecture, can extract 
comprehensive features to achieve accurate recognition while ensuring 
inference speed and model stability, providing reliable technical 
support for Mpox diagnosis.

2.3 Evaluation indicators

The Mpox recognition task is a binary classification problem. In 
this context, evaluation metrics such as Accuracy, Precision, Recall, and 
F1 score are commonly used to assess the performance of the model. 
The formulas for these metrics are presented in Equations 1–4. 
Specifically, Accuracy refers to the proportion of correctly classified 
cases out of the total number of cases, indicating the overall 
correctness of the model’s predictions. Precision measures the 
proportion of correctly identified Mpox cases among all cases 
predicted as Mpox. Recall, on the other hand, represents the 
proportion of true Mpox cases that were correctly identified by the 
model, reflecting its ability to detect Mpox. The F1 score is a 
comprehensive metric that balances precision and recall, aiming to 
provide an overall assessment of the model’s ability to accurately 
classify all categories, with particular focus on identifying Mpox.

 
+

=
+ + +

ccuracy TP TNA
TP TN FP FN  

(1)

 
=

+
TPPrecision

TP FP  
(2)

 
=

+
TPRecall

TP FN  
(3)

 
× ×

=
+

2 recision ecall1
recision ecall
P RF

P R  
(4)

where, TP refers to the number of samples whose actual category 
is Mpox and the predicted result is Mpox. FP refers to the number of 
samples whose actual category is non-Mpox, but the predicted result 
is Mpox. FN refers to the number of samples whose actual category is 
Mpox and the predicted result is non-Mpox. TN refers to the number 
of samples whose actual category is non-Mpox and the predicted 
result is non-Mpox.

Moreover, this study incorporates the ROC (Receiver Operating 
Characteristic) curve and the PR (Precision-Recall) curve to introduce the 
predicted probability information. The ROC curve represents the 
relationship between the specificity and sensitivity of the model at various 
classification probability thresholds. The PR curve is constructed similarly 
by plotting the precision and recall at different thresholds. Both curves are 
derived from the predicted probabilities. The area under these curves is 
known as the AUC (Area under the Curve), which ranges from 0 to 1, with 
a higher value indicating better model performance.

3 Experiments and result analysis

3.1 Experiment setting

This study conducts all experiments using the Python 
programming language on a Windows system, and builds the deep 
learning model using the TensorFlow framework. More detailed 
experimental hyperparameters are shown in Table  1. The entire 
experiments used an RTX 3080Ti GPU with 32GB of RAM. The 
training set, validation set, and test set are generated using random 
splitting with a ratio of 6:2:2. Cross-entropy loss function and the 
Adamax optimizer are employed to optimize the model parameters, 
with a fixed learning rate of 0.001. To prevent overfitting, a Dropout 
layer is added to the final classification layer with a dropout rate of 0.4, 
and L1 regularization is applied to constrain the model parameters. 
Additionally, all network parameters, including the backbone’s 
parameters, are allowed to participate in the optimization process to 

FIGURE 3

The schematic diagram of the MBConv module.
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enhance feature capturing ability in the vertical domain 
during training.

3.2 Data augmentation

In this study, the original image dataset was initially enhanced 
using a variety of techniques. The changes in the dataset size before 
and after processing are presented in Table 2. It is evident that the 
original dataset size has increased from 228 to 2,964 images, with the 
ratio of Mpox to non-Mpox images being 4:5. Since the data volumes 
of the two categories are relatively balanced, no further data balancing 
was required.

Figures 4, 5 display comparison images of Mpox and non-Mpox 
data before and after data augmentation. From these figures, it can 
be observed that after the original images undergo data enhancement, 
the newly generated images, while similar to the original, are not 
identical. Furthermore, the categories of these augmented images 
remain consistent with the original, resulting in a 13-fold increase in 
the original dataset’s scale. This expansion provides richer feature 
information for model training.

3.3 Experiment results

3.3.1 Model performance analysis
From the perspective of complexity and inference efficiency, this 

study uses the EfficientNet network as the backbone of the model to 
extract fine-grained semantic features. The training process results of 
the presented model in Figure 6, which illustrates the trends in loss 
value and accuracy for both the training and validation sets over the 
course of model training. Figure 7 displays the confusion matrix for 
the test set.

