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Background and aims: M1 macrophage polarization is essential for the 
progression of hepatitis B virus-related acute-on-chronic liver failure (HBV-
ACLF). In this study, we aim to identify and validate M1 polarization-associated 
biomarkers to elucidate pathogenic mechanisms and identify potential 
therapeutic targets for HBV-ACLF.
Methods: Multi-omics data from public databases were analyzed using a co-
expression network and two differential expression analyses. Biomarkers were 
identified by machine learning, ROC curves, and experimental validation. A 
nomogram was developed to assess the diagnostic efficacy of the biomarkers. 
Subsequent analyses included functional enrichment, regulatory network 
construction, computational drug prediction, and molecular docking analysis. 
Finally, biomarker expression was validated using reverse transcription-
quantitative PCR (RT-qPCR) in clinical specimens.
Results: CDC20, CXCL14, FCGR2B, HKDC1, and GPBAR1 were identified as 
diagnostic biomarkers for HBV-ACLF. The constructed nomogram showed 
strong diagnostic performance. Functional enrichment analysis revealed multiple 
pathways enriched in these biomarkers, including tryptophan metabolism and 
cofactor biosynthesis, etc. Subsequently, a lncRNA-miRNA-mRNA regulatory 
network was constructed, with key interactions such as XIST/hsa-miR-296-
3p/CXCL14 and SNHG14/hsa-miR-510-5p/CXCL14. Further analysis identified 
multiple drugs associated with the biomarkers, including cholic acid, deoxycholic 
acid (GPBAR1-targeting agents). Molecular docking revealed favorable binding 
affinities between the predicted drugs and their targets, for example, cholic 
acid exhibited a binding free energy of −7.5 kcal/mol with GPBAR1. In validation 
experiments, RT-qPCR confirmed significant upregulation of all five biomarkers 
in HBV-ACLF patients compared with healthy controls (HCs).
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Conclusion: This study identifies CDC20, CXCL14, FCGR2B, HKDC1, and 
GPBAR1 as M1 polarization-associated biomarkers, revealing their roles in 
immune-metabolic dysregulation and proposing novel therapeutic strategies 
for HBV-ACLF.
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1 Introduction

Hepatitis B virus-related acute-on-chronic liver failure (HBV-
ACLF) is a life-threatening clinical syndrome characterized by rapid 
hepatic decompensation in patients with pre-existing chronic hepatitis 
B (CHB), leading to multi-organ failure and high short-term mortality 
(Zhao et al., 2025). Globally, HBV-ACLF accounts for a significant 
proportion of liver-related morbidity and mortality (Zhang et  al., 
2023). The pathogenesis of HBV-ACLF involves a complex interplay 
of viral reactivation, immune hyperactivation, and dysregulated 
inflammatory cascades, which drive hepatocyte necrosis and impair 
hepatic regeneration.

Current diagnostic criteria mainly rely on clinical scores (e.g., 
MELD, CLIF-C ACLF, and COSSH-ACLF) and nonspecific 
biomarkers, while therapeutic strategies are limited to liver 
transplantation and supportive care (Luo J. et al., 2023). The MELD 
score is more suitable for long-term prognosis assessment compared 
to the CLIF-C ACLF and COSSH-ACLF score. Meanwhile, based 
on the complicated assessment of organ failure, the CLIF-C ACLF 
and COSSH-ACLF score still need to be  simplified and more 
accurate (Choudhury et al., 2025). Traditional nonspecific markers 
such as INR and TBIL can also reflect the severity of HBV-ACLF, 
but their role in predicting disease prognosis and identifying new 
therapeutic targets remains limited. Therefore, there is an urgent 
need to identify novel biomarkers that reflect disease progression 
and offer therapeutic potential (Li et al., 2021).

