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Objective: The gut microbiota has been recognized as a significant regulator
in the development and progression of colorectal adenoma (CRA). However,
few studies have investigated the presence and association of resident microbial
species and metabolites in patients with CRA. Our aim was to analyze differences
in gut microbiome composition and metabolites, as well as to evaluate their
diagnostic potential for CRA.
Methods: We conducted metagenomic and metabolomic analyses on fecal
samples from 90 subjects, including 60 patients with CRA (CRA group) and
30 healthy subjects who served as normal controls (NC group). By integrating
fecal metagenomic and metabolomic data, we identified gut microbiota-
associated metabolites that showed significant abundance changes in CRA
patients. Furthermore, we explored whether these metabolites and microbial
species could distinguish CRA patients from healthy individuals.
Results: 16S rRNA gene sequencing and untargeted metabolomics analysis
revealed microbial changes that distinguished CRA patients from controls.
Microbial population analysis showed that the CRA group formed distinct
clusters from the controls, with significant β-diversity (PCA and PCoA
analyses, p < 0.05). At the phylum level, the dominant taxa in terms of relative
abundance included Firmicutes, Ascomycota, Mycobacteria, Actinobacteria,
and Clostridia. Differential analysis of the gut flora based on species abundance
revealed significant differences in taxonomic composition between healthy
individuals and CRA patients. KEGG functional enrichment analysis indicated
that the differential flora were primarily involved in metabolic pathways,
including metabolic pathways, biosynthesis of secondary metabolites,
microbial metabolism in diverse environments, amino acid biosynthesis,
and cofactor biosynthesis. In this study, three microbial species—Fusobacterium
mortiferum, Alistipes, and Bacteroides fragilis—were validated as discriminators
between healthy individuals and CRA patients, with Alistipes showing higher
classification efficacy. Metabolomic analysis revealed differences in tryptophan
metabolism, protein degradation products, amides, and phenolic acid
metabolites. KEGG enrichment results indicated that metabolic pathways
were the most significantly enriched. Differential metabolites were mainly
associated with the biosynthesis of plant secondary metabolites. Procrustes
and Venn analyses were performed on functional entries of the two omics
datasets, highlighting enriched pathways including Metabolic pathways,
Glycerophospholipid metabolism, Sphingolipid metabolism, and Alpha-
linolenic acid metabolism. A review of the literature confirmed that the
differential flora and metabolites are associated with adenoma growth.
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Conclusion: In this study, metagenomic and metabolomic analyses were
conducted in subjects with CRA. The findings based on fecal metagenomic
and metabolomic assays suggest that intestinal microecology is altered in CRA
patients, leading to changes in gut cellular structure.

KEYWORDS

colorectal adenoma, microbiota, metagenome, metabolomics, biomarker

1 Introduction

CRA is a significant precancerous lesion for colorectal cancer
(CRC) and its development is a multifactorial, multistep, and
complex process (Sninsky et al., 2022). In recent years, advances in
high-throughput sequencing and metabolomic technologies have
made the role of the gut microbiota in colorectal adenomas a
research focus (Ni et al., 2024). Numerous studies have shown
that the gut microbiota contributes to the development and
progression of CRA through various mechanisms, including
metabolite production, immune regulation, and modulation of
barrier function. Alterations in its composition and function
are closely linked to host health (Song et al., 2024). Both
domestic and international studies have consistently demonstrated
significant differences in the gut microbial composition between
CRA patients and healthy individuals. However, the mechanisms
underlying microbiota–host interactions remain incompletely
understood, particularly how microbial metabolites influence
adenoma formation through host signaling pathways (Jodal et al.,
2022).

Although several multi-omics studies on CRC have been
conducted, they have not fully elucidated the potential involvement
of microbes during the adenoma stage or the causal relationships
between the microbiome/metabolome and tumorigenesis. Research
on CRA and CRC has advanced considerably through the
application of multi-omics approaches, particularly metagenomic
and metabolomic analyses. Therefore, we prospectively collected
fecal samples from individuals undergoing colonoscopy screening
who were diagnosed with CRA and conducted microbiome and
metabolome profiling. This study aims to clarify the role of the gut
microbiome in CRA patients during CRC carcinogenesis.

The gut microbiota in CRC patients plays a crucial role in
cancer initiation and progression through multiple mechanisms.
Microbes contribute to both pre- and post-tumor stages by
inducing genetic mutations and modulating metabolic processes.
Bacterial genotoxins and metabolites can cause DNA damage in
host cells, leading to genetic mutations. For example, pathogenic
Escherichia coli strains carrying the polyketide synthase (pks)
island induce DNA double-strand breaks and disrupt the cell cycle.
Additionally, toxins produced by Pseudomonas aeruginosa elevate
reactive oxygen species (ROS), resulting in DNA damage.

Studies have shown substantial alterations in the gut
microbiome of CRC patients, with certain microbial species being
implicated in disease progression. For instance, Fusobacterium
nucleatum has been consistently associated with CRC and is

considered a potential biomarker for early detection (Clos-
Garcia et al., 2020; Yachida et al., 2019). Metabolomic analyses
have also identified significantly elevated levels of metabolites
such as branched-chain amino acids and bile acids in CRC
patients (Yachida et al., 2019). One study identified a panel of
gut microbiome-associated serum metabolites that accurately
distinguish CRA and CRC from healthy controls, highlighting
their potential as non-invasive diagnostic tools (Chen et al.,
2022). Another study emphasized the role of gut microbiota and
metabolites in the early stages of CRC pathogenesis, underscoring
the importance of these interactions in disease development
(Kim et al., 2020). Moreover, multi-omics approaches have been
employed to investigate the progression from CRA to CRC.
Integrated analyses of fecal metagenomics and metabolomics
have revealed specific microbial and metabolic changes during
this transition, providing insights into the molecular mechanisms
of tumorigenesis (Clos-Garcia et al., 2020). Furthermore, the
integration of metagenomics and metabolomics technologies
offers new potential targets for early diagnosis and intervention
(Takeuchi et al., 2024). Research suggests that modifying the
gut microbiota composition or supplementing with specific
metabolites, such as butyrate, may represent a novel strategy for
preventing and treating CRA (Takeuchi et al., 2024; Sninsky et al.,
2022). Additionally, biomarkers derived from gut microbiota
and their metabolites show promise for early screening and risk
assessment of CRA (Zhou et al., 2025).

In this study, we conducted metagenomic and metabolomic
analyses of fecal samples from CRA patients to identify microbial
and metabolic signatures. By integrating multi-omics data, we
further explored the role of the gut microbiota in the development
of CRA, aiming to provide a scientific basis for the prevention and
control of CRC.

2 Materials and methods

2.1 Study design

All participants were patients or individuals from a physical
examination population who underwent colonoscopy at Jiaxing
Hospital of Traditional Chinese Medicine, affiliated with Zhejiang
University of Traditional Chinese Medicine, between June 2023 and
December 2023. This study was approved by the Ethics Review
Committee of Jiaxing Hospital of Traditional Chinese Medicine
(Ethics No.: JZYLS2024-Y02021) and was conducted in accordance
with the Declaration of Helsinki.
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The inclusion criteria for patients required a diagnosis of CRA
based on both endoscopic and pathological findings, with reference
to the Endoscopic tissue sampling - Part 2: Lower gastrointestinal
tract. European Society of Gastrointestinal Endoscopy (ESGE)
Guideline-2021. Exclusion criteria included: adenomas larger than
3 cm in diameter or requiring surgical resection; a history of
hereditary polyps; pathological confirmation or high suspicion of
malignancy; active intestinal inflammation; history of colorectal
bleeding or surgery; endoscopic procedure within the past
6 months; breastfeeding, current pregnancy, or planning for
pregnancy; local residency of less than 3 months; probiotic use
within 1 month; and lack of informed consent.

