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Multi-omics integration reveals
gut microbiota dysbiosis and
metabolic alterations of
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Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China

Introduction: Epilepsy is a complex neurological disorder with an unclear
pathogenesis. Emerging evidence suggests that gut microbiota dysbiosis and
cerebrospinal fluid (CSF) metabolic alterations play a critical role in epilepsy
progression through the gut—brain axis. This study aimed to characterize
microbial and metabolic disturbances in pediatric epilepsy and identify potential
diagnostic biomarkers through integrative multi-omics analysis of matched fecal
and CSF samples.

Methods: In this study, we conducted 16S rRNA gene sequencing on fecal
samples from a total of 50 participants including 17 common epilepsy (CEP)
patients, 23 refractory epilepsy (REP) patients, and 10 non-epilepsy (NEP)
patients, along with untargeted metabolomic analysis on 24 paired CSF samples
from REP and NEP groups. Multi-omics integration and a random forest
model were applied to assess diagnostic performance, identifying microbial and
metabolite signatures associated with epilepsy.

Results: Children with epilepsy (REP and CEP) exhibited distinct gut microbiota
dysbiosis. Specifically, multivariable association modeling using MaAsLin 3
identified 13 discriminatory microbial taxa, with Clostridiales and Clostridiaceae
ranking as the most enriched in REP. Functional predictions revealed significant
differences in metabolic pathway, alongside disrupted ecological characteristics
among epilepsy groups. In addition, CSF metabolomics analysis further
revealed key metabolic shifts between REP and NEP, with notable alterations
in alpha-Ketoisocaproic acid, alpha-Ketoisovaleric acid, and acetyl-L-carnitine,
reflecting distinct metabolic reprogramming in epilepsy. Moreover, correlation
analysis revealed strong microbiota-metabolite associations, reinforcing
the involvement of the gut-brain axis in epileptogenesis. Independent
random forest-based diagnostic models using microbial genera (AUC =
0.913, accuracy = 0.818) or metabolites (AUC = 0.875, accuracy = 0.833)
demonstrated high classification accuracy in distinguishing REP from
NEP. Notably, the integrated microbiota-metabolite classification model
exhibited superior diagnostic performance in REP and NEP groups (AUC
= 0.953, accuracy = 0.875), significantly surpassing individual models and
highlighting the potential of multi-omics integration for epilepsy diagnostics.
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Conclusion: These findings reveal concurrent gut microbiota dysbiosis and
CSF metabolic disturbances in epilepsy, underscoring their interrelated roles in
epileptogenesis and reinforcing our understanding of microbiome-metabolome
crosstalk. The integrated multi-omics model demonstrated superior diagnostic
performance, emphasizing its potential for precision biomarker discovery and
clinical application in epilepsy stratification and intervention.
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1 Introduction

Epilepsy represents a complex and heterogeneous neurological
disorder characterized by uncontrollable and unpredictable
epileptic seizures, with nearly 50 million people affected worldwide
and contributing to a significant socioeconomic burden (GBD 2016
Epilepsy Collaborators, 2019). Moreover, approximately one-third
of epileptic patients manifests susceptibility to drug resistance
after treatment of antiseizure medications (Mesraoua et al., 2023).
Despite extensive neurobiological and clinical investigations, the
pathogenetic mechanisms underlying epileptogenesis remain
incompletely elucidated, reflecting the multifactorial nature of this
neurological condition (Scheffer et al., 2017). Given in the clinical
complexity and heterogeneity of epilepsy, it is of great significance
to unravel the complex etiopathogenes and develop targeted
therapeutic strategies, which have always been significant challenge
in the field of epilepsy research and therapeutics (Scheffer et al.,
2017; GBD 2016 Epilepsy Collaborators, 2019; Mesraoua et al.,
2023).

Accumulating evidence have indicated that gut microbiota
(GM) could influence brain development and neurological function
through the gut-brain axis, which was involved in bidirectional
interaction within brain and the gastrointestinal tract (Sorboni
et al., 2022; Marizzoni et al., 2023; Rendeli et al., 2023; Nakhal
et al.,, 2024). Several studies of both animal models and human
patients showed substantial differences in the GM profiles between
epilepsy patients and healthy individuals, as well as modulation
in anti-seizure effect of the ketogenic diet (Riva et al., 2025; Peng
et al., 2018; Gong et al., 2020; Lee et al., 2020; Gong et al., 2021;
Wan et al, 2021; Dong et al, 2022; Zhou et al., 2022). The
aforementioned investigations underscore the association of gut
bacterial dysbiosis with epilepsy pathogenesis. In addition to gut
microbiota, systemic metabolic abnormalities, such as amino acid
neurotransmitter metabolism, fatty acid and energy metabolism,
have also been consistently found in biofluids or fecal samples of
patients with epilepsy (Niu et al., 2022; Wang et al., 2023; Dahlin
et al., 2024; Hanin et al., 2024; Lian et al., 2024; Meier et al., 2024).
These metabolic profiling analyses also highlighted the perturbed
metabolism in the brain of epilepsy sufferers, also indicating the
dysregulated metabolites considered as diagnostic and prognostic
markers for epilepsy. In fact, gut microbial communities also affect
host metabolism with the changes in the gut microbiota often
correcting with alterations of metabolites in epilepsy, indicating the
role of interplay between the gut microbiome and host metabolism
in the pathogenesis of epilepsy (Sorboni et al, 2022; Dahlin
et al,, 2024; Zou et al,, 2024). Therefore, investigation of alteration
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in both gut microbiota and metabolites would be helpful to
comprehensively understand the pathological process of epilepsy.

Recently, the combined analyses of both gut microbiome and
metabolome were increasingly rapidly applicated in the exploration
of the pathophysiological mechanisms and related diagnostic
biomarkers of epilepsy (Zhou et al., 2023; Dahlin et al., 2024;
Wan et al, 2024; Zou et al, 2024). Of these multi-omic joint
studies, metabolomics analyses have been conducted in serum
samples from patients or animal models, but not in cerebrospinal
fluid (CSF) from pediatric patients with epilepsy to date. Given
its close relationship with the central nervous system (CNS),
CSF serves as a crucial and effective source for identifying new
potential biomarkers for CNS diseases (Brister et al., 2022).
Recent metabolomics analyses of CSF have unveiled considerable
differences in metabolite composition between patients with
epilepsy and controls, underscoring the link between metabolic
imbalances and both physiological and pathological modifications
(Akiyama et al, 2020; Niu et al, 2022; Wang et al, 2023;
Hanin et al,, 2024). In this pilot study, we employed multi-omics
analyses to analyze shifts in gut microbiota and CSF metabolites
in children with epilepsy in comparison to control groups based
on 16S rRNA gene sequencing and ultra-high performance liquid
chromatography coupled to mass spectrometry (UHPLC-MS)
analysis. The aim was to uncover potential biomarkers for clinical
diagnosis and to attempt a comprehensive understanding of the
interplay between gut microbiota and CSF metabolites in epilepsy
through integrative analysis.