Macrophages, as central mediators of innate immunity, exhibit 
remarkable plasticity and participate in the development of various liver 
diseases (Luo S. et al., 2023). In HBV-ACLF, excessive M1 polarization 
contributes to amplified hepatic inflammation through the secretion of 
pro-inflammatory cytokines (e.g., TNF-α, IL-6) and reactive oxygen 
species (Taru et al., 2024). The G protein-coupled bile acid receptor 1 
(GPBAR1, also known as TGR5), a bile acid-sensitive receptor, has 
emerged as a key regulator of metabolic and inflammatory processes 
(Biagioli et  al., 2023). Recent studies showed that GPBAR1 could 
modulate macrophage polarization (Liu et al., 2025). GPBAR1 activation 
has been linked to both hepatoprotective and pro-fibrotic effects, 
highlighting its context-dependent functions (Shi et al., 2020). Biagioli 
et al. reported that the small molecule CHIN117, which functions as a 
GPBAR1 agonist and CYSLTR1 antagonist, effectively reversed 
acetaminophen-induced drug-induced liver injury (DILI) in mice, 
demonstrating that GPBAR1 play a significant hepatoprotective role in 
liver injury (Biagioli et al., 2023). However, the mechanistic interplay 
between GPBAR1 signaling, macrophage polarization, and HBV-ACLF 
progression remains unexplored. Investigation of this regulatory axis 
might lead to the identification of novel therapeutic approaches.

In this study, we  employed an integrative multi-omics 
bioinformatics approach with experimental validation to identify and 

validate biomarkers associated with macrophage polarization and 
GPBAR1 signaling in HBV-ACLF. This approach may elucidate the 
underlying mechanisms of immune-metabolic dysregulation and offer 
novel therapeutic strategies for HBV-ACLF.

2 Materials and methods

2.1 Data preparation and samples 
collection

The GEO database1 provided the training and validation sets for 
HBV-ACLF. The training set GSE38941 (platform: GPL570) 
included transcriptome data from 17 HBV-ACLF and 10 control 
human liver tissue samples (Nissim et al., 2012). The validation set 
GSE14668 (platform: GPL570) contained transcriptome data from 
8 HBV-ACLF and 8 control human liver tissue samples (Farci et al., 
2010). To confirm biomarker expression, we included 9 human liver 
samples comprising 5 healthy controls (HCs) and 4 HBV-ACLF 
patients. Liver samples from HCs were obtained from patients 
without underlying chronic liver diseases who underwent partial 
hepatectomy for hepatic hemangioma. Adjacent normal liver tissues 
were obtained from the resected lesions. Liver samples from 
HBV-ACLF patients were obtained during liver transplantation. 
HBV-ACLF was diagnosed according to the APASL consensus 
recommendations: (1) presence of serum hepatitis B surface antigen 
(HBsAg) for >6 months; (2) progressive jaundice (serum bilirubin 
≥5 mg/dL); (3) coagulopathy (INR ≥ 1.5 or prothrombin activity 
<40%) (Sarin et  al., 2019). Exclusion criteria included: (1) 
co-infection with human immunodeficiency virus (HIV), hepatitis 
A, C, D, or E virus, Epstein–Barr virus, or cytomegalovirus; (2) 
other liver diseases such as alcoholic hepatitis or autoimmune liver 
diseases; (3) liver cancer.

The study protocol was approved by the Institutional Research 
and Ethics Committee of Qilu Hospital, Shandong University, and 
other participating centers, in accordance with the 1975 Declaration 
of Helsinki guidelines. Written informed consents were obtained from 
all patients.

2.2 Acquisition of key module genes

In GSE38941, the infiltration abundances of 10 immune cell types 
in HBV-ACLF and control samples were evaluated using the 

1  https://www.ncbi.nlm.nih.gov/gds
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quanTIseq algorithm. The Wilcoxon test was applied to identify 
differential immune cells by comparing infiltration abundances 
between the two groups (p < 0.05). Using M1 macrophages as the trait, 
WGCNA was performed with the WGCNA package (v1.73) 
(Langfelder and Horvath, 2008) to identify genes significantly 
associated with M1 macrophages.

First, the goodSamplesGenes function was used to cluster all 
samples in GSE38941, and outlier samples were removed. The soft 
threshold (β) was determined using the pickSoftThreshold function. 
When the mean connectivity approached 0 and R2 > 0.80, the 
optimal soft threshold was selected. A co-expression matrix was 
constructed with a minimum of 200 genes per module. A 
hierarchical clustering dendrogram was generated using the 
dynamic tree cut algorithm, with modules represented by distinct 
colors. Spearman correlation analysis between gene modules and 
M1 macrophages was performed using the psych package 
(v2.4.6.26) (|r| > 0.3, p < 0.05; Robles-Jimenez et al., 2021). The two 
modules showing the strongest positive and negative correlations 
with M1 macrophages were designated as key modules, and their 
genes were defined as key module genes.