A total of 60 fecal samples were collected from CRA patients
and 30 from healthy individuals (all aged between 18 and 70
years). These were assigned to the CRA group and the normal
control (NC) group, respectively. All participants completed a
questionnaire via a case report form covering demographic,
clinical, and lifestyle factors, including age, sex, surgical history,
height, weight, dietary habits, medical history, medication use,
and tobacco and alcohol consumption. All subjects underwent
standard bowel preparation, and colonoscopies were performed by
an experienced gastroenterologist.

2.2 Sample collection

Fecal samples were collected from eligible participants
under fasting conditions (between 5:00 a.m. and 8:00 a.m.,
prior to colonoscopy prep intervention). Immediately after
defecation, samples were placed into 10 mL sterile centrifuge tubes,
temporarily stored at −20 ◦C, and subsequently transferred to
a −80 ◦C freezer for long-term preservation. All samples were
processed within 6 months and shipped to Hangzhou Lianchuan
Biotechnology Co., Ltd. (Hangzhou, China) for macro-genomic
sequencing and metabolomic analysis.

2.3 Macro-genomic sequencing

Fecal samples from the CRA group (n = 60) and the control
group (n = 30) were subjected to macro-genomic sequencing. Total
genomic DNA was extracted using the EZNA R© Stool DNA Kit
or the QIAamp DNA Stool Mini Kit. Sequencing was performed
on the Illumina HiSeq 2500 platform with a NovaSeq kit. After
assessing DNA purity and concentration, libraries were constructed
and sequenced.Raw sequencing data were demultiplexed based
on barcodes and filtered to remove low-quality reads. Sequence
annotation and assembly were conducted using PartekFlow and the
MetAMOS pipeline. Non-redundant unigene sets were generated
through sequence clustering. Functional annotation was performed
using the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database via the DIAMOND program. Statistical analysis of
KEGG pathways was carried out using one-way ANOVA in the
STAMP software package. All data analyses were performed in
the R statistical environment. Continuous variables are expressed
as mean ± standard error of the mean (SEM) or median
with interquartile range, and categorical variables as frequencies.
Differences in alpha diversity were assessed using the Wilcoxon

test. Beta diversity was evaluated through principal component
analysis (PCA) and principal coordinate analysis (PCoA) based on
weighted UniFrac distances. Microbial abundance differences were
analyzed with the Wilcoxon rank-sum test in STAMP. Statistically
enriched taxa (LDA score > 3, Bonferroni-adjusted p < 0.05) were
identified using LEfSe. Data visualization at phylum and genus
levels—including bubble plots, heatmaps, and Sankey diagrams—
was conducted with the R packages Rpheatmap, stats, ggplot2,
and ggalluvial.

2.4 Metabolomics analysis

First, metabolites were extracted from the samples using
an organic reagent-based metabolite precipitation method,
and multiple quality control (QC) samples were prepared
simultaneously. The extracted samples were subjected to
randomized sequential on-instrument analysis, with QC samples
interspersed before, during, and after the experimental samples
to serve as technical replicates for assessing the reliability of
the experimental method. Mass spectrometry (MS) scanning
was performed on the samples in positive and negative ion
modes, respectively.

XCMS software was used for peak extraction and quality
control, while metabolite identification was conducted using metaX
software. The identified metabolites were annotated using common
functional databases. Subsequently, the metabolites were subjected
to quantitative analysis, sample correlation analysis, and differential
analysis; for the differential metabolites, a series of functional
analyses were further performed, including KEGG functional
enrichment analysis, mutual network analysis, and metabolite
correlation analysis.

Each QC sample was a mixture of equal volumes (or
equal amounts) of well-prepared study samples, and these
QC samples were interspersed throughout the experiment
as technical replicates. Pearson’s correlation coefficients were
calculated between the abundance profiles of each pair of QC
samples, and a correlation heatmap was generated. The higher
the correlation between samples, the larger the correlation
coefficient and the redder the color in the heatmap. By examining
the Pearson’s correlation coefficients among QC samples, the
reproducibility of metabolite detection could be evaluated:
better reproducibility of QC samples indicated more stable
instrument performance throughout the entire sample detection
and analysis process.

XCMS software was used to extract and align ion peaks
across different samples, yielding raw abundance data for
each metabolite ion in the samples. Additionally, primary and
secondary metabolite identification information for these ions
was supplemented. The raw abundance data was generally
not used directly and required data quality control and
cleaning before it could be applied to downstream analyses.
For the ions detected via XCMS, the open-source software
metaX was first used for primary identification: the first-stage
(MS1) m/z values of the substances were matched against
databases including HMDB and KEGG. Due to the presence of
numerous isomeric metabolites in these databases, the MS1-based
identification results often exhibited a phenomenon where one
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m/z value corresponded to multiple metabolites; furthermore,
the reliability of MS1-based (idms1) reference identification
was limited.

Subsequently, an established in-house metabolite tandem mass
spectrometry (MS/MS) library was used to match against the
MS/MS data of the samples, resulting in metabolite identification
results with higher confidence. These results are recommended
to be referred to as MS2-based (idms2) identification results.
It is important to note that current metabolite databases do
not distinguish between species; therefore, the identification
results may include matches to metabolites not actually
present in the samples. During subsequent data mining,
metabolite details can be re-queried using commonly used
databases, including HMDB (https://hmdb.ca/), KEGG (https://
www.kegg.jp/), and PubChem (https://pubchem.ncbi.nlm.nih.
gov/).

XCMS software was used to extract and align ion peaks
across different samples, obtaining raw abundance data for
each metabolite ion in the samples. metaX software was then
employed for data quality control and processing, following
these steps:

Removal of low-quality peaks (defined as peaks with >50%
missing values in QC samples or >80% missing values in
actual samples);

Data normalization using the median normalization method;
Imputation of missing values using the minimum

imputation method.
Metabolite identification was conducted using HMDB (Human

Metabolome Database, v5.0) and METLIN (v2023), with the
following matching criteria: precursor ion mass tolerance ≤ 10
ppm, MS/MS spectral similarity (Dot Product) ≥ 0.8, and retention
time deviation ≤ 0.2 min. Mantel tests were performed using Bray-
Curtis distance (for microbiome data) and Euclidean distance
(for metabolome data), with 999 permutations. For Procrustes
analysis, the same distance matrices were used to align the
principal coordinate analysis (PCoA) coordinates of microbiome
and metabolome data, and significance was evaluated via 1,000
permutation tests.

2.5 Statistical analysis

All pairwise comparisons were performed using the two-
tailed Wilcoxon rank-sum test. Multiple-group comparisons were
conducted using the Kruskal-Wallis H-test. Fisher’s exact test
was used for analyzing categorical variables. Between-group
differences in metabolite profiles (assessed via Euclidean distance)
and bacterial communities (assessed via Bray-Curtis distance)
were tested.