2 Materials and methods

2.1 Participant recruitment and sample
collection

The study participants were recruited from the Neurology
Department of the Second Affiliated Hospital and Yuying
Children’s Hospital of Wenzhou Medical University, from January
2022 to December 2022.

A total of 40 epileptic patients were enrolled and then
divided into the 17 common epilepsy (CEP) patients and 23
refractory epilepsy (REP) patients including 16 with CSF collected,
according to the diagnosis and classification criteria of epilepsy
in ILAE from 2017 (Scheffer et al., 2017). We also enrolled
10 non-epilepsy (NEP) patients matched by age and gender
(including 8 with CSF collected), who were ultimately diagnosed
with functional headaches (including migraine, cluster headache,
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emotion-related headache, and sleep-related headache) without
positive neurological signs and allocated them to the control group.
In addition, lumbar puncture for CSF detection for NEP group
was required to rule out both CNS and neurological involvement
as determined by the clinicians. The enrollment criteria for the
epileptic patients in the study were as follows: (i) age 1-17 years;
(ii) stable clinical symptomatology and EEG features from the
last 3 months; (iii) recent brain MRI negative for potentially
epileptogenic alterations (stroke, tumors, infectious diseases); and
(iv) ASMs treatment in both CEP and REP groups given at stable
dose from at least 3 months. Exclusion criteria for both the epileptic
patients and NEP controls were as follows: (i) clear histories
of chronic or allergic diseases; (ii) known inherited metabolic
diseases; (iii) treatment with antibiotics, probiotics, or proton
pump inhibitors within 3 months before the sample collection; (iv)
Definite brain organic lesions caused by sequelae of intracranial
infections, mechanical trauma, or spontaneous hemorrhage due
to vascular malformations; and (v) treatment with ketogenic
diet. According to routine pediatric neurological practice, lumbar
puncture is not recommended for children with common epilepsy
unless specific clinical concerns arise. Therefore, no CSF samples
were collected from CEP patients in this study.

Fecal samples were collected by the parents using a sampling
kit (including a sterile collection tube and a cotton swab)
and then stored at —80 °C within half an hour. CSF was
collected by professional clinicians via lumbar puncture in a
sterile polypropylene tube without any additives, labeled, and then
stored at —80 °C. This study was approved by the Independent
Ethics Committees and Institutional Review Board of the Second
Affiliated Hospital and Yuying Children’s Hospital, Wenzhou
Medical University, and was conducted according to the ethical
principle of the Declaration of Helsinki. Prior to enrollment,
written informed consent was procured from the patients or
their guardians.

2.2 Fecal DNA extraction and 16S rRNA
gene sequencing

The genomic DNA of Microbial community was extracted
from fecal samples using the CTAB/SDS method according to the
manufacturer’s instructions. DNA concentration and purity were
monitored on a NanoDrop 2000 and Qubit 3.0 Spectrophotometer
(Thermo Fisher Scientific, Wilmington, United States). The
hypervariable V3-V4 region of the 16S rRNA gene was amplified
using the specific 341F and 805R primers with the barcode.
Sequencing libraries were generated using the NEBNext ~ Ultra™
IT DNA Library Prep Kit (Cat No. E7645), and their quality was
evaluated with the Qubit 3.0 Spectrophotometer and the Agilent
Bioanalyzer 2100 system. Finally, the libraries were sequenced on
an [llumina NovaSeq platform, generating 250 bp paired-end reads.

2.3 Gut microbial analysis

The raw sequence data were processed using the QIIME
2 pipeline (Bolyen et al, 2019). With the cutadapt plugin
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implemented in QIIME2, we removed the adaptor and primer
sequences, followed by chimeras, low-quality read ends with
a quality score below 35, and identification of amplicon
sequence variants (ASVs) using the DADA2 plugin. Taxonomic
assignments of ASV representative sequences were conducted
based on the SILVA database (version 138) with the RDP Naive
Bayesian Classifier algorithm. We removed sequences assigned to
mitochondrial and chloroplast for bacteria from the ASV tables
for subsequent analysis using the R package microeco (Liu et al.,
2021). Subsequent analyses were conducted on taxa with a mean
relative abundance of more than 0.01% and present in at least 10%
of the samples.

To address variations in sequence depth, we used the
rarefy_even_depth method in the “phyloseq” package to rarefy
the ASV table to the minimum sequence depth (Mcmurdie and
Holmes, 2013). Rarefaction curves were produced for individual
samples to evaluate the depth of sequencing by simulating the
resampling process based on the microeco package. Three indices
of alpha diversity (i.e., Shannon, Pielou_evenness and Richness)
were evaluated by diversity functions from the R package vegan.
The alpha diversity, community composition and ternary plot were
visualized using the “ggplot2” packages in R. Beta diversity matrices
were calculated using Bray-Curtis distances, and PCoA plots were
generated from Bray-Curtis similarity matrices and visualized
using “phyloseq” package. Group significance was determined by
analysis of similarities (ANOSIM).

MaAsLin 3 was used to identify microbial features associated
with diagnostic groups through multivariable linear modeling
(Nickols et al., 2024). Age, sex, and sequencing depth were included
as covariates, and associations with both abundance and prevalence
were evaluated using False Discovery Rate (FDR) correction (q <
0.05). The gene functions related to the microbial community based
on the Kyoto Encyclopedia of Genes and Genomes (KEGG) were
predicted by PICRUSt2 (Douglas et al., 2020). Ecologically relevant
functional annotation of the gut microbiota was predicted by the
trans_func class in the microeco package using the Functional
Annotation of Prokaryotic Taxa (FAPROTAX) database (Louca
etal., 2016). The prediction of Microbial phenotypic characteristics
was analyzed by EasyAmplicon tool based on the BugBase database
(Liu et al., 2023).

Random forest models were constructed using differential
microbial genera (p < 0.05) identified by Wilcoxon rank-sum tests
via the trans_diff function from the microeco package in R, to
classify samples according to group labels. Model performance
was evaluated using Leave-One-Out Cross-Validation (LOOCV).
Probabilistic predictions from the LOOCV procedure were used
to compute the Receiver Operating Characteristic (ROC) curve
and the corresponding Area Under the Curve (AUC) using the
pROC package, in order to evaluate the diagnostic effectiveness
of the model. In addition, the Precision-Recall (PR) curve and its
corresponding AUC were calculated using the PRROC package
to assess performance under class-imbalanced conditions. ROC
and PR curves were visualized based on predicted probabilities
from LOOCV.

