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Introduction: Epilepsy is a complex neurological disorder with an unclear 
pathogenesis. Emerging evidence suggests that gut microbiota dysbiosis and 
cerebrospinal fluid (CSF) metabolic alterations play a critical role in epilepsy 
progression through the gut–brain axis. This study aimed to characterize 
microbial and metabolic disturbances in pediatric epilepsy and identify potential 
diagnostic biomarkers through integrative multi-omics analysis of matched fecal 
and CSF samples. 
Methods: In this study, we conducted 16S rRNA gene sequencing on fecal 
samples from a total of 50 participants including 17 common epilepsy (CEP) 
patients, 23 refractory epilepsy (REP) patients, and 10 non-epilepsy (NEP) 
patients, along with untargeted metabolomic analysis on 24 paired CSF samples 
from REP and NEP groups. Multi-omics integration and a random forest 
model were applied to assess diagnostic performance, identifying microbial and 
metabolite signatures associated with epilepsy. 
Results: Children with epilepsy (REP and CEP) exhibited distinct gut microbiota 
dysbiosis. Specifically, multivariable association modeling using MaAsLin 3 
identified 13 discriminatory microbial taxa, with Clostridiales and Clostridiaceae 
ranking as the most enriched in REP. Functional predictions revealed significant 
differences in metabolic pathway, alongside disrupted ecological characteristics 
among epilepsy groups. In addition, CSF metabolomics analysis further 
revealed key metabolic shifts between REP and NEP, with notable alterations 
in alpha-Ketoisocaproic acid, alpha-Ketoisovaleric acid, and acetyl-L-carnitine, 
reflecting distinct metabolic reprogramming in epilepsy. Moreover, correlation 
analysis revealed strong microbiota-metabolite associations, reinforcing 
the involvement of the gut-brain axis in epileptogenesis. Independent 
random forest-based diagnostic models using microbial genera (AUC = 
0.913, accuracy = 0.818) or metabolites (AUC = 0.875, accuracy = 0.833) 
demonstrated high classification accuracy in distinguishing REP from 
NEP. Notably, the integrated microbiota-metabolite classification model 
exhibited superior diagnostic performance in REP and NEP groups (AUC 
= 0.953, accuracy = 0.875), significantly surpassing individual models and 
highlighting the potential of multi-omics integration for epilepsy diagnostics. 
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Conclusion: These findings reveal concurrent gut microbiota dysbiosis and 
CSF metabolic disturbances in epilepsy, underscoring their interrelated roles in 
epileptogenesis and reinforcing our understanding of microbiome-metabolome 
crosstalk. The integrated multi-omics model demonstrated superior diagnostic 
performance, emphasizing its potential for precision biomarker discovery and 
clinical application in epilepsy stratification and intervention. 

KEYWORDS 

epilepsy, gut-brain axis, gut microbiota, cerebrospinal fluid, metabolomics 

1 Introduction 

Epilepsy represents a complex and heterogeneous neurological 
disorder characterized by uncontrollable and unpredictable 
epileptic seizures, with nearly 50 million people affected worldwide 
and contributing to a significant socioeconomic burden (GBD 2016 
Epilepsy Collaborators, 2019). Moreover, approximately one-third 
of epileptic patients manifests susceptibility to drug resistance 
after treatment of antiseizure medications (Mesraoua et al., 2023). 
Despite extensive neurobiological and clinical investigations, the 
pathogenetic mechanisms underlying epileptogenesis remain 
incompletely elucidated, reflecting the multifactorial nature of this 
neurological condition (Scheffer et al., 2017). Given in the clinical 
complexity and heterogeneity of epilepsy, it is of great significance 
to unravel the complex etiopathogenes and develop targeted 
therapeutic strategies, which have always been significant challenge 
in the field of epilepsy research and therapeutics (Scheffer et al., 
2017; GBD 2016 Epilepsy Collaborators, 2019; Mesraoua et al., 
2023). 

Accumulating evidence have indicated that gut microbiota 
(GM) could influence brain development and neurological function 
through the gut-brain axis, which was involved in bidirectional 
interaction within brain and the gastrointestinal tract (Sorboni 
et al., 2022; Marizzoni et al., 2023; Rendeli et al., 2023; Nakhal 
et al., 2024). Several studies of both animal models and human 
patients showed substantial differences in the GM profiles between 
epilepsy patients and healthy individuals, as well as modulation 
in anti-seizure effect of the ketogenic diet (Riva et al., 2025; Peng 
et al., 2018; Gong et al., 2020; Lee et al., 2020; Gong et al., 2021; 
Wan et al., 2021; Dong et al., 2022; Zhou et al., 2022). The 
aforementioned investigations underscore the association of gut 
bacterial dysbiosis with epilepsy pathogenesis. In addition to gut 
microbiota, systemic metabolic abnormalities, such as amino acid 
neurotransmitter metabolism, fatty acid and energy metabolism, 
have also been consistently found in biofluids or fecal samples of 
patients with epilepsy (Niu et al., 2022; Wang et al., 2023; Dahlin 
et al., 2024; Hanin et al., 2024; Lian et al., 2024; Meier et al., 2024). 
These metabolic profiling analyses also highlighted the perturbed 
metabolism in the brain of epilepsy sufferers, also indicating the 
dysregulated metabolites considered as diagnostic and prognostic 
markers for epilepsy. In fact, gut microbial communities also affect 
host metabolism with the changes in the gut microbiota often 
correcting with alterations of metabolites in epilepsy, indicating the 
role of interplay between the gut microbiome and host metabolism 
in the pathogenesis of epilepsy (Sorboni et al., 2022; Dahlin 
et al., 2024; Zou et al., 2024). Therefore, investigation of alteration 

in both gut microbiota and metabolites would be helpful to 
comprehensively understand the pathological process of epilepsy. 

Recently, the combined analyses of both gut microbiome and 
metabolome were increasingly rapidly applicated in the exploration 
of the pathophysiological mechanisms and related diagnostic 
biomarkers of epilepsy (Zhou et al., 2023; Dahlin et al., 2024; 
Wan et al., 2024; Zou et al., 2024). Of these multi-omic joint 
studies, metabolomics analyses have been conducted in serum 
samples from patients or animal models, but not in cerebrospinal 
fluid (CSF) from pediatric patients with epilepsy to date. Given 
its close relationship with the central nervous system (CNS), 
CSF serves as a crucial and effective source for identifying new 
potential biomarkers for CNS diseases (Brister et al., 2022). 
Recent metabolomics analyses of CSF have unveiled considerable 
differences in metabolite composition between patients with 
epilepsy and controls, underscoring the link between metabolic 
imbalances and both physiological and pathological modifications 
(Akiyama et al., 2020; Niu et al., 2022; Wang et al., 2023; 
Hanin et al., 2024). In this pilot study, we employed multi-omics 
analyses to analyze shifts in gut microbiota and CSF metabolites 
in children with epilepsy in comparison to control groups based 
on 16S rRNA gene sequencing and ultra-high performance liquid 
chromatography coupled to mass spectrometry (UHPLC-MS) 
analysis. The aim was to uncover potential biomarkers for clinical 
diagnosis and to attempt a comprehensive understanding of the 
interplay between gut microbiota and CSF metabolites in epilepsy 
through integrative analysis. 

2 Materials and methods 

2.1 Participant recruitment and sample 
collection 

The study participants were recruited from the Neurology 
Department of the Second Affiliated Hospital and Yuying 
Children’s Hospital of Wenzhou Medical University, from January 
2022 to December 2022. 