All statistical analyses were conducted using R software
(v3.6.1), which was used for data preprocessing, statistical
analysis, and predictive model construction. To control for false
positives arising from multiple hypothesis testing, all statistically
derived p-values were adjusted using the Benjamini-Hochberg false
discovery rate (FDR) correction method. Significantly different
OTUs/metabolites were defined as those with an FDR-adjusted
p-value (q-value) < 0.05.

3 Results

3.1 Clinical baseline data

Participants in the CRA group were older than those in the NC
group (P < 0.001). The body mass index (BMI) of the CRA group
was higher than that of the NC group (P = 0.041). The proportion
of male participants was higher in the CRA group (P = 0.025).
The proportion of participants with a history of hypertension was
higher in the CRA group than in the NC group (P = 0.001; Table 1).

Although significant differences existed between the CRA
group and the NC group in terms of age, BMI, sex, and history
of hypertension (P < 0.05), the microbiota structure (assessed
via PERMANOVA, R²= 0.08, P = 0.003) and the abundances of
metabolites associated with Bacteroidota (β = 1.2, 95% confidence
interval [CI]: 0.8–1.6, P = 0.01), Bacillota (β = 1.45, 95% CI: 0.4–
1.2, P = 0.003), and Pseudomonadota (β =1.2, 95% CI: 0.45–1.53,
P = 0.024) remained significantly different after adjusting for these
confounders, suggesting their independent associations with CRA.

3.2 Metagenomic sequencing results

3.2.1 Intergroup differences in gut microbiota
between healthy individuals and CRA patients

The bar graph showed the number of shared and unique
Unigenes between the CRA group and NC group. In total,
2,884,591 Unigenes were identified across the two groups, with
457,209 and 130,644 unique Unigenes exclusive to the CRA and
NC groups, respectively (Figure 1A).

Principal component analysis (PCA) revealed that fecal
samples from CRA patients and healthy individuals had similar
overall microbiota abundance, with partial overlap in community
composition but also distinct floral components (Figures 1B, F). β-
diversity analysis was performed via principal coordinate analysis
(PCoA) based on Bray-Curtis distance to visualize intergroup
differences (Figure 3). The distance between samples was reflected
by two principal coordinates (PCo1 and PCo2); samples that
clustered closer in the PCoA plot had more similar microbiota
compositions. Adonis test results (p = 0.01) confirmed significant
differences in gut microbiota structure between the two groups.

Difference-in-difference analysis of the two subgroups was
visualized using violin plots and box plots, which showed
significant intergroup differences (Figures 1C, D); ∗∗ denotes highly
significant differences (p < 0.01). For box plots of divergent species:
based on analysis of variance (ANOVA) results, we selected the top
20 most abundant species among those with significant differences
(marked as “yes” in the “significance” column) and visualized their
abundance across subgroups using box plots (Figure 1E).

3.2.2 Intergroup differences in gut microbiota
species abundance

Based on the statistical table of species abundance at each
taxonomic level, the top 20 most abundant species were selected
by default (all other species were categorized as “Others”).
The abundance of these species in each sample or subgroup
was visualized using: Heatmap (species abundance heatmap)
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TABLE 1 Clinical baseline data.

Baseline data NC group (n = 30) CRA group (n = 60) Statistic P

Age (At the age of) 29.63 ± 4.93 53.10 ± 11.34 t =−13.65 <0.001

BMI, M (Q1, Q3) 21.90 (19.13, 24.04) 23.33 (22.04, 25.39) Z =−2.04 0.041

Gender, n (%) χ ² = 5.02 0.025

Female 21 (70.00) 27 (45.00)

Male 9 (30.00) 33 (55.00)

History of hypertension, n (%) χ ² = 10.48 0.001

No 30 (100.00) 43 (71.67)

Yes 0 (0.00) 17 (28.33)

History of diabetes mellitus, n (%) χ ² = 1.81 0.179

No 30 (100.00) 54 (90.00)

Yes 0 (0.00) 6 (10.00)

History of coronary heart disease, n (%) χ ² = 0.39 0.533

No 30 (100.00) 57 (95.00)

Yes 0 (0.00) 3 (5.00)

P < 0.05 was statistically significant.

(Figure 2A), Stacked bar plot 2b (species abundance at the
phylum level) (Figure 2B), Cluster plot 2c (species clustering)
(Figure 2C). Stacked bar plots of species abundance at the
phylum level (Figure 2B) showed that Bacteroidota, Bacillota,
and Pseudomonadota were the dominant bacterial phyla in
the gut. Heatmap 2a (phylum-level abundance) revealed that,
compared to the NC group, the CRA group had a significant
increase in the abundance of Mycoplasmatota, Verrucomicrobiota,
Chlamydiota, and Lentisphaerota, as well as a significant decrease
in Actinomycetota abundance.At the species level, the abundance
heatmap (Figure 2B) showed that the CRA group had a significantly
higher relative abundance of Bacteroides fragilis, and significantly
lower relative abundance of Phocaeicola plebeius and Megamonas
funiformis compared to the NC group. The top 20 most abundant
bacteria were subjected to species-level differential statistical
analysis (Figure 2D): compared to the NC group, the CRA
group exhibited significantly decreased relative abundance of
Faecalibacterium prausnitzii, Eubacterium rectale, and Roseburia
faecis, while the relative abundance of Fusobacterium mortiferum
and Alistipes spp. (e.g., Alistipes putredinis; specify species if
available) was significantly higher.

3.2.3 KEGG enrichment analysis of differential
unigenes

In organisms, different genes coordinate to perform biological
functions, and pathway-based analysis helps further elucidate
the biological roles of these genes. KEGG pathway enrichment
analysis (Figure 2D) showed that 523,513 differential Unigenes
were enriched in “Global and overview maps” metabolic pathways
within the Metabolism category. Description of eggNOG
classification statistics (Figure 2E): the x-axis represents each
COG functional category, and the y-axis represents the number
of differential Unigenes (n = 523,513) annotated to each COG
category; the legend provides detailed descriptions for each COG

functional category. Annotation results (Figure 2E) showed that
the largest proportion of Unigenes was annotated to “Function
unknown.” Functional annotation of differential Unigenes
using the KEGG database, combined with clustering of genes
performing the same function, revealed that more genes were
enriched in metabolic pathways (primarily within the Metabolism
category). This indicated that the gut microbiota play important
roles in these metabolic processes. Further metabolic-level
functional enrichment analysis identified significant intergroup
differences in the following pathways: Metabolic pathways,
Biosynthesis of secondary metabolites, Microbial metabolism in
diverse environments, Biosynthesis of amino acids, Biosynthesis
of cofactors.

3.2.4 Differential expression and enrichment
analysis of unigenes

Differentially expressed Unigenes (DEUs) are the
most notable results of metagenomic sequencing, as
they fully reflect Unigene expression differences between
different treatments or sample groups. Different statistical
methods were applied to different subgroups and
comparison groups: Fisher’s exact test: For comparisons
without biological replicates, Mann-Whitney U test:
For two-group comparisons with biological replicates,
Kruskal-Wallis test: For multiple-group comparisons with
biological replicates.

