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Background and aims: M1 macrophage polarization is essential for the
progression of hepatitis B virus-related acute-on-chronic liver failure (HBV-
ACLF). In this study, we aim to identify and validate M1 polarization-associated
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biomarkers to elucidate pathogenic mechanisms and identify potential
therapeutic targets for HBV-ACLF.

Methods: Multi-omics data from public databases were analyzed using a co-
expression network and two differential expression analyses. Biomarkers were
identified by machine learning, ROC curves, and experimental validation. A
nomogram was developed to assess the diagnostic efficacy of the biomarkers.
Subsequent analyses included functional enrichment, regulatory network
construction, computational drug prediction, and molecular docking analysis.
Finally, biomarker expression was validated using reverse transcription-
quantitative PCR (RT-gPCR) in clinical specimens.

Results: CDC20, CXCL14, FCGR2B, HKDC1, and GPBARL were identified as
diagnostic biomarkers for HBV-ACLF. The constructed nomogram showed
strong diagnostic performance. Functional enrichment analysis revealed multiple
pathways enriched in these biomarkers, including tryptophan metabolism and
cofactor biosynthesis, etc. Subsequently, a IncRNA-miRNA-mRNA regulatory
network was constructed, with key interactions such as XIST/hsa-miR-296-
3p/CXCL14 and SNHG14/hsa-miR-510-5p/CXCL14. Further analysis identified
multiple drugs associated with the biomarkers, including cholic acid, deoxycholic
acid (GPBAR1-targeting agents). Molecular docking revealed favorable binding
affinities between the predicted drugs and their targets, for example, cholic
acid exhibited a binding free energy of —7.5 kcal/mol with GPBARL. In validation
experiments, RT-gPCR confirmed significant upregulation of all five biomarkers
in HBV-ACLF patients compared with healthy controls (HCs).
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Conclusion: This study identifies CDC20, CXCL14, FCGR2B, HKDC1, and
GPBAR1 as M1 polarization-associated biomarkers, revealing their roles in
immune-metabolic dysregulation and proposing novel therapeutic strategies

for HBV-ACLF.
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1 Introduction

Hepatitis B virus-related acute-on-chronic liver failure (HBV-
ACLF) is a life-threatening clinical syndrome characterized by rapid
hepatic decompensation in patients with pre-existing chronic hepatitis
B (CHB), leading to multi-organ failure and high short-term mortality
(Zhao et al., 2025). Globally, HBV-ACLF accounts for a significant
proportion of liver-related morbidity and mortality (Zhang et al.,
2023). The pathogenesis of HBV-ACLF involves a complex interplay
of viral reactivation, immune hyperactivation, and dysregulated
inflammatory cascades, which drive hepatocyte necrosis and impair
hepatic regeneration.

Current diagnostic criteria mainly rely on clinical scores (e.g.,
MELD, CLIF-C ACLE and COSSH-ACLF) and nonspecific
biomarkers, while therapeutic strategies are limited to liver
transplantation and supportive care (Luo J. et al., 2023). The MELD
score is more suitable for long-term prognosis assessment compared
to the CLIF-C ACLF and COSSH-ACLF score. Meanwhile, based
on the complicated assessment of organ failure, the CLIF-C ACLF
and COSSH-ACLF score still need to be simplified and more
accurate (Choudhury et al., 2025). Traditional nonspecific markers
such as INR and TBIL can also reflect the severity of HBV-ACLF,
but their role in predicting disease prognosis and identifying new
therapeutic targets remains limited. Therefore, there is an urgent
need to identify novel biomarkers that reflect disease progression
and offer therapeutic potential (Li et al., 2021).