As shown in Figure 6, the loss values for both the training and 
validation sets gradually decrease as the number of iterations increases 
during the training. After reaching a relatively flat phase, the loss 
approaches zero, with the minimum validation loss occurring at 
epoch = 20. Additionally, the figure indicates that the accuracy for 
both the training and validation sets steadily increases, stabilizing 
around 0.96 in the later stages. This suggests that the model training 
is nearing completion and that the model’s performance is becoming 
stable, indicating a convergence toward an optimal direction.

Figure 7 presents the prediction statistics for two types of samples 
in the test set. The result indicates that 13 samples (FP+FN) in the test 
set were misclassified, while 580 samples (TP+TN) were correctly 

classified. Additionally, 11 of the 13 misclassified samples originate 
from the true Mpox data, while only 2 are from the non-Mpox data. 
This suggests that the model is more likely to misclassify Mpox cases 
as non-Mpox, rather than the reverse. From the recall perspective, the 
performance may be  more reliable than the diagnostic results of 
medical staff who are encountering Mpox for the first time. Given 
their limited knowledge of Mpox and lack of experience or awareness 
of the risks, these medical professionals may be less likely to suspect 
Mpox and may incorrectly diagnose it as another condition. Therefore, 
the deep learning model can be considered a valuable diagnostic aid 
for medical staff, providing crucial predictive insights that can 
enhance diagnostic accuracy.

To enhance the interpretability of the model, the GRAD-CAM 
method is used here to extract the regions of interest that the model 
focuses on in the input image, as shown in Figure 8. GRAD-CAM 
generates class activation maps (CAMs) by computing the gradient of 
the target class with respect to the feature maps of the final 
convolutional layer, which visualizes the rationale behind the model’s 
decision-making process. In the figure, the original image depicts the 
symptoms of Mpox on the skin. The CAM image (cam) presents the 
model’s attention to different areas of the image in the form of a 
heatmap, where the redder areas indicate higher attention from the 
model. The overlaid image (image+cam) clearly highlights the regions 
of the Mpox lesions that the model predominantly focuses on. From 
the visualization, it can be  observed that the model accurately 
concentrates on key features of Mpox. This demonstrates that the 
proposed model not only achieves high recognition accuracy but also 
effectively utilizes the pathological characteristics of Mpox for 
decision-making, further validating the model’s effectiveness. 
Moreover, this visualization method provides clinical practitioners 
with an intuitive reference to understand the model’s decision-making 
process, facilitating its adoption and increasing trust in real-world 
medical scenarios.

3.3.2 Ablation experiments
In addition to stability and efficiency, strong scalability is another 

notable character of EfficientNet. In general, model performance is 
influenced by multiple parameters simultaneously, rather than by just 
one. The optimal approach is to consider the depth, width, and image 
resolution of the network concurrently when tuning neural network 
parameters. The EfficientNet model was developed with this principle 
in mind.

To this end, using the basic EfficientNet network introduced in 
Section 2.2 as the baseline model (EfficientNetB0), this study 
further explores the model performance and time efficiency when 
using EfficientNet extended models and other neural networks as 
the backbone. Four extended versions of EfficientNetB0 

TABLE 1 The details of all hyperparameters related to this research.

Parameters Details Parameters Details

Backbone network EfficientNet Classifier hidden_size 256

Regularization method L1 Batch size 16

Learning rate 0.001 Optimizer Adamax

Max Epochs 20 Dropout rate 0.4

Loss Cross entropy KFold 5

CUDA RTX 3080Ti RAM 32G

Programming language Python System Windows

TABLE 2 Comparison of data scale before and after two types of image 
data processing.

Image 
category

Number of 
original 
images 
(sheets)

After data 
enhancement 

processing (sheet)

Mpox 102 1,326

Non-Mpox 126 1,638

Total 228 2,964
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FIGURE 4

Comparison of Mpox images before and after data processing.

FIGURE 5

Comparison of non-Mpox images data before and after data processing.

FIGURE 6

The change curve of the loss value and the accuracy rate of both the training and the validation set during the iteration of the proposed model.
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(EfficientNetB1 to EfficientNetB4) are trained and tested, along with 
VGG (VGG16 and VGG19) and ResNet models (ResNet50, 
ResNet101, and ResNet152). All results will be compared with the 
baseline model. Table  3 presents the details of the EfficientNet 
series, showing that the key parameters are adjusted accordingly 
when the baseline model is expanded. The last column in Table 3 
shows the number of parameters for different extended models. It 
reveals that, as the model gradually expands, the number of 
parameters increases rapidly, meaning that the model complexity 
correspondingly rises.