To assess the statistical significance of the model’s predictive
performance, permutation tests were performed for both AUC and
classification accuracy. Specifically, group labels were randomly
shuffled 1,000 times, and for each permutation, the random
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forest model was re-trained using the same feature set and
evaluated under the identical LOOCYV strategy. The resulting null
distributions of AUC and accuracy were then compared to the
corresponding values from the original, non-permuted model.
Empirical p-values were calculated as the proportion of permuted
AUC or accuracy values that were greater than or equal to those
observed in the original model. For visualization, histograms of
AUC and classification accuracy from the 1,000 label-shuffled
models were generated using the ggplot2 package, depicting the
null distributions. Vertical dashed lines representing the original
(non-permuted) AUC and accuracy values were overlaid to
highlight their deviation from random expectations.

2.4 Metabolite extraction and UHPLC-MS
analysis

For CSF metabolomics analysis, 100 L of CSF samples were
placed in EP tubes, resuspended in prechilled 80% methanol with
vigorous vortexing, incubated on ice for 5min, and centrifuged
at 15,000g, 4 °C for 20min. A portion of the supernatant was
diluted to a final concentration of 53% methanol using LC-
MS grade water. The samples were then transferred to fresh
Eppendorf tubes, centrifuged again at 15,000g, 4 °C for 20 min,
and the supernatant was finally injected into the LC-MS/MS system
for analysis. UHPLC-MS/MS analyses were performed using a
Vanquish UHPLC system (ThermoFisher, Germany) coupled with
an Orbitrap Q Exactive™ HEF-X mass spectrometer (Thermo
Fisher, Germany).

2.5 Data processing and CSF untargeted
metabolomics analysis

The raw data files generated by UHPLC-MS/MS were processed
using Compound Discoverer 3.3 (CD3.3, ThermoFisher) for peak
alignment, peak picking, and quantitation of each metabolite.
Main parameters included peak area correction with the first
quality control (QC), actual mass tolerance of 5 ppm, signal
intensity tolerance of 30%, and minimum intensity. Peak intensities
were normalized to total spectral intensity and used to predict
molecular formulas based on additive ions, molecular ion peaks,
and fragment ions. Peaks were matched with the mzCloud
(https://www.mzcloud.org/), mzVault (https://www.mzcloud.org/),
and MassList databases for accurate qualitative and relative
quantitative results. For non-normally distributed data, relative
peak areas were obtained by standardizing according to the
formula: sample raw quantitation value/(sum of sample metabolite
quantitation value/sum of QC1 sample metabolite quantitation
value). Compounds with CVs of relative peak areas in QC
samples >30% were removed, and the identification and relative
quantification of metabolites were finalized.

Metabolite
accordance with the Metabolomics Standards Initiative (MSI). Due

identification confidence was classified in
to the untargeted nature of the study, most annotated metabolites
correspond to MSI Level 2, indicating identification based on

high-resolution mass spectra, retention time alignment, and
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MS/MS spectral matching against reference libraries. MSI Level 1
confirmation, which requires validation using authentic chemical
standards, was not feasible for all compounds.

These metabolites were annotated through the KEGG database
and the HMDB
database (https://hmdb.ca/metabolites). Principal components

(https://www.genome.jp/kegg/pathway.html)

analysis (PCA) and Partial least squares discriminant analysis
(PLS-DA) were conducted using the MetaboAnalyst 6.0 (Pang
et al., 2024). In the PLS-DA analysis, metabolites with Variable
Importance in Projection (VIP) >1 were considered as important
variables for classification. Metabolic pathway analyses associated
with these metabolites with VIP > 1 were annotated using
MetaboAnalyst 6.0. We applied univariate analysis (¢-test) to
calculate the statistical significance (p-value). Metabolites passing
the threshold of p-values < 0.05 and fold change >1.5 or <2/3
were regarded as statistically different substances. Volcano plots
were used to filter metabolites of interest which based on log,
(fold change) and -logjo (p-value) of metabolites by ggplot2 in R.
Multivariate ROC analyses on a combination of selected features
using random forest analysis were performed to calculate the AUC
and analyze the prediction model using MetaboAnalyst 6.0.

2.6 Correlational analysis of gut
microbiome and CSF metabolome

Spearman correlation analysis was employed to examine the
intricate relationship between the microbiome and metabolome.
Differential metabolites and key microbiota identified via random
forest analysis were selected to compute correlation coefficients and
statistical significance using the cal_cor function from the microeco
package with visualization through a heatmap. The p-value < 0.05
was considered statistically significant for correlation.

3 Results

3.1 Demographics and clinical
characteristics

A total of 40 patients with epilepsy including 17 children with
CEP and 23 children with REP, along with 10 NEP controls were
enrolled in the study. The NEP cohort included children presenting
with functional headache syndromes—such as migraine, emotion-
related headache, and sleep-related headache—who exhibited
no signs of organic or neurological disease. These participants
underwent lumbar puncture as part of standard clinical evaluation
to exclude central nervous system involvement. No significant
differences were observed among the three groups in terms of age,
gender, body mass index, and dietary habits. All clinical data in the
cohort are summarized in Table 1 and Supplementary Table S1.

3.2 Gut microbial community composition
and diversity

To characterize gut microbiota structure among participants,
fifty stool samples were collected from the three groups and
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TABLE 1 Demographic and clinical characteristics of the participants in this study.

Characteristics NEP (n = 10) CEP (n=17) REP (n = 23)

Age (year)* 112 +3.58 9.06 +3.21 8.52 +£2.57 2.803 0.071
Gender (males, %)° 4 (40) 11 (64.7) 8 (34.8) 3.705 0.186
BMI (kg/m?)?* 17.1£2.73 17.4 £2.38 162 £3.13 0.855 0.432
Dietray data (n, %)°

Vegetables, and fruit

High 4 (40) 4(23.5) 8 (34.8) 0.844 0.870
Moderate 2(20) 5(29.4) 4(17.4)

Low 4 (40) 8 (47.1) 11 (47.8)

Fried food, and carbonated soft drinks

High 5 (50) 8 (47.1) 8 (34.8) 0.776 0.807
Moderate 3(30) 3(17.6) 6(26.1)

Low 2(20) 6(35.3) 9(39.1)

Milk

High 4 (40) 4(23.5) 10 (43.5) 0.774 0.786
Moderate 4(40) 9(52.9) 9(39.1)

Low 2(20) 4(23.5) 4(17.4)

Number of ASMs

0 0 0

1 - 16 (94.1%) 0

2 - 1(5.9%) 1(21.7%)

3 - 0 15 (65.3%)

4 - 0 2(8.7%)

5 - 0 1(4.3%)

NEP, non-epilepsy; CEP, common epilepsy; REP, refractory epilepsy; ASMs, antiseizure medications; BMI, body mass index.

#p-value calculated using Analysis of Variance.
bp-value calculated using chi-square test.

analyzed via Illumina MiSeq sequencing of the V3-V4 region of
the bacterial 16S rRNA gene. After quality filtering, a total of
3,625,932 high-quality readings were obtained, with an average of
72,519 £ 8,891 sequences per sample (Supplementary Table S2).
After denoising and filtering, these sequences were classified into
a total of 8,890 ASVs (Supplementary Table S3).