Typically, the default threshold for identifying DEUs was: |log2
(fold change)| ≥ 1 and p < 0.05 (see Supplementary Table S1).

3.2.5 GO enrichment analysis and species
annotation of differential unigenes

GO functional enrichment analysis was conducted by mapping
all significantly differentially expressed genes to terms in the
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FIGURE 1

Intergroup differences in gut microbiota between healthy individuals and CRA patients. (A) Venn diagram illustrating shared and unique Unigenes
between the CRA and NC groups. A total of 2,884,591 Unigenes were identified, with 457,209 unique to the CRA group and 130,644 unique to the
NC group. (B) PCoA plot showing microbial community similarity and separation between groups. (C, D) Violin and box plots from pairwise group
comparison, indicating significant differences between groups (** denotes extremely significant difference). (E) Box plots of the top 20 most
abundant differentially expressed species, displaying abundance distribution across groups. (F) 3D PCoA analysis further revealing similarities and
partial overlaps, as well as distinct differences, in microbiota composition between CRA patients and healthy individuals.

Gene Ontology database. The number of genes associated with
each term was calculated, and a hypergeometric test was applied
to identify GO terms significantly enriched in the differentially

expressed gene set compared to the whole genomic background.
The STAMP plot results indicated that ABC transporters accounted
for the highest proportion among the most significantly different
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FIGURE 2

Differences in gut microbiota species abundance between the two groups. (A) Clustering heatmap of species abundance at the phylum level. (B)
Stacked bar chart of species abundance composition at the phylum level. (C) Abundance clustering across classification levels based on the GO
database. (D) Significantly enriched pathways among differentially expressed genes: the top 20 most abundant bacterial species were selected for
statistical analysis. The left y-axis indicates the secondary classification of KEGG PATHWAY, the right y-axis shows the primary classification, and the
x-axis represents the percentage of Unigenes annotated to each secondary category. Column values indicate the number of Unigenes annotated per
category. Results reveal that within Metabolism, the “Global and overview maps” metabolic pathway contains 523,513 differentially expressed
Unigenes. (E) eggNOG classification statistics: the x-axis represents COG functional categories, the y-axis shows the number of Unigene annotations
per category. The legend indicates that the majority belong to the “Function unknown” category.
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terms (Figure 3A). UPGMA analysis was performed using the
Unweighted Pair Group Method with Arithmetic Mean to
cluster samples based on a distance matrix. The resulting
dissimilarity coefficient between samples was 0.1; a smaller value
indicates smaller differences in species diversity between samples
(Figure 3B). A GO enrichment bubble chart was generated using
ggplot2 to visualize the enrichment results. Among the three
major GO categories, biological_process contained the most
enriched differential unigenes and the smallest P-value (or Q-
value) (Figure 3C). The GO enrichment bar chart uses different
colors to represent the three major GO categories, with bars of
the same color indicating different GO terms within a category.
Bar height corresponds to the number of differential unigenes
enriched in each term. Specifically, the biological_process category
showed the highest enrichment, followed by cellular_component
(with the highest enrichment in Cytosol) and molecular_function
(Figure 3D). Species annotation was performed using Krona,
where circles represent taxonomic levels (from phylum to species)
radiating outward. The size of each sector reflects the relative
abundance of the corresponding species (Figure 3E). Based on
species abundance tables, Bray-Curtis distance matrices were used
for inter-sample clustering analysis, integrating both clustering and
abundance information.

3.2.6 Advanced analysis
We identified significantly up-regulated seed-level taxonomic

units for each subgroup and higher-level taxa with notable up-
regulation. Results are visualized in a Manhattan plot, which
revealed that phyla such as Bacillota and Pseudomonadota were
prominently up-regulated and contained more genes, whereas
Bacteroidota and Uroviricota were associated with more down-
regulated genes (Figure 4A). Upset analysis illustrated the overlap
between healthy patients and the rest of the sample set. This
highlights the importance of focusing on high-discrepancy samples
to improve diagnostic specificity in medical research, while also
alerting to potential misdiagnosis risks in samples with high overlap
(Figure 4B).

RDA analysis, which is a constrained form of principal
component analysis (PCA), was performed incorporating the top
10 most abundant taxa along with environmental or clinical
indicators measured in each sample (Figure 4C). The results
indicated that clinical indicators such as CO and DO had a strong
influence on microbial community composition.

3.3 Metabolomics results

3.3.1 Metabolite identification
A differential metabolic ion summary plot, based on

quantitative ion data, displayed 1,254 significantly up-regulated
and 859 significantly down-regulated ions in the comparative
analysis (Figure 5A). Classification and annotation of identified
metabolites were performed using the HMDB SuperClass system.
Metabolites were cross-referenced with both HMDB and KEGG
databases, and the annotated classification results are presented in a
bar plot. The horizontal axis represents the number of metabolites,

and the vertical axis indicates the SuperClass categories according
to HMDB annotation (Figure 5B). The PLS-DA score plot
(Figure 5C), permutation test plot (Figure 5D), and principal
component analysis (PCA) plot (Figure 5E) collectively confirmed
that the model was not overfitted. Pearson’s correlation analysis
based on abundance values from quality control (QC) samples
showed strong correlations within the CRA group and among QC
samples, indicating high reproducibility and instrument stability
throughout the detection and analytical process (Figure 5F).

3.3.2 Analysis of metabolite differences
A box plot of the top 30 most significantly differential

metabolites (smallest p-values) was generated to illustrate data
distribution across groups (see Supplementary Table S2).The
horizontal axis represents sample groups, and the vertical
axis shows log2-transformed abundance values. Significance
p-values were calculated based on transformed quantitative
values (Figure 6A).The top five most significant metabolites
(lowest p-values) were selected for individual receiver operating
characteristic (ROC) curve analysis. A combined ROC curve
was also generated using logistic regression modeling. The
aggregate AUC reached 0.9773, indicating high diagnostic accuracy
(Figures 6B, D). A volcano plot was used to visualize the overall
distribution of differential metabolites. The horizontal axis
represents log2 (fold change), and the vertical axis shows –log10
(p-value). Significantly up-regulated metabolites are marked in
red, down-regulated in blue, and non-significant metabolites
in gray (Figure 6C). A heatmap of differential metabolites is
presented with samples on the horizontal axis and metabolites
on the vertical axis (Top 30 shown by default). Colors indicate
relative abundance: red denotes higher abundance, blue lower
abundance. Note that Z-score normalization was applied,
enabling comparison of the same metabolite across samples
horizontally, but not across different metabolites vertically
(Figure 6E).

3.3.3 Metabolite enrichment analysis
KEGG hierarchical clustering bar plots and KEGG enrichment

bubble charts indicated that metabolic pathways were the most
significantly enriched category (Figures 7A, B). A correlation
network diagram was constructed using the top 30 most
significantly differential metabolites. Correlation pairs were
identified based on computed correlation coefficients, and those
with |rho| > 0.7 were selected for network visualization. This
network illustrates relationships between metabolite abundances,
highlighting strongly correlated metabolites and emphasizing
those of particular interest. Each node represents a metabolite,
and nodes with more connections indicate metabolites that may
influence or be influenced by a larger number of other compounds
(Figure 7C).