Figure 9 provides an intuitive depiction of the loss and accuracy 
curves for different models over time. From the figure, it is evident that 
the EfficientNet models perform the best, with the accuracy reaching 
approximately 96% on the validation set. This suggests that most 
suspected samples can be accurately identified. The ResNet models 
show slightly less effective performance, while the VGG models 
perform the worst. Furthermore, it is observed that EfficientNetB2 
achieves a relatively higher accuracy, but the accuracy fluctuates over 
time, making it difficult to conclusively assert that EfficientNetB2 is the 
optimal model. Notably, the most complex models do not consistently 
outperform the simpler models, such as the performance of ResNet50 
surpasses that of ResNet152. It suggests that there is insufficient 
evidence to support the hypothesis that a more complex model 
structure necessarily leads to better performance in this task.

Next, Figure 10 presents the evaluation metrics of various models 
on the test set. Interestingly, the core evaluation metrics of the 
EfficientNet series networks show a pattern of initially rising and then 
gradually declining, with the model using EfficientNetB2 as the 
backbone performing the best. The reason for this trend is that, as 
increasing the model complexity, the model’s ability to capture 
semantic information strengthens, leading to improved performance. 
However, when the network version expands to higher levels, the 
excessive model parameters cause slight overfitting, resulting in a 
slight decline in performance. This overfitting phenomenon is 
particularly noticeable in the VGG and ResNet networks. Additionally, 

it is evident that the model’s time complexity is closely related to the 
number of parameters, meaning that models with less parameters are 
preferred in clinical scenarios requiring rapid response. Thus, selecting 
networks should take into account the requirements of real-
world scenarios.

3.3.3 Comparative analysis
To verify the superior recognition performance and lower model’s 

complexity of our method, we selected several advanced models for 
comparison. These include: (1) VGG16, which is composed of 
multiple stacked convolutional layers; (2) ResNet50, which not only 
consists of multiple convolutional layers but also uses residual 
networks to prevent overfitting; (3) Xception, which uses multi-scale 
convolutions to extract local information of different granularities; (4) 
MobileNet, which achieves model lightweighting using depthwise 
separable convolutions; (5) TMS, which combines Transformer and 
SVM; and (6) MxSLDNet, which uses digital twin technology for 
Mpox recognition.

Table 4 presents the performance and parameter count of different 
models. The results show that the model proposed in this study, which 
uses EfficientNet as the backbone, has the fewest parameters, only 
4.14 M, and achieves the optimal value in most evaluation metrics due 
to its internal MBConv module. It indicates that the proposed model 
significantly reduces the parameter’s amount and computational load, 
making it more efficient in small-sample training and effectively 
preventing overfitting.

Further analysis reveals the following results: (1) VGG16 and 
Xception only use a simple stacked structure with multiple 
convolutional layers, leading to a large parameter count but low 
feature extraction efficiency. (2) ResNet50 introduces residual 
connections to address the vanishing gradient problem in deep 
networks, enabling the extraction of more complex features, but the 
parameter scale increases drastically as the network depth increases. 
(3) MobileNet primarily achieves lightweighting by using depthwise 
separable convolutions, but it sacrifices some feature extraction 
completeness and accuracy, reducing model performance. (4) TMS 
may have advantages in handling large-scale data, but its complex 
structure leads to a larger computing amount and insufficient 
performance stability in small-sample Mpox recognition tasks. (5) 
MxSLDNet may has certain advantages in data generation, but it is less 
effective than our model in optimizing the feature extraction efficiency.

In a word, the performance differences between models are 
significant, and the complexities also vary greatly. This indicates that 
not all deep learning models are suitable for the small-sample data 
scenarios of Mpox recognition.

3.3.4 Robustness analysis
To evaluate the robustness of the model proposed, a 5-fold cross-

validation approach is employed. In 5-fold cross-validation, the 
dataset is divided into 5 equal parts, with 4 parts selected as the 
training set to train the models and the remaining part used for 
testing. This process is repeated 5 times, and the performance metrics 
are then averaged. To assess whether the performance differences are 
statistically significant, the t-test method is applied. If the p-value is 
greater than 0.05, it indicates no significant performance difference, 
suggesting the model exhibits good robustness. Conversely, if the 
p-value is less than 0.05, it implies that the model lacks robustness.

