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Introduction: Population aging represents a significant challenge in
contemporary society. The gut microbiome plays a critical role in maintaining
host health and physiological functions, and its alterations with advancing age
are closely associated with the process of healthy aging.
Methods: This study conducted a comprehensive analysis of the gut microbiome
in hundred healthy elderly individuals (aged ≥60) residing in Changshou
Town, Zhongxiang City, Hubei Province, utilizing metagenomic sequencing
technology. The primary objective was to investigate the changes in the gut
microbiome and its potential functions during the latter stages of life. Participants
were categorized into three distinct age groups: the Young-Old group (YO, ages
60-74), the Middle-Old group (MO, ages 75-89), and the Long-Lived Old group
(LO, ages 90-99).
Results: The findings indicate that the diversity of the gut microbiome tends to
diminish with age. However, a significant reversal was observed among healthy
longevity elderly individuals. Our analysis specifically focused on the trends in
the alterations of gut microbiome species and their potential functions as age
increases, revealing that the changes in major differential functions closely align
with the trends in major differential species, demonstrating a strong positive
correlation. The YO group exhibited a more diverse array of differential microbial
characteristics and functional traits. Notably, there was a significant enrichment
of Bacteroides stercoris in the YO group, which displayed a continuous
decline with age, alongside a marked enrichment of pathways associated with
xenobiotic biodegradation and metabolism. Furthermore, species significantly
linked to aging-related pathways, such as oxidative phosphorylation, were
identified through species functional correlation analysis. Specifically, Collinsella
bouchesdurhonensis and Prevotella stercorea were enriched in the LO and YO
groups, respectively. In total, we successfully obtained two hundred and thirty
eight high-quality bins through metagenomic assembly, which included the
identification of four species with 100% completeness, as well as the genomic
information of the Methanobrevibacter smithii A across all groups.
Discussion: This study characterizes the age-associated trends in gut
microbiome composition and function during later-life healthy aging, providing
exploratory insights that may inform future microecological intervention
strategies, pending validation in longitudinal studies.
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1 Introduction

Population aging represents a significant social challenge
that warrants attention in contemporary society. As individuals
progress through the aging process, the human gut microbiota
experiences gradual alterations (Odamaki et al., 2016; Fu et al.,
2023). The human gut microbiota is a complex and dynamically
evolving community of microorganisms residing within the
gastrointestinal tract, which plays a critical role in maintaining
physiological functions and overall host health (Adak and Khan,
2019; Gomaa, 2020). This microbiome is not only integral to
essential physiological processes such as digestion, metabolism, and
immune regulation, but it also possesses the capacity to influence
brain function through the gut-brain axis (Koh and Bäckhed, 2020;
Liu et al., 2022; Mitra et al., 2023). Aging, illness, and mortality
are inevitable aspects of life, and numerous studies conducted in
recent years have highlighted the crucial role of the gut microbiota
in various diseases (Fan and Pedersen, 2021; Afzaal et al., 2022;
Hou et al., 2022). However, our understanding of its potential
contributions to the aging process and the promotion of healthy
aging remains limited.

The relationship between the gut microbiota and aging is
characterized by a bidirectional interaction (Nagpal et al., 2018).
Aging serves as a significant intrinsic factor that influences both
the composition and functionality of the gut microbiota. This
relationship is closely associated with an increased vulnerability
to diseases, which arises from the gradual decline in physiological
functions linked to the aging process, as well as the administration
of therapeutic agents such as antibiotics (Wu et al., 2021;
Ling et al., 2022; Kelso, 2024). Typically, the diversity of the
gut microbiota stabilizes following the onset of adulthood.
However, it tends to diminish with advancing age, a multifaceted
biological phenomenon (Kim and Jazwinski, 2018). Furthermore,
alterations in this diversity are frequently accompanied by a
rise in opportunistic pathogens and a reduction in beneficial
bacteria. For example, the populations of beneficial bacteria,
such as Bifidobacteria and Lactobacilli, often decrease with age,
while opportunistic pathogens, including Enterobacter, Clostridium
perfringens, and Clostridium difficile, may proliferate (Claesson
et al., 2011; Odamaki et al., 2016; Mitchell et al., 2017; Ling
et al., 2022). This dysbiosis, which is characterized by inflammation
and metabolic disturbances, is often closely linked to chronic
conditions such as inflammatory bowel disease, type 2 diabetes,
cardiovascular diseases, and neurodegenerative disorders (Hou
et al., 2022). These chronic diseases, in turn, exacerbate age-related
health challenges and accelerate the aging process. A more stable
and diverse gut microbiota is conducive to promoting healthy aging
(Kumar et al., 2016; Ragonnaud and Biragyn, 2021). Strategies
such as supplementation with probiotics, prebiotics, synbiotics,
psychobiotics, and antioxidants, along with dietary modifications
and physical exercise, are considered potential interventions to
mitigate aging by modifying the gut microbiota (Juárez-Fernández
et al., 2020; Du et al., 2021; Donati Zeppa et al., 2022; Barone
et al., 2022). Additionally, research indicates that the core gut
microbiota of older adults differs from that of younger individuals,
with the gut microbiota composition in individuals over 60 years
exhibiting greater variability (Claesson et al., 2011; Ghosh et al.,
2020). Notably, at extreme ages, the distinctive gut microbiota

structure observed in centenarians suggests that a more “youthful”
and “diverse” gut microbiota configuration is advantageous for
health and longevity (Pang et al., 2023).