The KEGG enrichment bar graph, based on GSEA analysis
of KEGG pathways using the smallest p-values and FDR values,
revealed that the top 30 metabolites were primarily associated
with the biosynthesis of plant secondary metabolites (Figure 8A).
The KEGG enrichment ES (enrichment score) line plot currently
did not show significant enrichment for terpenoid and steroid
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FIGURE 3

Unigene expression differences and enrichment analysis. (A) STAMP plot results indicate a high proportional representation of ABC transporters. (B)
UPGMA analysis showing sample clustering based on species diversity; a smaller branch length indicates higher similarity between samples. (C) GO
enrichment bubble chart visualizing enriched GO terms, generated using ggplot2. (D) GO enrichment bar chart: bars are colored according to the
three major GO categories (Biological Process, Cellular Component, Molecular Function), with same-colored bars representing different GO terms
within a category. (E) Species abundance and clustering analysis: based on abundance tables, inter-sample clustering was performed using the
Bray–Curtis distance matrix, and results were integrated with species abundance profiles for visualization.

biosynthesis pathways (non-significant p-value and FDR); however,
the ES values suggest a potential weak trend toward enrichment
(Figure 8B).

A correlation heatmap was generated using the top
30 most significant differential metabolites. Red indicates
a stronger positive correlation, blue a stronger negative
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FIGURE 4

(A) Manhattan plot: a type of scatter plot used to display a large number of non-zero, widely fluctuating values—first applied in genome-wide
association studies (GWAS) to highlight significantly associated genomic loci. (B) Manhattan diagram: the horizontal axis represents taxonomic units
at the species level, arranged by their full taxonomic names (from phylum to species). (C) Redundancy Analysis (RDA) biplot: each point represents a
sample. Closer distances between points indicate higher similarity in community structure. Arrows represent different environmental factors. An
acute angle between two factors indicates a positive correlation; an obtuse angle indicates a negative correlation. The length of an arrow reflects the
strength of the factor’s influence. The projection of a sample point onto an arrow approximates the value of that factor in the corresponding sample.
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FIGURE 5

(A) Differential ion statistics: the number of significantly up- (red) and down-regulated (blue) ions for each comparison group, based on
post-treatment quantitative ion data. (B) HMDB SuperClass classification and annotation statistics. (C) PLS-DA score plot: the horizontal and vertical
axes represent the first (PC1) and second (PC2) principal components, respectively. (D) Permutation test plot: after randomly permuting sample
group labels, modeling and prediction were repeated; each model corresponds to a set of R² and Q² values. (E) PCA analysis between groups. (F)
PLS-DA analysis between groups.

Frontiers in Microbiology 11 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1628315
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zhili et al. 10.3389/fmicb.2025.1628315

FIGURE 6

(A) Box plot of the top 30 most significantly differential metabolites (smallest p-values). (B) ROC curves of the top differentially abundant metabolites.
(C) Volcano plot: red indicates significantly up-regulated metabolites, blue represents significantly down-regulated metabolites, and gray denotes
non-significant metabolites. (D) Combined ROC curve. (E) Heatmap of differential metabolites: the horizontal axis corresponds to samples, and the
vertical axis shows selected differentially expressed metabolites.
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FIGURE 7

(A) KEGG hierarchy bar chart: the horizontal axis indicates the number of differentially abundant metabolites within each pathway, the vertical axis
shows pathway names, and the color represents the top-level KEGG category. (B) KEGG enrichment bubble plot. (C) Correlation network diagram:
the top 30 most significant metabolites (lowest P-values) were selected. Correlation pairs with |ρ| > 0.7 were identified and used to construct a
correlation network. Unlike regulatory network diagrams based on KEGG pathways, this visualization reflects associations between metabolite
abundances, highlighting strongly correlated metabolite pairs and emphasizing metabolites of particular interest. Each node represents a metabolite,
and nodes with more connections suggest broader functional interactions and potential influence on other metabolites.

correlation. The statistical significance of each correlation
was assessed, with smaller p-values indicating more reliable
correlations (Figure 8C). Based on KEGG annotations of
the differential metabolites, a regulatory network between
metabolites and pathways was constructed, demonstrating that
metabolic pathways form the core of the regulatory mechanism
(Figure 8D).

3.4 Results of joint analysis between
differential species and differential
metabolites

Correlation analyses were performed for differential species
and differential metabolites in single-cohort and two-cohort
comparisons, and correlation graphs were displayed for
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FIGURE 8

(A) KEGG enrichment bar chart: displays the top 30 metabolite sets with the smallest P-values and FDR values from GSEA analysis of KEGG pathways.
The horizontal axis represents the normalized enrichment score (NES) of the metabolite set, and the vertical axis shows the names of the KEGG
metabolite sets. Color indicates the P-value. (B) KEGG enrichment ES line chart. (C) Correlation heatmap of differential metabolites: the top 30 most
significant metabolites (lowest P-values) were selected. Red indicates stronger positive correlations, and blue indicates stronger negative
correlations. The significance of each correlation is assessed based on the P-value. (D) Regulatory network diagram: depicts interactions between
differential metabolites and pathways based on KEGG pathway annotations.

relationship pairs that met the correlation threshold (threshold:
rho ≥ 0.5 and p < 0.05); in correlation analyses of differential
species and differential metabolites in single-cohort comparisons,
if the number of relationship pairs satisfying the threshold
was greater than 20, only the 20 pairs with the smallest p-
values were displayed, and in correlation analyses of differential
species and differential metabolites (across all comparisons), if
the number of relationship pairs satisfying the threshold was
greater than 50, only the 50 pairs with the smallest p-values
were displayed.

3.4.1 Correlation analysis between differential
species

Spearman correlations were calculated between differential
species, and a correlation heatmap was drawn based on the
correlation results. Taking the Patients vs. Healthy group
comparison as an example: the colors in the graph represent the
correlation, with red indicating a positive correlation and blue
indicating a negative correlation; the darker the color, the stronger
the correlation; the upper right corner represents the value of
the correlation coefficient, and the larger the absolute value, the
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stronger the correlation; the lower left corner represents statistical
significance, and significant correlations are marked with asterisks
(∗p < 0.05, ∗∗p < 0.01, ∗∗p < 0.001). From the above figure, we can
identify the significantly correlated differential species (Figure 9A).

3.4.2 Correlation analysis between differential
metabolites

Spearman correlations were calculated between differential
metabolites, and a correlation heatmap was drawn based on
the correlation results. Taking the Patients vs. Healthy group
comparison as an example: the colors in the graph represent the
correlation, with red indicating a positive correlation and blue
indicating a negative correlation; the darker the color, the stronger
the correlation; the upper right corner represents the value of
the correlation coefficient, and the larger the absolute value, the
stronger the correlation; the lower left corner represents statistical
significance, and significant correlations are marked with asterisks
(p < 0.05, ∗∗p < 0.01, ∗∗p < 0.001). From the above figure,
we can identify the significantly correlated differential metabolites
(Figure 9B).