Rarefaction curve analysis of richness, an alpha diversity
index, demonstrated sufficient phylogenetic coverage, as curves
reached saturation with increasing sequencing depth (Figure 1A).
Community composition analysis revealed that bacterial ASVs
were affiliated with 54 known phyla, with the top nine phyla
represented in a bar graph (Figure 1B; Supplementary Table 54).
Of these, five dominant phyla (>1% abundance across all groups)
were identified, including Firmicutes, Bacteroidota, Proteobacteria,
Actinobacteriota, and Campylobacterota (Figure 1B). Further
examination showed that while Desulfobacterota, Actinobacteriota,
in REP,
Fusobacteriota was predominantly present in CEP (Figures 1B,

and Campylobacterota were primarily observed
C), although differences in the average relative abundance
of these taxa across groups were not statistically significant
(Supplementary Figure S1).  Hierarchical

clustering  analysis
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revealed that the CEP cohort clustered together with REP, while
distinctly separating from NEP (Figure 1D).

Gut microbial diversity analysis showed no significant
differences across groups in three alpha diversity indices:
Pielou_evenness, Richness, and Shannon index (Figure 1E).
However, Principal Coordinates Analysis (PCoA) and ANOSIM
analysis based on Bray-Curtis distance indicated significant
differences in the gut microbial community composition (R =
0.091, p = 0.001; Figure 1F). To characterize microbial features
associated with diagnostic groups, we applied multivariable
association modeling using MaAsLin 3, enabling robust
identification of taxa differentially abundant across the REP,
CEP, and NEP cohorts while accounting for covariates and data
compositionality. The analysis identified 13 taxa significantly
associated with diagnostic groups (¢ < 0.05), including eight
enriched in REP and five negatively associated with CEP,
as detailed in Supplementary Table S5. Notably, members of
the Clostridia lineage—including Clostridiaceae, Clostridiales,
Clostridium_sensu_stricto_I, and Erysipelotrichales—exhibited
strong positive associations with the REP group. Taxa belonging

to the Synergistia clade—namely Synergistia, Synergistaceae,

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1630062
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

Lietal.

10.3389/fmicb.2025.1630062

FIGURE 1
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for each sample. (B) Relative abundances of major bacterial phyla present in the gut microbiota of each group. Bar colors indicate distinct phylum
classifications. (C) Ternary plot illustrating microbial community composition differences among the three groups. (D) Hierarchical clustering of
microbial communities based on weighted UniFrac distances (E) Comparison of the alpha diversity indices across groups. Statistically significant
differences are denoted by different letters, determined via one-way ANOVA. (F) Beta diversity analysis using PCoA based on Bray-Curtis distance,
indicating significant differences in microbial composition (ANOSIM: R = 0.091, p = 0.001). (G) Visualization of microbial associations with diagnostic
groups identified by MaAsLin 3. Circles indicate abundance-based associations, and triangles represent prevalence-based associations. Color
intensity corresponds to FDR-adjusted significance levels, with darker shades indicating stronger statistical support. Axes denote effect size
distributions for abundance and prevalence models. The right panel displays a heatmap of covariates (e.g., age, read depth, sex), illustrating their
adjusted significance across models. Prefixes indicate taxonomic ranks: phylum (p_), class (c_), order (o_), family (f_), genus (g_), and species (s_).
NEP, non-epilepsy; CEP, common epilepsy; REP, refractory epilepsy; ANOVA, analysis of variance; PCoA, principal coordinates analysis; ANOSIM,
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Synergistales, and Synergistota—were negatively associated with
CEP. The top 13 group-discriminatory taxa identified by MaAsLin
3 are depicted in Figure 1G, highlighting distinct microbial
signatures characteristic of REP and CEP cohorts.

3.3 Predicted functional potential of gut
microbial community

PICRUSt2-based functional predictions identified 212 KEGG
pathways from filtered ASVs. While PCA analysis indicated no
significant differences in the overall composition of predicted
functions among the three groups (Figure 2A), ALDEx2’s Kruskal-
Wallace test revealed statistically significant differences in the
relative abundance of eight KEGG pathways spanning five
biological processes: translation, immune disease, biosynthesis of
other secondary metabolites, carbohydrate metabolism, and glycan
biosynthesis and metabolism (Figure 2B).

To further assess potential biotic nutrient cycling mechanisms,
we employed the FAPROTAX database, linking microbial
taxonomy to functional traits. FAPROTAX analysis identified
38 functional groups associated with carbon (C), nitrogen (N),
and sulfur (S) cycling. Among these, fermentation emerged as
the most dominant functional category, followed by anaerobic
chemoheterotrophy and animal parasites or symbionts (left panel
in Figure 2C). ANOVA analysis revealed significant differences
in the relative abundance of 21 functional groups (right panel in
Figure 2C).

Additionally, bacterial phenotypic characteristics were inferred
using the BugBase database, predicting microbial functions across
nine phenotypic categories, including pathogenicity, aerobic and
anaerobic metabolism, facultative anaerobic capability, mobile
biofilm
classification, and oxidative-stress tolerance. BugBase predictions

elements, formation, ~Gram-positive/Gram-negative
indicated that the REP and NEP groups were enriched in aerobic
taxa compared to CEP (Figure 2D). Conversely, the CEP group
exhibited significantly higher abundance of anaerobic taxa relative

to REP (Figure 2E).

3.4 |dentification of differential microbial
genera and construction of classification
models for epilepsy

To explore whether gut microbial composition could be utilized
for the diagnosis of epilepsy in children, differential microbial
genera were identified using the Wilcoxon rank-sum test via the
trans_diff function in the microeco R package. Genera with FDR-
adjusted p-values < 0.05 were retained as microbial signatures for
subsequent classification modeling.

There were eight genera with significant differences between
CEP and NEP groups (FDR adjusted p < 0.05, Wilcoxon rank sum
test; Figure 3A). These genera belonged to Proteobacteria,
with CEP
genera from Proteobacteria and Firmicutes, whereas NEP

Firmicutes, and Actinobacteriota, enriched in

showed a higher abundance of genera from Proteobacteria and
Actinobacteriota. Specifically, Klebsiella, Megasphaera, Romboutsia,
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and Erysipelatoclostridium were more prevalent in CEP, while
Neisseria, Corynebacterium, Haemophilus, and Rothia were
dominant in NEP (Figure 3A). These differential genera were
used as input features for a random forest classification model,
which was evaluated through LOOCV. The model demonstrated
high discriminatory performance, achieving an AUC of 0.906
for the ROC curve (Figure 3B), an AUC of 0.942 for the PR
curve (Figure 3E), and an overall classification accuracy of 0.852.
Statistical robustness was confirmed via permutation testing
(1,000 iterations), with empirical p-values of 0 for both AUC
(Figure 3C) and accuracy (Figure 3D), indicating that the observed
classification performance was highly unlikely to result from
random chance.