Current research has demonstrated a significant interaction
between the gut microbiota and age. However, the acquisition
of biological samples from healthy elderly populations presents
considerable challenges due to the high prevalence of various
age-related diseases among older adults. In contrast to studies
focusing on gut microbiota in children, adolescents, and middle-
aged healthy populations, there exists a notable deficiency in
relevant research data pertaining to healthy elderly individuals.
Consequently, this study aims to investigate the gut microbiota of
healthy elderly populations across different age stages in the latter
half of life. This study employed high-throughput metagenomic
sequencing to investigate differences in gut microbiota across
distinct aging stages. Moreover, it reconstructed MAGs and
explored their associations with functional pathways, uncovering
core microbiota and their metabolic potential relevant to
healthy aging—an aspect not deeply addressed in prior research.
Furthermore, to find healthy elderly individuals, we have selected
the elderly population in Changshou Town, Zhongxiang City,
Hubei Province, as the subjects of our research. This region
is recognized as a hometown of longevity, providing valuable
resources for studying the role of gut microbiota in healthy aging
and longevity.

This study aimed to infer the potential evolution of intestinal
microecology with age by conducting a cross-sectional analysis
of healthy elderly individuals across various age brackets. While
the study design was not longitudinal, the presence of multiple
age cohorts offered insights into the progression of intestinal
micro ecology in the later stages of life. By identifying microbial
characteristics and functional changes linked to various age stages
within the elderly population, we hope to discover potential targets
for interventions that promote healthy aging and extend lifespan.
The findings of this study will enhance the broader understanding
of the role of the gut microbiota in facilitating healthy aging.
Particularly in the context of China’s rapidly aging population, this
research presents potential opportunities for the development of
microbiome-based intervention strategies aimed at improving the
health of older adults.

2 Materials and methods

2.1 Ethical statement

This cohort study received approval from the Ethics Committee
of the Central Hospital of Jingmen City, Hubei Province (Accession
number: 202302229). Informed consent was obtained from all
participants in accordance with the principles outlined in the
Declaration of Helsinki.

2.2 Study cohort and sample collection

Changshou Town, situated in Zhongxiang City, Hubei
Province, served as the recruitment site for a total of 100
participants in this study. The participants were required to
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meet the following inclusion criteria: (1) born in Changshou
Town; (2) continuously resided in the Changshou Town area
for at least 5 years; (3) aged ≥60 years. Additionally, for the
purpose of metagenomic analysis of fecal samples, individuals
who had received antibiotic or microbial agent treatment within
the 3 months preceding sample collection were excluded, as were
those with severe medical conditions (including cancer, diabetes,
cardiovascular diseases, and autoimmune diseases), a family history
of gastrointestinal diseases, or a history of intestinal surgery. Fecal
samples were collected by participants at their homes using sterile
fecal collection devices and were promptly transported to the
hospital on dry ice, where they were stored at−80 ◦C until DNA
extraction and analysis. This study employed commonly accepted
gerontological age groupings: 60–74 years (young-old, YO), 75–89
years (Middle-Old, MO), and 90–99 years (Long-Lived Old, LO), to
represent distinct stages in the later life spectrum.

2.3 Metagenomic DNA extraction, library
construction, and sequencing

In this study, total DNA was extracted from collected
fecal samples utilizing the HiPure Stool DNA Kit (Magen,
China), in accordance with the manufacturer’s instructions.
The concentration of DNA was quantified using a Qubit 4.0
(Thermo Fisher Scientific, U.S.A.), and the integrity of the
DNA was evaluated through 1.5% agarose gel electrophoresis.
Subsequently, a paired-end library with an insert size of 300 bp
was constructed following the guidelines provided by the TrueSeq
Nano DNA Library Prep Kit (Illumina, U.S.A.). Quality control
of the library was conducted using the Agilent 2100 Bioanalyzer
(Agilent Technologies, U.S.A.). Ultimately, the qualified library
was sequenced on the Illumina Novaseq 6000 platform (Illumina,
U.S.A.) to produce 2 × 150 bp reads.

2.4 Quality control and assembly of
metagenomic data

The initial assessment of the raw sequencing reads was
conducted for quality evaluation utilizing FastQC v0.11.8
(Andrews, 2010). Following this, the reads underwent processing
with Trimmomatic v0.39 (Bolger et al., 2014). Cleaned reads
were aligned to eliminate host sequences through the application
of Bowtie2 v2.4.4 (Langmead and Salzberg, 2012) as part of the
KneadData v0.10.0 workflow (https://huttenhower.sph.harvard.
edu/kneaddata/). Subsequently, the filtered reads were subjected to
de novo assembly using MEGAHIT v1.2.9 (Li et al., 2015), with a
minimum output contig length established at 500 base pairs.