FIGURE 7

Confusion matrix for the test set.
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Given the requirement for rapid response, EfficientNet-B0 is 
selected as the backbone module of this model. The results are 
shown in Table 5. According to Table 5, the precision, recall, and 
F1 score consistently range from 94.73 to 97.4%. The areas under 
the ROC curve and PR curve both remain above 0.99, indicating 
excellent classification performance. Additionally, the model’s 
time complexity stabilizes around 252 s. Notably, the p-values for 
all metrics exceed 0.05, suggesting that the results are statistically 
significant. These findings collectively demonstrate that the 
proposed model passes the robustness test following 
cross-validation.

3.4 Conclusion

In the context of Mpox recognition, to meet the efficiency 
requirement in clinical practice, this study proposes a lightweight 
model utilizing transfer learning techniques. Specifically, on the one 
hand, the model employs the EfficientNet network as the backbone, 
where the internal MBConv module combines depthwise separable 
convolutions and the SE attention mechanism, effectively reducing the 
model’s parameter scale and computational complexity. This 
lightweight model better aligns with the stringent efficiency 
requirement in clinical practice. On the other hand, the model 
leverages transfer learning to transfer parameters from the pre-trained 
EfficientNet network on the large-scale ImageNet dataset to this 
model. This approach effectively utilizes the existing feature extraction 
capabilities of the network, enhancing the model’s performance and 
stability in small-sample datasets.

This study has verified the effectiveness and stability of the 
proposed method through several experiments. Based on the analysis, 
the following conclusions can be drawn:

 (1) Compared with existing advanced models, the model in this 
study, using EfficientNet as the backbone, achieved the optimal 
values in most metrics with the smallest parameter scale. 
Specifically, the precision, recall, F1 score, ROC-AUC, and 
PR-AUC values were 95.92, 95.69, 95.80%, 0.998, and 0.999, 
respectively. These results demonstrate the efficiency and 
effectiveness of the proposed model in this task.

 (2) To minimize model complexity, EfficientNetB0 is selected as 
the base model’s backbone, and the 5-fold cross-validation is 
used to validated its robustness. The average values for model 
precision, recall, F1 score, ROC-AUC, and PR-AUC are 96.48, 
96.32, 96.31%, 0.994, and 0.995, respectively, with p > 0.05. This 
indicates that there are no significant differences in the model’s 
performance metrics, confirming that it passes the 
robustness test.

 (3) The VGG and ResNet models are compared to the baseline 
models. The best F1 scores for the extended models of 
EfficientNet, ResNet, and VGG are 98.65, 95.68, and 
83.33%, respectively. This shows that VGG significantly 
underperforms compared to both EfficientNet and ResNet, 
with EfficientNet outperforming ResNet. It indicates that 
not all deep learning models are suitable for the Mpox 
identification task.

 (4) In specific practical scenarios, it is necessary to choose the 
appropriate network as the model’s backbone based on the 

FIGURE 8

The visualization of the GRAD-CAM results on a case.

TABLE 3 Key parameters of different extended versions of the EfficientNet model.

Items Image pixel Model width Network depth Drop rate Total number of 
parameters (M)

EfficientNetB0 224×224 1.0 1.0 0.2 4.14

EfficientNetB1 240×240 1.0 1.1 0.2 6.53

EfficientNetB2 260×260 1.1 1.2 0.3 7.69

EfficientNetB3 300×300 1.2 1.4 0.3 10.58

EfficientNetB4 380×380 1.4 1.8 0.4 17.18
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requirements. For example, when faster inference speed is 
needed, the lightweight EfficientNetB0 network can be used as 
the backbone, which slightly reduces performance but 
significantly improves training speed. If higher accuracy is 
required, the EfficientNetB2 network can be used.

4 Discussion

The speed and scope of the current Mpox outbreak are 
significantly higher than previous instances, making it a serious 
international health event. As a result, the WHO has urgently classified 
it as a Public Health Emergency of International Concern (PHEIC), 
calling for increased attention from all countries and regions. A 
distinctive feature of this outbreak is its emergence in areas where 
Mpox has never been reported before. For many healthcare workers, 

this marks the first encounter with this unfamiliar disease, and they 
may misdiagnose Mpox as other conditions due to a lack of sufficient 
clinical experience or heightened risk awareness. Consequently, there 
is a pressing need to provide advanced diagnostic support technology 
for medical personnel.