Further analysis identified 14 microbial genera displaying
significant differences between REP and NEP groups (FDR adjusted
p < 0.05, Wilcoxon rank sum test; Figure 3F). These genera
were distributed across Firmicutes, Bacteroidota, Proteobacteria,
Actinobacteriota, and Fusobacteriota, with REP characterized by
an increased presence of Firmicutes and Bacteroidota, whereas
NEP exhibited greater representation of Firmicutes, Proteobacteria,
Actinobacteriota, and Fusobacteriota. Notably, genera such as
Allobaculum, Alistipes, Dubosiella, and Ileibacterium were enriched
in the REP group, while the other the 10 genera such as
Gemella, Neisseria, and Ruminococcus were more abundant in
the NEP group. A random forest classification model constructed
using these genera also demonstrated strong predictive capability,
yielding an AUC of 0913 for the ROC curve (Figure 3G),
an AUC of 0965 for the PR curve (Figure3]), and an
accuracy of 0.818. Permutation tests reinforced model reliability,
with empirical p-values of 0 for AUC (Figure 3H) and 0.002
for accuracy (Figure 3I), confirming the robustness of the
classification approach.

To assess the generalizability of our microbial classification
models, we applied the CEP vs. NEP and REP vs. NEP
random forest classifiers to an independent pediatric epilepsy
16S rRNA dataset derived from a European cohort (Riva
et al, 2025), representing a geographically and ethnically
distinct population from our original study. This external
cohort includes medication-sensitive (MS) and medication-
resistant (MR) patients, as well as healthy controls (HC). The
CEP-trained model demonstrated strong discriminatory ability
when tested on MS vs HC samples, achieving an AUC of
0.838 and an accuracy of 0.812 (Supplementary Figure S2A).
Permutation testing with 1,000 iterations yielded empirical p-
values of 0 for both metrics, confirming the statistical robustness
of the classification (Supplementary Figures S2B, C). Similarly,
the REP-trained model achieved an AUC of 0.796 and an
accuracy of 0.723 for distinguishing MR from HC samples, with
permutation p-values of 0 for AUC and 0.004 for accuracy
(Supplementary Figures S2D-F), further supporting the reliability
of the model’s performance in an external cohort. Feature overlap
analysis revealed that 7 of the 8 genera used in the CEP
classifier (Supplementary Figure S2G) and 9 of the 14 genera used
in the REP classifier (Supplementary Figure S2H) were present
in the external European dataset. These retained genera were
among the top-ranked features in the original models, suggesting
that conserved microbial signals contributed to the preserved
classification performance.
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Predicted function analysis of gut microbiota in NEP, CEP and REP. (A) PCA analysis of PICRUSt2-predicted functional pathways, showing no
significant overall differences among groups. (B) Differential functional pathways predicted via PICRUSt2, with significant differences identified using
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FIGURE 3
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These findings highlight the potential of genus-level microbial
signatures as effective diagnostic markers for epilepsy in children.
The high classification accuracy and statistical validation suggest
that microbial composition could be leveraged for reliable disease
stratification, providing valuable insights into the microbial
characteristics distinguishing different clinical conditions.

3.5 Untargeted metabolomic alterations in
the CSF of children with REP

To further explore metabolic dysregulation associated with
epilepsy, we conducted untargeted metabolomic profiling of CSF
samples from 16 children with REP and 8 children with NEP using
LC-MS. Following peak detection, alignment, and deconvolution,
a total of 1,082 unique putative metabolites were detected in both
positive and negative ionization modes. After filtering exogenous
compounds and duplicates, 389 endogenous metabolites were
retained based on HMDB annotations (Supplementary Table S6).
These metabolites were categorized into 31 secondary categories
and further grouped into six primary classifications based
on KEGG pathway annotation (Supplementary Figure S3). The
majority of metabolites were involved in metabolic pathways,
particularly global and overview maps, amino acid metabolism, and
carbohydrate metabolism. HMDB-based classification indicated
that organic acids and derivatives (29.56%), lipids and lipid-like
molecules (20.82%), and organoheterocyclic compounds (15.94%),
followed by benzenoids (11.05%), collectively accounted for 77.37%
of the annotated metabolites, reflecting a substantial representation
of central metabolic intermediates and bioactive compounds
(Figure 4A).

Unsupervised principal component analysis (PCA) revealed
clear metabolic separation between REP and NEP groups, with the
first two principal components explaining 68.6% (PC1) and 10.8%
(PC2) of the total variance, respectively. Statistical significance of
the observed separation was confirmed via permutation testing
(n = 999, p = 0.015), supporting the existence of distinct
metabolic profiles between the two groups (Figure 4B). To further
assess class discrimination and identify key metabolites, a PLS-DA
model was constructed, demonstrating clear intergroup separation
(Figure 4C). Ten-fold cross-validation yielded a classification
accuracy of 84.7% (R? = 0.584, Q* = 0.403; Figure 4C), while ROC
analysis returned an AUC of 0.805 (Supplementary Figure 54),
indicating robust explanatory and predictive power. Model
reliability was further supported by permutation testing (n =
1,000), which showed that the observed classification accuracy
significantly (0.847) exceeded that of randomly permuted models
(p = 0.044; Figure 4D).

Based on VIP scores derived from the PLS-DA model, 23 key
discriminatory metabolites were identified (VIP > 1.0), including
citric acid, taurine, L-glutamic acid, and acetyl-L-carnitine, all of
which are involved in energy metabolism and neurotransmitter
pathways (Figure 4E). Metabolic pathway analysis using KEGG
revealed 19 significantly impacted pathways, with the six most
affected (impact score > 0.05) including taurine and hypotaurine
metabolism, alanine, aspartate and glutamate metabolism, histidine
metabolism, arginine biosynthesis, citrate cycle (TCA cycle), and
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vitamin B6 metabolism (Figure 4F and Supplementary Table S7).
These pathways are functionally linked to neuronal excitability,
neurotransmission, and mitochondrial activity.

3.6 Metabolite-level classification model

To visualize metabolite expression differences between children
with REP and NEP controls, an independent ¢-test was conducted.
This wunivariate analysis identified 40 significantly altered
metabolites (p < 0.05), including six upregulated metabolites (fold
change > 1.5) and 34 downregulated metabolites (fold change
< 2/3) in the REP group (Figure 5A). To further refine feature
selection for diagnostic modeling, significantly altered metabolites
from the t-test were intersected with those exhibiting VIP scores
> 1 in the PLS-DA mode. This approach yielded six shared
metabolites for model construction (Figure 5B), comprising three
elevated and three reduced metabolites in REP compared to NEP
(Figure 5C).