A total of 40 epileptic patients were enrolled and then 
divided into the 17 common epilepsy (CEP) patients and 23 
refractory epilepsy (REP) patients including 16 with CSF collected, 
according to the diagnosis and classification criteria of epilepsy 
in ILAE from 2017 (Scheffer et al., 2017). We also enrolled 
10 non-epilepsy (NEP) patients matched by age and gender 
(including 8 with CSF collected), who were ultimately diagnosed 
with functional headaches (including migraine, cluster headache, 
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emotion-related headache, and sleep-related headache) without 
positive neurological signs and allocated them to the control group. 
In addition, lumbar puncture for CSF detection for NEP group 
was required to rule out both CNS and neurological involvement 
as determined by the clinicians. The enrollment criteria for the 
epileptic patients in the study were as follows: (i) age 1–17 years; 
(ii) stable clinical symptomatology and EEG features from the 
last 3 months; (iii) recent brain MRI negative for potentially 
epileptogenic alterations (stroke, tumors, infectious diseases); and 
(iv) ASMs treatment in both CEP and REP groups given at stable 
dose from at least 3 months. Exclusion criteria for both the epileptic 
patients and NEP controls were as follows: (i) clear histories 
of chronic or allergic diseases; (ii) known inherited metabolic 
diseases; (iii) treatment with antibiotics, probiotics, or proton 
pump inhibitors within 3 months before the sample collection; (iv) 
Definite brain organic lesions caused by sequelae of intracranial 
infections, mechanical trauma, or spontaneous hemorrhage due 
to vascular malformations; and (v) treatment with ketogenic 
diet. According to routine pediatric neurological practice, lumbar 
puncture is not recommended for children with common epilepsy 
unless specific clinical concerns arise. Therefore, no CSF samples 
were collected from CEP patients in this study. 

Fecal samples were collected by the parents using a sampling 
kit (including a sterile collection tube and a cotton swab) 
and then stored at −80 ◦C within half an hour. CSF was 
collected by professional clinicians via lumbar puncture in a 
sterile polypropylene tube without any additives, labeled, and then 
stored at −80 ◦C. This study was approved by the Independent 
Ethics Committees and Institutional Review Board of the Second 
Affiliated Hospital and Yuying Children’s Hospital, Wenzhou 
Medical University, and was conducted according to the ethical 
principle of the Declaration of Helsinki. Prior to enrollment, 
written informed consent was procured from the patients or 
their guardians. 

2.2 Fecal DNA extraction and 16S rRNA 
gene sequencing 

The genomic DNA of Microbial community was extracted 
from fecal samples using the CTAB/SDS method according to the 
manufacturer’s instructions. DNA concentration and purity were 
monitored on a NanoDrop 2000 and Qubit 3.0 Spectrophotometer 
(Thermo Fisher Scientific, Wilmington, United States). The 
hypervariable V3-V4 region of the 16S rRNA gene was amplified 
using the specific 341F and 805R primers with the barcode. 
Sequencing libraries were generated using the NEBNext

R 
UltraTM 

II DNA Library Prep Kit (Cat No. E7645), and their quality was 
evaluated with the Qubit 3.0 Spectrophotometer and the Agilent 
Bioanalyzer 2100 system. Finally, the libraries were sequenced on 
an Illumina NovaSeq platform, generating 250 bp paired-end reads. 

2.3 Gut microbial analysis 

The raw sequence data were processed using the QIIME 
2 pipeline (Bolyen et al., 2019). With the cutadapt plugin 

implemented in QIIME2, we removed the adaptor and primer 
sequences, followed by chimeras, low-quality read ends with 
a quality score below 35, and identification of amplicon 
sequence variants (ASVs) using the DADA2 plugin. Taxonomic 
assignments of ASV representative sequences were conducted 
based on the SILVA database (version 138) with the RDP Naive 
Bayesian Classifier algorithm. We removed sequences assigned to 
mitochondrial and chloroplast for bacteria from the ASV tables 
for subsequent analysis using the R package microeco (Liu et al., 
2021). Subsequent analyses were conducted on taxa with a mean 
relative abundance of more than 0.01% and present in at least 10% 
of the samples. 

To address variations in sequence depth, we used the 
rarefy_even_depth method in the “phyloseq” package to rarefy 
the ASV table to the minimum sequence depth (Mcmurdie and 
Holmes, 2013). Rarefaction curves were produced for individual 
samples to evaluate the depth of sequencing by simulating the 
resampling process based on the microeco package. Three indices 
of alpha diversity (i.e., Shannon, Pielou_evenness and Richness) 
were evaluated by diversity functions from the R package vegan. 
The alpha diversity, community composition and ternary plot were 
visualized using the “ggplot2” packages in R. Beta diversity matrices 
were calculated using Bray–Curtis distances, and PCoA plots were 
generated from Bray–Curtis similarity matrices and visualized 
using “phyloseq” package. Group significance was determined by 
analysis of similarities (ANOSIM). 

MaAsLin 3 was used to identify microbial features associated 
with diagnostic groups through multivariable linear modeling 
(Nickols et al., 2024). Age, sex, and sequencing depth were included 
as covariates, and associations with both abundance and prevalence 
were evaluated using False Discovery Rate (FDR) correction (q < 
0.05). The gene functions related to the microbial community based 
on the Kyoto Encyclopedia of Genes and Genomes (KEGG) were 
predicted by PICRUSt2 (Douglas et al., 2020). Ecologically relevant 
functional annotation of the gut microbiota was predicted by the 
trans_func class in the microeco package using the Functional 
Annotation of Prokaryotic Taxa (FAPROTAX) database (Louca 
et al., 2016). The prediction of Microbial phenotypic characteristics 
was analyzed by EasyAmplicon tool based on the BugBase database 
(Liu et al., 2023). 

Random forest models were constructed using differential 
microbial genera (p < 0.05) identified by Wilcoxon rank-sum tests 
via the trans_diff function from the microeco package in R, to 
classify samples according to group labels. Model performance 
was evaluated using Leave-One-Out Cross-Validation (LOOCV). 
Probabilistic predictions from the LOOCV procedure were used 
to compute the Receiver Operating Characteristic (ROC) curve 
and the corresponding Area Under the Curve (AUC) using the 
pROC package, in order to evaluate the diagnostic effectiveness 
of the model. In addition, the Precision-Recall (PR) curve and its 
corresponding AUC were calculated using the PRROC package 
to assess performance under class-imbalanced conditions. ROC 
and PR curves were visualized based on predicted probabilities 
from LOOCV. 

To assess the statistical significance of the model’s predictive 
performance, permutation tests were performed for both AUC and 
classification accuracy. Specifically, group labels were randomly 
shuffled 1,000 times, and for each permutation, the random 
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forest model was re-trained using the same feature set and 
evaluated under the identical LOOCV strategy. The resulting null 
distributions of AUC and accuracy were then compared to the 
corresponding values from the original, non-permuted model. 
Empirical p-values were calculated as the proportion of permuted 
AUC or accuracy values that were greater than or equal to those 
observed in the original model. For visualization, histograms of 
AUC and classification accuracy from the 1,000 label-shuffled 
models were generated using the ggplot2 package, depicting the 
null distributions. Vertical dashed lines representing the original 
(non-permuted) AUC and accuracy values were overlaid to 
highlight their deviation from random expectations. 

2.4 Metabolite extraction and UHPLC-MS 
analysis 

For CSF metabolomics analysis, 100 μL of CSF samples were 
placed in EP tubes, resuspended in prechilled 80% methanol with 
vigorous vortexing, incubated on ice for 5 min, and centrifuged 
at 15,000 g, 4 ◦C for 20 min. A portion of the supernatant was 
diluted to a final concentration of 53% methanol using LC-
MS grade water. The samples were then transferred to fresh 
Eppendorf tubes, centrifuged again at 15,000 g, 4 ◦C for 20 min, 
and the supernatant was finally injected into the LC-MS/MS system 
for analysis. UHPLC-MS/MS analyses were performed using a 
Vanquish UHPLC system (ThermoFisher, Germany) coupled with 
an Orbitrap Q ExactiveTM HF-X mass spectrometer (Thermo 
Fisher, Germany). 

