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Wei Chen2* and Hongguang Ren1* 
1 Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China, 2 School of 
Computer, National University of Defense Technology, Changsha, China, 3 Department of 
Stomatology, Hainan Hospital of Chinese PLA General Hospital, Sanya, China 

Introduction: Antibiotic resistance is emerging as a critical global public health 
threat. The precise prediction of bacterial antibiotic resistance genes (ARGs) 
and phenotypes is essential to understand resistance mechanisms and guide 
clinical antibiotic use. Although high-throughput DNA sequencing provides a 
foundation for identification, current methods lack precision and often require 
manual intervention. 
Methods: We developed a novel deep learning model for ARG prediction by 
integrating bacterial protein sequences using two protein language models, 
ProtBert-BFD and ESM-1b. The model further employs data augmentation 
techniques and Long Short-Term Memory (LSTM) networks to enhance feature 
extraction and classification performance. 
Results: The proposed model demonstrated superior performance compared 
to existing methods, achieving higher accuracy, precision, recall, and F1-score. 
It significantly reduced both false negative and false positive predictions in 
identifying ARGs, providing a robust computational tool for reliable gene-
level resistance detection. Moreover, the model was successfully applied to 
predict bacterial resistance phenotypes, demonstrating its potential for clinical 
applicability. 
Discussion: This study presents an accurate and automated approach for 
predicting antibiotic resistance genes and phenotypes, reducing the need for 
manual verification. The model offers a powerful technical tool that can support 
clinical decision-making and guide antibiotic use, thereby addressing an urgent 
need in the fight against antimicrobial resistance. 
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1 Introduction 

Bacterial antibiotic resistance transmission has become one of the greatest threats to 
global public health, with an estimated 700,000 deaths worldwide attributed to bacterial 
resistance, and this number is expected to rise to 10 million by 2050 (Sunuwar and 
Azad, 2021; Lázár and Kishony, 2019). Antibiotic Resistance Genes (ARGs) can be 
transmitted between different strains through various mediums such as food, water, 
animals, and humans, with hospital environments particularly facilitating the spread of 
resistant phenotypes and reducing the efficacy of antibiotic treatments (Karkman et al., 
2018; Wang et al., 2018). Therefore, accurately identifying resistance genes and predicting 
strain resistance phenotypes is crucial for guiding clinical medication. 
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The advent of high-throughput DNA sequencing technology 
now provides a powerful tool for profiling the entire DNA 
complement, including ARGs, which encode proteins that confer 
resistance to antibiotics (Arango-Argoty et al., 2018). Focusing 
on DNA/protein sequences, bioinformatics is widely applied in 
the identification and analysis of resistance genes. Traditional 
identification methods are based on the computational principle of 
comparison of the ARGs database, using programs such as BLAST, 
Bowtie, or DIAMOND with a preset similarity cutoff and alignment 
length requirement (Boolchandani et al., 2019; Lakin et al., 2017; 
Li and Durbin, 2009). However, the false negative rate can be very 
high, that is a large number of actual ARGs will be predicted as 
non-ARGs by the best hit approaches above (Arango-Argoty et al., 
2018). At the same time, the high sequence similarity between some 
non-resistant and resistant genes may also lead to false-positive 
predictions (Mathys et al., 2014; Fitzgibbon et al., 2021). 

Comparatively, the AI-based algorithm for ARGs prediction 
demonstrated superior predictive performance, which could 
effectively reduce both false-negative and false-positive prediction 
outcomes simultaneously (Sunuwar and Azad, 2021; Alley et al., 
2019; Li et al., 2018; Riesselman et al., 2018; Su et al., 
2019; Sakagianni et al., 2023; Kim et al., 2022). For example, 
DeepARG (Arango-Argoty et al., 2018) effectively identifies 
ARGs by comparing experimental sample data with known 
sequences using a multilayer perceptron model. Additionally, 
deep learning methods like HMD-ARG (Li et al., 2021) 
have successfully distinguished between various resistance gene 
antibiotic group categories. These methods uniformly employ 
either conventional or deep learning models, which not only exhibit 
poor interpretability but also yield predictions constrained by 
training data, resulting in limited scalability. 

To solve the problems above, we designed a novel ARGs 
prediction model by integrating pretrained protein language 
models for feature encoding and long short-term memory (LSTM) 
networks with multi-head (MH) attention mechanisms for feature 
extraction (Elnaggar et al., 2021; Al-Deen et al., 2021; Yu 
et al., 2019; Rives et al., 2021). Since this model is primarily 
based on large-scale pretrained protein encoding processes, it 
can enhance biological interpretability from the perspective of 
protein linguistics while simultaneously improving scalability for 
predicting diverse bacterial proteins. Finally, a comparison with 
traditional nucleotide-based (best hit) and emerging AI-based 
ARGs identification methods shows that our model outperforms 
these methods in various metrics such as accuracy, precision, 
recall, and F1-score, which means a significantly reduction of both 
false-negative and false-positive prediction rates across different 
microbial communities. 