Macrophages, as central mediators of innate immunity, exhibit
remarkable plasticity and participate in the development of various liver
diseases (Luo S. et al., 2023). In HBV-ACLE excessive M1 polarization
contributes to amplified hepatic inflammation through the secretion of
pro-inflammatory cytokines (e.g., TNF-a, IL-6) and reactive oxygen
species (Taru et al., 2024). The G protein-coupled bile acid receptor 1
(GPBARI, also known as TGR5), a bile acid-sensitive receptor, has
emerged as a key regulator of metabolic and inflammatory processes
(Biagioli et al., 2023). Recent studies showed that GPBARI could
modulate macrophage polarization (Liu et al.,, 2025). GPBARI activation
has been linked to both hepatoprotective and pro-fibrotic effects,
highlighting its context-dependent functions (Shi et al., 2020). Biagioli
et al. reported that the small molecule CHIN117, which functions as a
GPBARI1 agonist and CYSLTRI1 antagonist, effectively reversed
acetaminophen-induced drug-induced liver injury (DILI) in mice,
demonstrating that GPBARI play a significant hepatoprotective role in
liver injury (Biagioli et al., 2023). However, the mechanistic interplay
between GPBARI signaling, macrophage polarization, and HBV-ACLF
progression remains unexplored. Investigation of this regulatory axis
might lead to the identification of novel therapeutic approaches.

In this study, we employed an integrative multi-omics
bioinformatics approach with experimental validation to identify and
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validate biomarkers associated with macrophage polarization and
GPBARLI signaling in HBV-ACLE This approach may elucidate the
underlying mechanisms of immune-metabolic dysregulation and offer
novel therapeutic strategies for HBV-ACLE

2 Materials and methods

2.1 Data preparation and samples
collection

The GEO database’ provided the training and validation sets for
HBV-ACLE. The training set GSE38941 (platform: GPL570)
included transcriptome data from 17 HBV-ACLF and 10 control
human liver tissue samples (Nissim et al., 2012). The validation set
GSE14668 (platform: GPL570) contained transcriptome data from
8 HBV-ACLF and 8 control human liver tissue samples (Farci et al.,
2010). To confirm biomarker expression, we included 9 human liver
samples comprising 5 healthy controls (HCs) and 4 HBV-ACLF
patients. Liver samples from HCs were obtained from patients
without underlying chronic liver diseases who underwent partial
hepatectomy for hepatic hemangioma. Adjacent normal liver tissues
were obtained from the resected lesions. Liver samples from
HBV-ACLF patients were obtained during liver transplantation.
HBV-ACLF was diagnosed according to the APASL consensus
recommendations: (1) presence of serum hepatitis B surface antigen
(HBsAg) for >6 months; (2) progressive jaundice (serum bilirubin
>5 mg/dL); (3) coagulopathy (INR > 1.5 or prothrombin activity
<40%) (Sarin et al., 2019). Exclusion criteria included: (1)
co-infection with human immunodeficiency virus (HIV), hepatitis
A, C, D, or E virus, Epstein-Barr virus, or cytomegalovirus; (2)
other liver diseases such as alcoholic hepatitis or autoimmune liver
diseases; (3) liver cancer.

The study protocol was approved by the Institutional Research
and Ethics Committee of Qilu Hospital, Shandong University, and
other participating centers, in accordance with the 1975 Declaration
of Helsinki guidelines. Written informed consents were obtained from
all patients.

2.2 Acquisition of key module genes

In GSE38941, the infiltration abundances of 10 immune cell types
in HBV-ACLF and control samples were evaluated using the

1 https://www.ncbi.nlm.nih.gov/gds
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quanTTIseq algorithm. The Wilcoxon test was applied to identify
differential immune cells by comparing infiltration abundances
between the two groups (p < 0.05). Using M1 macrophages as the trait,
WGCNA was performed with the WGCNA package (v1.73)
(Langfelder and Horvath, 2008) to identify genes significantly
associated with M1 macrophages.

First, the goodSamplesGenes function was used to cluster all
samples in GSE38941, and outlier samples were removed. The soft
threshold (f) was determined using the pickSoftThreshold function.
When the mean connectivity approached 0 and R > 0.80, the
optimal soft threshold was selected. A co-expression matrix was
constructed with a minimum of 200 genes per module. A
hierarchical clustering dendrogram was generated using the
dynamic tree cut algorithm, with modules represented by distinct
colors. Spearman correlation analysis between gene modules and
M1 macrophages was performed using the psych package
(v2.4.6.26) (|r| > 0.3, p < 0.05; Robles-Jimenez et al., 2021). The two
modules showing the strongest positive and negative correlations
with M1 macrophages were designated as key modules, and their
genes were defined as key module genes.