2.3 Differential expression analysis

Differential expression analysis was performed in GSE38941 to 
identify differentially expressed genes 1 (DEGs1) between HBV-ACLF 
and control samples (adj. p < 0.05, |log₂FC| > 1). The Wilcoxon test 
was used to compare GPBAR1 expression between groups (p < 0.05). 
HBV-ACLF samples were stratified by median GPBAR1 expression 
into high- and low-expression groups. DEGs2 were identified by 
comparing these groups (|log₂FC| > 1, adj. p < 0.05). Volcano plots 
and heatmaps were generated using ggplot2 (v3.5.1) (Gustavsson 
et al., 2022) and pheatmap package (v1.0.12) (Gu and Hübschmann, 
2022), respectively.

2.4 Identification and analyses of candidate 
genes

The VennDiagram package (v 1.7.3) (Chen and Boutros, 2011) 
was used to intersect DEGs1, DEGs2, and key module genes to 
identify candidate genes. GO and KEGG enrichment analyses 
(p < 0.05) were performed using clusterProfiler package (v 
4.15.0.3) (Wu et al., 2021). A protein–protein interaction (PPI) 
network (confidence score >0.4) was constructed via STRING2 
and visualized using the Cytoscape package (v3.9.1) (Shannon 
et al., 2003).

2.5 Identification of biomarkers

LASSO regression (glmnet v4.1.4; Engebretsen and Bohlin, 2019) 
with 10-fold cross-validation was applied to candidate genes. Feature 
genes were selected at the minimal lambda value where coefficients 

2  https://string-db.org/

were non-zero. The receiver operating characteristic (ROC) curve 
analysis (pROC v1.18.5; Robin et  al., 2011) in GSE38941 and 
GSE14668 identified key genes (AUC > 0.85  in both datasets). 
Biomarkers were defined as genes with consistent expression trends 
and significant differences (Wilcoxon test, p < 0.05) between 
HBV-ACLF and controls in both datasets.

2.6 Construction and evaluation of 
nomogram

In GSE38941, a nomogram was constructed using the rms 
package (v 6.8.1; Xu et al., 2023) to examine the prediction ability of 
biomarkers for HBV-ACLF. Calibration curve was then created to 
assess the prediction accuracy.

2.7 Enrichment analysis, construction of 
gene–gene interaction (GGI) network, and 
chromosomal localization

Spearman correlation study between the biomarkers and other 
genes in the GSE38941 was conducted through the psych package 
(v 2.4.6.26; Robles-Jimenez et al., 2021). The correlation coefficient 
was employed to order the genes from greatest to smallest. The 
gseKEGG function of the clusterProfiler package (v 4.15.0.3) (Wu 
et  al., 2021) was then applied to perform GSEA analysis, with 
significant criterion of FDR < 0.25, |NES| > 1, and p < 0.05. The 
biomarkers were then uploaded to the GeneMANIA database3 to 
generate a GGI network, which allowed researchers to investigate 
genes that shared comparable activities with the biomarkers and the 
functions they were involved in. Furthermore, the localization of 
biomarkers on different chromosomes was analyzed by the RCircos 
package (v 1.2.2) (Zhang et al., 2013).

2.8 Regulatory network analysis

Transcription factors (TFs) regulating the biomarkers were 
predicted in the Encyclopedia of DNA Elements (ENCODE) 
database4 within the NetworkAnalyst platform.5 The TF-mRNA 
regulatory network was constructed. The miRWalk database6 was 
then employed to predict miRNAs. The miRNAs targeting two 
biomarkers simultaneously were selected to construct miRNA-
mRNA regulatory networks. The starBase database7 was then 
employed to forecast lncRNAs based on miRNAs. Additionally, a 
lncRNA-miRNA-mRNA regulatory network was created. The 
regulatory networks mentioned above were shown using the 
Cytoscape package (version 3.9.1) (Shannon et al., 2003).

3  http://www.genemania.org

4  https://www.encodeproject.org/

5  https://www.networkanalyst.ca/

6  http://mirwalk.umm.uni-heidelberg.de/

7  http://starbase.sysu.edu.cn
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2.9 Disease prediction, drug prediction, 
and molecular docking

The Comparative Toxicogenomics Database (CTD)8 was applied 
to forecast diseases linked to biomarkers, and a disease-mRNA 
network was established. Potential drugs that target the biomarkers 
were then predicted through the DrugBank database.9 A drug-
mRNA network was also formed at the same time. The regulatory 
networks mentioned above were shown using the Cytoscape 
softwore (version 3.9.1) (Shannon et  al., 2003). The ability of 
biomarkers to bind to possible drugs was then investigated by 
molecular docking analysis. In particular, molecular docking 
research was done to investigate the binding ability between 
biomarkers and possible medications. The PDB database10 provided 
the 3D structures of the proteins that corresponded to the 
biomarkers, while PubChem11 provided the 3D structures of the 
medications. Molecular docking analysis was carried out on the 
AutoDock Vina website,12 and the results were visualized using 
PyMOL software (v 2.5) (Seeliger and de Groot, 2010).