2.5 Taxonomic and functional annotation

Coding sequences (CDS) were predicted from the assembled
contigs utilizing MetaGeneMark v3.38 (Zhu et al., 2010),
with the exclusion of sequences shorter than 100 bp. The

predicted CDS were subsequently clustered using CD-
HIT v4.8.1 (Li and Godzik, 2006), applying thresholds for
coverage greater than 90% and identity exceeding 95%
to minimize redundancy. The resulting non-redundant
gene set was then compared against the NCBI NR protein
database using DIAMOND v2.0.11 (Buchfink et al., 2015),
with alignment results selected based on an e-value threshold
of ≤10−5.

2.6 Construction and annotation of
metagenome assembled genomes (MAGs)

Metagenomic binning was conducted on clean reads from 100
samples, focusing on contigs longer than 1000 base pairs. This
process utilized a combination of three algorithms: MetaBAT2
v2.12.1 (Kang et al., 2019), MaxBin2 v2.2.6 (Wu et al., 2016),
and CONCOCT v1.0.0 (Alneberg et al., 2013), all within the
MetaWRAP framework v1.3.2 (Uritskiy et al., 2018). High-quality
MAGs are defined as those exhibiting a completion rate greater
than 90% and a contamination level below 5%. Medium-quality
MAGs were characterized by a completion rate exceeding 50% and
a contamination level under 10%. The integrity and contamination
levels of each MAG were evaluated using CheckM v1.0.12 (Parks
et al., 2015), and redundant MAGs were eliminated using dRep
v3.4.5 (Olm et al., 2017) based on a standard of 95% average
nucleotide identity (ANI). Finally, taxonomic annotation of the
MAGs was performed utilizing GTDB-Tk v2.3.2, referencing
the Genome Taxonomy Database (GTDB r214, https://gtdb.
ecogenomic.org/stats/r214).

2.7 Statistical analysis

To conduct a comprehensive assessment of the structure and
function of the gut microbiome, we employed a variety of statistical
analyses. Initially, we calculated the alpha diversity index for each
sample utilizing QIIME 2 (Bolyen et al., 2019) and the vegan
package v2.6-10 in R v4.3.1 (R Core Team, 2023). We then
compared the differences in alpha diversity across various groups
using the Wilcoxon rank-sum test or the Kruskal-Wallis H test.

Subsequently, we analyzed beta diversity at both the species and
functional levels through Principal Coordinate Analysis (PCoA)
and Principal Component Analysis (PCA). The significance of
differences in microbial community structure between and within
groups was evaluated using Anosim analysis. To further control
for potential confounding by BMI, we additionally performed
covariate-adjusted Principal Coordinates Analysis (aPCoA) using
the method described by Shi et al. (2020). Furthermore, to identify
key microbial taxa and functional pathways across different groups,
we performed differential abundance analysis utilizing LEfSe
(Linear discriminant analysis Effect Size), applying a screening
criterion of LDA score > 2 to pinpoint differentially abundant
microbes and functional pathways of biological significance.
Correlation analyses between differential species and KEGG
pathways were performed using Spearman’s rank correlation
coefficient, and significant associations were visualized as clustered
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TABLE 1 Comparative analysis of key characteristics among participants
across three age groups.

Characteristics LO (n
= 32)

MO (n
= 32)

YO (n
= 36)

p
value

Male/female 15/17 16/16 17/19 1.0000

Age(years) 94.16 ±
3.04

81.03 ±
4.18

67.06 ±
3.53

<0.0001

BMI 19.58 ±
2.32

21.23 ±
2.2

21.55 ±
2.16

0.0200

Drinking 2/32 3/32 5/36 1.0000

Smoking 5/32 7/32 9/36 0.6340

heatmaps. In addition, we classified age-associated microbial taxa
and functional pathways into four distinct temporal patterns—
continuous increase, continuous decrease, decrease-then-increase,
and increase-then-decrease—based on median relative abundance
trends across groups. All trend classification and visualizations
were implemented in R using the ggplot2 v3.5.2 and ggalluvial
v0.12.5 packages (Wickham, 2016; Brunson and QD, 2024). For all
differential abundance and correlation analyses involving multiple
comparisons, including LEfSe, Spearman correlation, and KEGG
pathway enrichment, p-values were adjusted using the Benjamini-
Hochberg false discovery rate (FDR) method. Results with FDR-
adjusted p-value < 0.05 were considered statistically significant.

3 Results

3.1 Demographic characteristics

According to the criteria outlined in the experimental
methods section, a total of hundred elderly individuals from
Changshou Town participated in this study. The queue comprises
thirty two members of the LO group, thirty two members
of the MO group, and thirty six members of the YO group.
Notably, centenarians were not included in this study to
maintain population homogeneity and avoid introducing extreme
age-related biological variation. All participants were healthy
individuals without any apparent diseases and adhered to a
balanced diet consisting of both meat and vegetables. Table 1
presents the demographic characteristics of all participants. As
anticipated, age emerged as the most significant distinguishing
factor among the three groups. Although this study found statistical
differences in BMI among the three groups, BMI was not adjusted
for covariates because all participants were healthy elderly and no
other confounding factors were identified.