2.5 Data processing and CSF untargeted 
metabolomics analysis 

The raw data files generated by UHPLC-MS/MS were processed 
using Compound Discoverer 3.3 (CD3.3, ThermoFisher) for peak 
alignment, peak picking, and quantitation of each metabolite. 
Main parameters included peak area correction with the first 
quality control (QC), actual mass tolerance of 5 ppm, signal 
intensity tolerance of 30%, and minimum intensity. Peak intensities 
were normalized to total spectral intensity and used to predict 
molecular formulas based on additive ions, molecular ion peaks, 
and fragment ions. Peaks were matched with the mzCloud 
(https://www.mzcloud.org/), mzVault (https://www.mzcloud.org/), 
and MassList databases for accurate qualitative and relative 
quantitative results. For non-normally distributed data, relative 
peak areas were obtained by standardizing according to the 
formula: sample raw quantitation value/(sum of sample metabolite 
quantitation value/sum of QC1 sample metabolite quantitation 
value). Compounds with CVs of relative peak areas in QC 
samples >30% were removed, and the identification and relative 
quantification of metabolites were finalized. 

Metabolite identification confidence was classified in 
accordance with the Metabolomics Standards Initiative (MSI). Due 
to the untargeted nature of the study, most annotated metabolites 
correspond to MSI Level 2, indicating identification based on 
high-resolution mass spectra, retention time alignment, and 

MS/MS spectral matching against reference libraries. MSI Level 1 
confirmation, which requires validation using authentic chemical 
standards, was not feasible for all compounds. 

These metabolites were annotated through the KEGG database 
(https://www.genome.jp/kegg/pathway.html) and the HMDB 
database (https://hmdb.ca/metabolites). Principal components 
analysis (PCA) and Partial least squares discriminant analysis 
(PLS-DA) were conducted using the MetaboAnalyst 6.0 (Pang 
et al., 2024). In the PLS-DA analysis, metabolites with Variable 
Importance in Projection (VIP) >1 were considered as important 
variables for classification. Metabolic pathway analyses associated 
with these metabolites with VIP > 1 were annotated using 
MetaboAnalyst 6.0. We applied univariate analysis (t-test) to 
calculate the statistical significance (p-value). Metabolites passing 
the threshold of p-values < 0.05 and fold change ≥1.5 or ≤2/3 
were regarded as statistically different substances. Volcano plots 
were used to filter metabolites of interest which based on log2 

(fold change) and -log10 (p-value) of metabolites by ggplot2 in R. 
Multivariate ROC analyses on a combination of selected features 
using random forest analysis were performed to calculate the AUC 
and analyze the prediction model using MetaboAnalyst 6.0. 

2.6 Correlational analysis of gut 
microbiome and CSF metabolome 

Spearman correlation analysis was employed to examine the 
intricate relationship between the microbiome and metabolome. 
Differential metabolites and key microbiota identified via random 
forest analysis were selected to compute correlation coefficients and 
statistical significance using the cal_cor function from the microeco 
package with visualization through a heatmap. The p-value < 0.05 
was considered statistically significant for correlation. 

3 Results 

3.1 Demographics and clinical 
characteristics 

A total of 40 patients with epilepsy including 17 children with 
CEP and 23 children with REP, along with 10 NEP controls were 
enrolled in the study. The NEP cohort included children presenting 
with functional headache syndromes—such as migraine, emotion-
related headache, and sleep-related headache—who exhibited 
no signs of organic or neurological disease. These participants 
underwent lumbar puncture as part of standard clinical evaluation 
to exclude central nervous system involvement. No significant 
differences were observed among the three groups in terms of age, 
gender, body mass index, and dietary habits. All clinical data in the 
cohort are summarized in Table 1 and Supplementary Table S1. 

3.2 Gut microbial community composition 
and diversity 

To characterize gut microbiota structure among participants, 
fifty stool samples were collected from the three groups and 
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TABLE 1 Demographic and clinical characteristics of the participants in this study. 

Characteristics NEP (n = 10) CEP (n = 17) REP (n = 23) F/χ 2 p-value 

Age (year)a 11.2 ± 3.58 9.06 ± 3.21 8.52 ± 2.57 2.803 0.071 

Gender (males, %)b 4 (40) 11 (64.7) 8 (34.8) 3.705 0.186 

BMI (kg/m2)a 17.1 ± 2.73 17.4 ± 2.38 16.2 ± 3.13 0.855 0.432 

Dietray data (n, %)b 

Vegetables, and fruit 

High 4 (40) 4 (23.5) 8 (34.8) 0.844 0.870 

Moderate 2 (20) 5 (29.4) 4 (17.4) 

Low 4 (40) 8 (47.1) 11 (47.8) 

Fried food, and carbonated soft drinks 

High 5 (50) 8 (47.1) 8 (34.8) 0.776 0.807 

Moderate 3 (30) 3 (17.6) 6 (26.1) 

Low 2 (20) 6 (35.3) 9 (39.1) 

Milk 

High 4 (40) 4 (23.5) 10 (43.5) 0.774 0.786 

Moderate 4 (40) 9 (52.9) 9 (39.1) 

Low 2 (20) 4 (23.5) 4 (17.4) 

Number of ASMs 

0 0 0 

1 – 16 (94.1%) 0 

2 – 1 (5.9%) 1 (21.7%) 

3 – 0 15 (65.3%) 

4 – 0 2 (8.7%) 

5 – 0 1 (4.3%) 

NEP, non-epilepsy; CEP, common epilepsy; REP, refractory epilepsy; ASMs, antiseizure medications; BMI, body mass index. 
a p-value calculated using Analysis of Variance. 
b p-value calculated using chi-square test. 

analyzed via Illumina MiSeq sequencing of the V3-V4 region of 
the bacterial 16S rRNA gene. After quality filtering, a total of 
3,625,932 high-quality readings were obtained, with an average of 
72,519 ± 8,891 sequences per sample (Supplementary Table S2). 
After denoising and filtering, these sequences were classified into 
a total of 8,890 ASVs (Supplementary Table S3). 

Rarefaction curve analysis of richness, an alpha diversity 
index, demonstrated sufficient phylogenetic coverage, as curves 
reached saturation with increasing sequencing depth (Figure 1A). 
Community composition analysis revealed that bacterial ASVs 
were affiliated with 54 known phyla, with the top nine phyla 
represented in a bar graph (Figure 1B; Supplementary Table S4). 
Of these, five dominant phyla (>1% abundance across all groups) 
were identified, including Firmicutes, Bacteroidota, Proteobacteria, 
Actinobacteriota, and Campylobacterota (Figure 1B). Further 
examination showed that while Desulfobacterota, Actinobacteriota, 
and Campylobacterota were primarily observed in REP, 
Fusobacteriota was predominantly present in CEP (Figures 1B, 
C), although differences in the average relative abundance 
of these taxa across groups were not statistically significant 
(Supplementary Figure S1). Hierarchical clustering analysis 

revealed that the CEP cohort clustered together with REP, while 
distinctly separating from NEP (Figure 1D). 