2.3 Differential expression analysis

Differential expression analysis was performed in GSE38941 to
identify differentially expressed genes 1 (DEGs1) between HBV-ACLF
and control samples (adj. p < 0.05, |[log,FC| > 1). The Wilcoxon test
was used to compare GPBARI expression between groups (p < 0.05).
HBV-ACLF samples were stratified by median GPBARI expression
into high- and low-expression groups. DEGs2 were identified by
comparing these groups (|log,FC| > 1, adj. p < 0.05). Volcano plots
and heatmaps were generated using ggplot2 (v3.5.1) (Gustavsson
et al.,, 2022) and pheatmap package (v1.0.12) (Gu and Hitbschmann,
2022), respectively.

2.4 ldentification and analyses of candidate
genes

The VennDiagram package (v 1.7.3) (Chen and Boutros, 2011)
was used to intersect DEGs1, DEGs2, and key module genes to
identify candidate genes. GO and KEGG enrichment analyses
(p <0.05) were performed using clusterProfiler package (v
4.15.0.3) (Wu et al., 2021). A protein-protein interaction (PPI)
network (confidence score >0.4) was constructed via STRING?
and visualized using the Cytoscape package (v3.9.1) (Shannon
et al., 2003).

2.5 ldentification of biomarkers

LASSO regression (glmnet v4.1.4; Engebretsen and Bohlin, 2019)
with 10-fold cross-validation was applied to candidate genes. Feature
genes were selected at the minimal lambda value where coefficients

2 https://string-db.org/
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were non-zero. The receiver operating characteristic (ROC) curve
analysis (pROC v1.18.5; Robin et al., 2011) in GSE38941 and
GSE14668 identified key genes (AUC > 0.85 in both datasets).
Biomarkers were defined as genes with consistent expression trends
and significant differences (Wilcoxon test, p <0.05) between
HBV-ACLF and controls in both datasets.

2.6 Construction and evaluation of
nomogram

In GSE38941, a nomogram was constructed using the rms
package (v 6.8.1; Xu et al., 2023) to examine the prediction ability of
biomarkers for HBV-ACLE Calibration curve was then created to
assess the prediction accuracy.

2.7 Enrichment analysis, construction of
gene—gene interaction (GGI) network, and
chromosomal localization

Spearman correlation study between the biomarkers and other
genes in the GSE38941 was conducted through the psych package
(v 2.4.6.26; Robles-Jimenez et al., 2021). The correlation coefficient
was employed to order the genes from greatest to smallest. The
gseKEGG function of the clusterProfiler package (v 4.15.0.3) (Wu
et al., 2021) was then applied to perform GSEA analysis, with
significant criterion of FDR < 0.25, [NES| > 1, and p < 0.05. The
biomarkers were then uploaded to the GeneMANIA database® to
generate a GGI network, which allowed researchers to investigate
genes that shared comparable activities with the biomarkers and the
functions they were involved in. Furthermore, the localization of
biomarkers on different chromosomes was analyzed by the RCircos
package (v 1.2.2) (Zhang et al., 2013).

2.8 Regulatory network analysis

Transcription factors (TFs) regulating the biomarkers were
predicted in the Encyclopedia of DNA Elements (ENCODE)
database’ within the NetworkAnalyst platform.” The TF-mRNA
regulatory network was constructed. The miRWalk database® was
then employed to predict miRNAs. The miRNAs targeting two
biomarkers simultaneously were selected to construct miRNA-
mRNA regulatory networks. The starBase database’” was then
employed to forecast IncRNAs based on miRNAs. Additionally, a
IncRNA-miRNA-mRNA regulatory network was created. The
regulatory networks mentioned above were shown using the
Cytoscape package (version 3.9.1) (Shannon et al., 2003).

http://www.genemania.org
https://www.encodeproject.org/
https://www.networkanalyst.ca/

http://mirwalk.umm.uni-heidelberg.de/

N o o AW

http://starbase.sysu.edu.cn
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2.9 Disease prediction, drug prediction,
and molecular docking