2.10 Reverse transcription quantitative 
polymerase chain reaction

Total RNA was extracted from tissue samples using TRIzol® 
Reagent (Invitrogen, United States) following the manufacturer’s 
protocol. First-strand cDNA was synthesized using PrimeScript™ 
RT Reagent Kit (Takara). Primers for CDC20, CXCL14, FCGR2B, 
HKDC1, and GPBAR1 were designed via Primer-BLAST and 
synthesized by Sangon Biotech. GAPDH served as the internal 
control. The qRT-PCR reactions were performed in triplicate using 
SYBR® Green PCR Master Mix (Bio-Rad, United  States) on a 
CFX96 Real-Time PCR System (Bio-Rad). Cycling conditions: 
95 °C for 3 min (initial denaturation), followed by 40 cycles of 
95 °C for 10 s (denaturation) and 60 °C for 30 s (annealing/
extension). Relative gene expression was calculated via the 2−ΔCt 
method. Statistical significance was assessed by Student’s t-test 
(p <  0.05). Graphpad Prism (v 5.0) was used for graphing and 
statistics (Baziyar et al., 2024). Detailed primers and sequences were 
shown in Table 1.

2.11 Statistical analysis

R (v 4.2.2) was utilized to conduct statistical analysis. Difference 
analysis between groups was executed via the Wilcoxon test (p < 0.05). 
In the RT-qPCR investigations, the t test was implemented to compare 
the differences between the two groups. A two-tailed p value less than 
0.05 was considered statistically.

8  http://ctdbase.org/

9  https://go.drugbank.com/

10  http://www.rcsb.org/pdb/

11  https://pubchem.ncbi.nlm.nih.gov/

12  https://autodock-vina.readthedocs.io/en/latest/index.html

3 Results

3.1 The 2,796 key module genes were 
determined

Figure 1A displayed the infiltration abundance of 10 immune 
cells in both the HBV-ACLF and control samples in the GSE38941 
dataset. The infiltration abundance of the remaining nine immune 
cells, with the exception of NK cells, was then interestingly found to 
differ significantly between HBV-ACLF and control samples 
(p <  0.05). For example, M1 macrophages had larger infiltration 
abundance in control samples (Figure 1B). Afterwards, WGCNA was 
performed. In GSE38941, no outlier samples were detected 
(Figure 1C). When the mean connectivity was near 0 and the R2 value 
was larger than 0.80, the ideal soft threshold β was found to be 9 
(Figure 1D). The 11 gene modules were then chosen (Figure 1E). The 
MEmagenta module showed the strongest negative correlation 
(cor = −0.65, p =  2 × 10−4) with M1 macrophages, while the 
MEbrown module showed the strongest positive correlation 
(cor = 0.46, p = 0.01; Figure 1F). As a result, 2,287 genes from the 
MEbrown module and 509 genes from the MEmagenta module were 
determined to be  key module genes, amounting to a total of 
2,796 genes.

3.2 The 34 candidate genes were acquired

By differential expression analysis, 2,854 DEGs1 were identified 
between HBV-ACLF and control samples in GSE38941. In 
HBV-ACLF samples, 1,601 genes were up-regulated and 1,253 genes 
were down-regulated. In the volcano plot, the top 10 up- and down-
regulated genes were labeled from highest to lowest in order of 
|log2FC| (Figure 2A). The heatmap (Figure 2B) showed the expression 
of the top  10 genes that were up- and down-regulated in the 
HBV-ACLF and control samples (Figure 2B). Figure 2C showed a 
significant difference (p < 0.05) in GPBAR1 expression levels between 
the HBV-ACLF and control samples. The median value (6.07) of 
GPBAR1 expression was then used to separate the groups with high 
and low expression. 670 DEGs2 were found between the high and low 

TABLE 1  Primers and sequences of CDC20, CXCL14, FCGR2B, HKDC1 and 
GPBAR1.