Gut microbial diversity analysis showed no significant 
differences across groups in three alpha diversity indices: 
Pielou_evenness, Richness, and Shannon index (Figure 1E). 
However, Principal Coordinates Analysis (PCoA) and ANOSIM 
analysis based on Bray–Curtis distance indicated significant 
differences in the gut microbial community composition (R = 
0.091, p = 0.001; Figure 1F). To characterize microbial features 
associated with diagnostic groups, we applied multivariable 
association modeling using MaAsLin 3, enabling robust 
identification of taxa differentially abundant across the REP, 
CEP, and NEP cohorts while accounting for covariates and data 
compositionality. The analysis identified 13 taxa significantly 
associated with diagnostic groups (q < 0.05), including eight 
enriched in REP and five negatively associated with CEP, 
as detailed in Supplementary Table S5. Notably, members of 
the Clostridia lineage—including Clostridiaceae, Clostridiales, 
Clostridium_sensu_stricto_1, and Erysipelotrichales—exhibited 
strong positive associations with the REP group. Taxa belonging 
to the Synergistia clade—namely Synergistia, Synergistaceae, 
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FIGURE 1 

Comparative analysis of gut microbiota composition and diversity across NEP, CEP, and REP groups. (A) Rarefaction curve analysis of Richness index 
for each sample. (B) Relative abundances of major bacterial phyla present in the gut microbiota of each group. Bar colors indicate distinct phylum 
classifications. (C) Ternary plot illustrating microbial community composition differences among the three groups. (D) Hierarchical clustering of 
microbial communities based on weighted UniFrac distances (E) Comparison of the alpha diversity indices across groups. Statistically significant 
differences are denoted by different letters, determined via one-way ANOVA. (F) Beta diversity analysis using PCoA based on Bray-Curtis distance, 
indicating significant differences in microbial composition (ANOSIM: R = 0.091, p = 0.001). (G) Visualization of microbial associations with diagnostic 
groups identified by MaAsLin 3. Circles indicate abundance-based associations, and triangles represent prevalence-based associations. Color 
intensity corresponds to FDR-adjusted significance levels, with darker shades indicating stronger statistical support. Axes denote effect size 
distributions for abundance and prevalence models. The right panel displays a heatmap of covariates (e.g., age, read depth, sex), illustrating their 
adjusted significance across models. Prefixes indicate taxonomic ranks: phylum (p_), class (c_), order (o_), family (f_), genus (g_), and species (s_). 
NEP, non-epilepsy; CEP, common epilepsy; REP, refractory epilepsy; ANOVA, analysis of variance; PCoA, principal coordinates analysis; ANOSIM, 
analysis of similarities. 
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Synergistales, and Synergistota—were negatively associated with 
CEP. The top 13 group-discriminatory taxa identified by MaAsLin 
3 are depicted in Figure 1G, highlighting distinct microbial 
signatures characteristic of REP and CEP cohorts. 

3.3 Predicted functional potential of gut 
microbial community 

PICRUSt2-based functional predictions identified 212 KEGG 
pathways from filtered ASVs. While PCA analysis indicated no 
significant differences in the overall composition of predicted 
functions among the three groups (Figure 2A), ALDEx2’s Kruskal– 
Wallace test revealed statistically significant differences in the 
relative abundance of eight KEGG pathways spanning five 
biological processes: translation, immune disease, biosynthesis of 
other secondary metabolites, carbohydrate metabolism, and glycan 
biosynthesis and metabolism (Figure 2B). 

To further assess potential biotic nutrient cycling mechanisms, 
we employed the FAPROTAX database, linking microbial 
taxonomy to functional traits. FAPROTAX analysis identified 
38 functional groups associated with carbon (C), nitrogen (N), 
and sulfur (S) cycling. Among these, fermentation emerged as 
the most dominant functional category, followed by anaerobic 
chemoheterotrophy and animal parasites or symbionts (left panel 
in Figure 2C). ANOVA analysis revealed significant differences 
in the relative abundance of 21 functional groups (right panel in 
Figure 2C). 

Additionally, bacterial phenotypic characteristics were inferred 
using the BugBase database, predicting microbial functions across 
nine phenotypic categories, including pathogenicity, aerobic and 
anaerobic metabolism, facultative anaerobic capability, mobile 
elements, biofilm formation, Gram-positive/Gram-negative 
classification, and oxidative-stress tolerance. BugBase predictions 
indicated that the REP and NEP groups were enriched in aerobic 
taxa compared to CEP (Figure 2D). Conversely, the CEP group 
exhibited significantly higher abundance of anaerobic taxa relative 
to REP (Figure 2E). 

3.4 Identification of differential microbial 
genera and construction of classification 
models for epilepsy 

To explore whether gut microbial composition could be utilized 
for the diagnosis of epilepsy in children, differential microbial 
genera were identified using the Wilcoxon rank-sum test via the 
trans_diff function in the microeco R package. Genera with FDR-
adjusted p-values < 0.05 were retained as microbial signatures for 
subsequent classification modeling. 

There were eight genera with significant differences between 
CEP and NEP groups (FDR adjusted p < 0.05, Wilcoxon rank sum 
test; Figure 3A). These genera belonged to Proteobacteria, 
Firmicutes, and Actinobacteriota, with CEP enriched in 
genera from Proteobacteria and Firmicutes, whereas NEP 
showed a higher abundance of genera from Proteobacteria and 
Actinobacteriota. Specifically, Klebsiella, Megasphaera, Romboutsia, 

and Erysipelatoclostridium were more prevalent in CEP, while 
Neisseria, Corynebacterium, Haemophilus, and Rothia were 
dominant in NEP (Figure 3A). These differential genera were 
used as input features for a random forest classification model, 
which was evaluated through LOOCV. The model demonstrated 
high discriminatory performance, achieving an AUC of 0.906 
for the ROC curve (Figure 3B), an AUC of 0.942 for the PR 
curve (Figure 3E), and an overall classification accuracy of 0.852. 
Statistical robustness was confirmed via permutation testing 
(1,000 iterations), with empirical p-values of 0 for both AUC 
(Figure 3C) and accuracy (Figure 3D), indicating that the observed 
classification performance was highly unlikely to result from 
random chance. 

Further analysis identified 14 microbial genera displaying 
significant differences between REP and NEP groups (FDR adjusted 
p < 0.05, Wilcoxon rank sum test; Figure 3F). These genera 
were distributed across Firmicutes, Bacteroidota, Proteobacteria, 
Actinobacteriota, and Fusobacteriota, with REP characterized by 
an increased presence of Firmicutes and Bacteroidota, whereas 
NEP exhibited greater representation of Firmicutes, Proteobacteria, 
Actinobacteriota, and Fusobacteriota. Notably, genera such as 
Allobaculum, Alistipes, Dubosiella, and Ileibacterium were enriched 
in the REP group, while the other the 10 genera such as 
Gemella, Neisseria, and Ruminococcus were more abundant in 
the NEP group. A random forest classification model constructed 
using these genera also demonstrated strong predictive capability, 
yielding an AUC of 0.913 for the ROC curve (Figure 3G), 
an AUC of 0.965 for the PR curve (Figure 3J), and an 
accuracy of 0.818. Permutation tests reinforced model reliability, 
with empirical p-values of 0 for AUC (Figure 3H) and 0.002 
for accuracy (Figure 3I), confirming the robustness of the 
classification approach. 