The Comparative Toxicogenomics Database (CTD)* was applied
to forecast diseases linked to biomarkers, and a disease-mRNA
network was established. Potential drugs that target the biomarkers
were then predicted through the DrugBank database.” A drug-
mRNA network was also formed at the same time. The regulatory
networks mentioned above were shown using the Cytoscape
softwore (version 3.9.1) (Shannon et al., 2003). The ability of
biomarkers to bind to possible drugs was then investigated by
molecular docking analysis. In particular, molecular docking
research was done to investigate the binding ability between
biomarkers and possible medications. The PDB database' provided
the 3D structures of the proteins that corresponded to the
biomarkers, while PubChem'" provided the 3D structures of the
medications. Molecular docking analysis was carried out on the
AutoDock Vina website,'” and the results were visualized using
PyMOL software (v 2.5) (Seeliger and de Groot, 2010).

2.10 Reverse transcription quantitative
polymerase chain reaction

Total RNA was extracted from tissue samples using TRIzol®
Reagent (Invitrogen, United States) following the manufacturer’s
protocol. First-strand cDNA was synthesized using PrimeScript™
RT Reagent Kit (Takara). Primers for CDC20, CXCL14, FCGR2B,
HKDCI1, and GPBARI were designed via Primer-BLAST and
synthesized by Sangon Biotech. GAPDH served as the internal
control. The qRT-PCR reactions were performed in triplicate using
SYBR® Green PCR Master Mix (Bio-Rad, United States) on a
CFX96 Real-Time PCR System (Bio-Rad). Cycling conditions:
95 °C for 3 min (initial denaturation), followed by 40 cycles of
95°C for 10s (denaturation) and 60 °C for 30s (annealing/
extension). Relative gene expression was calculated via the 274
method. Statistical significance was assessed by Student’s t-test
(p < 0.05). Graphpad Prism (v 5.0) was used for graphing and
statistics (Baziyar et al., 2024). Detailed primers and sequences were
shown in Table 1.

2.11 Statistical analysis

R (v 4.2.2) was utilized to conduct statistical analysis. Difference
analysis between groups was executed via the Wilcoxon test (p < 0.05).
In the RT-qPCR investigations, the t test was implemented to compare
the differences between the two groups. A two-tailed p value less than
0.05 was considered statistically.

8 http://ctdbase.org/

9 https://go.drugbank.com/

10 http://www.rcsb.org/pdb/

11 https://pubchem.ncbi.nlm.nih.gov/

12 https://autodock-vina.readthedocs.io/en/latest/index.ntml
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TABLE 1 Primers and sequences of CDC20, CXCL14, FCGR2B, HKDC1 and
GPBAR1.

Gene Primer sequence (5'-3’)
CDC20-F AATGTGTGGCCTAGTGCTCC
CDC20-R AGCACACATTCCAGATGCGA
CXCL14-F ATCACCACCAAGAGCGTGTC
CXCLI4-R CTTCTCGTTCCAGGCGTTGT
FCGR2B-F TCCAAGAAATTTTCCCGTTCG
FCGR2B-R CTATGTTTCCTGTGCAGTGGT
HKDCI-F CCTCAGTACCCAAAACGCCT
HKDCI-R GACAGGAGGAAGCGGACATC
GPBARI-F CGCTACATGGCAGTCCTGAG
GPBARI-R GGTAGGGGGCTGGGAAGATA
3 Results

3.1 The 2,796 key module genes were
determined

Figure 1A displayed the infiltration abundance of 10 immune
cells in both the HBV-ACLF and control samples in the GSE38941
dataset. The infiltration abundance of the remaining nine immune
cells, with the exception of NK cells, was then interestingly found to
differ significantly between HBV-ACLF and control samples
(p < 0.05). For example, M1 macrophages had larger infiltration
abundance in control samples (Figure 1B). Afterwards, WGCNA was
performed. In GSE38941, no outlier samples were detected
(Figure 1C). When the mean connectivity was near 0 and the R* value
was larger than 0.80, the ideal soft threshold $ was found to be 9
(Figure 1D). The 11 gene modules were then chosen (Figure 1E). The
MEmagenta module showed the strongest negative correlation
(cor=—-0.65, p= 2x10"*) with M1 macrophages, while the
MEbrown module showed the strongest positive correlation
(cor =0.46, p = 0.01; Figure 1F). As a result, 2,287 genes from the
MEbrown module and 509 genes from the MEmagenta module were
determined to be key module genes, amounting to a total of
2,796 genes.