2 Materials and methods 

2.1 Overall framework 

The deep learning framework (Figure 1) proposed in this 
paper consists of four main modules, which are separately feature 
extraction module, data processing module, classification model 
and result integration module. The relevant codes can be found on 
GitHub: https://github.com/wr-sky/ARGs/tree/main/Code. 

Firstly, we utilize two different protein language models 
[ProtBert-BFD (Elnaggar et al., 2021) & ESM-1b (Rives et al., 2021)] 
to extract features from proteins sequences, which can facilitate 
both data augmentation and prediction accuracy compared with 
the single-language model. Secondly, by cross-referencing two 
protein language models, we designed a novel data augmentation 
method to enhance less prevalent ARGs examples during training 
process, which makes the training set more balanced. Thirdly, we 
used two semantic-based encoding models (LSTM & MH-LSTM) 
to classify the embedding results separately from ProtBert-BFD and 
ESM-1b. Finally, our framework provides a 16-dimension vector by 
integrating two classification results above. The position with the 
maximal value will be chosen and its corresponding ARGs type is 
the final prediction result. 

2.2 Protein sequence 

To ensure the authority and comparability of the data, this 
study primarily uses data from DeepARG and HMD-ARG as the 
basic ARGs dataset (Arango-Argoty et al., 2018; Li et al., 2021). 
Besides, 2,000 non-resistant genes reported in HyperVR (Ji et al., 
2023) were included for related experiments. Protein sequences 
in three datasets (Table 1) are compared with blastp, removing 
completely identical sequences (identity = 100% & coverage = 
100%). For ease of reference and result reproduction, detailed 
information of the protein sequence in Table 1 are uploaded to 
GihHub: https://github.com/wr-sky/ARGs/tree/main/Data. 

All ARGs in Table 1 are categorized into 16 groups. Aside 
from the ARGs categorized as “other”, some resistance gene 
groups (marked in black) are more abundant, particularly those 
associated with bacitracin and beta-lactam resistance. In contrast, 
the remaining resistance gene groups (marked in red) are less 
prevalent. Each protein sequence, including the resistance or 
non-resistance genes, will be taken as initial input for our 
proposed framework. 

2.3 Feature extraction 

ARGs often contribute to bacterial metabolism through specific 
structures (both 2D and 3D) of the proteins they encode, 
resulting in resistance by degrading, obstructing, or expelling 
antibiotics (Darby et al., 2023; Kakoullis et al., 2021). We have 
analyzed existing protein language models and their characteristics 
(Supplementary material) (Elnaggar et al., 2021; Lin et al., 2023; 
Rao et al., 2020; Meier et al., 2021; Hsu et al., 2022). Based 
on the specifics of this study, we selected two pre-trained 
protein language models as upstream feature extractors to embed 
information carried by protein sequences. The ProtBert-BFD 
model extracts embedding vectors that capture key information 
from protein sequences and is also used in downstream tasks 
such as secondary structure prediction (Elnaggar et al., 2021). The 
ESM-1b model, through logistic regression and linear projection, 
encodes embedding features containing the secondary and tertiary 
structural information of protein sequences (Rives et al., 2021). 
Thus, this step employs these two models as feature extraction 
methods, embedding the sequence and structural features of the 
target proteins from different dimensions. 
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FIGURE 1 

Overall framework of the system architecture. (1) Feature extraction: this step utilizes two protein language models, ProtBert-BFD and ESM-1b, 
which focus on different structural information of proteins to construct two sets of embedding feature datasets. (2) Data processing: this step utilizes 
a cross-referencing data augmentation method based on the ProtBert-BFD and ESM-1b embedding results to address the issue of data imbalance 
(only for training process). (3) Classification model: by exploring different model structure combinations, it assesses the adaptability of various 
models in capturing different feature vectors, given their varied focus. (4) Result integration: it includes two different ensemble learning strategies to 
integrate results from multiple models, enhancing the overall generalization performance and predictive effectiveness of the system. 

Both models take the protein sequence as input. ProtBert-
BFD encodes each amino acid as a 30-dimensional vector. Each 
protein sequence is encoded into a 30,720-dimensional vector by 
padding 0 or vector truncation (1,024 amino acids). Similarly, ESM-
1b encodes each amino acid as a 1,280-dimensional vector and each 
protein sequence is encoded into a 1,310,720-dimensional vector 
(1,024 amino acids). 

2.4 Data augmentation 

In Natural Language Processing (NLP) tasks, data 
augmentation for small datasets is a crucial strategy to enhance 
model performance and generalization (Chen et al., 2023). 
However, due to differences between resistance gene protein 
sequences and natural language features, traditional NLP data 
augmentation strategies cannot be directly applied to this task. 
Therefore, For the first time, we designed a new data augmentation 
method for the limited antibiotic resistance data (Figure 2). This 
method exponentially increased the limited amount of resistant 
gene data (marked as red in Table 1), making the input data for 
each type of resistant gene more balanced. 