3.2 Gene diversity and shared gene features
across aging groups

Through metagenomic sequencing, we acquired a total of
10.1 billion raw reads from hundred fecal samples, which
corresponded to 1516.72 gigabases (Gbp) of raw sequence data.
Following the removal of 6.53% of adapter sequences, low-
quality bases, and 0.11% of human host contamination, we

ultimately obtained 1415.95 Gbp of clean reads. The number
of reads per individual sample varied from 65,641,012 to
132,466,024. To provide further context, the average sequencing
depth and quality control information for each group are also
summarized in Supplementary Table 1. Utilizing this data, we
assembled contigs that were subsequently subjected to gene
annotation and redundancy removal, leading to the identification
of 5.9 million non-redundant genes, with an average gene
sequence length of 683 base pairs (bp) (Figure 1A). The box
plot analysis indicated no significant differences in the number
of non-redundant genes among the three groups (Figure 1B).
The Venn diagram illustrates the distribution of shared and
unique genes among the three groups, revealing that the number
of shared genes is 3,585,226, which accounts for 62.9% of
the total (Figure 1C). Additionally, we evaluated the differences
in gene sets among the various groups using the microbial
Shannon index and β-diversity measurements based on the
Bray-Curtis distance algorithm. The results indicated that gene
diversity in the YO group was significantly higher than that
in the LO and MO groups, with notable differences in gene
composition distribution among the three groups (p-value <

0.0010) (Figures 1D-F).

3.3 Microbial taxonomy annotation

Based on metagenomic sequencing data, we conducted a
detailed analysis of the bacterial component of the gut microbiota.
The differences in alpha diversity among the various groups were
quantified using the Simpson index. The results indicated that the
gut microbiota diversity in the LO and YO groups was significantly
greater than that observed in the MO group (Figure 2A).
Although no significant differences in alpha diversity were detected
between the LO and YO groups, the three-dimensional Principal
Coordinates Analysis (PCoA) results, derived from the Bray-Curtis
distance algorithm, revealed significant differences in pairwise
comparisons, including LO vs. YO (p-value < 0.0500). In addition,
an ANOSIM analysis based on the Bray-Curtis distance confirmed
significant differences in gut microbiota structure among the three
groups (R = 0.128, p-value < 0.001; Supplementary Figure 1A).
This finding suggests the presence of spatial heterogeneity in the
gut microbiota structure among the three groups (Figure 2B).
After applying aPCoA to adjust for BMI, the clustering patterns
and separation among age groups remained largely unchanged,
indicating that BMI did not significantly confound the observed
gut microbiota differences (Supplementary Figure 1B). Next, we
analyzed the gut microbiota at the phylum, genus, and species levels
(Figures 2C–E, Supplementary Table 2). The predominant phyla
were Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria.
Detailed inter-group differences are shown in Figure 2 and
Supplementary Table 2. To focus on the most abundant phyla,
Figure 2F shows only the top five phyla by average relative
abundance. This shift resulted in a significant decrease in the
Firmicutes/Bacteroidetes ratio in the YO group relative to the
other two groups (Supplementary Figure 1C). In our comparative
analysis of the top 20 genera by relative abundance, we found
that Clostridium and Roseburia were significantly lower in the LO
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FIGURE 1

Outcomes of gene annotation analysis derived from metagenomic sequencing of the gut microbiome. (A) The histogram illustrates the distribution
of lengths within the non-redundant gene set. (B) The scatter plot illustrates the differences in the quantity of non-redundant genes among the three
groups. (C) The Venn diagram depicts the quantity and proportion of both shared and unique genes across the three sample groups. (D) The
comparison of alpha diversity was conducted using the Shannon index. Each data point corresponds to a sample, while the box plot illustrates the
median, quartiles, and outliers. ns, p-value > 0.05; *, p-value ≤ 0.05; **, p-value ≤ 0.01. (E) The analysis of β diversity was conducted using the
Bray-Curtis distance metric. The principal coordinate analysis (PCoA) plot illustrates the distribution of gene composition across the three sample
groups. (F) The ANOSIM (Analysis of Similarity) analysis of gut microbiota was conducted using the Bray-Curtis distance metric. The x-axis displays all
samples categorized by group, while the y-axis illustrates the rank of the Bray-Curtis distance. The R is between (−1,1): if R > 0, the inter-group
difference is significant; if R < 0, the intra-group difference is greater than the inter-group difference. The reliability of the statistical analysis is
represented by the p-value, with p-value < 0.05 denoting statistical significance.

group than in the MO and YO groups, while Bacteroides, Alistipes,
and Phocaeicola exhibited significantly higher levels in the YO
group compared to the MO and LO groups. Furthermore, the
levels of Clostridium and Dorea in the MO group were significantly
elevated compared to those in the other two groups (Figure 2G).
Further examination at the species level revealed no significant
differences in the number of species detected among the three
groups. However, a slight increasing trend in species numbers with
age was observed (Supplementary Figure 1D). The Venn diagram
indicated that the proportion of species shared among the three
groups was as high as 85.1%, with the LO group exhibiting a greater
variety of unique microbial species compared to the other two
groups (Supplementary Figure 1E). Notably, several species such
as Roseburia inulinivorans and Prevotella stercorea were enriched
in the YO group, while Clostridiales bacterium showed higher
abundance in the LO group (Figure 2H, Supplementary Table 2).
The phylogenetic tree constructed based on all species illustrated
the relative abundance and differential characteristics of species
among the different groups (Figure 2I).