3.2 The 34 candidate genes were acquired

By differential expression analysis, 2,854 DEGsl1 were identified
between HBV-ACLF and control samples in GSE38941. In
HBV-ACLF samples, 1,601 genes were up-regulated and 1,253 genes
were down-regulated. In the volcano plot, the top 10 up- and down-
regulated genes were labeled from highest to lowest in order of
[log,EC| (Figure 2A). The heatmap (Figure 2B) showed the expression
of the top 10 genes that were up- and down-regulated in the
HBV-ACLF and control samples (Figure 2B). Figure 2C showed a
significant difference (p < 0.05) in GPBARI expression levels between
the HBV-ACLF and control samples. The median value (6.07) of
GPBARLI expression was then used to separate the groups with high
and low expression. 670 DEGs2 were found between the high and low
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expression groups. In the high expression group, there were 90
up-regulated genes and 580 down-regulated genes (Figures 2D,E).
After that, 2,796 key module genes, 2,854 DEGs1, and 670 DEGs2
were taken for intersection and 33 genes were acquired (Figure 2F).
Because these 33 genes did not contain GPBARI, both the above 33
genes and GPBAR1 were included as candidate genes for
subsequent analysis.
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3.3 Candidate were involved in multiple
pathways

The 34 candidate genes were significantly associated with 442
GO terms and 7 KEGG pathways (p < 0.05). The 442 GO terms
included 366 BPs, 30 CCs, as well as 46 MFs. Ranked by p-value
from smallest to largest, the top 10 terms for BPs, CCs, and MFs
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were shown separately, including nuclear division, meiotic

spindle, histone kinase activity, and S0 on
(Supplementary Figure 1A; Supplementary Table 1). Similarly, 7
KEGG pathways included oocyte meiosis, cell cycle, and so on
(Supplementary Figure 1B; Supplementary Table 2). Moreover, a
PPI network was created. Among them, genes such as DEPDCI1
and ASPM had a relatively strong interaction with other genes

(Supplementary Figure 1C).

3.4 The 5 biomarkers were determined

In the LASSO regression analysis, 7 feature genes (CDC20,
CXCL14, FCGR2B, MUCI13, CABYR, HKDC1, GPBARI1) were
identified when lambda.min was 0.0042 and the coefficients of the
genes were not penalized to 0 (Figure 3A). Next, in the ROC curve, 5
genes (CDC20, CXCL14, FCGR2B, HKDC1, GPBARI) had an AUC
value larger than 0.85 in both GSE38941 and GSE14668, and the
values were not all 1. These genes were included as key genes
(Figure 3B). Furthermore, in both the GSE38941 and GSE14668
datasets, CDC20, CXCL14, FCGR2B, HKDC1, and GPBAR1 were
identified as biomarkers. Their expression levels exhibited significant
differences between HBV-ACLF samples and control samples, with
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consistent expression trends (p < 0.05). Notably, CDC20, CXCL14,
FCGR2B, HKDCI, and GPBARI were all significantly up-regulated
in HBV-ACLF samples (Figure 3C).