We utilize Principal Component Analysis (PCA) (Hasan and 
Abdulazeez, 2021) to decrease ESM-1b’s embedding results of 
each amino acid from 1,280 dimensions to 32 dimensions. The 
overall dimension of a protein sequence’s (1,024 amino acids) 

embedding results is 32,768, which will further be truncated to 
30,720 dimensions. For the embedding results of ProtBert-BFD, 
we use a 43-fold linear concatenation to directly extend the feature 
vector of the entire protein to 1,320,860 dimensions, which is also 
truncated to 1,310,720 dimensions. For each input, the green line 
forms one training process, and the orange line forms another 
training process, which can double the examples in less prevalent 
ARGs (red groups in Table 1). 

The overall test results, which will be illustrated in the “Results” 
section below, provide evidence to support the feasibility of such a 
transformation between the two embedding spaces. 

2.5 Classification model 

LSTM is well-suited for handling long-range dependencies in 
language data and can effectively capture contextual information 
in sequential data, making it particularly suitable for processing 
the temporal nature of linguistic data (Yu et al., 2019). On 
the other hand, MH-LSTM introduces a multi-head mechanism 
that allows for the parallel processing of multiple types of 
contextual information, further enhancing the model’s ability 
to understand the complex syntax, semantics, and ambiguity 
in language. Therefore, both LSTM and MH-LSTM are ideal 
choices for processing linguistically encoded data, as they are 
better at capturing the complex dependencies and multiple layers 
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TABLE 1 Training and testing dataset composition. 

Antibiotic 
group 

Tag Number 
(HDM-
ARG-
DB) 

Number 
(DeepARG-

DB) 

Others 

Macrolide-
lincosamide-
streptogramin 

0 1,287 1,106 Kasugamycin 

Multidrug 1 1,338 1,091 Peptide 

Others 2 260 207 Fosmidomycin 

Tetracycline 3 381 266 Tetracenomycin 

Quinolone 4 297 132 Fusidic_acid 

Aminoglycoside 5 1,249 869 Mupirocin 

Bacitracin 6 4,219 4,206 Triclosan 

Beta_lactam 7 5,921 5,195 Thiostrepton 

Fosfomycin 8 351 292 Tunicamycin 

Glycopeptide 9 316 223 Qa_compound 

Chloramphenicol 10 488 470 Streptothricin 

Rifampin 11 68 26 Puromycin 

Sulfonamide 12 91 20 Elfamycin 

Trimethoprim 13 122 82 Peptide 

Polymyxin 14 935 897 Bleomycin 

Total_1 
(Low-quality 
data removed) 

- 17,282 14,957 Aminocoumarin 

Non-ARGs 15 2,000 (HyperVR) Acriflavin 

Total_2 
(Redundant data 
removed) 

- 20,981 Multidrug-
mutation 

The dataset includes data from DeepARG, HMD-ARG and HyperVR. DeepARG data mainly 
comes from three public resistance gene databases: CARD, ARDB, and UNIPROT; The 
HMD-ARG dataset is sourced from multiple public databases including CARD, AMRFinder, 
ResFinder, ARG-ANNOT, DeepARG, MEGARes, and Resfams. The 2,000 non-resistant genes 
reported by HyperVR come from the UNIPROT database. Additionally, all samples were 
categorized into 16 antibiotic groups and resistance genes with fewer samples were integrated 
into “other” group following the standard in HMD-ARG. Small-size data are marked by 
red font. 

of contextual information in language, ultimately improving 
the model’s performance and expressive power. In this paper, 
we employed Multi-Head Attention LSTM (MH-LSTM) and 
LSTM to extract effective information while reducing the 
dimensionality of the protein embedding vector (Figure 3). By 
mixing different models, MH-LSTM can fully extract features from 
high-dimensional embedding results (ESM-1b), while LSTM can 
avoid over-abstraction of relatively low-dimensional embedding 
results (ProtBert-BFD). 

The input feature size is 30,720 dimensions for LSTM and 
1,310,720 dimensions for MH-LSTM. Both models have hidden 
layers and output layers of size 512. The final classification 
is performed by a linear layer with GELU activation, which 
takes input sizes of 512, 1,024, and 2,048 across three layers 
(Table 2). These architecture parameters were determined through 
experimentation and preliminary trials. The output of the linear 
layer is a 16-dimensional vector, with each dimension representing 
a group of ARGs (Table 1). 

2.6 Result integration 

By using ensemble learning, combining the predictions of two 
classification models can effectively reduce overfitting (Ying, 2019). 
At the same time, it increases the diversity and robustness of the 
model, thereby potentially improving prediction accuracy. In our 
proposed framework, we process the results of the two models using 
linear integration or probability maximization integration methods 
(Figure 4). 

