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Comprising over 700 bacterial species, the oral microbiome is the second most

diverse microbial community in the human body after the gut microbiome.

Currently, existing review literature suggests that gut microbiome events may

play a significant role in the pathogenesis of metabolic syndrome, but the role

of the oral microbiome in this disease has not yet been reviewed. The oral-

gut microbiome axis refers to a bidirectional regulatory system that facilitates

interaction between the oral cavity and the gut through microbial pathways. The

microbiota from these two sites can migrate between each other via pathways

such as swallowing and blood circulation, which may participate in disease

development. In addition to the oral-gut axis, the oral microbiome itself may also

influence disease pathogenesis. This review examines the potential contributions

of the oral microbiome in the pathogenesis of metabolic syndrome, emphasizing

its impact on insulin resistance, systemic inflammation and adipokine secretion.

We explore therapeutic strategies targeting the oral microbiome which hold

promise as future treatments for metabolic syndrome. Future research is needed

to further elucidate the causal relationship between the oral microbiome and

metabolic syndrome and to develop personalized microbiome-based therapies.

KEYWORDS

microbiology, oral microbiome, metabolic syndrome, oral pathogen, microorganisms

1 Introduction

Insulin resistance, atherogenic dyslipidemia, central obesity, and hypertension are

among the metabolic dysregulations that make up the metabolic syndrome (MetS; Fahed

et al., 2022). It is a group of risk factors that frequently lead to increased metabolic

abnormalities such as cardiovascular diseases (CVDs) and type 2 diabetic mellitus (T2DM)

if left untreated (Dabke et al., 2019). MetS has caused a significant disease burden, with

one-third of adult Americans suffering fromMetS (Saklayen, 2018).

These days, numerous research have discovered a link between the elements of MetS

and the oral microbiome, and the pathogenic mechanisms through which oral microbiome

may contribute to the disease have been partially explored (Schamarek et al., 2023; Wang

et al., 2023; Sanz et al., 2020; Chen et al., 2023; Mikami et al., 2021). However, a small

number of studies did not find significant associations or causal relationships between the

two (Kim et al., 2021; Yan et al., 2024). Nevertheless, despite these conflicting findings,

a comprehensive review of the relationship between the oral microbiome and MetS

remains necessary.
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Comprising bacteria, microeukaryotes, viruses, and archaea,

the human oral microbiome harbors a wide variety of over 700

bacterial species, making it the second most prevalent microbial

community in the human body after the gut microbiome (Costa

et al., 2024). The oral microbiome is possessed of better accessibility

(Baker et al., 2024) and diversified ecological niches (Lu et al., 2022),

including hard palate, soft palate, dental plaque, buccal mucosa,

tongue dorsum, throat, and etc. (Figure 1). It may be more suitable

for large-scale and repeated sampling to study the dynamic changes

of the microbiome. Interventions related to the oral microbiome

(Brookes et al., 2023; Bescos et al., 2020), such as oral hygiene

practices (e.g., brushing, mouthwash), may be simpler and easier

to implement.

The concept of oral-gut microbiome axis refers to the

bidirectional interaction between oral and gut microbiome,

encompassing microbial translocation, metabolite exchange,

immune signaling, and systemic health impacts (Kitamoto et al.,

2020b). Oral microbes can migrate to the gut through swallowing,

hematogenous spread, or mucosal transfer, thereby altering gut

microbiome composition and function, which subsequently

influences host metabolism, immune responses, and disease

development (Kitamoto et al., 2020a; Kunath et al., 2024).

Dysbiosis of the gut microbiome has already been found to

be a key factor in the pathophysiology of MetS (Dabke et al.,

2019). However, no literature has yet reviewed the role of the oral

microbiome in the pathogenesis of MetS.

This review attempts to clarify the possible role of the oral

microbiome in the pathogenesis of MetS from a mechanistic

perspective. This may provide insights for future applications of

oral microbiome biomarkers in MetS risk screening. We focus

mainly on oral microbiome’s influence on insulin resistance,

chronic inflammation, and adipokine metabolism. To note,

the concept of “central inflammation” mainly refers to the

hematopoietic stem and progenitor cells (HSPCs) in the bone

marrow serving as a central hub to regulate the host’s adaptive

response to inflammation (Chavakis et al., 2019). Finally,

we give a brief overview of the oral microbiome-targeted

management of MetS, offering perspectives and suggestions for

further investigation.

FIGURE 1

Sampling sites for oral microbiome. Created in BioRender. Yue, Z.