3.5 Nomogram had excellent predictive
capability

Based on the five biomarkers, the constructed nomogram was
shown in Supplementary Figure 2A. In the calibration curve, the
predicted curve was very close to the ideal curve with a p-value of
0.577 in Hosmer-Lemeshow (HL) test (Supplementary Figure 2B).
These results showed that the nomogram model had excellent
predictive ability for the occurrence of HBV-ACLE

3.6 Enrichment pathways associated with
biomarkers were explored

The 150, 197, 203, 142, and 195 pathways were significantly
enriched by CDC20, CXCL14, FCGR2B, HKDCI, and GPBARI,
respectively (p < 0.05). The top 10 pathways that were significantly
enriched by each biomarker were presented, respectively. Specifically,
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Screening key genes by machine learning. (A) 7 feature genes (CDC20, CXCL14, FCGR2B, MUC13, CABYR, HKDC1, GPBAR1) were identified by LASSO
regression analysis (lambda.min = 0.0042). (B) ROC curve analysis on key genes in HBV-ACLF samples and control samples was performed by
calculating the area under the curve (AUC) values (AUC > 0.85, AUC # 1). Left: Training set GSE38941; Right: Validation set GSE14668. (C) Expression
levels of potential biomarkers in the training set and validation set (Wilcoxon Rank-Sum Test, p < 0.05).
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the pathways significantly enriched by CDC20 included cell cycle,
phagosome, etc (Figure 4A, Supplementary Table 3). Pathways such
as retinol metabolism and carbon metabolism were significantly
enriched by CXCL14 (Figure 4B, Supplementary Table 4). As for
FCGR2B, the enriched pathways contained tryptophan metabolism,
biosynthesis of cofactors, and so on (Figure 4C, Supplementary Table 5).
HKDCI1 enriched multiple pathways, such as DNA replication and
viral carcinogenesis (Figure 4D, Supplementary Table 6). Meanwhile,
pathways like biosynthesis of cofactors and carbon metabolism were
enriched by GPBAR1 (Figure 4E,
Supplementary Table 7). Subsequently, it was further found that
CDC20, CXCL14, FCGR2B, HKDC1, and GPBAR1 were located on
chromosomes 1, 5, 1, 10, and 2, respectively (Figure 4F). Additionally,

also  significantly

a GGI network was constructed. Genes with functions similar to those
of the biomarkers included CXCL5, CXCL12, etc., and the functions
involved included cytokine activity, chemokine receptor binding, etc
(Figure 4G). The above-mentioned pathways and functions might
have played a crucial role in the development of HBV-ACLE

3.7 Biomarkers were regulated by multiple
molecules simultaneously

The 55, 44, and 17 TFs targeting CDC20, HKDC1, and GPBARI,
respectively, were predicted. The constructed TF-mRNA network was

10.3389/fmicb.2025.1630042

shown in Supplementary Figure 3A. Among them, KLF13, JUND, and
other TFs jointly targeted CDC20 and HKDC1, while ZNF610, TFDP1,
and other TFs jointly targeted CDC20 and GPBARI. Subsequently,
miRNAs targeting two biomarkers were predicted, totaling 69 miRNAs.
There were 34, 8, 1, 19, 6 and 1 miRNAs targeting CXCL14 and FCGR2B,
CXCL14 and HKDC1, CXCL14 and GPBARI, FCGR2B and HKDCl,
FCGR2B and GPBARI1, HKDCl and GPBARI, respectively
(Supplementary Figure 3B). Then, it was found that a total of 10 miRNAs
and 211 IncRNAs were associated. The IncRNA-miRNA-mRNA
regulatory network was constructed and the IncRNAs with degree > 1
were demonstrated. Among the interactions included XIST-hsa-miR-
296-3p-CXCL14, SNHGI14-hsa-miR-510-5p-CXCL14, and so on
(Supplementary Figure 3C). To sum up, these discoveries contributed to
the methodical disclosure of biomolecule-to-biomolecule interactions
and offered crucial hints and a theoretical foundation for comprehending
the genesis and progression of HBV-ACLE