Especially, for linear integration (Figure 4a), the probability 
values output by the two models are linearly combined, as described 
by Equations 1, 2. 

logits = a × logits 1 + b × logits 2 (1) 

y_hat = argmax 
 
logits 

 
(2) 

In this context, logits1 represents the probability vector output 
by the LSTM network, and logits2 represents the probability 
vector output by the MH-LSTM. a and b are constant coefficients, 
and their sum equals 1. Both a and b are initialized to 
0.5 and dynamically adjusted during the training process. The 
argmax() function returns the index y_hat corresponding to the 
maximum probability in the logits, which indicates the final 
predicted label. 

For probability maximization integration (Figure 4b), the 
probabilities corresponding to their predicted labels are compared, 
and the label associated with the higher probability is selected as the 
final prediction, as described by Equations 3, 4. 

max _prob_1, max _index_1 = max(logits_1) (3) 

max _prob_2, max _index_2 = max(logits_2) (4) 

max _prob_1 and max _prob_2 represent the maximum 
probability values in the probability vectors output by the two 
models. max _index_1 and max _index_2 indicate the predicted 
label types corresponding to these maximum probability values. 
The max() function computes the maximum value and its index 
in the probability vectors. Then, the sizes of max _prob_1 and 
max _prob_2 are compared, and the label associated with the larger 
probability is chosen as the final predicted type. 

Although appropriately increasing the number of models 
in ensemble learning can usually further improve prediction 
performance, it is also necessary to consider computational 
resources and effective fusion methods. Taking these factors into 
account, we adopt two models (ProtBert-BFD with LSTM & ESM-
1b with MH-LSTM) in ensemble learning. 

2.7 Training and testing 

Based on the aforementioned structures, we developed 
two overall architectures of the prediction model: Linear-
integration-based architecture (LSTM_MH-LSTM_LINEAR) 
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FIGURE 2 

Dataset augmentation based on ProtBert-BFD and ESM-1b embedding results. For ESM-1b, the embedding results of each amino acid (1,280 
dimensions) will be decreased to 32 dimensions by PCA. Each embedding results will be concatenated in order to represent a protein sequence 
(overall 32,768 dimensions) and truncated at the end according to the ProtBert-BFD’s embedding results (30,720 dimensions). For ProtBert-BFD, the 
embedding results of the whole protein sequence (30,720 dimensions) will be extended using a 43-fold linear concatenation to 1,320,860 
dimensions, which will be further truncated at the end according to the EMS-1b’s embedding results (1,310,720 dimensions). By this way, each 
example in less prevalent ARGs will be utilized twice during training process, which can potentially double the training set of the corresponding ARGs. 

and Probability-maximization-based architecture (LSTM_MH-
LSTM_MAX). We constructed datasets for training, validation, 
and test purposes. The training process includes data 
processing step, and the other two processes exclude the step 
(Figure 5). 

We used the train_test_split function from the scikit-learn 
machine learning toolkit in Python to partition the data into 
training, validation, and test sets with a ratio of 0.6/0.2/0.2. 
We also selected Adam optimizer with a learning rate of 2e-
4 for network training. To avoid overfitting, the optimizer 
includes a training termination mechanism: if the accuracy 
does not improve after 30 iterations, the training process will 
be terminated early, and the model weights will be saved. 
The final experimental results are obtained by testing the 
model on the test set. Performance evaluation is conducted 
using four metrics: accuracy, precision, recall, and F1 score, 
which provide a comprehensive assessment of the model’s 
performance. Their mathematical expressions are shown in 
Equations 5–8, respectively. 

Accuracy = 
TP + TN 

TP + TN + FP + FN 
(5) 

Precision = 
TP 

TP + FP 
(6) 

Recall = 
TP 

TP + FN 
(7) 

F1 = 2× 
Precision × Recall 
Precision + Recall 

(8) 

In this context: 

• TP (True Positive): The sample is positive, and the prediction 
is also positive. 

• FP (False Positive): The sample is negative, but the prediction 
is positive. 

• TN (True Negative): The sample is negative, and the 
prediction is also negative. 

• FN (False Negative): The sample is positive, but the prediction 
is negative. 

Precision represents the proportion of samples predicted as 
positive that are actually positive. Recall represents the proportion 
of actual positive samples that are correctly predicted as positive. 
The F1 Score considers both precision and recall, providing a 
comprehensive measure of the model’s performance. These four 
metrics collectively account for both false-negative and false-
positive scenarios. When all metrics approach 1, it indicates 
superior model performance with minimized misclassification rates 
for both negative and positive samples. 

2.8 AMR phenotype prediction 

Predicting the presence of ARGs fundamentally indicates 
whether a bacterial strain has the potential to develop a resistant 
phenotype. Comparatively, direct prediction of phenotypic 
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FIGURE 3 

The architectures of classification models. (a) LSTM: A LSTM model for classification is utilized for the relatively lower-dimensional encoded data 
from ProtBert-BFD and its augmented data. (b) MH-LSTM: A classification model that integrates LSTM with MH is utilized for the high-dimensional 
encoded data from ESM-1b and its augmented data. 

resistance can more effectively guide clinical antibiotic selection for 
bacterial infections. However, defining the antimicrobial resistance 
(AMR) phenotype of a target bacterial strain solely based on 
the aggregate features of all its resistance genes would lead to 
substantially elevated false-positive prediction rates. Therefore, 
in this subsection, we further try to adapt the architecture of 
our previously proposed model to predict the whole-bacterial 
antimicrobial resistance (AMR) phenotypes. 