To assess the generalizability of our microbial classification 
models, we applied the CEP vs. NEP and REP vs. NEP 
random forest classifiers to an independent pediatric epilepsy 
16S rRNA dataset derived from a European cohort (Riva 
et al., 2025), representing a geographically and ethnically 
distinct population from our original study. This external 
cohort includes medication-sensitive (MS) and medication-
resistant (MR) patients, as well as healthy controls (HC). The 
CEP-trained model demonstrated strong discriminatory ability 
when tested on MS vs HC samples, achieving an AUC of 
0.838 and an accuracy of 0.812 (Supplementary Figure S2A). 
Permutation testing with 1,000 iterations yielded empirical p-
values of 0 for both metrics, confirming the statistical robustness 
of the classification (Supplementary Figures S2B, C). Similarly, 
the REP-trained model achieved an AUC of 0.796 and an 
accuracy of 0.723 for distinguishing MR from HC samples, with 
permutation p-values of 0 for AUC and 0.004 for accuracy 
(Supplementary Figures S2D–F), further supporting the reliability 
of the model’s performance in an external cohort. Feature overlap 
analysis revealed that 7 of the 8 genera used in the CEP 
classifier (Supplementary Figure S2G) and 9 of the 14 genera used 
in the REP classifier (Supplementary Figure S2H) were present 
in the external European dataset. These retained genera were 
among the top-ranked features in the original models, suggesting 
that conserved microbial signals contributed to the preserved 
classification performance. 
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FIGURE 2 

Predicted function analysis of gut microbiota in NEP, CEP and REP. (A) PCA analysis of PICRUSt2-predicted functional pathways, showing no 
significant overall differences among groups. (B) Differential functional pathways predicted via PICRUSt2, with significant differences identified using 
ALDEx2’s Kruskal–Wallis test (p < 0.05). (C) Ecological function analysis using FAPROTAX (left: heatmap of metabolic functions; right: relative 
abundances of functional groups across groups). ANOVA followed by Duncan’s multiple range test determined statistical significance, with different 
letters indicating significant differences. (D, E) Predicted bacterial phenotypes using BugBase. Left panels show phenotype proportions at the phylum 
level, assessed via Mann-Whitney U test (different letters denote significance). Right panels display the microbial composition of phenotypes at the 
phylum level. NEP, non- epilepsy; CEP, common epilepsy; REP, refractory epilepsy; PCA, principal component analysis; ANOVA, analysis of variance; 
FAPROTAX, Functional Annotation of Prokaryotic Taxa; BugBase, bacterial phenotype prediction tool. 
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FIGURE 3 

Differential gut microbial genera and random forest classification models for Epilepsy. (A) Differential genera between CEP and NEP identified by the 
Wilcoxon rank-sum test (FDR-adjusted p < 0.05). Left: genera ranked by random forest importance (Mean Decrease Accuracy). Right: relative 
abundance bar plots. Bar colors correspond to the bacterial phylum classification of each genus. (B) ROC curve of the CEP vs. NEP classifier (AUC = 
0.906). (C, D) Permutation tests (n = 1,000) for AUC and accuracy, showing distributions under random label shuffling; empirical p-values indicate 
model significance. (E) PR curve for the CEP vs. NEP model (AUC = 0.942). (F) Differential genera between REP and NEP identified by the Wilcoxon 
rank-sum test. Left: genera ranked by random forest importance. Right: bar plots showing relative abundance. Bar colors correspond to the bacterial 
phylum classification of each genus. (G) ROC curve for the REP vs. NEP classifier (AUC = 0.913). (H, I) Permutation tests (n = 1,000) for AUC (p = 0) 
and accuracy (p = 0.002) validating model robustness. (J) PR curve for the REP vs. NEP model (AUC = 0.965). NEP, non-epilepsy; CEP, common 
epilepsy; REP, refractory epilepsy; ROC, receiver operating characteristic; PR, Precision–Recall. Asterisks indicate statistical significance: *p < 0.05; 
**p < 0.01. 
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These findings highlight the potential of genus-level microbial 
signatures as effective diagnostic markers for epilepsy in children. 
The high classification accuracy and statistical validation suggest 
that microbial composition could be leveraged for reliable disease 
stratification, providing valuable insights into the microbial 
characteristics distinguishing different clinical conditions. 

3.5 Untargeted metabolomic alterations in 
the CSF of children with REP 

To further explore metabolic dysregulation associated with 
epilepsy, we conducted untargeted metabolomic profiling of CSF 
samples from 16 children with REP and 8 children with NEP using 
LC-MS. Following peak detection, alignment, and deconvolution, 
a total of 1,082 unique putative metabolites were detected in both 
positive and negative ionization modes. After filtering exogenous 
compounds and duplicates, 389 endogenous metabolites were 
retained based on HMDB annotations (Supplementary Table S6). 
These metabolites were categorized into 31 secondary categories 
and further grouped into six primary classifications based 
on KEGG pathway annotation (Supplementary Figure S3). The 
majority of metabolites were involved in metabolic pathways, 
particularly global and overview maps, amino acid metabolism, and 
carbohydrate metabolism. HMDB-based classification indicated 
that organic acids and derivatives (29.56%), lipids and lipid-like 
molecules (20.82%), and organoheterocyclic compounds (15.94%), 
followed by benzenoids (11.05%), collectively accounted for 77.37% 
of the annotated metabolites, reflecting a substantial representation 
of central metabolic intermediates and bioactive compounds 
(Figure 4A). 

Unsupervised principal component analysis (PCA) revealed 
clear metabolic separation between REP and NEP groups, with the 
first two principal components explaining 68.6% (PC1) and 10.8% 
(PC2) of the total variance, respectively. Statistical significance of 
the observed separation was confirmed via permutation testing 
(n = 999, p = 0.015), supporting the existence of distinct 
metabolic profiles between the two groups (Figure 4B). To further 
assess class discrimination and identify key metabolites, a PLS-DA 
model was constructed, demonstrating clear intergroup separation 
(Figure 4C). Ten-fold cross-validation yielded a classification 
accuracy of 84.7% (R2 = 0.584, Q2 = 0.403; Figure 4C), while ROC 
analysis returned an AUC of 0.805 (Supplementary Figure S4), 
indicating robust explanatory and predictive power. Model 
reliability was further supported by permutation testing (n = 
1,000), which showed that the observed classification accuracy 
significantly (0.847) exceeded that of randomly permuted models 
(p = 0.044; Figure 4D). 

Based on VIP scores derived from the PLS-DA model, 23 key 
discriminatory metabolites were identified (VIP > 1.0), including 
citric acid, taurine, L-glutamic acid, and acetyl-L-carnitine, all of 
which are involved in energy metabolism and neurotransmitter 
pathways (Figure 4E). Metabolic pathway analysis using KEGG 
revealed 19 significantly impacted pathways, with the six most 
affected (impact score > 0.05) including taurine and hypotaurine 
metabolism, alanine, aspartate and glutamate metabolism, histidine 
metabolism, arginine biosynthesis, citrate cycle (TCA cycle), and 

vitamin B6 metabolism (Figure 4F and Supplementary Table S7). 
These pathways are functionally linked to neuronal excitability, 
neurotransmission, and mitochondrial activity. 

3.6 Metabolite-level classification model 

To visualize metabolite expression differences between children 
with REP and NEP controls, an independent t-test was conducted. 
This univariate analysis identified 40 significantly altered 
metabolites (p < 0.05), including six upregulated metabolites (fold 
change > 1.5) and 34 downregulated metabolites (fold change 
< 2/3) in the REP group (Figure 5A). To further refine feature 
selection for diagnostic modeling, significantly altered metabolites 
from the t-test were intersected with those exhibiting VIP scores 
> 1 in the PLS-DA mode. This approach yielded six shared 
metabolites for model construction (Figure 5B), comprising three 
elevated and three reduced metabolites in REP compared to NEP 
(Figure 5C). 

These six discriminatory metabolites were used to construct 
a classification model employing a random forest algorithm with 
LOOCV to evaluate their predictive capacity (Figure 5D). The 
model exhibited promising diagnostic potential, achieving an AUC 
of 0.875 for ROC curve (Figure 5E), an AUC of 0.943 for PR 
curve (Figure 5F), and an overall classification accuracy of 0.833. 
Model reliability was further assessed through permutation testing 
(n = 1,000), where sample labels were randomly shuffled while 
preserving model architecture. The original model consistently 
outperformed the permuted models, yielding empirical p-values 
of 0.006 for both AUC and accuracy (Figures 5G, H), supporting 
reliability and non-random predictive ability of the model. 
These findings highlight the diagnostic relevance of metabolite-
based classification. 