3.8 Biomarkers were associated with
various diseases and drugs

A disease-mRNA network was constructed. It could be seen
that various diseases were associated with the biomarkers. For
example, Crohn’s disease and constipation were related to GPBARI.
Notably, carcinoma was associated with CDC20 and CXCL14
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Enrichment pathways associated with biomarkers. (A) Top 10 CDC20-associated pathways enriched via GSEA analysis (p < 0.05, [INES| > 1, FDR < 0.25).
(B) Top 10 CXCL14-associated pathways enriched via GSEA analysis (p < 0.05,
via GSEA analysis (p < 0.05, [NES| > 1, FDR < 0.25). (D) Top 10 HKDC1-associated pathways enriched via GSEA analysis (p < 0.05, INES| > 1, FDR < 0.25).
(E) Top 10 GPBAR1-associated pathways enriched via GSEA analysis (p < 0.05,
(G) Gene co-expression analysis of the 5 biomarkers using GeneMANIA (https://genemania.org/).
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INES| > 1, FDR < 0.25). (C) Top 10 FCGR2B-associated pathways enriched

INES| > 1, FDR < 0.25). (F) Chromosomal locations of the 5 biomarkers.

Frontiers in Microbiology 08

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1630042
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://genemania.org/

Sun et al.

(Supplementary Figure 4A). Potential drugs targeting the
biomarkers were also predicted, and a drug-mRNA network was
constructed. The 10 and 4 drugs targeted FCGR2B and GPBARI,
respectively. Drugs targeting FCGR2B included abciximab,
sarilumab, etc., and drugs targeting GPBARI included cholic acid,
deoxycholic acid, etc (Supplementary Figure 4B). Investigating
illnesses and drugs associated with biomarkers contributed to a
deeper comprehension of the pathophysiology and development
mechanisms of HBV-ACLEF, which served as a foundation for early

disease diagnosis and prognostic evaluation.

3.9 Biomarkers had good binding ability to
drugs

The predicted drugs were, respectively, subjected to molecular
docking with the corresponding biomarkers. The results showed
that the energy between GPBARI
chenodeoxycholic acid was —9.5 kJ/mol, binding through the

binding free and

residue ASP-284 (Figure 5A). The binding free energy between

10.3389/fmicb.2025.1630042

GPBARI and cholic acid was —7.5 kJ/mol, binding through the
residues ASP-322, PHE-234, and ILE-232 (Figure 5B). The binding
free energy between GPBARI and deoxycholic acid was —8.3 kJ/
mol, binding through the residues ASP-322, PHE-234, and ILE-232
(Figure 5C). The binding free energy between GPBARI and
taurocholic acid was —8.0 kJ/mol, binding through the residue
ASP-284 (Figure 5D). The binding free energy between FCGR2B
and bevacizumab was —5.0 kJ/mol, binding through the residues
GLY-156 and ASP-265 (Figure 5E). All these results indicated that
the biomarkers had good binding ability with the potential drugs.

3.10 Validation of biomarkers

Total RNA was extracted from liver tissue samples of HCs and
HBV-ACLF patients. Five genes identified as potential candidate
biomarkers for HBV-ACLF were validated using qRT-PCR. The
expression levels of CDC20, CXCL14, FCGR2B, HKDCI, and
GPBARI1 were significantly upregulated in HBV-ACLF patients
compared with HCs (p < 0.05; Figure 6).
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Molecular docking analysis to investigate the binding ability between biomarkers and possible medications. (A) The binding between GPBAR1 and
chenodeoxycholic acid. (B) The binding between GPBAR1 and cholic acid. (C) The binding between GPBAR1 and deoxycholic acid. (D) The binding
between GPBARL and taurocholic acid. (E) The binding between FCGR2B and bevacizumab.
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The expression level of CDC20, CXCL14, FCGR2B, HKDC1, GPBAR1 in liver tissue samples between HBV-ACLF patients and healthy controls (HCs).
(A) The expression level of CDC20 between HBV-ACLF patients and HCs. (B) The expression level of CXCL14 between HBV-ACLF patients and HCs.
(C) The expression level of FCGR2B between HBV-ACLF patients and HCs. (D) The expression level of HKDC1 between HBV-ACLF patients and HCs.
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4 Discussion

In this study, we identified five genes (CDC20, CXCL14, FCGR2B,
HKDCI, and GPBARI1) as diagnostic biomarkers for HBV-ACLE,
highlighting their roles in M1 macrophage polarization and bile acid
signaling. The identification of these novel biomarkers in HBV-ACLF
reveals previously underrecognized pathways involving cell cycle
regulation, metabolic dysfunction, and bile acid-mediated immune
modulation. These findings expand the current immune-centered
model of HBV-ACLF pathogenesis and suggest novel targets for
biomarker development and therapeutic intervention.