In critical care, combination antibiotic therapy is often 
employed to achieve the most rapid therapeutic effect. Therefore, 
false-positive predictions should be rigorously minimized, as they 
may lead to the avoidance of first-line antibiotics that would 
have been most effective. In contrast, false-negative predictions 
in the context of multi-antibiotic regimens typically have less 
detrimental impact on overall therapeutic efficacy. As traditional 
best-hit approach has a low false-positive rate (Arango-Argoty 
et al., 2018), we incorporated this approach [CARD with blast 
(Alcock et al., 2023)] into our model as a whole-genome screening 
tool at the bacterial species level. The incorporation of CARD serves 
dual purposes: primarily filter out both negative and false-positive 
genes to reduce false-positive AMR predictions, while concurrently 
reducing computational load for downstream AI networks to 
accelerate the entire prediction pipeline. 

The training and validation processes are omitted and only the 
test process is committed. The experimental steps (Figure 6) are 
as follows. 

1) Data collection: we processed the proteome of each bacterial 
strain as a complete testing procedure. Each individual 
protein sequence from the strain was sequentially fed 
as input to our prediction system and the phenotype 
prediction result for the strain is the sum of the results for 
each protein. 

2) Protein sequence screening: each protein sequence will 
be primarily screened by CARD RGI algorithm (v3.1) 
before the prediction process. RGI screening standards are 
categorized into Strict and Perfect. For downstream analysis, 
we retained only proteins receiving positive predictions while 
filtering out all negative predictions, thereby substantially 
minimizing false-positive identifications. The relevant codes 
can be found on GitHub: https://github.com/wr-sky/ARGs/ 
tree/main/Code/3_CARD. 

3) Feature Extraction and Prediction (Similar to ARGs 
classification): for each protein sequence in a single strain, 
embedding results are extracted using ProtBert-BFD and 
ESM-1b. These results are then processed by the LSTM 
(suitable for lower-dimensional ProtBert-BFD data) and 
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TABLE 2 The optimal parameters for each structure. 

System 
structure 

Classification 
model 

Number of 
attention 
heads 

Deepth of 
LSTM 

Deepth of 
linear 
layer 

Structure 
of linear 
layer 

Dropout Loss Learning 
rate 

LSTM_MH-
LSTM_LINEAR 

LSTM - 3 3 512 × 1,024 0.256 0.5 0 

1,024 × 2,048 0.456 

2,048 × 16 0.365 

MH-LSTM 6 4 3 512 × 1,024 0.256 0.5 0 

1,024 × 2,048 0.456 

2,048 × 16 0.365 

LSTM_MH-
LSTM_MAX 

LSTM - 3 3 512 × 1,024 0.256 0.6 0 

1,024 × 2,048 0.456 

2,048 × 16 0.365 

MH-LSTM 4 5 3 512 × 1,024 0.256 0.4 0 

1,024 × 2,048 0.456 

2,048 × 16 0.365 

Different structures of each system (LSTM_MH-LSTM_LINEAR & LSTM_MH-LSTM_MAX) were tested to find out the optimal parameters suitable for ProtBert-BFD and ESM-1b embedding 
results. The parameters include number of attention heads (only for MH-LSTM), depth of LSTM, depth of linear layer (fixed), structure of linear layer (based on input and output dimensions), 
dropout (fixed), loss rate, and learning rates (fixed). A deeper network structure in MH-LSTM model is required compared with LSTM and more heads is necessitated for linear integration 
algorithm compared with the max integration algorithm. 

FIGURE 4 

The process of integrating classification results. (a) Linear integration: linear integration involves process to weight and sum the prediction 
probabilities of the two models. (b) Probability maximization integration: probability maximization integration, on the other hand, compares the 
probability values of the predicted labels from both models and the label associated with the higher probability is chosen as the final prediction. 

MH-LSTM (suitable for higher-dimensional ESM-1b 
data) with the best model parameters to realize transfer 
application prediction. 