These six discriminatory metabolites were used to construct
a classification model employing a random forest algorithm with
LOOCV to evaluate their predictive capacity (Figure 5D). The
model exhibited promising diagnostic potential, achieving an AUC
of 0.875 for ROC curve (Figure 5E), an AUC of 0.943 for PR
curve (Figure 5F), and an overall classification accuracy of 0.833.
Model reliability was further assessed through permutation testing
(n = 1,000), where sample labels were randomly shuffled while
preserving model architecture. The original model consistently
outperformed the permuted models, yielding empirical p-values
of 0.006 for both AUC and accuracy (Figures 5G, H), supporting
reliability and non-random predictive ability of the model.
These findings highlight the diagnostic relevance of metabolite-
based classification.

3.7 Correlation and classification analysis of
gut microbiota and metabolites

To investigate potential associations between metabolite
alterations and gut microbiota composition, Spearman’s rank
correlation analysis was performed. This analysis examined
correlations between six shared metabolites and the relative
abundance of 14 differential bacterial genera (identified by the
Wilcoxon rank-sum test) in paired fecal and CSF samples from
16 children with REP and 8 with NEP. Applying a selection
criterion requiring at least one significant correlation (p <
0.05) for both metabolites and bacterial genera, four metabolites
exhibited significant associations with 10 bacterial genera
(Figure 6A). Correlation analysis showed that 5-Methyluridine,
alpha-Ketoisocaproic acid (KIC), and alpha-Ketoisovaleric acid
(KIV) had strong positive correlations with three bacterial genera
while exhibiting negative associations with seven others, though
some of these negative correlations were not statistically significant
(Figure 6A). Notably, these three metabolites were more abundant
in the REP group compared to NEP (Figure 5C).Conversely,
Acetyl-L-carnitine exhibited negative associations with three
bacterial genera and positive correlations with seven, although two
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= 0.943) illustrating precision-recall characteristics. (G, H) Permutation test results for AUC and accuracy (1,000 iterations), with empirical p-values
indicating statistical robustness. CSF, cerebrospinal fluid; NEP, non-epilepsy; REP, refractory epilepsy; PLS-DA, partial least-squares regression
discriminant analysis; ROC, receiver operating characteristic; PR, Precision-recall; AUC, area under the ROC curve.
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FIGURE 6
Correlation analysis of CSF metabolites with gut microbiota and classification model performance. (A) Spearman correlation heatmap between four
CSF metabolites and 10 gut bacterial genera. Red and blue shading indicate positive and negative correlations, respectively, with asterisks marking
statistical significance (*p < 0.05; **p < 0.01). (B) Feature importance plot ranking bacterial genera and metabolites based on mean decrease in
accuracy from the random forest model. (C) ROC curve (AUC = 0.953) illustrating model performance in distinguishing REP from NEP. (D, E)
Permutation tests for AUC and accuracy (1,000 iterations), with empirical p-values indicating statistical robustness. (F) PR curve (AUC = 0.976)
showing precision-recall characteristics. CSF, cerebrospinal fluid; NEP, non-epilepsy; REP, refractory epilepsy; ROC, receiver operating characteristic;
PR, Precision-recall; AUC, area under the curve.

of these positive correlations were not statistically significant, and
its abundance was significantly higher in NEP (Figures 5C, 6A).

To assess the combined discriminatory power of these
microbial and metabolic features, a random forest model was
constructed using the 10ten bacterial genera and four significantly
correlated metabolites, employing LOOCYV for evaluation. Feature
importance rankings (Figure 6B) identified Corynebacterium,
Ruminococcus, and Acetyl-L-carnitine as the top three contributors
to classification performance. The model demonstrated strong
discriminatory capability, as evidenced by an ROC curve with an
AUC of 0.953 (Figure 6C). Model robustness was further evaluated
via permutation testing (1,000 iterations). The AUC permutation
test yielded a p-value of 0 (0/1,000), indicating that the observed
AUC was highly unlikely to occur by chance (Figure 6D). Similarly,
accuracy distribution analysis showed the original model achieving
an accuracy of 0.875 (Figure6E), significantly outperforming
permuted models (p = 0.001, 1/1,000). The PR analysis further
reinforced classification performance, with an AUC of 0.976
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(Figure 6F), reflecting high precision and recall in distinguishing
REP from NEP. These findings highlight the strong interplay
between gut microbiota and CSF metabolites, suggesting that
their combined signatures may serve as effective biomarkers for
distinguishing REP from NEP. The robustness of the classification
model further supports the potential utility of microbial-metabolite
interactions in disease stratification.

4 Discussion

Growing evidence suggests that gut microbial dysbiosis and
metabolic impairments contribute to epilepsy pathogenesis. While
previous studies have primarily relied on single-omics approaches,
limiting insights into microbiota-metabolite interactions, this study
employed a multi-omics framework integrating gut microbiota
profiling and untargeted CSF metabolomics in pediatric epilepsy.
We observed significant dysregulations in microbial composition
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and metabolic pathways, with beta diversity analysis revealing
distinct microbial structural shifts. Multivariable association
modeling using MaAsLin 3, combined with random forest
classification, identified key microbial genera that distinguish REP
and CEP patients from NEP controls, demonstrating promising
diagnostic potential. Functional predictions using PICRUSt2
and FAPROTAX highlighted disruptions in

metabolism and immune-related pathways, reinforcing the role

carbohydrate

of microbiome alterations in epilepsy pathophysiology. Similarly,
CSF metabolomics analysis uncovered key metabolic disturbances,
particularly in neurotransmitter metabolism and energy pathways,
supporting their link to neuronal hyperexcitability. A metabolite-
based diagnostic model constructed using six discriminatory
metabolites exhibited high predictive accuracy (AUC = 0.875,
accuracy = 0.833). Most notably, integrating microbial and
metabolite features into a multi-omics classification model
significantly enhanced diagnostic performance (AUC = 0.953,
accuracy = 0.875), underscoring the exceptional discriminatory
capability of microbiota-metabolite signatures. These findings
underscore the strong interplay between gut microbiota and CSF
metabolites, highlighting their potential as effective biomarkers for
disease stratification and precision diagnostics in epilepsy.

The associations between gut microbial alpha diversity
and refractory epilepsy or drug-sensitive epilepsy have been
controversial because of inconsistent results reported by several
previous studies (Peng et al., 2018; Gong et al., 2020; Lee et al,
2020; Gong et al, 2021; Wan et al, 2021; Zhou et al., 2022).
However, relatively reduced alpha diversity might represent the
characteristics of bacterial community associated with epilepsy
reported by a previous study through control over the confounding
factors, such as age and recent antiseizure medication exposure
(Lee et al., 2020). Although three indexes of alpha diversity did
not reveal statistically significant changes in the present study,
the slightly decreased tendency seemed to occur in two epilepsy
groups compared to control. Furthermore, we observed significant
differences in beta diversity among three groups, reflecting a
noticeable intra-individual alteration of microbial structure and the
state of gut dysbiosis, which had been previously reported by a
considerable number of studies (Peng et al., 2018; Gong et al., 2020;
Lee et al., 2020; Gong et al., 2021; Zhou et al., 2022).