To address this need, this study proposes a deep learning model 
to identify Mpox among a range of suspected skin diseases. The 
model leverages transfer learning technology to identify Mpox 
among a range of suspected skin diseases. By providing diagnostic 
assistance, this method aims to support frontline healthcare 
workers, enabling them to focus on specific patients and cases, 
thereby minimizing the potential for Mpox transmission within 
the population.

Compared with these advanced models, the evaluation results 
indicate that the model with EfficientNetB0 performs well in the 
task, as well as its extended models show great generalizability and 

FIGURE 9

Change curve of loss value and accuracy rate of different models.
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versatility. However, not all deep learning models are equally 
suitable for this task, as evidenced by the poor performance of the 
VGG model. Moreover, although TMS utilizes the Transformer to 
achieve model lightweighting and achieves performance similar 
to that of our model, its internal use of a full self-attention 
mechanism increases computational complexity, which imposes 
high hardware requirements.

In a word, this study found that deep learning models are capable 
of effectively performing this task and can provide high-performance 
diagnostic support tools for frontline medical staff. It is important to 
note that, during the application phase, decision-makers must select 

models based on their specific requirements. If rapid model training 
and result generation are prioritized, EfficientNetB0 should 
be preferred, due to its relatively simple architecture, fewer parameters, 
and faster convergence. On the other hand, if more stable model 
performance is required, EfficientNetB2 may be a better choice, based 
on the current results.

It is important to note that deep learning technology serves as an 
auxiliary tool to help inexperienced medical staff reduce the risk of 
misdiagnosis. However, to fundamentally control the spread of Mpox, 
managers must focus on the following aspects: encouraging 
vaccination, enhancing public awareness and education (Kotwal et al., 

FIGURE 10

Comparison of all evaluation index values in the test set in different models (E, V and R represent the EfficientNet, VGG, and ResNet networks, 
respectively).

TABLE 4 The performances and the number of parameters of various models.

Models Precision (%) Recall (%) F1 (%) ROC AUC PR AUC Total number of 
parameters (M)

VGG16 83.61 83.29 83.33 0.899 0.871 14.16

ResNet50 95.7 95.69 95.68 0.995 0.996 22.95

Xception 70.48 73.12 73.12 – – 21.85

MobileNet 90.24 90.25 90.26 – – 4.20

TMS 95.51 95.45 95.46 0.980 – ~9.53

MxSLDNet 96.00 95.00 95.00 – – –

Our model 95.92 95.69 95.80 0.998 0.999 4.14

The optimal value of every indicator is highlight in bold.

TABLE 5 The outcomes of EfficientNetB0 in every cross validation.

Item Precision (%) Recall (%) F1 (%) ROC-AUC PR-AUC Time Complexity

1 95.91 95.78 95.77 0.991 0.991 251.56

2 96.56 96.46 96.45 0.992 0.992 251.62

3 95.16 94.77 94.73 0.993 0.993 252.49

4 97.35 97.3 97.3 0.997 0.998 252.17

5 97.4 97.3 97.29 0.999 0.999 251.91

mean 96.48 96.32 96.31 0.994 0.995 251.95

p >0.05 >0.05 >0.05 >0.05 >0.05 >0.05
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2024), strictly managing virus samples, regulating the trade of animals 
to prevent the spread of Mpox, and discouraging the consumption of 
wild animals or unquarantined meats. Only through the full 
implementation of these measures can the spread and infection of the 
virus be effectively prevented.

A limitation of this study is the small scale of the available 
sample data, which restricts the range of information it covers. 
Notably, it lacks data from diverse skin color populations, which 
could pose a risk of misjudgments when the model encounters 
feature it has not previously learned. Therefore, a key direction for 
future research is to expand the dataset. This could involve 
collecting more data on factors such as skin color, age groups, and 
non-Mpox diseases from a broader range of platforms. Additionally, 
in terms of model development, on one hand, exploring possible 
pathways to reduce the computational complexity of Transformer 
to enhance its usage efficiency. On the other hand, enhancing the 
interpretability of the model’s predictions, which is a hot-topic of 
great concern to clinical practitioners. Moreover, exploring the use 
of federated learning technology could be  beneficial. This 
technology would allow the use of Mpox diagnostic data from other 
medical institutions while ensuring patient privacy.
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