3.4 Analysis based on taxonomic level

Based on species-level LEfSe (Linear discriminant analysis
Effect Size) differential analysis, a total of sixty representative
differential species were identified among the groups
(Supplementary Table 3). These species were detected in samples
where the relative abundance exceeded 0.1% in at least 20% of the
cases. Overall, the differential bacteria within the LO, MO, and
YO groups were predominantly represented by Actinobacteria,
Firmicutes, and Bacteroidetes, respectively, as illustrated in
the phylogenetic tree (Figure 3A). Among these species, forty
were identified as specific microbial markers in the YO group,
followed by the LO group with eighteen species, and the MO
group, which contained the fewest species, totaling only 2
(Megamonas funiformis and Enterocloster citroniae) (Figure 3B).
The clustering heatmap further depicted the distribution
patterns of these differential species across the various groups
(Figure 3C). We further categorized the 60 species into four
temporal abundance patterns with aging (Supplementary Table 4,
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FIGURE 2

(A) The box plot illustrates the α diversity, as measured by the Simpson index, among three distinct groups of gut microbiota. (B) The 3D PCoA
obtained from the Bray-Curtis distance matrix illustrates the composition of gut microbiota across three groups: LO (blue), MO (red), and YO (green).
The analysis highlights the first, second, and third principal components, which collectively account for 10.9%, 8.2%, and 7.1% of the total variance
within the dataset, respectively. (C-E) The bar charts sequentially display the top 10 phyla, top 20 genera, and top 30 species ranked by their average
relative abundance across various taxonomic levels. (F-H) The box scatter plots sequentially show the differences in the top 5 phyla, top 20 genera,
and top 30 species ranked by average relative abundance across the three groups. Each point represents an individual sample, while the box
delineates the median, quartiles, and outliers. (I) The species evolutionary circle diagram effectively illustrates the clustering evolution of all species
across three distinct groups. The colors in the innermost circle correspond to various phyla levels, while the colors in the second layer denote the
different class levels of the species. The gradient in the third layer, transitioning from white to red, represents species that exhibit significant
differences among the three groups. Finally, the outermost layer presents a clustered heatmap depicting the average relative abundance of species.
*p-value ≤ 0.05; **p-value ≤ 0.01; ***p-value ≤ 0.001; ****p-value ≤ 0.0001.

Supplementary Figure 2): (1) Continuous increase pattern (CIP):
13 species, including Clostridium sp. CAG:169, uncultured
Eubacterium sp., Enterocloster lavalensis, and Enterococcus
faecalis, were progressively enriched with age, especially in the
LO group. (2) Continuous decrease pattern (CDP): 28 species
showed a declining trend with age, such as Megamonas funiformis,
Bifidobacterium adolescentis, and Bacteroides stercoris, the latter
exhibiting a consistent and significant decline. (3) Decrease-
then-increase pattern (DIP): 18 species first declined and then
rebounded in the LO group. Notably, 13 of these (e.g., Prevotella
stercorea, Phascolarctobacterium faecium) were significantly
enriched in the YO group. (4) Increase-then-decrease pattern
(IDP): Only Enterocloster citroniae followed this pattern, with a
significant peak in the MO group before returning to YO levels in
the LO group.

3.5 Analysis based on functional pathways

To further elucidate the functional differences in gut microbiota
across the three age groups, we conducted a functional annotation
of all fecal samples utilizing the KEGG database. A total of
three hundred and ninety four pathways were identified at
KEGG pathway level 3. Among these, one hundred and sixty
six pathways were classified under the KEGG level 1 category
of metabolism (42.13%), seventy six pathways were associated
with human diseases (19.29%), and seventy four pathways were
categorized under organismal systems (2.18%). Additionally,
we identified thirty six pathways related to environmental
information processing, twenty two pathways associated with
genetic information processing, and twenty pathways pertaining to
cellular processes (Supplementary Table 5). Principal Component
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FIGURE 3

LEfSE analysis and inter-group differential species distribution. (A) The phylogenetic tree illustrates the distribution differences of enriched species
across various phylum levels in the LO (blue), MO (red), and YO (green) groups. (B) The bar chart depicts species that exhibit significant differences
among the three groups, determined by effect size (LDA score > 2). The differential species presented in (A, B) were identified using the
Kruskal-Wallis rank sum test. (C) A species clustering evolutionary heatmap was constructed through hierarchical clustering, based on the relative
abundance of the previously identified differential species.

Analysis (PCA) for dimensionality reduction indicated a potential
separation trend among the samples from the three groups.
Furthermore, an evaluation using the Bray–Curtis dissimilarity
index confirmed significant functional differences among the three
groups (Figures 4A, B).

To delineate distinct functional pathways among the groups,
we conducted LEfSe analysis to pinpoint divergent pathways. We
identified 40 pathways significantly associated with metabolism and
human diseases across the three groups, as depicted in Figures 4C,
D and Supplementary Table 6. Remarkably, more than 70% of these
pathways showed a preferential enrichment in the YO group. This
enrichment in the YO group may signify a youthful physiological
state typified by heightened metabolic activity, although further
experimental validation is required to confirm causality.