3 Results 

3.1 LSTM and MH-LSTM performance 
testing 

Based on the original data from DeepARG-DB, we test 
the LSTM and MH-LSTM performance on the ProtBert-
BFD (Figure 7a) and ESM-1b (Figure 7b) embedding results 
respectively. For the ProtBert-BFD, LSTM with 3 layers network 
structure achieved the best performance with a clear advantage 
compared with other layers and MH-LSTM structures. This is likely 
because the low-dimensional data (30-dimensional ProtBert-BFD 

encoding per amino acid) is more suitable for small-scale, shallow 
networks, while the multi-head attention mechanism in MH-LSTM 
may lose some critical information. The embedding results of 
ESM-1b, which encodes each amino acid into 1,280 dimensions, 
is significantly higher than ProtBert-BFD’s results. In this case, 
MH-LSTM with 6 layers network structure achieved the best 
performance. This improvement is due to the increased overall 
data dimensionality, which favors deep MH-LSTM networks for 
effective key data abstraction and extraction, while reducing 
interference from noisy information. In conclusion, proteins 
encoded by ProtBert-BFD are more suitable for LSTM structures 
with fewer layers (D3), while proteins encoded by ESM-1b is 
better suited for MH-LSTM structures with relatively more layers 
(D4∼D6). However, an excessive number of LSTM layers (D7 
as an example) increases the model’s parameter count, leading 
to overfitting, which in turn causes a significant decline in 
test performance. 
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FIGURE 5 

The diagram of LSTM_MH-LSTM_LINEAR and LSTM_MH-LSTM_Max structure in validation and test processes. It includes pre-trained ProtBert-BFD 
and ESM-1b protein language embedding models in the feature extraction step, LSTM and MH-LSTM language-analysis models (with linear layers) in 
the classification step, and linear or maximization algorithm in the results integration step. 

3.2 Experimental test for ARGs prediction 

Based on the overall dataset (Table 1), we evaluated the 
prediction performance of different architectures under the 
optimal structures (Table 2). The optimal structure is determined 
through repeated experimental iteration with different structural 
combinations, which also follows the conclusion above. The 
evaluation was carried out using four metrics: accuracy, precision, 
recall, and F1-score. We compared our proposed methods with 
related works, including traditional sequence alignment methods 
like CARD and machine learning methods such as HMD-ARG 
and DeepARG. By applying these methods to ARGs identification 
(Figure 8a) and ARGs classification (Figure 8b) tasks, our proposed 
model consistently achieved superior performance almost across 
all evaluation metrics. The only exception is the CARD method 
under “perfect” criteria, the higher precision of which is due to 
its more lenient criteria for identifying resistant genes. This kind 
of criteria will result in a lower false-positive rate but a higher 

false-negative rate (Arango-Argoty et al., 2018), and consequently, 
performs the worst under the other three evaluation metrics. 
Besides, the framework including the data augmentation process 
usually provides better results compared with the framework 
without data augmentation technique. 

3.3 AMR prediction results 

We manually screened 262 bacterial strains from NCBI which 
include both complete antibiotic susceptibility test (AST) results 
and whole-genome sequences. The strains involve S.enterica, E.coli, 
K.pneumoniae, C.freundii, S.marcescens, and etc. Each strain was 
annotated based on their AST results and our proposed 16 
resistance labels (Table 1). For ease of replication studies, details 
of each stain can be found on GitHub: https://github.com/wr-sky/ 
ARGs/blob/main/Data/AST_NCBI_id.txt. 
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FIGURE 6 

Transfer application system architecture diagram. The well-trained parameter in the classification and results integration models will be directly 
utilized for transfer application. Compared with the ARGs classification model, it additionally includes an RGI selection step, which could pre-filter 
most noise genes (negative and false-positive), to improve the overall prediction accuracy of the system. The AST phenotype prediction results are 
the collection of each protein sequence’s ARG prediction result. 

In our application pipeline, we tested both “perfect” and 
“strict” screening standards (CARD RGI) as pre-screening tools for 
each protein sequence. Basically, the “strict” standard is relatively 
more lenient than the “perfect” standard, allowing us to optimally 
preserve high-fidelity resistance genes. 

To comprehensively demonstrate predictive performance, we 
separately quantified model outputs encoded by ESM-1b (right 
panel of Figure 5 with MH-LSTM) and ProtBert-BFD (left panel 
of Figure 5 with LSTM). From the perspective of screening 
criteria, the test results show that datasets filtered by the RGI 
strict criteria achieve higher prediction accuracy (Equation 5) both 
for the ESM-1b and ProtBert-BFD embedding results (Figure 9). 
Compared to the “perfect” standard, the “strict” criteria effectively 
eliminate both negative and false-positive genes, reducing false-
positive (FP) prediction probability and consequently enhancing 
overall prediction accuracy. From the perspective of embedding 
models, the ESM-1b model demonstrated superior prediction 
accuracy for label 2 (other), 4 (quinolone), and 12 (sulfonamide), 

whereas ProtBert-BFD achieved higher precision for label 3 
(tetracycline) and 5 (aminoglycoside). Notably, both models 
attained 100% accuracy in predicting label 7 (β-lactam) and 
11 (rifampin). When combining these two models’ results, the 
prediction accuracy can theoretically exceed 90%, with peak 
performance reaching 100% for specific antibiotic classes. Overall, 
our model demonstrates exceptional performance in predicting 
specific resistance phenotypes (e.g., labels 5 (aminoglycoside), 7 (β-
lactam), and 11 (rifampin)). However, prediction accuracy remains 
suboptimal for smaller datasets, particularly glycopeptide (label 9), 
chloramphenicol (label 10), and polymyxin (label 14) resistance 
categories, indicating areas for future improvement. 