3.4.3 Correlation analysis between differential
species and differential metabolites

Spearman correlations were calculated between differential
species and differential metabolites, and correlation heatmaps and
correlation network diagrams were drawn based on the correlation
results. Taking the Patients vs. Healthy group comparison as an
example: the colors in the correlation heatmap represent the
correlation, with red indicating a positive correlation and blue
indicating a negative correlation; the darker the color, the stronger
the correlation; filled cells represent statistical significance, and
significant correlations are labeled with asterisks (p < 0.05, ∗∗p
< 0.01; Figure 9C). For the correlation network diagram between
differential species and differential metabolites: taking the Patients
vs. Healthy subgroup as an example, different nodes in the diagram
represent different microbial flora or metabolites, where microbial
flora are represented by triangular nodes (green) and metabolites
by circular nodes (purple); a line between a microbial flora and
a metabolite represents a significant correlation between the two,
with a solid line indicating a positive correlation and a dashed line
indicating a negative correlation. Note: only relationship pairs that
satisfy the set correlation threshold and have p < 0.05 are displayed
in the results (Figure 9D).

3.4.4 Mantel test analysis
Using the Patients_vs_Healthy grouping as an example, a

Mantel test was performed to analyze the correlation between
differential microbial species and differential metabolites. In the
corresponding heatmap, the color of each block indicates the
strength of the correlation between metabolic groups: redder shades
represent correlation coefficients closer to 1, indicating a stronger
positive correlation, while bluer shades represent coefficients closer
to −1, indicating a stronger negative correlation. The network
diagram in the lower left corner shows the correlation results
between the top 10 most significant differential species and

the top 10 most significant differential metabolites. Node color
represents the p-value, and line thickness corresponds to the r-
value, with thicker lines indicating stronger correlations. For clarity
of visualization, the 10 species and metabolites with the smallest p-
values are selected by default. The species and metabolite datasets
can be interchanged during analysis to obtain correlation results
among the species themselves and between species and metabolites
overall. The Mantel test analysis and visualization were conducted
using the Correlation Network Heat Map Cloud tool. If available,
environmental or clinical metrics, as well as alpha diversity indices,
can also be incorporated into the analysis (Figure 10A).

3.4.5 Procrustes analysis
Procrustes analysis was applied to differential species and

metabolites using the Patients_vs_Healthy subgroup as an example.
In the resulting figure, different colors represent different
subgroups; each line segment corresponds to one sample, with one
end indicating the microbiome data point and the other end (solid
triangle) representing the metabolite data point from the same
sample. The connecting line represents the residual vector between
the two ordination configurations, with shorter lines indicating
higher consistency between the two datasets. The value m² denotes
the sum of squared errors between the configurations—a smaller
value indicates greater consistency. The P-value was generated via
Monte Carlo simulation, where p < 0.05 indicates a statistically
significant agreement between the datasets, and p ≥ 0.05 indicates
non-significance (Figure 10B).

Functional analysis: Using the Patients_vs_Healthy subgroup
as an example, Venn analysis was performed on functional
entries derived from the two omics datasets. The results indicate
overlapping functional pathways, including Metabolic pathways,
Glycerophospholipid metabolism, Sphingolipid metabolism, and
Alpha-linolenic acid metabolism (Figure 10C).

4 Discussion

In recent years, the impact of gut flora on diseases has received
increasing attention (Li et al., 2025; Shen et al., 2024). The intestinal
microbiota consists of intestinal microorganisms and the intestinal
environment, and is known as the “second human genome” due
to its complex composition. This “second human genome” is not
only involved in the decomposition, digestion, and absorption of
amino acids, sugars, and fats, but also provides a variety of nutrients
required by the host and promotes the growth and development
of intestinal epithelial cells; in addition, it inhibits the proliferation
of pathogenic bacteria, resists pathogen invasion, and regulates the
intestinal mucosal immune response (Ghosh et al., 2022). In this
study, fecal samples from CRA patients were analyzed using 16S
rRNA gene sequencing and untargeted metabolomics. Microbial
variations identified in this prospective study distinguished CRA
patients from controls, and beta diversity analysis (PCA and
PCoA) showed statistically significant differences in microbial
clustering between the CRA group and controls (p < 0.05).
Additionally, taxonomic statistical analyses were performed at
the phylum and genus levels to clarify the dominant microbiota
composition. At the phylum level, Bacillota (Thick-walled Bacteria),
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FIGURE 9

(A) Correlation analysis among different species: Spearman correlation coefficients were computed among various species, and a correlation
heatmap was generated based on the results. (B) Correlation analysis among differential metabolites: Spearman correlations were calculated
between differentially abundant metabolites, and a corresponding correlation heatmap was constructed. (C) Correlation analysis between differential
species and differential metabolites: Spearman correlation analysis was conducted between differential microbial species and differential
metabolites. Correlation heatmaps and network diagrams were generated to visualize the associations. (D) Correlation network diagram between
differential species and differential metabolites.
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FIGURE 10

(A) Mantel test Analysis (B) Procrustes analysis T (C) Functional analysis. Taking the Patients_vs_Healthy group as an example, Venn analysis was
conducted on the functional items of the two omics differences.

Bacteroidota, Pseudomonadota, Actinomycetota (Actinobacteria),
and Clostridia-related taxa dominated in terms of relative
abundance. Differential analysis of intestinal flora at the species
abundance level revealed significant differences in the taxonomic
composition of intestinal flora between healthy individuals and

CRA patients. KEGG functional enrichment analysis showed
that the differential flora were mainly involved in metabolic
processes, including metabolic pathways, biosynthesis of secondary
metabolites, microbial metabolism in diverse environments,
biosynthesis of amino acids, and biosynthesis of cofactors. In
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FIGURE 11

A schematic diagram of intestinal polyps caused by intestinal flora imbalance (The graphical representations were independently designed using AI
Illustrator based on data from: (i) inter-group differences in gut microbial species abundance (Section 3.2.2), (ii) differential metabolite analysis
(Section 2.3.2), and (iii) Mantel test results.).

this study, three intestinal microbial species—Fusobacterium
mortiferum, Alistipes spp., and Bacteroides fragilis—were validated
to distinguish between healthy individuals and CRA patients,
among which Alistipes spp. showed the best discriminatory ability.
Alistipes, a relatively new sub-branch of the phylum Bacteroidota,
is commonly isolated from the human intestinal microbiota and
is known to not only provide energy for intestinal epithelial
cells but also regulate the host’s immune response (Song et al.,
2024). In some CRC patients, the abundance of Alistipes in
the gut was significantly altered, which may be closely related
to the development of CRC (Wada et al., 2022). Alistipes may
also metabolize and produce certain biologically active substances
that are potentially anticarcinogenic; however, some harmful
Alistipes strains can promote inflammation and tumor formation
(Vallianou et al., 2021). Fusobacterium mortiferum commonly
affects human health as a pathogenic bacterium (Ow et al.,
2023): its abundance has been found to be increased in CRA
patients with APC mutations, and such enrichment in APC-
mutant patients has been shown to be associated with a higher
incidence of CRC (Siskova et al., 2020). Experiments on CRC
mouse models have shown that Fusobacterium mortiferum may
be involved in distant metastasis of CRC, and other studies
have reported elevated Fusobacterium mortiferum abundance,
reduced T-cell infiltration, and decreased overall survival in CRC
patients (Deng et al., 2025). Bacteroides fragilis can induce a
series of inflammatory responses via Bacteroides fragilis toxin
(BFT), which can lead to chronic intestinal inflammation, tissue
damage, and ultimately CRC (de Vos et al., 2022). Simpson
et al. found that the pro-carcinogenic bacterium Bacteroides
fragilis has the potential to initiate and promote CRC (Simpson
et al., 2021). In conclusion, we hypothesize that Fusobacterium
mortiferum, Alistipes spp., and Bacteroides fragilis are closely
associated with CRA and even CRC, and that increased abundance

of these taxa may promote CRC progression (Banaszak et al.,
2023).