The clustering heatmap provides a visual representation
of the differences in the relative abundance of these pathways
among the various groups (Figure 4D). Results from pairwise
comparisons indicate that the LO and YO groups exhibit the
most significant differences in pathways, while the MO group,

which represents an intermediate stage of aging, shows relatively
fewer distinctions compared to the other two groups. The 40 age-
associated functional pathways were classified into four temporal
patterns (Supplementary Table 7, Supplementary Figure 3):
(1) CIP: Six pathways increased with age, including lysine
biosynthesis, glyoxylate and dicarboxylate metabolism, and
microbial metabolism in diverse environments, predominantly
enriched in the LO group. (2) CDP: 21 pathways declined with
age, notably the TCA cycle, lipopolysaccharide biosynthesis, and
HIF-1 signaling pathway, enriched in the YO group. (3) DIP: 10
pathways such as oxidative phosphorylation and lysosome showed
a U-shaped trend—decreasing in MO and increasing again in LO.
(4) IDP: Three pathways including ECM-receptor interaction and
toxoplasmosis peaked in MO then declined in LO.

In addition, we established a connection between the
differential species and functions associated with age-related
changes, utilizing species function configuration information
(Figure 4E). We categorized the species and functions according
to four distinct change trends and observed that the alterations in
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FIGURE 4

(A) The analysis of dimensionality reduction using Principal Component Analysis (PCA) is conducted based on KEGG Level 3 pathways, with the left
image presenting a magnified view of the data. (B) The box plot illustrates the inter-group differences as determined by the Bray-Curtis dissimilarity
distance. (C) The bar chart illustrates the KEGG Level 3 pathways that exhibit significant differences among the three groups, as determined by effect
size (LDA score > 2). (D) A heatmap illustrating the relative abundance distribution of differential pathways identified through KEGG pathway LEfSe
analysis across the three groups is presented, alongside a heatmap depicting significant differences observed in pairwise comparisons between the
groups. (E) A correlation heatmap has been constructed based on the selected differential species and pathways. Distinct font colors denote the
species and pathways that are enriched within the corresponding groups. The colors displayed on the left and below the heatmap correspond to the
KEGG Level 1 pathway information and phylum-level classification information, respectively. Furthermore, the data is categorized into four distinct
trends: CIP, Continuous increase pattern; CDP, Continuous decrease pattern; DIP, Decrease-then-increase pattern; IDP, Increase-then-decrease
pattern. **p-value ≤ 0.01; ***p-value ≤ 0.001; ****p-value ≤ 0.0001.

the primary differential functions were consistent with the change
trends of the principal differential species, indicating a strong
positive correlation. This suggests that the differential changes
in these functions are primarily influenced by the variations in
these key differential species. Notably, the degradation pathways
of caprolactam, geraniol, aminobenzoate, limonene and pinene, as
well as fatty acids and prion diseases in the YO group, exhibited a
high positive correlation with the majority of the differential species
enriched in this group. Among these, Bacteroides stercoris stands
out as the only species that continuous significantly decreased
with age; it was closely associated with the aforementioned
pathways and demonstrated a significant positive correlation with
lipopolysaccharide biosynthesis (r = 0.4910, p-value < 0.0001)
(Figure 4E, Supplementary Table 8). Furthermore, we identified
that oxidative phosphorylation pathway, which is intricately linked
to mitochondrial function, was significantly positively correlated
with Prevotella stercorea enriched in the YO group (r = 0.3860,
p-value = 0.0010) and Collinsella bouchezdurhonensis enriched
in the LO group (r = 0.401, p-value < 0.0010). The pattern of
oxidative phosphorylation exhibited an initial decrease followed
by an increase, decreasing in the MO group and increasing in the
LO group, with no significant difference observed between the
LO and YO groups (median LO:YO = 0.0084: 0.0087; p-value

= 0.5290). Additionally, Collinsella bouchezdurhonensis was
closely associated with the functions related to glycine, serine,
and threonine metabolism enriched in the LO group, along with
Adlercreutzia equolifaciens and uncultured Ruminococcus sp. It
is also noteworthy that we discovered significant enrichment
of the vancomycin resistance function in the LO group, which
was primarily positively correlated with Lentihominibacter faecis,
Lachnospiraceae bacterium KGMB03038, Evtepia gabavorous,
Ruthenibacterium lactatiformans, and Enterocloster lavalensis,
while exhibiting a negative correlation with Lachnospira
pectinoschiza and Parabacteroides merdae enriched in the
YO group.