Our results showed Fusobacteria were abundant in the CEP,
which was also reported in a previous study. The Fusobacteria
was also found to mostly exist in inflamed gut mucosa,
thus considered to be pathogenic to human. Apart from the
observed differences in the relative abundance of Fusobacteria, two
taxa—including Clostridiaceae and Clostridiales—were significantly
increased in the REP group and identified as top-ranking
features by multivariable association modeling using MaAsLin 3.
This enrichment of Clostridiales and Clostridiaceae aligns with
broader compositional shifts previously reported in seizure-prone
WAG/Rij rats at4months of age, indicating a potential association
between these taxa and disease susceptibility (Citraro et al., 2021).
Additionally, Erysipelotrichales have been implicated in refractory
epilepsy in children and adult-onset epilepsy, further supporting
the relevance of microbial alterations in seizure pathophysiology
(Peng et al., 2018; Dong et al., 2022). Collectively, these findings
suggest that specific gut bacterial lineages may contribute to
seizure susceptibility.
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Functional prediction analysis by PICRUSt2 in our study
revealed that three 3rd-level KEGG pathways of carbohydrate
metabolism were significantly active in two epilepsy group, which
was also found in the previous studies on epilepsy and gut
microbiota (Gong et al., 2020; Lee et al., 2020; Dong et al., 2022).
The disturbance of carbohydrate metabolites was considered to
be closely related to the onset of epilepsy. Interestingly, flavonoid
biosynthesis revealed a significantly enrichment in control group.
By inhibiting the synthesis and release of key inflammatory
mediators and inflammatory signaling pathways such as NF-«B,
MAPK, JNK, and JAK, flavonoids can pass through the blood-brain
barrier and offer neuronal protection, which support the potential
of flavonoids in epilepsy treatment (Kiriyama et al., 2024; Zhang
etal., 2024).

As the main component of the CNS extracellular space,
CSF may contain several informative indicators or biomarkers
in neurological disease diagnosis and pathogenesis exploration
(Shahim et al.,, 2013). Several recent studies reveal that the
abnormal expression of metabolites in CSF might be associated
with epilepsy in children or adults (Akiyama et al., 2020; Niu et al.,
2022; Wang et al., 2023; Hanin et al., 2024). In parallel with the
alterations noted in the GM of refractory epilepsy, we performed
a comparative investigation of metabolic abnormalities in CSF
between the REP and NEP cohorts. In line with previous studies, we
also found several altered metabolites and pathways which might be
involved in the pathogenesis and prognosis of refractory epilepsy
or neurological disorders, such as alanine, aspartate and glutamate
metabolism (Guo et al., 2023; Wang et al., 2023; Hanin et al., 2024;
Lian et al., 2024; Meier et al., 2024); arginine biosynthesis (Wang
etal., 2023; Meier et al., 2024); vitamin B6 metabolism (Mastrangelo
and Cesario, 2019; Stevelink et al., 2019; Chi et al., 2022); and citrate
cycle (TCA cycle) (Guo et al., 2023; Wang et al., 2023).

Alanine, aspartate, and glutamate metabolism has been
explored in the context of epilepsy, with some studies focusing
on glutamate metabolism, in which alterations in glutamate levels
have been observed frequently in patients with epilepsy (Guo
et al., 2023; Wang et al., 2023; Hanin et al., 2024; Lian et al,
2024; Meier et al., 2024). Several metabolite alterations occur in
the alanine, aspartate, and glutamate metabolism of the patient
with refractory epilepsy, despite the fact that our investigation did
not find any significant differences in glutamate levels between
the two groups. These metabolites with VIP >1 in the PLS-DA
model include lower levels of N-acetyl-1-aspartylglutamic acid
(NAAG), L-glutamine and citric acid, as well as increased levels of
L-glutamic acid. NAAG, the predominant dipeptide in the brain,
serves a neuromodulatory function in glutamatergic synapses
and has been implicated in several neurological and psychiatric
disorders, including epilepsy, schizophrenia, and stroke (Morland
and Nordengen, 2022). Reduced glutamine levels, potentially
linked to a glutamine synthetase deficit, impair the glutamate-
glutamine cycle, as observed in patients with status epilepticus
(Hanin et al, 2024) and in a rat model of epilepsy (Swamy
et al,, 2011). Lower concentrations of citric acid, an essential
intermediate in the TCA cycle, have been associated with resistance
to drug treatment in epilepsy (Guo et al, 2023). Similarly,
dysregulation of citric acid cycle intermediates was found to alter
TCA cycle metabolism in the SLCI3A5 deficient patients with
epilepsy (Bainbridge et al., 2017). In addition, pyridoxine (vitamin
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B6) is crucial for the synthesis of neurotransmitters gamma-
aminobutyric acid (GABA) and monoamines (Chi et al., 2022).
Disruptions in vitamin B6 metabolism can result in neuronal
migration defects and dysplasia, which are observed in individuals
with these metabolic perturbations (Stevelink et al., 2019; Wilson
etal, 2019; Chi et al., 2022). In addition, alterations in the arginine
biosynthesis pathway have been observed in the CSF of children
with poor outcomes following status epilepticus, suggesting its
involvement in the pathogenesis of a poor prognosis in status
epilepticus (Wang et al, 2023). These metabolic abnormalities
and perturbed metabolic pathway may contribute to early onset
epileptic encephalopathy.

Through combination of PLS-DA model and t-test,
we identified six key metabolites which exhibited a clear
discrimination between the patients with REP and the NEP
controls. Correlation analysis between these differential metabolites
and distinct microbial genus features showed three elevated
differential metabolites correlated positively with three bacterial
genera. KIC, one of branched-chain keto acids, is recognized as
a significant neurotoxic metabolite due to its elevated plasma
levels being linked to the onset of neurological symptoms (Farias
et al., 2021). Intracerebroventricular administration of KIC in a rat
model demonstrated that KIC induces oxidative damage, impaired
habituation memory, and long-term memory deficits, which
may be associated with neurodegenerative and neuropsychiatric
disorders, as well as cognitive impairment (Taschetto et al., 2017).
Another in vivo study in rats showed that 6 h post-injection, KIC
significantly cause lipid oxidative damage and impair antioxidant
defenses, suggesting that KIC may disrupted redox homeostasis,
associated with neural damage (Zemniacak et al., 2024). In addition
to KIC, our analysis identified KIV, another branched-chain keto
acid, as a putative metabolite with elevated levels. KIV was
found to induce dose-dependent seizure-like behavior in rats,
suggesting that elevated KIV concentrations in the brain may
trigger seizures or severe neurological symptoms in patients
(Coitinho et al., 2001; Amaral and Wajner, 2022). Similarly, this
metabolite was also found increased in the CSF of patients with
mild cognitive impairment and Alzheimer’s disease (Berezhnoy
et al., 2023). Therefore, the increased KIC and KIV levels in the
REP might enter the brain through the blood-brain barrier led to
the deleterious effects in the neural cells. Among bacterial genera
positively associated with these elevated CSF metabolite changes,
the genera Allobaculum had been shown to potentially pathogenic
effects and infection risks with relation to neurological disorder
(Liao et al., 2024), inflammation response (Rice et al., 2022) or
oxidative stress (Liao et al., 2024). These evidences suggest that
both the perturbed functional metabolic patterns and dysregulation
of homeostasis of gut microbial communities may exert a common
influence on brain development, mood, and behavior.