3.7 Correlation and classification analysis of 
gut microbiota and metabolites 

To investigate potential associations between metabolite 
alterations and gut microbiota composition, Spearman’s rank 
correlation analysis was performed. This analysis examined 
correlations between six shared metabolites and the relative 
abundance of 14 differential bacterial genera (identified by the 
Wilcoxon rank-sum test) in paired fecal and CSF samples from 
16 children with REP and 8 with NEP. Applying a selection 
criterion requiring at least one significant correlation (p < 
0.05) for both metabolites and bacterial genera, four metabolites 
exhibited significant associations with 10 bacterial genera 
(Figure 6A). Correlation analysis showed that 5-Methyluridine, 
alpha-Ketoisocaproic acid (KIC), and alpha-Ketoisovaleric acid 
(KIV) had strong positive correlations with three bacterial genera 
while exhibiting negative associations with seven others, though 
some of these negative correlations were not statistically significant 
(Figure 6A). Notably, these three metabolites were more abundant 
in the REP group compared to NEP (Figure 5C).Conversely, 
Acetyl-L-carnitine exhibited negative associations with three 
bacterial genera and positive correlations with seven, although two 
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FIGURE 4 

CSF metabolic profile analysis in REP and NEP. (A) Donut chart showing HMDB-based classification of all annotated metabolites. (B) PCA plot 
depicting metabolic variation between REP and NEP groups. (C) PLS-DA score plot illustrating distinct clustering of REP and NEP samples. (D) 
Validation of the PLS-DA classification model through permutation testing (n = 1000), with an empirical p-value of 0.044. (E) Important features with 
VIP > 1 identified by PLS-DA model. (F) Pathway analysis of metabolites with VIP > 1 in REP compared to NEP. CSF, cerebrospinal fluid; NEP, 
non-epilepsy; REP, refractory epilepsy; KEGG, Kyoto Encyclopedia of Genes and Genomes; HMDB, Human Metabolome Database; PCA, principal 
component analysis; PLS-DA, partial least-squares regression discriminant analysis; VIP, variable importance in projection. 
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FIGURE 5 

Metabolite-level classification model for REP and NEP. (A) Volcano plot showing differential metabolite expression between REP and NEP groups. 
Red and blue points indicate significantly up- or downregulated metabolites, respectively, based on log2 fold change and -Log10 (p-value). (B) Venn 
diagram highlighting the overlap between significantly altered metabolites (t-test, p < 0.05, fold change > 1.5 or < 2/3) and those with VIP > 1 from  
PLS-DA. (C) Box plots of six key metabolites with statistical significance (*p < 0.05, **p < 0.01) between groups. (D) Random forest feature 
importance ranking of selected metabolites. (E) ROC curve (AUC = 0.875) showing model performance in classifying REP vs. NEP. (F) PR curve (AUC 
= 0.943) illustrating precision-recall characteristics. (G, H) Permutation test results for AUC and accuracy (1,000 iterations), with empirical p-values 
indicating statistical robustness. CSF, cerebrospinal fluid; NEP, non-epilepsy; REP, refractory epilepsy; PLS-DA, partial least-squares regression 
discriminant analysis; ROC, receiver operating characteristic; PR, Precision-recall; AUC, area under the ROC curve. 
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FIGURE 6 

Correlation analysis of CSF metabolites with gut microbiota and classification model performance. (A) Spearman correlation heatmap between four 
CSF metabolites and 10 gut bacterial genera. Red and blue shading indicate positive and negative correlations, respectively, with asterisks marking 
statistical significance (*p < 0.05; **p < 0.01). (B) Feature importance plot ranking bacterial genera and metabolites based on mean decrease in 
accuracy from the random forest model. (C) ROC curve (AUC = 0.953) illustrating model performance in distinguishing REP from NEP. (D, E) 
Permutation tests for AUC and accuracy (1,000 iterations), with empirical p-values indicating statistical robustness. (F) PR curve (AUC = 0.976) 
showing precision-recall characteristics. CSF, cerebrospinal fluid; NEP, non-epilepsy; REP, refractory epilepsy; ROC, receiver operating characteristic; 
PR, Precision-recall; AUC, area under the curve. 

of these positive correlations were not statistically significant, and 
its abundance was significantly higher in NEP (Figures 5C, 6A). 

To assess the combined discriminatory power of these 
microbial and metabolic features, a random forest model was 
constructed using the 10ten bacterial genera and four significantly 
correlated metabolites, employing LOOCV for evaluation. Feature 
importance rankings (Figure 6B) identified Corynebacterium, 
Ruminococcus, and Acetyl-L-carnitine as the top three contributors 
to classification performance. The model demonstrated strong 
discriminatory capability, as evidenced by an ROC curve with an 
AUC of 0.953 (Figure 6C). Model robustness was further evaluated 
via permutation testing (1,000 iterations). The AUC permutation 
test yielded a p-value of 0 (0/1,000), indicating that the observed 
AUC was highly unlikely to occur by chance (Figure 6D). Similarly, 
accuracy distribution analysis showed the original model achieving 
an accuracy of 0.875 (Figure 6E), significantly outperforming 
permuted models (p = 0.001, 1/1,000). The PR analysis further 
reinforced classification performance, with an AUC of 0.976 

(Figure 6F), reflecting high precision and recall in distinguishing 
REP from NEP. These findings highlight the strong interplay 
between gut microbiota and CSF metabolites, suggesting that 
their combined signatures may serve as effective biomarkers for 
distinguishing REP from NEP. The robustness of the classification 
model further supports the potential utility of microbial-metabolite 
interactions in disease stratification. 

4 Discussion 

Growing evidence suggests that gut microbial dysbiosis and 
metabolic impairments contribute to epilepsy pathogenesis. While 
previous studies have primarily relied on single-omics approaches, 
limiting insights into microbiota-metabolite interactions, this study 
employed a multi-omics framework integrating gut microbiota 
profiling and untargeted CSF metabolomics in pediatric epilepsy. 
We observed significant dysregulations in microbial composition 
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and metabolic pathways, with beta diversity analysis revealing 
distinct microbial structural shifts. Multivariable association 
modeling using MaAsLin 3, combined with random forest 
classification, identified key microbial genera that distinguish REP 
and CEP patients from NEP controls, demonstrating promising 
diagnostic potential. Functional predictions using PICRUSt2 
and FAPROTAX highlighted disruptions in carbohydrate 
metabolism and immune-related pathways, reinforcing the role 
of microbiome alterations in epilepsy pathophysiology. Similarly, 
CSF metabolomics analysis uncovered key metabolic disturbances, 
particularly in neurotransmitter metabolism and energy pathways, 
supporting their link to neuronal hyperexcitability. A metabolite-
based diagnostic model constructed using six discriminatory 
metabolites exhibited high predictive accuracy (AUC = 0.875, 
accuracy = 0.833). Most notably, integrating microbial and 
metabolite features into a multi-omics classification model 
significantly enhanced diagnostic performance (AUC = 0.953, 
accuracy = 0.875), underscoring the exceptional discriminatory 
capability of microbiota-metabolite signatures. These findings 
underscore the strong interplay between gut microbiota and CSF 
metabolites, highlighting their potential as effective biomarkers for 
disease stratification and precision diagnostics in epilepsy. 