4 Discussion 

Conventional AST, as the gold standard for detection, yields 
results that are susceptible to testing procedural variations and 
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FIGURE 7 

Performance test results separately based on the ProtBert-BFD and ESM-1b encoding results. (a) ProtBert-BFD: LSTM and MH-LSTM with depths 
ranging from 3 to 6 layers (D3-D6) were constructed to test their prediction accuracy. Both LSTM and MH-LSTM achieve the highest performance 
with 3 layers network structure and the LSTM yielded a higher accuracy compared to the MH-LSTM. (b) ESM-1b: Since ESM-1b results in a higher 
embedding dimensions, LSTM and MH-LSTM with deeper network ranging from 4 to 7 layer (D4–D7) were tested. The results show that multi-layer 
MH-LSTM networks perform better than LSTM and deeper network (D6) achieved higher performance in this case. 

requires specific operational expertise and laboratory conditions. 
Moreover, it can only test one resistance phenotype at a time, 
requiring several days to complete (Govender et al., 2021). 
At the genetic level, techniques such as DNA microarrays, 
polymerase chain reaction (PCR), and quantitative PCR (qPCR) 
were previously employed to detect antibiotic resistance genes 
(ARGs) (Singh and Sodhi, 2024). The scarcity of primers is a major 
drawback of amplification-based techniques (Ovchinnikov et al., 
2017). 

In comparison, whole-genome/metagenome-based 
computational approaches are unaffected by issues of operational 
experience, laboratory environment, or primer scarcity, and can 
simultaneously detect multiple resistance phenotypes within 
minutes. Early computational methods primarily relied on 
sequence alignment and gene annotation (Zhou et al., 2020), 
exemplified by tools such as MG-RAST, AMR-Finder, and 
PATRIC. However, the lack of allelic variant specificity significantly 
impacts results because different variations confer distinct 
phenotypic resistance profiles (Liang et al., 2023). Furthermore, the 
difficulty in standardizing alignment parameters (e.g., similarity 
thresholds, coverage criteria) across different resistance genes 

frequently leads to elevated rates of both false-negative and 
false-positive predictions (Arango-Argoty et al., 2018). Artificial 
intelligence-based prediction of resistance genes and phenotypes 
addresses these limitations by learning intrinsic feature correlations 
from existing large-scale genomic sequences and resistance data, 
thereby effectively reducing both false-negative and false-positive 
prediction rates (Singh and Sodhi, 2024). 

Building upon prior work utilizing nucleotide-level sequences, 
our study proposes a novel approach employing protein sequences 
and recently pre-trained protein language models for antimicrobial 
resistance (AMR) prediction. Compared to nucleotide-based 
methods, amino acid sequences offer three key advantages: 
(i) Enhanced functional specificity through direct capture of 
critical protein features (e.g., drug binding sites and efflux 
pump active-site variants) and precise identification of resistance-
associated domains via conserved motif analysis (Tondnevis et al., 
2020); (ii) Improved cross-species generalizability by eliminating 
host GC content bias (Zhang et al., 2025); and (iii) Superior 
computational efficiency, as the 20-letter amino acid alphabet 
reduces dimensionality vs. the 64 possible codon combinations, 
and at the same time, enabling effective transfer learning from 

Frontiers in Microbiology 10 frontiersin.org 

https://doi.org/10.3389/fmicb.2025.1628952
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Wang et al. 10.3389/fmicb.2025.1628952 

FIGURE 8 

Performance test results. (a) ARGs identification: the task of ARGs identification is to distinguish resistant and non-resistant genes from all target 
genes. Comparatively, our proposed methods (with or without data augmentation) can always deliver satisfactory performance under four evaluation 
metrics. While CARD achieve slightly higher precision, it performs worst in the other three evaluation metrics. (b) ARGs classification: the task of 
ARGs classification is to classify the 16 different drug resistance gene strategies. The LSTM_MH-LSTM_LINEAR system architecture, based on 
augmented data, achieved the best results in terms of accuracy, recall, and F1-score. Regarding the precision metric, it is only slightly lower than the 
CARD method. 

FIGURE 9 

Number of different phenotype labels and their corresponding prediction accuracy results. In the results of ESM-1b based on MH-LSTM architecture, 
labels 2 (other), 4 (Quinolone), 5 (Aminoglycoside), 7 (Beta-lactam), and 12 (Sulfonamide) all achieve prediction accuracies above 95%, with label 7 
reaching 100% precision. For the ProtBert-BFD based on MH-LSTM architecture, labels 3 (Tetracycline), 5 (Aminoglycoside), 7 (Beta-lactam), and 11 
(Rifampin) achieve prediction accuracies above 95%, with labels 7 and 11 both reaching 100% precision. Annotations for the remaining groups, which 
are separately 0, 1, 6, 8, and 15, were missing among the 262 strains from NCBI. 

protein language models. Our comparative results (Figure 8) 
demonstrate significant accuracy improvements in resistance gene 
prediction, while simultaneously providing novel insights into the 
essential characteristics of genetic material and proteins from a 
biolinguistics perspective. 