Gene Primer sequence (5′-3′)

CDC20-F AATGTGTGGCCTAGTGCTCC

CDC20-R AGCACACATTCCAGATGCGA

CXCL14-F ATCACCACCAAGAGCGTGTC

CXCL14-R CTTCTCGTTCCAGGCGTTGT

FCGR2B-F TCCAAGAAATTTTCCCGTTCG

FCGR2B-R CTATGTTTCCTGTGCAGTGGT

HKDC1-F CCTCAGTACCCAAAACGCCT

HKDC1-R GACAGGAGGAAGCGGACATC

GPBAR1-F CGCTACATGGCAGTCCTGAG

GPBAR1-R GGTAGGGGGCTGGGAAGATA
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expression groups. In the high expression group, there were 90 
up-regulated genes and 580 down-regulated genes (Figures 2D,E). 
After that, 2,796 key module genes, 2,854 DEGs1, and 670 DEGs2 
were taken for intersection and 33 genes were acquired (Figure 2F). 
Because these 33 genes did not contain GPBAR1, both the above 33 
genes and GPBAR1 were included as candidate genes for 
subsequent analysis.

3.3 Candidate were involved in multiple 
pathways

The 34 candidate genes were significantly associated with 442 
GO terms and 7 KEGG pathways (p < 0.05). The 442 GO terms 
included 366 BPs, 30 CCs, as well as 46 MFs. Ranked by p-value 
from smallest to largest, the top 10 terms for BPs, CCs, and MFs 

FIGURE 1

2,796 key module genes in HBV-ACLF and control samples were determined in the GSE38941 dataset. (A) The infiltration abundance of ten immune 
cells in HBV-ACLF and control samples (p < 0.05). (B) Analysis of the abundance of immune cell infiltration between HBV-ACLF and control samples by 
Wilcoxon rank sum test (p < 0.05). (C) WGCNA analysis to detect outlier samples in the GSE38941 dataset. (D) Screen the scale-free network to select 
the optimal soft-threshold power (R2 > 0.8, mean connectivity < 200). (E) 11 gene modules were chosen from the Gene Hierarchical Clustering 
Dendrogram. (F) Correlations between distinct gene modules and M1 macrophages.
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were shown separately, including nuclear division, meiotic 
spindle, histone kinase activity, and so on 
(Supplementary Figure 1A; Supplementary Table 1). Similarly, 7 
KEGG pathways included oocyte meiosis, cell cycle, and so on 
(Supplementary Figure 1B; Supplementary Table 2). Moreover, a 
PPI network was created. Among them, genes such as DEPDC1 
and ASPM had a relatively strong interaction with other genes 
(Supplementary Figure 1C).

3.4 The 5 biomarkers were determined

In the LASSO regression analysis, 7 feature genes (CDC20, 
CXCL14, FCGR2B, MUC13, CABYR, HKDC1, GPBAR1) were 
identified when lambda.min was 0.0042 and the coefficients of the 
genes were not penalized to 0 (Figure 3A). Next, in the ROC curve, 5 
genes (CDC20, CXCL14, FCGR2B, HKDC1, GPBAR1) had an AUC 
value larger than 0.85  in both GSE38941 and GSE14668, and the 
values were not all 1. These genes were included as key genes 
(Figure  3B). Furthermore, in both the GSE38941 and GSE14668 
datasets, CDC20, CXCL14, FCGR2B, HKDC1, and GPBAR1 were 
identified as biomarkers. Their expression levels exhibited significant 
differences between HBV-ACLF samples and control samples, with 

consistent expression trends (p < 0.05). Notably, CDC20, CXCL14, 
FCGR2B, HKDC1, and GPBAR1 were all significantly up-regulated 
in HBV-ACLF samples (Figure 3C).

3.5 Nomogram had excellent predictive 
capability

Based on the five biomarkers, the constructed nomogram was 
shown in Supplementary Figure  2A. In the calibration curve, the 
predicted curve was very close to the ideal curve with a p-value of 
0.577 in Hosmer-Lemeshow (HL) test (Supplementary Figure 2B). 
These results showed that the nomogram model had excellent 
predictive ability for the occurrence of HBV-ACLF.