(2025) https://BioRender.com/ngzmkfw.

2 The role of oral microbiome in the
pathogenesis of MetS

There are numerous intricate processes involved in the

pathophysiology of MetS that have not yet been completely

understood. Some studies hold the opinion that the onset of

MetS occurs in the context of environmental, genetic, and

dietary factors, leading to the accumulation of visceral adiposity

(Fahed et al., 2022). This process results in insulin resistance,

systemic inflammation, and alterations in adipokines secretion,

which manifest as the phenotypes of MetS, such as obesity,

dyslipidemia, and hypertension. Ultimately, these conditions

contribute to an increased risk of CVDs (Fahed et al., 2022). MetS,

historically termed insulin resistance syndrome, is fundamentally

characterized by insulin resistance—a central phenotype that will

be extensively discussed throughout this manuscript. Growing

evidence demonstrates that insulin resistance interacts intricately

with other key components in the pathogenesis of MetS (Lemieux

and Després, 2020). Given the intersection of these mechanisms

and phenotypes, this review highlights a key common molecule—

free fatty acids (FFAs). FFAs are not only linked to insulin

resistance, forming a vicious cycle, regulated by inflammatory

factors, but also associated with adipose tissue metabolism.

Therefore, the role of FFAs is mentioned in many parts of

this review. This is not redundant but rather reflects the

interconnected nature of MetS as a cluster of mutually influencing

and interrelated conditions.

In addition to local oral diseases, it is becoming more well-

acknowledged that the oral microbiome plays a significant part

in the emergence of numerous systemic illnesses. Specifically,

a number of extra-oral diseases, such as Alzheimer’s disease,

colorectal cancers, inflammatory bowel disease (IBD), rheumatoid

arthritis, diabetes, obesity, and CVDs, have been linked to

periodontal disease and its associated pathogens, such as

Porphyromonas gingivalis (P. gingivalis), Aggregatibacter

actinomycetemcomitans (A. actinomycetemcomitans), and

Fusobacterium nucleatum (F. nucleatum). Some of these conditions

are metabolic events linked to MetS (Kapila, 2021; Pirih et al.,

2021; Jungbauer et al., 2022; Huang et al., 2023; Tonelli et al., 2023;

Shaalan et al., 2022).

Direct pathogenic effects from local colonization of oral

bacteria and a variety of indirect disease-promoting effects

mediated by oral dysbiosis are the two primary, and sometimes

complementary, ways by which the oral microbiome affects the

pathophysiology of distal disorders (Baker et al., 2024; Imai et al.,

2021).

2.1 The oral microbiome promotes insulin
resistance through multiple mechanisms

Insulin resistance represents not merely a characteristic

phenotypic manifestation of MetS, but rather one of its core

pathogenic mechanisms. Specifically, in the context of visceral

adiposity expansion, a vicious cycle forms between insulin

resistance and increased plasma FFAs. Excess FFAs act on insulin

downstream signaling pathways in muscle tissue, liver, and
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pancreas, leading to sustained high plasma glucose levels and

hyperinsulinemia, thereby inducing insulin resistance (Figure 2).

In turn, insulin resistance exacerbates the condition by impairing

insulin’s antilipolytic effects, resulting in increased plasma FFAs

(Sun et al., 2021; Yao et al., 2022; Muniyappa, 2024). This vicious

cycle contributes to systemic inflammation, dyslipidemia, obesity,

and hypertension, with bidirectional interactions amplifying these

effects (Fahed et al., 2022).

2.1.1 Oral microbiome is associated with insulin
resistance

One well-known instance of oral microbiome dysbiosis

is periodontal disease. Patients with severe periodontitis had

significantly higher homeostasis model assessment of insulin

resistance (HOMA-IR) readings than the control group in a cross-

sectional study of 74 participants in India. A strong correlation

between periodontitis and insulin resistance is also suggested

by the greater prevalence of prediabetes, incident diabetes, and

insulin resistance in the group with severe periodontitis (George

et al., 2021). Other cross-sectional studies have reached similar

conclusions (Pulido-Moran et al., 2017; Kalhan et al., 2025).

Furthermore, compared to standard care, local periodontal therapy

has been shown to lower hemoglobin A1c (HbA1c) levels in

prediabetes and T2DM patients (Greggianin et al., 2023). These

findings collectively suggest a precise link between oral microbiome

dysbiosis and insulin resistance.