However, the transition from gene to protein sequences for 
antibiotic resistance prediction may introduce prediction errors 

due to the loss of critical genomic information: (i) Synonymous 
mutations: while preserving amino acid sequences, these mutations 
can alter mRNA secondary structures (e.g., ribosome binding 
site stability) or introduce rare codons affecting translation rates, 
thereby modulating resistance gene expression levels (Wong et al., 
2022); (ii) Non-coding functional elements: key regulatory features 
in promoters or untranslated regions (UTRs) that control gene 
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expression are absent in protein sequences (Zrimec et al., 2021); 
(iii) Mobile genetic elements: resistance-associated markers from 
insertion sequences (IS) or transposase genes are not captured 
(Partridge et al., 2018). Although the loss of these critical 
genomic features has relatively minor impacts on resistance 
gene prediction, it substantially compromises the accuracy of 
bacterial phenotype prediction, which likely accounts for the 
observed discrepancies in our phenotypic resistance predictions 
(Figure 9). 

Focusing on the machine learning model, its quality relies 
heavily on the feature extraction phase, which converts diverse 
data forms such as images, text, data, and sequences into 
machine-readable encoding while retaining the original data 
features and minimizing irrelevant noise (Yan et al., 2020). This 
study employs pre-trained protein language models ProtBert-
BFD and ESM-1b, which not only address the issue of 
insufficient data for training feature extraction models from 
scratch but also leverage these pre-trained models to extract 
amino acid interactions and protein structural features from 
different perspectives, providing accurate, noise-reduced encoding 
for subsequent classification processes (Elnaggar et al., 2021; 
Rives et al., 2021). Compared to using a single data source and 
model, this approach captures more effective information, reduces 
data redundancy, and ultimately enhances predictive performance 
(Figure 7). 

The classification model is the core architecture of the system. 
It is crucial to design an appropriate architecture and depth 
so that the model’s parameter scale aligns with the training 
data size, allowing for precise extraction of useful information 
while avoiding noise (Garg et al., 2021). Through experiments 
with small-scale data, we found that a relatively simple three-
layer LSTM architecture is better suited for lower-dimensional 
data (ProtBert-BFD encoding), whereas a more complex six-
layer MH-LSTM architecture is better for higher-dimensional data 
(ESM-1b encoding). The primary reason might be that lower-
dimensional data distributions are not complex, so deeper networks 
or additional MH structures may abstract features too much, 
leading to the loss of critical information and decreased model 
generalization performance (Atienza, 2022; Deng et al., 2022). 
On the other hand, deeper MH-LSTM architectures can alleviate 
the issue of parameter explosion with high-dimensional data 
and make the model focus more on the effective information 
in the hidden layers, reducing noise influence (Vaswani et al., 
2017). 

The experimental results demonstrate that our model 
significantly outperforms sequence alignment and conventional 
AI algorithms in reducing both false-negative and false-positive 
predictions of ARGs (Figure 8). Concurrently, it achieves notable 
reductions in false-positive rates for resistance phenotype 
predictions while improving accuracy for specific phenotypes 
(Figure 9). High-accuracy ARG prediction enables AI to (i) Detect 
novel/rare ARG variants (Sodhi and Singh, 2022); (ii) Elucidate 
evolutionary pathways, e.g., horizontal gene transfer, mutation 
accumulation (Singh and Sodhi, 2024); (iii) Identify previously 
undetected ARGs beyond conventional methods’ detection limits 
(Sodhi et al., 2023). For instance, AI-based model could predict 
distant ARG variants (<30% homology to known genes) revealing 

novel resistance protein families and “silent” chromosomal 
resistance clusters (e.g., stress-inducible antibiotic-inactivating 
enzymes) (Singh et al., 2024). 

Current AI-driven phenotype prediction holds transformative 
potential by potentially obviating laboratory culturing in infection 
diagnostics. However, pending resolution of implementation 
challenges, research focus remains on its theoretical promise 
rather than demonstrated clinical workflow impacts (d’Humières 
et al., 2021). Our model’s high-precision phenotype prediction 
and low false-positive rates can guide targeted antibiotic use, 
reducing unnecessary broad-spectrum antibiotic reliance. In 
urinary tract infections (UTIs)—where rising antimicrobial 
resistance forces increasing broad-spectrum use—AI-based model 
could optimize empirical prescribing through rapid susceptibility 
profiling (Kanjilal et al., 2020). This enables tailored antibiotic 
selection for uncomplicated UTIs within 2 h vs. 48–72 h for 
conventional AST. 

Overall, with the continuous expansion of subsequent datasets 
and ongoing optimization of algorithmic models, AI models 
are expected to progressively enhance their practical guidance 
significance for clinical treatment. 
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