3.6 Enrichment pathways associated with 
biomarkers were explored

The 150, 197, 203, 142, and 195 pathways were significantly 
enriched by CDC20, CXCL14, FCGR2B, HKDC1, and GPBAR1, 
respectively (p < 0.05). The top 10 pathways that were significantly 
enriched by each biomarker were presented, respectively. Specifically, 

FIGURE 2

Identification of candidate genes associated with M1 macrophages and GPBAR1 in HBV-ACLF. (A) Differentially expressed genes 1 (DEGs1) between 
HBV-ACLF and control samples (Adj. p < 0.05, |log2FC| > 1) (B) The expression of the top 10 genes that were up- and down-regulated in HBV-ACLF and 
control samples. (C) The expression levels of GPBAR1 between the HBV-ACLF and control samples (p < 0.05). (D) The up-regulated genes and down-
regulated genes in GPBAR1 high and low expression patients. (E) The expression levels of top 10 genes between GPBAR1 high and low expression 
patients. (F) Venn diagram highlighting differentially expressed genes.
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FIGURE 3

Screening key genes by machine learning. (A) 7 feature genes (CDC20, CXCL14, FCGR2B, MUC13, CABYR, HKDC1, GPBAR1) were identified by LASSO 
regression analysis (lambda.min = 0.0042). (B) ROC curve analysis on key genes in HBV-ACLF samples and control samples was performed by 
calculating the area under the curve (AUC) values (AUC > 0.85, AUC ≠ 1). Left: Training set GSE38941; Right: Validation set GSE14668. (C) Expression 
levels of potential biomarkers in the training set and validation set (Wilcoxon Rank-Sum Test, p < 0.05).
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FIGURE 4

Enrichment pathways associated with biomarkers. (A) Top 10 CDC20-associated pathways enriched via GSEA analysis (p < 0.05, |NES| > 1, FDR < 0.25). 
(B) Top 10 CXCL14-associated pathways enriched via GSEA analysis (p < 0.05, |NES| > 1, FDR < 0.25). (C) Top 10 FCGR2B-associated pathways enriched 
via GSEA analysis (p < 0.05, |NES| > 1, FDR < 0.25). (D) Top 10 HKDC1-associated pathways enriched via GSEA analysis (p < 0.05, |NES| > 1, FDR < 0.25). 
(E) Top 10 GPBAR1-associated pathways enriched via GSEA analysis (p < 0.05, |NES| > 1, FDR < 0.25). (F) Chromosomal locations of the 5 biomarkers. 
(G) Gene co-expression analysis of the 5 biomarkers using GeneMANIA (https://genemania.org/).

the pathways significantly enriched by CDC20 included cell cycle, 
phagosome, etc (Figure 4A, Supplementary Table 3). Pathways such 
as retinol metabolism and carbon metabolism were significantly 
enriched by CXCL14 (Figure  4B, Supplementary Table  4). As for 
FCGR2B, the enriched pathways contained tryptophan metabolism, 
biosynthesis of cofactors, and so on (Figure 4C, Supplementary Table 5). 
HKDC1 enriched multiple pathways, such as DNA replication and 
viral carcinogenesis (Figure 4D, Supplementary Table 6). Meanwhile, 
pathways like biosynthesis of cofactors and carbon metabolism were 
also significantly enriched by GPBAR1 (Figure  4E, 
Supplementary Table  7). Subsequently, it was further found that 
CDC20, CXCL14, FCGR2B, HKDC1, and GPBAR1 were located on 
chromosomes 1, 5, 1, 10, and 2, respectively (Figure 4F). Additionally, 
a GGI network was constructed. Genes with functions similar to those 
of the biomarkers included CXCL5, CXCL12, etc., and the functions 
involved included cytokine activity, chemokine receptor binding, etc 
(Figure 4G). The above-mentioned pathways and functions might 
have played a crucial role in the development of HBV-ACLF.

3.7 Biomarkers were regulated by multiple 
molecules simultaneously

The 55, 44, and 17 TFs targeting CDC20, HKDC1, and GPBAR1, 
respectively, were predicted. The constructed TF-mRNA network was 