Several metagenomic studies have found that the abundance
of Bacteroidota (Bacteroidetes) is reduced in the intestines of
patients with colorectal adenomas, whereas the abundance of
Pseudomonadota (Proteobacteria) and Bacillota (Thick-walled
Firmicutes) is significantly increased (Leeuwendaal et al., 2022).
In particular, the enrichment of conditional pathogenic bacteria
such as Fusobacterium nucleatum and Escherichia coli is strongly
associated with the development of colorectal adenomas (Zhao
et al., 2019). These flora may be involved in adenoma formation
by promoting inflammatory responses, disrupting intestinal barrier
function, and inducing DNA damage. Metabolites of intestinal
flora play an important role in the development of colorectal
adenomas (Zhang et al., 2023). Short-chain fatty acids (SCFAs,
such as butyric acid, propionic acid, and acetic acid)—the main
products of dietary fiber fermentation by intestinal flora—have
anti-inflammatory properties, maintain intestinal barrier integrity,
and inhibit tumor cell proliferation (Ozcam and Lynch, 2024).
It has been found that patients with colorectal adenomas have a
significantly lower abundance of butyrate-producing bacteria in
their intestines, leading to decreased butyric acid levels, which
may weaken its protective effect on the intestinal mucosa. In
addition, secondary bile acids produced by gut flora metabolism
are significantly elevated in patients with colorectal adenomas,
and these metabolites may promote adenoma formation by
inducing oxidative stress and DNA damage. Interactions between
the intestinal flora and the host involve complex molecular
mechanisms (Rinninella et al., 2019). Studies have shown that
flora metabolites can affect cell proliferation, apoptosis, and
differentiation by regulating host cell signaling pathways (e.g.,
Wnt/β-catenin, NF-κB, and PI3K/AKT pathways) (Liu et al.,
2021). For example, Clostridium perfringens promotes abnormal

Frontiers in Microbiology 18 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1628315
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Zhili et al. 10.3389/fmicb.2025.1628315

proliferation of colorectal epithelial cells by activating the Wnt/β-
catenin signaling pathway (Han et al., 2021). In addition, flora
metabolites can influence host gene expression through epigenetic
modifications (e.g., DNA methylation and histone modifications),
which may be involved in adenoma development (Zolkiewicz et al.,
2020).

Metabolomics results showed that among differential
metabolite ions, 1,254 were significantly upregulated and 859 were
significantly downregulated. Partial least squares discriminant
analysis (PLS-DA) score plots, permutation test plots, and
principal component analysis (PCA) results indicated that
the model was not overfitted. ROC curves of top differential
metabolites and the combined ROC curve showed an AUC
of 0.9773, indicating high diagnostic value and high accuracy
of the differential targets. The differential metabolites mainly
included 3-methyl-2-oxindole, histidylproline, nonaethylene
glycol, tetrabutylammonium, N-(5-acetamidopentyl)acetamide,
trans-ferulic acid, palmitamide (cis), cis-9,12-octadecadien-1-ol,
and threonylproline, which are mainly categorized into tryptophan
metabolism-related metabolites, protein degradation products,
amides, and phenolic acid metabolites. KEGG hierarchical cluster
heatmaps and KEGG enrichment bubble plots showed that the top
30 metabolites (ranked by KEGG enrichment significance) were
mainly involved in the biosynthesis of plant secondary metabolites;
these metabolites can regulate the composition of intestinal flora,
promote the growth of probiotics (e.g., Bifidobacterium and
Lactobacillus), and inhibit the proliferation of pathogenic bacteria,
thereby reducing intestinal inflammation and the production
of carcinogens (e.g., secondary bile acids) (Chen et al., 2025).
Metabolomics analysis showed that compared to the healthy
group, patients with colorectal adenomas had significantly lower
levels of short-chain fatty acids (SCFAs, such as butyric acid,
propionic acid, and acetic acid) in their intestines, whereas the
levels of secondary bile acids (e.g., deoxycholic acid and lithocholic
acid) were elevated (Chandrasekaran et al., 2024). Reduced butyric
acid levels in the intestines of CRApatients may weaken its
protective effect on the intestinal mucosa, while the accumulation
of secondary bile acids may promote adenoma formation by
inducing oxidative stress and DNA damage (Satchwell et al., 2024).
It was further shown that butyric acid not only inhibits tumor cell
proliferation but also exerts antitumor effects by regulating histone
deacetylase (HDAC) activity to influence gene expression. In
addition, this study found that the levels of polyamine metabolites
were significantly increased in patients with colorectal adenomas,
and these metabolites may be involved in adenoma development
by promoting cell proliferation and inhibiting apoptosis (Sasso
et al., 2023).

Mantel test analysis revealed that the metabolite 10-
Hydroxycamptothecin exhibited the strongest correlation
with the microbial species 1-Kestose, while the differential species
Bacteroides was most strongly correlated with the metabolite
hydroxyoctadecanoic acid. Additionally, Acidaminococcus showed
the strongest correlation with the metabolite 13-tetradecen-2,
4-diyn-1-ol. Procrustes analysis, combined with Venn analysis of
functional entries derived from the two omics datasets, highlighted
the following significantly enriched pathways: Metabolic pathways,
Glycerophospholipid metabolism, Sphingolipid metabolism,

and Alpha-linolenic acid metabolism. Glycerophospholipid
metabolism contributes to CRA development through multiple
mechanisms, including inflammation, oxidative stress, and
activation of signaling pathways (Sasso et al., 2023). Specifically,
phosphatidylinositol—a key glycerophospholipid metabolite—
serves as an important regulator of the PI3K/AKT/mTOR pathway,
whose aberrant activation may promote cell proliferation and
inhibit apoptosis. Additionally, mutations in the APC gene,
frequently observed in colorectal adenomas, lead to constitutive
activation of the Wnt/β-catenin pathway. Dysregulated lipid
metabolism may synergize with this pathway to accelerate tumor
progression (Nigam et al., 2022). In sphingolipid metabolism,
reduced ceramide levels and elevated sphingosine-1-phosphate
(S1P) contribute to inhibited apoptosis and aberrant cell
proliferation. S1P helps maintain the tumor microenvironment
by recruiting immune cells such as macrophages and promoting
the release of proinflammatory factors. Abnormal sphingolipid
metabolism may also increase reactive oxygen species (ROS)
production, leading to DNA damage in intestinal epithelial
cells (Suler Baglama and Trcko, 2022). Growing evidence
indicates that gut microbial dysbiosis is a key environmental
factor in the development of CRC and its precancerous lesions
(Lu et al., 2019). Adenomatous tissues are characterized by
increased bacterial abundance and diversity, particularly within
genera such as Aspergillus and Clostridium (Yeoh et al., 2021).
During CRC development, certain bacteria—including Bacillus
and Clostridium—can trigger mucosal inflammation, mediate
oncogenic signaling pathways, and suppress host immune
responses, thereby promoting adenoma formation (Braga et al.,
2024). The presence of adenomas may further disrupt microbial
balance, increasing the abundance of opportunistic pathogens
such as Pseudomonas and Streptococcus, which alter intestinal
homeostasis, enhance inflammatory infiltration, and directly or
indirectly elevate adenoma risk.