These novel biomarkers reflect distinct yet interconnected
pathways that corroborate the complex interplay of immune and
metabolic processes during the development and progression of
HBV-ACLE CDC20, a regulator of the cell cycle, is upregulated in
several liver diseases and may drive hepatocyte apoptosis by
destabilizing the anaphase-promoting complex (Zhao et al.,, 2021).
CXCL14, a chemokine linked to macrophage recruitment, aligns with
the observed M1 polarization in liver failure. Circulating CXCL14
levels were established as a novel early prognostic biomarker for poor
outcomes in patients with acetaminophen-induced acute liver failure
(Umbaugh et al., 2024). FCGR2B, an inhibitory Fcy receptor,
paradoxically demonstrated elevated expression in this study, implying
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compensatory anti-inflammatory feedback in HBV-ACLF (Zhou
et al, 2025). HKDCI, a target of TFEB, plays roles in glucose
metabolism and is essential for maintaining both mitochondrial and
lysosomal homeostasis (Cui et al., 2024). Meanwhile, GPBARI
functions as a dual modulator of bile acid signaling and macrophage
polarization (Shi et al., 2020; Liu et al., 2025). Previous studies revealed
that circulating bile acids can induce immunosuppression in septic
shock patients with severe liver failure (Leonhardt et al., 2023).

Our findings bridge two understudied aspects of HBV-ACLF:
macrophage dominance and bile acid receptor signaling. The
enrichment of tryptophan metabolism pathways, a known modulator
of macrophage polarization, supports the hypothesis that macrophage
polarization in HBV-ACLF is metabolically driven (Liu et al., 2024).
GPBARTI’s involvement in this network suggests that bile acids may
directly or indirectly prime macrophages toward a pro-inflammatory
phenotype. Furthermore, the IncRNA-miRNA-mRNA network (e.g.,
XIST/miR-296-3p/CXCL14) reveals post-transcriptional regulation of
M1 polarization, offering targets for RNA-based therapies.

The diagnostic nomogram incorporating these biomarkers showed
good diagnostic efficacy. Clinically, this could enable earlier intervention
in high-risk patients. Drug prediction and docking analyses further
highlight potential therapeutic targets for HBV-ACLE Additionally, the
SNHG14/miR-510-5p/CXCL14 axis provides a rationale for targeting
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IncRNAs with antisense oligonucleotides, a strategy being explored in
cancer but not yet investigated in HBV-ACLE

This study presents both notable strengths and limitations. Through
comprehensive multi-omics profiling, we identified five key genes
(CDC20, CXCL14, FCGR2B, HKDC1, and GPBARI) that play critical
roles in cell cycle regulation, metabolic dysfunction, and bile acid-
mediated immune modulation, highlighting their potential as diagnostic
biomarkers or therapeutic targets for HBV-ACLE However, several
limitations should be acknowledged. First, our reliance on bulk RNA
sequencing may obscure cell-type-specific transcriptional dynamics,
which could be better resolved through single-cell RNA-seq analysis of
HBV-ACLF liver tissues. Second, the precise mechanistic roles of these
genes in macrophage polarization remain to be fully elucidated,
necessitating further validation in cellular and animal models.
Additionally, protein-level confirmation (e.g., Western blot or
immunohistochemistry) would strengthen the biological relevance of our
findings. Finally, while our study provides valuable insights, the clinical
cohort size was limited due to the challenges in prospectively collecting
liver tissue samples from HBV-ACLF patients. Future multi-center, large-
cohort studies are warranted to validate and extend our findings.

In summary, this study establishes CDC20, CXCL14, FCGR2B,
HKDCI, and GPBARI as key biomarkers in HBV-ACLE By
integrating bioinformatics with translational validation, we propose a
biomarker-driven framework for diagnosis and therapy of HBV-ACLE,
bridging the gap between molecular insights and clinical management
of this lethal syndrome.
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