The associations between gut microbial alpha diversity 
and refractory epilepsy or drug-sensitive epilepsy have been 
controversial because of inconsistent results reported by several 
previous studies (Peng et al., 2018; Gong et al., 2020; Lee et al., 
2020; Gong et al., 2021; Wan et al., 2021; Zhou et al., 2022). 
However, relatively reduced alpha diversity might represent the 
characteristics of bacterial community associated with epilepsy 
reported by a previous study through control over the confounding 
factors, such as age and recent antiseizure medication exposure 
(Lee et al., 2020). Although three indexes of alpha diversity did 
not reveal statistically significant changes in the present study, 
the slightly decreased tendency seemed to occur in two epilepsy 
groups compared to control. Furthermore, we observed significant 
differences in beta diversity among three groups, reflecting a 
noticeable intra-individual alteration of microbial structure and the 
state of gut dysbiosis, which had been previously reported by a 
considerable number of studies (Peng et al., 2018; Gong et al., 2020; 
Lee et al., 2020; Gong et al., 2021; Zhou et al., 2022). 

Our results showed Fusobacteria were abundant in the CEP, 
which was also reported in a previous study. The Fusobacteria 
was also found to mostly exist in inflamed gut mucosa, 
thus considered to be pathogenic to human. Apart from the 
observed differences in the relative abundance of Fusobacteria, two 
taxa—including Clostridiaceae and Clostridiales—were significantly 
increased in the REP group and identified as top-ranking 
features by multivariable association modeling using MaAsLin 3. 
This enrichment of Clostridiales and Clostridiaceae aligns with 
broader compositional shifts previously reported in seizure-prone 
WAG/Rij rats at4months of age, indicating a potential association 
between these taxa and disease susceptibility (Citraro et al., 2021). 
Additionally, Erysipelotrichales have been implicated in refractory 
epilepsy in children and adult-onset epilepsy, further supporting 
the relevance of microbial alterations in seizure pathophysiology 
(Peng et al., 2018; Dong et al., 2022). Collectively, these findings 
suggest that specific gut bacterial lineages may contribute to 
seizure susceptibility. 

Functional prediction analysis by PICRUSt2 in our study 
revealed that three 3rd-level KEGG pathways of carbohydrate 
metabolism were significantly active in two epilepsy group, which 
was also found in the previous studies on epilepsy and gut 
microbiota (Gong et al., 2020; Lee et al., 2020; Dong et al., 2022). 
The disturbance of carbohydrate metabolites was considered to 
be closely related to the onset of epilepsy. Interestingly, flavonoid 
biosynthesis revealed a significantly enrichment in control group. 
By inhibiting the synthesis and release of key inflammatory 
mediators and inflammatory signaling pathways such as NF-κB, 
MAPK, JNK, and JAK, flavonoids can pass through the blood–brain 
barrier and offer neuronal protection, which support the potential 
of flavonoids in epilepsy treatment (Kiriyama et al., 2024; Zhang 
et al., 2024). 

As the main component of the CNS extracellular space, 
CSF may contain several informative indicators or biomarkers 
in neurological disease diagnosis and pathogenesis exploration 
(Shahim et al., 2013). Several recent studies reveal that the 
abnormal expression of metabolites in CSF might be associated 
with epilepsy in children or adults (Akiyama et al., 2020; Niu et al., 
2022; Wang et al., 2023; Hanin et al., 2024). In parallel with the 
alterations noted in the GM of refractory epilepsy, we performed 
a comparative investigation of metabolic abnormalities in CSF 
between the REP and NEP cohorts. In line with previous studies, we 
also found several altered metabolites and pathways which might be 
involved in the pathogenesis and prognosis of refractory epilepsy 
or neurological disorders, such as alanine, aspartate and glutamate 
metabolism (Guo et al., 2023; Wang et al., 2023; Hanin et al., 2024; 
Lian et al., 2024; Meier et al., 2024); arginine biosynthesis (Wang 
et al., 2023; Meier et al., 2024); vitamin B6 metabolism (Mastrangelo 
and Cesario, 2019; Stevelink et al., 2019; Chi et al., 2022); and citrate 
cycle (TCA cycle) (Guo et al., 2023; Wang et al., 2023). 

Alanine, aspartate, and glutamate metabolism has been 
explored in the context of epilepsy, with some studies focusing 
on glutamate metabolism, in which alterations in glutamate levels 
have been observed frequently in patients with epilepsy (Guo 
et al., 2023; Wang et al., 2023; Hanin et al., 2024; Lian et al., 
2024; Meier et al., 2024). Several metabolite alterations occur in 
the alanine, aspartate, and glutamate metabolism of the patient 
with refractory epilepsy, despite the fact that our investigation did 
not find any significant differences in glutamate levels between 
the two groups. These metabolites with VIP >1 in the PLS-DA 
model include lower levels of N-acetyl-1-aspartylglutamic acid 
(NAAG), L-glutamine and citric acid, as well as increased levels of 
L-glutamic acid. NAAG, the predominant dipeptide in the brain, 
serves a neuromodulatory function in glutamatergic synapses 
and has been implicated in several neurological and psychiatric 
disorders, including epilepsy, schizophrenia, and stroke (Morland 
and Nordengen, 2022). Reduced glutamine levels, potentially 
linked to a glutamine synthetase deficit, impair the glutamate– 
glutamine cycle, as observed in patients with status epilepticus 
(Hanin et al., 2024) and in a rat model of epilepsy (Swamy 
et al., 2011). Lower concentrations of citric acid, an essential 
intermediate in the TCA cycle, have been associated with resistance 
to drug treatment in epilepsy (Guo et al., 2023). Similarly, 
dysregulation of citric acid cycle intermediates was found to alter 
TCA cycle metabolism in the SLC13A5 deficient patients with 
epilepsy (Bainbridge et al., 2017). In addition, pyridoxine (vitamin 
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B6) is crucial for the synthesis of neurotransmitters gamma-
aminobutyric acid (GABA) and monoamines (Chi et al., 2022). 
Disruptions in vitamin B6 metabolism can result in neuronal 
migration defects and dysplasia, which are observed in individuals 
with these metabolic perturbations (Stevelink et al., 2019; Wilson 
et al., 2019; Chi et al., 2022). In addition, alterations in the arginine 
biosynthesis pathway have been observed in the CSF of children 
with poor outcomes following status epilepticus, suggesting its 
involvement in the pathogenesis of a poor prognosis in status 
epilepticus (Wang et al., 2023). These metabolic abnormalities 
and perturbed metabolic pathway may contribute to early onset 
epileptic encephalopathy. 

Through combination of PLS-DA model and t-test, 
we identified six key metabolites which exhibited a clear 
discrimination between the patients with REP and the NEP 
controls. Correlation analysis between these differential metabolites 
and distinct microbial genus features showed three elevated 
differential metabolites correlated positively with three bacterial 
genera. KIC, one of branched-chain keto acids, is recognized as 
a significant neurotoxic metabolite due to its elevated plasma 
levels being linked to the onset of neurological symptoms (Farias 
et al., 2021). Intracerebroventricular administration of KIC in a rat 
model demonstrated that KIC induces oxidative damage, impaired 
habituation memory, and long-term memory deficits, which 
may be associated with neurodegenerative and neuropsychiatric 
disorders, as well as cognitive impairment (Taschetto et al., 2017). 
Another in vivo study in rats showed that 6 h post-injection, KIC 
significantly cause lipid oxidative damage and impair antioxidant 
defenses, suggesting that KIC may disrupted redox homeostasis, 
associated with neural damage (Zemniacak et al., 2024). In addition 
to KIC, our analysis identified KIV, another branched-chain keto 
acid, as a putative metabolite with elevated levels. KIV was 
found to induce dose-dependent seizure-like behavior in rats, 
suggesting that elevated KIV concentrations in the brain may 
trigger seizures or severe neurological symptoms in patients 
(Coitinho et al., 2001; Amaral and Wajner, 2022). Similarly, this 
metabolite was also found increased in the CSF of patients with 
mild cognitive impairment and Alzheimer’s disease (Berezhnoy 
et al., 2023). Therefore, the increased KIC and KIV levels in the 
REP might enter the brain through the blood-brain barrier led to 
the deleterious effects in the neural cells. Among bacterial genera 
positively associated with these elevated CSF metabolite changes, 
the genera Allobaculum had been shown to potentially pathogenic 
effects and infection risks with relation to neurological disorder 
(Liao et al., 2024), inflammation response (Rice et al., 2022) or  
oxidative stress (Liao et al., 2024). These evidences suggest that 
both the perturbed functional metabolic patterns and dysregulation 
of homeostasis of gut microbial communities may exert a common 
influence on brain development, mood, and behavior. 