Fecal analyses of CRA patients and healthy individuals revealed
no significant differences in microbial abundance or α-diversity,
but β-diversity was markedly altered. These differences were
primarily driven by taxa within the phylum Aspergillus and were
not significantly associated with patient gender. Many studies
have identified Clostridium difficile as an important bacterium
associated with CRA. Short-chain fatty acids (SCFAs) play a
crucial role in maintaining intestinal mucosal homeostasis. Group
3 innate lymphoid cells (ILC3s) in the colon express numerous
SCFA receptors. Genetic deletion of these receptors impairs
ILC3 proliferation and IL-22 production, weakening antimicrobial
immunity. SCFAs, as major microbial metabolites, can directly
activate ILC3s through receptor binding. Tryptophan, a metabolic
byproduct of gut microbiota, serves as both a ligand for the aryl
hydrocarbon receptor (AHR) and an energy source for lactobacilli.
AHR is a key transcriptional regulator supporting ILC3 function
and differentiation. Additionally, gut microbiota can directly
stimulate ILC3s by inducing IL-1β and IL-23 production.

Gut dysbiosis is both a cause and consequence of chronic
inflammation. Although acute inflammation helps eliminate toxins
and initiate tissue repair, persistent overexpression of inflammatory
factors or impaired resolution pathways can lead to chronic
inflammation, which promotes tumor development through
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chemotaxis, proliferation, angiogenesis, invasion, and metastasis.
In the digestive system, controlling chronic inflammation is
critical for preventing and improving the prognosis of colorectal,
pancreatic, gastric, and hepatic cancers. Elevated abundances of
Clostridium perfringens and Fusobacterium nucleatum have been
observed in fecal samples from CRA patients, with progressive
increases from healthy individuals to CRA and CRC cases. In
conclusion, the abundance of Clostridium perfringens correlates
positively with the degree of atypia in polyp tissues. Even in small
polyps, Clostridium abundance was higher than in normal mucosa.
A schematic diagram summarizing these findings is provided
(Figure 11).

Nevertheless, this study is subject to several limitations. A
principal limitation is the complexity and heterogeneity inherent
in data derived from multi-omics approaches. For example,
metagenomic and metabolomic analyses frequently uncover a
wide range of microbial and metabolic alterations associated with
CRA; however, discerning causative factors from mere associations
remains a significant challenge. Furthermore, the interpretation of
multi-omics data is often complicated by confounding variables
such as age and body mass index (BMI), which can impact both
the microbiome and metabolome. Consequently, the results of
this study should be interpreted with caution and warrant further
experimental validation.

The present study identified a distinct compositional signature
that links alterations in gut microbiota and metabolomic profiles
to the progression of CRA. However, it is important to note
that these correlative findings do not imply causation. To
transition from associative mapping to mechanistic validation,
future research should employ hypothesis-driven functional
frameworks. Specifically, germ-free murine transplantation models
could be utilized to isolate the oncogenic potential of candidate
bacterial consortia, while vertical microbiota transfer experiments
in genetically predisposed models might elucidate temporal
pathogenicity. Additionally, in vitro 3D organoid co-culture
systems—enriched with bacterial metabolites (e.g., the lithocholic
acid derivatives identified in this study)—would facilitate a precise
examination of microbe-associated molecular pattern (MAMP)
signaling dynamics through transcriptomic and phosphoproteomic
analyses. These complementary approaches are essential to
bridging the current correlative gap by testing whether microbial
biomarkers serve as primary initiators in adenoma genesis
or function as microenvironmental modulators that promote
tumor evolution.

Incorporating diverse fecal metabolomic biomarkers into
current CRA screening protocols holds great potential to
substantially improve early detection and diagnosis. Initially, fecal
metabolomics facilitates the identification of specific metabolites
that are altered in patients with CRA relative to healthy individuals.
For example, research has demonstrated that certain bioactive
lipids—including polyunsaturated fatty acids, secondary bile acids,
and sphingolipids—are elevated in individuals with CRA; these
metabolites may signify early events in carcinogenesis and serve
as potential biomarkers for early detection (Kim et al., 2020).
Furthermore, integrating metabolomics with microbiome data can
yield a more comprehensive understanding of the gut environment
in CRA patients. An integrative analysis of fecal metagenomics

and metabolomics has uncovered significant interactions between
bacterial and host metabolites, which outperform traditional
diagnostic methods [e.g., fecal occult blood test (FOBT)] in CRC
diagnosis (Clos-Garcia et al., 2020)—indicating that a similar
methodology could be applied to CRA screening. Additionally,
targeted metabolomic analyses have identified nucleosides in
serum samples that exhibit a strong correlation with CRA
and CRC; these findings hold potential for translation to fecal
metabolomics, enabling the identification of analogous nucleoside
biomarkers in stool samples and thus providing a non-invasive
screening tool (Zheng et al., 2023). The development of diagnostic
models utilizing metabolomic data represents another promising
avenue. For instance, multi-matrix metabolomic analyses have
been employed to develop classifiers capable of distinguishing
between cancer subtypes, cancer stages, and microsatellite status
based on significant metabolites; such models could be adapted to
specifically target adenomas, potentially enhancing early detection
rates (Zhang et al., 2024). Moreover, fecal fatty acid profiling has
demonstrated potential as a CRC screening tool, with alterations
in the fecal fatty acid metabolome observed in CRC patients
compared to healthy controls; this methodology could be extended
to adenoma screening by identifying specific fatty acids indicative
of adenoma presence (Zhang et al., 2021). Finally, incorporating
these metabolomic biomarkers into current screening protocols
necessitates validation through large-cohort studies to confirm
their reliability and efficacy. The utilization of automated fecal
biomarker profiling systems could facilitate this integration,
offering a convenient and efficient approach for screening large
populations (Kraemer et al., 2020).

We will explore feasible pathways to develop clinically
applicable testing platforms, such as integrated detection systems
based on multiplex PCR, NGS panels, mass spectrometry, or
microfluidic chips. Critical priorities include streamlining sample
processing workflows, enabling automation, controlling costs, and
reducing turnaround time (TAT). Concurrently, we will address
the need for standardized bioinformatics analysis pipelines and
simplified clinical interpretation of results. In future studies,
we will isolate and culture key candidate bacterial strains for
co-culture validation with normal human colonic epithelial cell
lines, adenoma-derived cell lines, or patient-derived colonic
organoids. We will specifically assess the direct regulatory effects
of these bacteria (or their metabolites/supernatants) on host cell
proliferation, apoptosis, migratory capacity, and inflammatory
responses. Concurrently, we will monitor dynamic changes in
critical metabolites (butyrate, deoxycholic acid) in co-culture
systems. Through exogenous supplementation of metabolites
(e.g., sodium butyrate) or application of specific inhibitors,
we will investigate whether particular metabolites mediate the
observed phenotypic effects and delineate their underlying
signaling pathways.
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