2.1.2 Oral pathogens may be associated with
insulin resistance through their metabolites

Through metabolic processes, the oral microbiome generates

and modifies a range of fatty acids (FAs), such as short-chain fatty

acids (SCFAs). These metabolites have been proven to influence

the local oral environment (e.g., pH and microbial balance; Magrin

et al., 2020). In an animal study, Wu et al. (2018) found that

inoculation with P. gingivalis increased total FFAs levels in the

tongue tissue and plasma of mice and altered their plasma FFAs

profiles. These changes may be linked to the upregulation of de

novo FAs synthesis pathways in the tongue tissue by P. gingivalis.

However, there lacks definitive human studies proving that these

metabolites could enter the systemic circulation and regulate FFAs

levels (Figure 2). It is believed that elevated levels of plasma FFAs

have a role in the development of insulin resistance, consistent

with observations in human studies showing increased FFAs in

T2DMpatients (Weijers, 2022). Given the existing evidence, we can

only suspect that metabolites from oral microbiome may indirectly

exacerbate insulin resistance by influencing FFAs metabolism,

potentially promoting the development ofMetS. Further studies are

required to determine whether and how oral microbiome-derived

metabolites influence blood FFAs levels, which will help elucidate

the role of oral microbial lipid metabolism in systemic diseases.

2.1.3 Insulin resistance caused by high-fat diet
(HFD) is enhanced by the oral microbiome

One popular model for MetS is the HFD mouse. Oral gavage

of three human periodontal pathogens [Prevotella intermedia (P.

intermedia), F. nucleatum, and P. gingivalis] not only caused

local inflammatory bone loss in mice given HFD, but it also

seemed to exacerbate insulin resistance and glucose intolerance

brought on by the diet. The ability to generate particular antibodies

against lipopolysaccharide (LPS) from P. gingivalis is linked to

the underlying mechanism (Blasco-Baque et al., 2017; Figure 2).

The dietary intervention used in this study may mediate insulin

resistance through accumulation of visceral fat, which increase

plasma FFAs levels, consistent with the central idea mentioned

above, that MetS begins with the expansion of visceral adiposity

(Fahed et al., 2022).

Lu et al. (2023) reported similar findings, demonstrating

that mice fed a HFD for 15 weeks and inoculated with P.

gingivalis exhibited enhanced HFD-induced insulin secretion and

insulin resistance compared to those on a low-fat diet (LFD; key

parameters including insulin levels and HOMA-IR). However,

in this study, the levels of FFAs in HFD-fed mice did not

significantly increase compared to LFD-fed mice, suggesting that

the mechanisms underlying insulin resistance in MetS are not

limited to the vicious cycle driven by elevated plasma FFAs (Fahed

et al., 2022). Insulin resistance may also occur as a result of

additional mechanisms.

Through the synthesis of branched-chain amino acids

(BCAAs), the oral microbiome may worsen insulin resistance

brought on by HFD. The wild-type organism, but not a BCAAs

aminotransferase-deficient mutant, caused elevated serum levels of

BCAAs (like leucine, isoleucine, and valine), fasting insulin levels,

and HOMA-IR in a model of P. gingivalis-induced periodontitis

in HFD-fed mice when compared to uninfected HFD-fed mice

(Tian et al., 2020). This supports the idea that high levels of BCAAs

in the blood could raise the risk of T2DM (De Bandt et al., 2022)

by activating mammalian target of rapamycin (mTOR) and then

ribosomal protein S6 kinase1 (S6K1), which phosphorylates insulin

receptor substrate 1 (IRS-1) and promotes insulin resistance

(Yoon, 2016; White et al., 2021; Figure 2).

In summary, the oral microbiome may enhance HFD-

induced insulin resistance by generating specific antibodies

against oral pathogens and producing unique amino acids,

which provides new research directions for understanding

the development of MetS. However, translating conclusions

from HFD mouse models to human MetS research faces

certain obstacles. This heterogeneity and limitations primarily

stem from genetic backgrounds, dietary design, intervention

time scales, and microbiome differences, among other factors

(Liu et al., 2021). Approaches to bridge this gap include

humanization, multi-factor induced mouse models (e.g., high-fat

+ high-sugar + stress), extending intervention durations, and

validation using more complex animal models and human cohorts

(Codazzi et al., 2024; Lone et al., 2023).