Apart from the elevated metabolites correlating with bacterial
genera, we also observed reduced molecule linked with bacterial
genera. Acetyl-L-carnitine (ALCAR), an endogenous transport
molecule, was considered as antioxidants, neuromodulators and
neuroprotectors with essential roles in protection of developing
brain (Ferreira and Mckenna, 2017). A recent study on mice model
with temporal lobe epilepsy induced by kainite suggest ALCAR
administration could properly attenuate intensity of seizures and
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also incidence of kainate-induced status epilepticus (Tashakori-
Miyanroudietal., 2022). The aforementioned evidence underscores
the neuroprotective effect and potential therapeutic role of the
Acetyl-L-carnitine in epilepsy. In fact, the lower levels of ALCAR in
epilepsy patients may result in higher brain ammonia levels, which
can lead to seizures due to increased glutamate production and
activation of N-methyl-D-aspartate receptors (Maldonado et al.,
2020). Additionally, we have identified several gut microbial genera
positively associated with the beneficial CSF metabolite change.
These gut microbiotas were characterized by common health-
associated commensals from the genera such as Rothia, Neisseria,
and Ruminococcus, all of which showed strong correlation with
the beneficial CSF metabolite (ALCAR), although several species of
these genera might be associated with several diseases. Several other
bacteria were yet less well-characterized for human health such as
Gemella and Fastidiosipila.

It is important to acknowledge that the overall sample size in
this study was relatively limited, particularly for paired fecal and
CSF analyses. This constraint stems from the ethical and logistical
challenges of obtaining lumbar puncture specimens from pediatric
patients. Nonetheless, strict inclusion and exclusion criteria—
along with careful age and gender matching—were applied to
minimize biological and clinical heterogeneity. Although formal
power analysis was not conducted due to practical constraints,
the observed effect sizes and model performance metrics suggest
biological relevance warranting follow-up validation. Despite the
modest cohort size, our multi-omics analysis revealed robust and
statistically significant microbial and metabolic distinctions among
groups. Notably, machine learning-based classification models
demonstrated high accuracy in disease stratification, underscoring
the biological relevance of the identified features. To mitigate
potential overfitting due to the limited sample-to-feature ratio, we
employed leave-one-out cross-validation, permutation testing, and
statistical feature selection. However, we acknowledge that the risk
of overfitting cannot be entirely excluded, and future validation in
independent cohorts will be essential to confirm generalizability.
We consider this work an exploratory investigation and recognize
that validation in larger, multicenter cohorts will be essential to
support generalizability and clinical translation.

In addition, we acknowledge that metabolite identification in
our untargeted LC-MS/MS analysis was based on spectral matching
and retention time alignment, corresponding to Metabolomics
Standards Initiative (MSI) Level 2 confidence. While confirmation
using authentic standards (MSI Level 1) was not feasible in this pilot
study, rigorous quality control—including fragment ion validation
and filtering of high-variability features—was implemented to
strengthen reliability. Key metabolites such as KIC, KIV, and
acetyl-L-carnitine were consistently identified across statistical
workflows and are supported by prior literature as relevant to
epilepsy pathophysiology, reinforcing their biological plausibility.
Targeted metabolomics validation and quantitative assessment will
be prioritized in follow-up studies to confirm identity and further
evaluate diagnostic utility.

While the current study is observational and does not
establish causality, several identified metabolites have previously
effects in animal models,
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particularly KIC and KIV. These findings suggest potential
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mechanistic relevance in epileptogenesis. Building on this, we are
initiating experimental validation using preclinical epilepsy models
to further investigate their causal roles in neuronal excitability and
disease progression. These findings remain associative and serve as
hypothesis-generating observations to inform future mechanistic
studies. Likewise, we observed strong associations between specific
microbial genera, including Allobaculum and Ruminococcus, and
CSF metabolite profiles. To explore their functional relevance,
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these taxa will be introduced into mouse models of epilepsy
under gnotobiotic or antibiotic-depleted conditions. Moreover,
fecal microbiota transplantation, followed by CSF metabolomic
profiling, represents a compelling strategy to evaluate whether
microbial shifts can directly influence CNS metabolic phenotypes.
We plan to explore this approach in future experiments as a means
to delineate causal links within the gut-brain axis and to assess
microbial contributions to epileptogenesis.
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Additional limitations include the composition of the control
group in the CSF metabolomics cohort. Due to the ethical
constraints of performing lumbar puncture in healthy pediatric
populations, our NEP group consisted of children with functional
headache syndromes (e.g., migraine, emotion-related headache,
sleep-related headache) but without neurological or structural
abnormalities. While these individuals were neurologically
asymptomatic aside from headache and underwent CSF testing to
exclude CNS pathology, their symptomatic status may introduce
confounding factors. In future studies, recruiting asymptomatic
controls where feasible will help improve interpretability of
metabolomic comparisons. Furthermore, the lack of metabolomic
data from CEP cases limited direct comparisons across epilepsy
subtypes. As CSF sampling is not routinely performed in CEP
patients for clinical reasons, this gap reflects a real-world constraint
that should be addressed in subsequent investigations. These
factors may necessitate cautious interpretation of CSF findings.
Finally, while 16S rRNA sequencing and untargeted metabolomics
offer broad characterization, future integration of shotgun
metagenomics and targeted metabolic profiling will be critical for
refining mechanistic insights and improving biomarker resolution.
A schematic overview of the study design, analytical workflow, and
key findings is presented in Figure 7 to aid interpretation of the
integrative multi-omics approach.

5 Conclusion

Our study reveals significant gut microbiota dysbiosis and
altered CSF metabolite profiles in pediatric epilepsy, particularly
in REP. Key microbial taxa and metabolites exhibited promising
diagnostic potential, with multi-omics integration uncovering
Most
classification

robust microbiota-metabolome interactions.

the
demonstrated exceptional accuracy, reinforcing its potential as a

notably,
combined microbiota-metabolite model
powerful biomarker-driven approach for epilepsy diagnosis. These
findings provide valuable insights into gut-brain axis disruptions
and highlight promising avenues for precision diagnostics and
targeted therapeutic strategies in epilepsy management.
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