shown in Supplementary Figure 3A. Among them, KLF13, JUND, and 
other TFs jointly targeted CDC20 and HKDC1, while ZNF610, TFDP1, 
and other TFs jointly targeted CDC20 and GPBAR1. Subsequently, 
miRNAs targeting two biomarkers were predicted, totaling 69 miRNAs. 
There were 34, 8, 1, 19, 6 and 1 miRNAs targeting CXCL14 and FCGR2B, 
CXCL14 and HKDC1, CXCL14 and GPBAR1, FCGR2B and HKDC1, 
FCGR2B and GPBAR1, HKDC1 and GPBAR1, respectively 
(Supplementary Figure 3B). Then, it was found that a total of 10 miRNAs 
and 211 lncRNAs were associated. The lncRNA-miRNA-mRNA 
regulatory network was constructed and the lncRNAs with degree > 1 
were demonstrated. Among the interactions included XIST-hsa-miR-
296-3p-CXCL14, SNHG14-hsa-miR-510-5p-CXCL14, and so on 
(Supplementary Figure 3C). To sum up, these discoveries contributed to 
the methodical disclosure of biomolecule-to-biomolecule interactions 
and offered crucial hints and a theoretical foundation for comprehending 
the genesis and progression of HBV-ACLF.

3.8 Biomarkers were associated with 
various diseases and drugs

A disease-mRNA network was constructed. It could be seen 
that various diseases were associated with the biomarkers. For 
example, Crohn’s disease and constipation were related to GPBAR1. 
Notably, carcinoma was associated with CDC20 and CXCL14 
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(Supplementary Figure  4A). Potential drugs targeting the 
biomarkers were also predicted, and a drug-mRNA network was 
constructed. The 10 and 4 drugs targeted FCGR2B and GPBAR1, 
respectively. Drugs targeting FCGR2B included abciximab, 
sarilumab, etc., and drugs targeting GPBAR1 included cholic acid, 
deoxycholic acid, etc (Supplementary Figure  4B). Investigating 
illnesses and drugs associated with biomarkers contributed to a 
deeper comprehension of the pathophysiology and development 
mechanisms of HBV-ACLF, which served as a foundation for early 
disease diagnosis and prognostic evaluation.

3.9 Biomarkers had good binding ability to 
drugs

The predicted drugs were, respectively, subjected to molecular 
docking with the corresponding biomarkers. The results showed 
that the binding free energy between GPBAR1 and 
chenodeoxycholic acid was −9.5 kJ/mol, binding through the 
residue ASP-284 (Figure  5A). The binding free energy between 

GPBAR1 and cholic acid was −7.5 kJ/mol, binding through the 
residues ASP-322, PHE-234, and ILE-232 (Figure 5B). The binding 
free energy between GPBAR1 and deoxycholic acid was −8.3 kJ/
mol, binding through the residues ASP-322, PHE-234, and ILE-232 
(Figure  5C). The binding free energy between GPBAR1 and 
taurocholic acid was −8.0 kJ/mol, binding through the residue 
ASP-284 (Figure 5D). The binding free energy between FCGR2B 
and bevacizumab was −5.0 kJ/mol, binding through the residues 
GLY-156 and ASP-265 (Figure 5E). All these results indicated that 
the biomarkers had good binding ability with the potential drugs.

3.10 Validation of biomarkers

Total RNA was extracted from liver tissue samples of HCs and 
HBV-ACLF patients. Five genes identified as potential candidate 
biomarkers for HBV-ACLF were validated using qRT-PCR. The 
expression levels of CDC20, CXCL14, FCGR2B, HKDC1, and 
GPBAR1 were significantly upregulated in HBV-ACLF patients 
compared with HCs (p < 0.05; Figure 6).

FIGURE 5

Molecular docking analysis to investigate the binding ability between biomarkers and possible medications. (A) The binding between GPBAR1 and 
chenodeoxycholic acid. (B) The binding between GPBAR1 and cholic acid. (C) The binding between GPBAR1 and deoxycholic acid. (D) The binding 
between GPBAR1 and taurocholic acid. (E) The binding between FCGR2B and bevacizumab.
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4 Discussion

In this study, we identified five genes (CDC20, CXCL14, FCGR2B, 
HKDC1, and GPBAR1) as diagnostic biomarkers for HBV-ACLF, 
highlighting their roles in M1 macrophage polarization and bile acid 
signaling. The identification of these novel biomarkers in HBV-ACLF 
reveals previously underrecognized pathways involving cell cycle 
regulation, metabolic dysfunction, and bile acid–mediated immune 
modulation. These findings expand the current immune-centered 
model of HBV-ACLF pathogenesis and suggest novel targets for 
biomarker development and therapeutic intervention.