3.6 High-quality genome reconstruction
reveals key taxa associated with aging

Finally, we employed the MetaWRAP pipeline methodology to
reconstruct a total of 1,144 medium to high-quality metagenome-
assembled genome bins from three groups of fecal metagenomes.
Notably, four species were assembled with 100% completeness,
and to complement this, Supplementary Table 9 also provides the
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FIGURE 5

(A) A phylogenetic tree based on clustering was constructed using 623 medium to high-quality genomic bins obtained through species binning. The
coloration of the various branches corresponds to different phylum levels. Furthermore, the outer ring provides information across five levels,
detailing the G + C content (100%), gene counts, contamination rates, completeness, and overall size of the respective genomes. (B-E) figures
present genomic sketches of species with 100% completeness, derived from the assemblies of the three groups.

average genome coverage calculated for each group. Following
the removal of redundancy, we obtained a total of 623 non-
redundant bins (Supplementary Table 10), which included
238 high-quality bins (completeness ≥90%, contamination
rate <5%) and 365 medium-quality bins (completion >50%
and contamination <10%). The genome sizes of the high-
quality metagenome-assembled genomes (MAGs) varied from
1.12 Mb to 6.74 Mb, with an average size of 2.32 Mb. The N90
lengths ranged from 1.09 to 88.35 kb, while the N50 lengths
varied from 1.78 to 254.28 kb, with an average of 22.56 kb. The
average G + C content for each bin ranged from 24.9% to
72.4% (Supplementary Table 11). Subsequently, we conducted
species classification annotation on the 623 non-redundant
bins utilizing the Genome Taxonomy Database (GTDB r214).
The phylogenetic tree constructed based on species-level bins
illustrated the clustering patterns at the genomic level (Figure 5A).
The species were predominantly distributed across the phyla
Firmicutes (comprising 446 species), Bacteroidota (81 species),
Pseudomonadota (44 species), and Actinomycetota (32 species).
At the genus level, we identified 16 species within Prevotella,
13 species each in Vescimonas and Bacteroides, and 10 species
each in Enterocloster and Alistipes (Supplementary Table 11). The
four bins exhibiting 100% completeness, namely LO_bin.260,
LO_bin.272, MO_bin.232, and YO_bin.284, were annotated
as Phascolarctobacterium faecium, Pyramidobacter porci,
Phascolarctobacterium faecium, and Thomasclavelia ramosa,
respectively. It is noteworthy that LO_bin.260 and MO_bin.232
were annotated as the same species. The genomic map derived

from the species genome annotation results is presented in
Figures 5B-E.

In addition, we identified the genome of the archaeon
Methanobrevibacter smithii A (YO_bin.249, LO_bin.17, and
MO_bin.193) in all three groups, which is classified within
the Methanobacteriaceae family. Furthermore, an unidentified
archaeon from the Methanomethylophilaceae family was detected in
the LO group (LO_bin.167). Additionally, there are 17 unidentified
species that may be regarded as potential new species, among which
LO_bin.42 and LO_bin.368 can be inferred as potential new genera.

4 Discussion

While many studies have examined gut microbiota in aging
populations and centenarians, findings remain inconsistent due to
variation in health status, environment, and methods (Wu et al.,
2019; Luan et al., 2020; Mancabelli et al., 2024; Gyriki et al.,
2025). The aging process is often accompanied by the emergence
of various age-related systemic diseases, which complicates the
acquisition of samples from healthy elderly populations. In this
study, we recruited hundred healthy elderly individuals from a
well-characterized longevity region to reduce confounding factors
and enhance internal validity. By analyzing the gut microbiota
and functional capacity across different aging stages, we aimed to
identify microbial features associated with healthy aging. These
insights may inform future microbiome-targeted strategies to
support healthy lifespan extension.
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The prevailing hypothesis suggests that gut microbiota diversity
diminishes with natural aging and is closely associated with frailty
in older adults (Ragonnaud and Biragyn, 2021; Donati Zeppa
et al., 2022; Wang et al., 2024; Yan et al., 2025). The reduced
diversity in the MO group suggests that middle-aged elderly
experience a gut microbiota decline, often linked to fewer beneficial
bacteria (e.g., Bifidobacteria) and more opportunistic pathogens,
increasing metabolic and inflammatory disease risks (Dey and
Ray Chaudhuri, 2023; Khaledi et al., 2024). In contrast, healthy
long-lived individuals tend to maintain a more “youthful” gut
microbiota with higher diversity, aligning with studies showing
that centenarians resemble younger adults in this aspect, which
may help sustain health and longevity (Badal et al., 2020; Wang
et al., 2022; Pang et al., 2023). This study provides exploratory
evidence for the association between gut microbiome features
and different stages of healthy aging. However, due to its cross-
sectional design, it cannot establish temporal relationships or
infer causality. The observed microbial and functional alterations
may be consequences, contributors, or mere correlates of aging.
Therefore, these findings should be interpreted as hypothesis-
generating, and future longitudinal studies are necessary to confirm
the directionality and causal relevance of these associations.
Furthermore, our investigation also encompassed the genetic
diversity of the gut microbiota. Analyses revealed that the genetic
diversity in the YO group was significantly greater than that in
the LO and MO groups, a finding we speculate may be linked to
a younger and healthier physiological state. This evidence further
underscores the significance of gut biodiversity in promoting
healthy aging.