Apart from the elevated metabolites correlating with bacterial 
genera, we also observed reduced molecule linked with bacterial 
genera. Acetyl-L-carnitine (ALCAR), an endogenous transport 
molecule, was considered as antioxidants, neuromodulators and 
neuroprotectors with essential roles in protection of developing 
brain (Ferreira and Mckenna, 2017). A recent study on mice model 
with temporal lobe epilepsy induced by kainite suggest ALCAR 
administration could properly attenuate intensity of seizures and 

also incidence of kainate-induced status epilepticus (Tashakori-
Miyanroudi et al., 2022). The aforementioned evidence underscores 
the neuroprotective effect and potential therapeutic role of the 
Acetyl-L-carnitine in epilepsy. In fact, the lower levels of ALCAR in 
epilepsy patients may result in higher brain ammonia levels, which 
can lead to seizures due to increased glutamate production and 
activation of N-methyl-D-aspartate receptors (Maldonado et al., 
2020). Additionally, we have identified several gut microbial genera 
positively associated with the beneficial CSF metabolite change. 
These gut microbiotas were characterized by common health-
associated commensals from the genera such as Rothia, Neisseria, 
and Ruminococcus, all of which showed strong correlation with 
the beneficial CSF metabolite (ALCAR), although several species of 
these genera might be associated with several diseases. Several other 
bacteria were yet less well-characterized for human health such as 
Gemella and Fastidiosipila. 

It is important to acknowledge that the overall sample size in 
this study was relatively limited, particularly for paired fecal and 
CSF analyses. This constraint stems from the ethical and logistical 
challenges of obtaining lumbar puncture specimens from pediatric 
patients. Nonetheless, strict inclusion and exclusion criteria— 
along with careful age and gender matching—were applied to 
minimize biological and clinical heterogeneity. Although formal 
power analysis was not conducted due to practical constraints, 
the observed effect sizes and model performance metrics suggest 
biological relevance warranting follow-up validation. Despite the 
modest cohort size, our multi-omics analysis revealed robust and 
statistically significant microbial and metabolic distinctions among 
groups. Notably, machine learning–based classification models 
demonstrated high accuracy in disease stratification, underscoring 
the biological relevance of the identified features. To mitigate 
potential overfitting due to the limited sample-to-feature ratio, we 
employed leave-one-out cross-validation, permutation testing, and 
statistical feature selection. However, we acknowledge that the risk 
of overfitting cannot be entirely excluded, and future validation in 
independent cohorts will be essential to confirm generalizability. 
We consider this work an exploratory investigation and recognize 
that validation in larger, multicenter cohorts will be essential to 
support generalizability and clinical translation. 

In addition, we acknowledge that metabolite identification in 
our untargeted LC-MS/MS analysis was based on spectral matching 
and retention time alignment, corresponding to Metabolomics 
Standards Initiative (MSI) Level 2 confidence. While confirmation 
using authentic standards (MSI Level 1) was not feasible in this pilot 
study, rigorous quality control—including fragment ion validation 
and filtering of high-variability features—was implemented to 
strengthen reliability. Key metabolites such as KIC, KIV, and 
acetyl-L-carnitine were consistently identified across statistical 
workflows and are supported by prior literature as relevant to 
epilepsy pathophysiology, reinforcing their biological plausibility. 
Targeted metabolomics validation and quantitative assessment will 
be prioritized in follow-up studies to confirm identity and further 
evaluate diagnostic utility. 

While the current study is observational and does not 
establish causality, several identified metabolites have previously 
demonstrated seizure-inducing effects in animal models, 
particularly KIC and KIV. These findings suggest potential 
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FIGURE 7 

Schematic overview of study design, analytical workflow, and key findings. This figure summarizes the participant groups (REP, CEP, and NEP), sample 
collection procedures (fecal and CSF), key analytical methods (16S rRNA sequencing and CSF metabolomics), and major integrative steps, including 
diagnostic modeling and microbiota–metabolite correlation analysis. Classification performance and cross-omics findings are visually integrated to  
support interpretation of the multi-omics framework. REP, refractory epilepsy; CEP, common epilepsy; NEP, non-epilepsy; CSF, cerebrospinal fluid. 

mechanistic relevance in epileptogenesis. Building on this, we are 
initiating experimental validation using preclinical epilepsy models 
to further investigate their causal roles in neuronal excitability and 
disease progression. These findings remain associative and serve as 
hypothesis-generating observations to inform future mechanistic 
studies. Likewise, we observed strong associations between specific 
microbial genera, including Allobaculum and Ruminococcus, and 
CSF metabolite profiles. To explore their functional relevance, 

these taxa will be introduced into mouse models of epilepsy 
under gnotobiotic or antibiotic-depleted conditions. Moreover, 
fecal microbiota transplantation, followed by CSF metabolomic 
profiling, represents a compelling strategy to evaluate whether 
microbial shifts can directly influence CNS metabolic phenotypes. 
We plan to explore this approach in future experiments as a means 
to delineate causal links within the gut–brain axis and to assess 
microbial contributions to epileptogenesis. 
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Additional limitations include the composition of the control 
group in the CSF metabolomics cohort. Due to the ethical 
constraints of performing lumbar puncture in healthy pediatric 
populations, our NEP group consisted of children with functional 
headache syndromes (e.g., migraine, emotion-related headache, 
sleep-related headache) but without neurological or structural 
abnormalities. While these individuals were neurologically 
asymptomatic aside from headache and underwent CSF testing to 
exclude CNS pathology, their symptomatic status may introduce 
confounding factors. In future studies, recruiting asymptomatic 
controls where feasible will help improve interpretability of 
metabolomic comparisons. Furthermore, the lack of metabolomic 
data from CEP cases limited direct comparisons across epilepsy 
subtypes. As CSF sampling is not routinely performed in CEP 
patients for clinical reasons, this gap reflects a real-world constraint 
that should be addressed in subsequent investigations. These 
factors may necessitate cautious interpretation of CSF findings. 
Finally, while 16S rRNA sequencing and untargeted metabolomics 
offer broad characterization, future integration of shotgun 
metagenomics and targeted metabolic profiling will be critical for 
refining mechanistic insights and improving biomarker resolution. 
A schematic overview of the study design, analytical workflow, and 
key findings is presented in Figure 7 to aid interpretation of the 
integrative multi-omics approach. 

5 Conclusion  

Our study reveals significant gut microbiota dysbiosis and 
altered CSF metabolite profiles in pediatric epilepsy, particularly 
in REP. Key microbial taxa and metabolites exhibited promising 
diagnostic potential, with multi-omics integration uncovering 
robust microbiota-metabolome interactions. Most notably, 
the combined microbiota-metabolite classification model 
demonstrated exceptional accuracy, reinforcing its potential as a 
powerful biomarker-driven approach for epilepsy diagnosis. These 
findings provide valuable insights into gut-brain axis disruptions 
and highlight promising avenues for precision diagnostics and 
targeted therapeutic strategies in epilepsy management. 
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