These novel biomarkers reflect distinct yet interconnected 
pathways that corroborate the complex interplay of immune and 
metabolic processes during the development and progression of 
HBV-ACLF. CDC20, a regulator of the cell cycle, is upregulated in 
several liver diseases and may drive hepatocyte apoptosis by 
destabilizing the anaphase-promoting complex (Zhao et al., 2021). 
CXCL14, a chemokine linked to macrophage recruitment, aligns with 
the observed M1 polarization in liver failure. Circulating CXCL14 
levels were established as a novel early prognostic biomarker for poor 
outcomes in patients with acetaminophen-induced acute liver failure 
(Umbaugh et  al., 2024). FCGR2B, an inhibitory Fcγ receptor, 
paradoxically demonstrated elevated expression in this study, implying 

compensatory anti-inflammatory feedback in HBV-ACLF (Zhou 
et  al., 2025). HKDC1, a target of TFEB, plays roles in glucose 
metabolism and is essential for maintaining both mitochondrial and 
lysosomal homeostasis (Cui et  al., 2024). Meanwhile, GPBAR1 
functions as a dual modulator of bile acid signaling and macrophage 
polarization (Shi et al., 2020; Liu et al., 2025). Previous studies revealed 
that circulating bile acids can induce immunosuppression in septic 
shock patients with severe liver failure (Leonhardt et al., 2023).

Our findings bridge two understudied aspects of HBV-ACLF: 
macrophage dominance and bile acid receptor signaling. The 
enrichment of tryptophan metabolism pathways, a known modulator 
of macrophage polarization, supports the hypothesis that macrophage 
polarization in HBV-ACLF is metabolically driven (Liu et al., 2024). 
GPBAR1’s involvement in this network suggests that bile acids may 
directly or indirectly prime macrophages toward a pro-inflammatory 
phenotype. Furthermore, the lncRNA-miRNA-mRNA network (e.g., 
XIST/miR-296-3p/CXCL14) reveals post-transcriptional regulation of 
M1 polarization, offering targets for RNA-based therapies.

The diagnostic nomogram incorporating these biomarkers showed 
good diagnostic efficacy. Clinically, this could enable earlier intervention 
in high-risk patients. Drug prediction and docking analyses further 
highlight potential therapeutic targets for HBV-ACLF. Additionally, the 
SNHG14/miR-510-5p/CXCL14 axis provides a rationale for targeting 

FIGURE 6

The expression level of CDC20, CXCL14, FCGR2B, HKDC1, GPBAR1 in liver tissue samples between HBV-ACLF patients and healthy controls (HCs). 
(A) The expression level of CDC20 between HBV-ACLF patients and HCs. (B) The expression level of CXCL14 between HBV-ACLF patients and HCs. 
(C) The expression level of FCGR2B between HBV-ACLF patients and HCs. (D) The expression level of HKDC1 between HBV-ACLF patients and HCs. 
(E) The expression level of GPBAR1 between HBV-ACLF patients and HCs. *p < 0.05, **p < 0.01, ***p < 0.001.
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lncRNAs with antisense oligonucleotides, a strategy being explored in 
cancer but not yet investigated in HBV-ACLF.

This study presents both notable strengths and limitations. Through 
comprehensive multi-omics profiling, we  identified five key genes 
(CDC20, CXCL14, FCGR2B, HKDC1, and GPBAR1) that play critical 
roles in cell cycle regulation, metabolic dysfunction, and bile acid-
mediated immune modulation, highlighting their potential as diagnostic 
biomarkers or therapeutic targets for HBV-ACLF. However, several 
limitations should be acknowledged. First, our reliance on bulk RNA 
sequencing may obscure cell-type-specific transcriptional dynamics, 
which could be better resolved through single-cell RNA-seq analysis of 
HBV-ACLF liver tissues. Second, the precise mechanistic roles of these 
genes in macrophage polarization remain to be  fully elucidated, 
necessitating further validation in cellular and animal models. 
Additionally, protein-level confirmation (e.g., Western blot or 
immunohistochemistry) would strengthen the biological relevance of our 
findings. Finally, while our study provides valuable insights, the clinical 
cohort size was limited due to the challenges in prospectively collecting 
liver tissue samples from HBV-ACLF patients. Future multi-center, large-
cohort studies are warranted to validate and extend our findings.

In summary, this study establishes CDC20, CXCL14, FCGR2B, 
HKDC1, and GPBAR1 as key biomarkers in HBV-ACLF. By 
integrating bioinformatics with translational validation, we propose a 
biomarker-driven framework for diagnosis and therapy of HBV-ACLF, 
bridging the gap between molecular insights and clinical management 
of this lethal syndrome.
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