In the present study, we investigated the potential associations
between variations in differential microbial taxa and functional
pathways across different age groups. Clostridium sp. CAG:169 and
Enterocloster lavalensis, both known SCFA producers, increased
with age and were more abundant in the LO group (Zhou et al.,
2017; Grenda et al., 2022). Enterococcus faecalis is a gut commensal
but may cause infections and shows notable antibiotic resistance
(Haas and Blanchard, 2020; García-Solache and Rice, 2019; Shah
and Varahan, 2024). In our study, we observed that vancomycin
resistance-related pathways were relatively enriched in the LO
group, although no direct association with Enterococcus faecalis
was identified. It is crucial to emphasize that the potential for
Horizontal Gene Transfer (HGT) of resistance genes represents a
primary mechanism for the dissemination of antibiotic resistance.
Conversely, Bacteroides stercoris demonstrated a significant
decreasing trend with advancing age. Correlation analyses
indicated that this species was associated with lipopolysaccharide
biosynthesis, consistent with Ni et al. (2023), whose mouse
experiments suggested that B. stercoris may promote NAFLD
progression through LPS and BCAA production. However,
its higher abundance in the YO group and recent evidence
from Ryu et al. (2024), showing that certain strains can inhibit
fat accumulation, imply that the effects of B. stercoris may be
strain-specific and context-dependent. These contrasting findings
highlight the need for further functional studies to clarify its precise
role. The YO group showed an enhanced capacity for xenobiotic
metabolism, which may reflect complex interactions between
aging, environment, and lifestyle factors (Collins and Patterson,
2020; Rampelli et al., 2020; Wu et al., 2022; Jin et al., 2023).

However, all observed associations between microbial species and
KEGG pathways in this study are correlational. While certain taxa
appear enriched alongside specific functional pathways, these do
not establish mechanistic causality.

We focused on oxidative phosphorylation (OXPHOS), a key
component of oxidative metabolism known to decline with age
(Santos et al., 2024; Tkemaladze, 2024). Consistent with this, the
YO group showed the highest OXPHOS capacity, while the LO
group appeared to mitigate this decline, possibly contributing to
longevity. In our investigation, Prevotella stercorea was notably
enriched in the YO group, consistent with Tett et al. (2021), who
observed its decline from adulthood to old age. P. stercorea is the
second most prevalent species in the Prevotella genus, following
P. copri, and is known to produce SCFAs such as acetate and
branched-chain SCFAs like isovalerate, which play important roles
in gut health and immune modulation (Hayashi et al., 2007).
Although our correlation analysis suggests a potential link between
P. stercorea and OXPHOS, direct mechanistic evidence is still
lacking. Given the marked species and strain variability within the
Prevotella genus, its net effect on host health may vary with diet
and host context. In the LO group, Collinsella bouchesdurhonensis
showed a positive correlation with OXPHOS capacity. Although
it has been reported to be enriched in patients with sickle cell
anemia and type 2 diabetes (Delgadinho et al., 2022; Saleem
et al., 2022), current evidence is limited and inconsistent, and its
role in host metabolism remains unclear. These correlations may
reflect indirect or combined effects of multiple species and require
further clarification.

Our metagenomic assembly successfully reconstructed four
high-quality bins and complete genomes of Methanobrevibacter
smithii A, now classified as Candidatus Methanobrevibacter
intestini (Chibani et al., 2022). This methanogenic archaeon
is a dominant member of the human gut microbiome and
has been reported to increase with age and longevity (Wu
et al., 2019; Mohammadzadeh et al., 2025). Recent research
by Mohammadzadeh et al. (2024) highlighted its interactions
with butyrate-producing bacteria, suggesting that such
cohabitation could help mitigate the age-related decline of
the Lachnospiraceae family, a key SCFA producer. However,
the precise mechanisms by which M. smithii contributes to
healthy aging remain poorly understood and warrant further
investigation. Moreover, our high-quality genome reconstructions
provide a valuable foundation for identifying novel taxa and
exploring the functional mechanisms that link the gut microbiome
to longevity.

This study was conducted in Changshou Town, a region
known for longevity. Although these findings may be regionally
specific due to geographic and ethnic homogeneity, they
provide valuable insight into gut microbiota features of healthy
aging. To enhance generalizability, future studies should adopt
multi-center cohorts covering broader ethnic, dietary, and
environmental backgrounds. In addition, the relatively small
sample size is a limitation that future studies should address by
including larger, more diverse populations. BMI was adjusted
using the aPCoA method, showing minimal impact on gut
microbiota patterns despite slight baseline differences due to
age-related changes. Detailed clinical parameters and lifestyle
data (e.g., diet, medication, physical activity) were not collected
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to minimize participant burden, as the cohort was relatively
homogeneous. Nonetheless, residual confounding cannot be
fully excluded. Future larger cohorts with detailed clinical and
lifestyle assessments are needed to clarify these influences. Finally,
while metagenomic sequencing offers detailed species-level
insights, it does not capture microbiome metabolic outputs or
host interactions. Integrating metabolomics and transcriptomics,
combined with long-term longitudinal studies, will be essential
for clarifying causal links between the gut microbiota and
healthy aging.

In conclusion, this study provides a comprehensive analysis
of the characteristics of the gut microbiota in healthy older
adults across different age groups during the latter stages
of life. It highlights the changes in species composition and
functional trends within the gut microbiota as individuals
age. Although there are certain limitations to this research, it
lays a foundational framework for future investigations into
the role of gut microbiota in the context of aging and
health. By utilizing more extensive multi-omics methodologies
and broadening population studies, subsequent research has
the potential to yield deeper insights, ultimately contributing
to the identification of potential microbial targets for future
interventions. However, longitudinal and interventional studies
are required to confirm whether these associations represent
causal mechanisms.
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