2.1.4 Oral microbiome may contribute to insulin
resistance through oral-gut axis

Existing research has suggested that the gut microbiome plays

a part in the pathophysiology of MetS (Dabke et al., 2019), which

has expanded to the oral-gut axis and its involvement in a number

of disorders (Kunath et al., 2024). Under normal conditions, the
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oral-gut axis maintains homeostasis, preventing most oral-derived

pathogenic microorganisms from bypassing barriers such as gastric

acid, digestive enzymes, and intestinal epithelial tight junctions,

thereby avoiding their ectopic colonization in the gut (Kunath et al.,

2024). However, in certain scenarios, such as host susceptibility

to colitis or pre-existing intestinal inflammation, oral pathogen

enrichment and ectopic colonization in the gut may contribute to

systemic diseases and insulin resistance (Yamazaki and Kamada,

2024).

Niu et al. (2024) found that the oral-gut translocation of

viable P. gingivalis functions as a fuel connecting periodontitis

and insulin resistance, involving the reduction of aryl hydrocarbon

receptor (AhR) ligands and the inactivation of AhR signaling, in

a periodontitis mouse model using oral ligature plus P. gingivalis

inoculation. Insulin resistance associated with periodontitis was

reduced by supplementing with an AhR agonist—Ficz (6-

formylindolo (3,2-b) carbazole), where the restoration of gut

barrier function may have been a significant factor. Similar to this,

oral infection of HFD-fed mice with the periodontal pathogen A.

actinomycetemcomitans resulted in changes in the gut microbiome

and mediated insulin resistance, liver steatosis, and glucose

intolerance in the setting of maladaptation of the oral–gut–liver

axis (Komazaki et al., 2017). These evidences suggest that under

adverse conditions such as host susceptibility, oral microbiome

may facilitate the ectopic colonization of oral pathogens in the gut

by compromising the oral-gut barrier, which may contribute to

insulin resistance.

Together, the possible approaches by which insulin resistance

can be modulated by the oral microbiome involve its lipid

metabolism, production of oral pathogen-specific antibodies,

special amino acid synthesis, and ectopic colonization through

oral-gut axis (Figure 2). Together, these processes add proof

for the link between insulin resistance and dysbiosis of the

oral microbiome.

FIGURE 2

The oral microbiome influences systemic inflammation, insulin resistance, and hypertension through the oral-gut axis via various microbial

metabolites and specific bacterial taxa. Upper portion of the figure: The illustration depicts how oral microbiome-derived immune cells and oral

pathogens a�ect the gut via the oral-gut axis, shifting it from a healthy state to a dysbiotic, pro-inflammatory condition. This process disrupts gut

barrier integrity, mediating systemic inflammation. Lower portion of the figure: The diagram highlights the role of oral microbial metabolites and

specialized nitrate-reducing bacteria in modulating insulin resistance and hypertension through key signaling pathways, FFAs, and NO levels.

Additionally, crosstalk between systemic inflammation and insulin resistance is illustrated. Visual guide: Black arrows: Represent progressive

relationships; Red arrows: Indicate changes in metabolites; Blue arrows: Show pathway modifications; Blue background: Highlights MetS

mechanisms and phenotypes discussed in this study; Pink background: Indicates microbiome-related metabolites; Yellow background: Marks

relevant signaling pathways. Abbreviations: FFAs, free fatty acids; CCR9, CC-chemokine receptor 9; SCFAs, short-chain fatty acids; BCAAs,

branched-chain amino acids; mTOR, mammalian target of rapamycin; S6K1, ribosomal protein S6 kinase1; IRS-1, insulin receptor substrate 1; NO,

nitric oxide. Created in BioRender. Yue, Z. (2025) https://BioRender.com/0e0vmmc.
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2.2 Systemic inflammation and oral
microbiome dysbiosis correlates

Systemic inflammation is another critical component in the

pathogenesis of MetS. Firstly, expanded visceral adipose tissue

releases higher levels of pro-inflammatory factors [e.g., tumor

necrosis factor-α (TNF-α), interleukin-6 (IL-6), and C-reactive

protein (CRP)] while reducing anti-inflammatory factors (e.g.,

adiponectin). These inflammatory cytokines, in turn, promote

lipolysis in adipose tissue, generating more FFAs and exacerbating

insulin resistance and dyslipidemia. Additionally, inflammatory

factors can directly induce insulin resistance through various

downstream signaling pathways, which further sustains systemic

inflammation (Fahed et al., 2022). These mechanisms collectively

form the foundation of MetS pathogenesis.

2.2.1 Oral microbial dysbiosis is usually
accompanied by elevated systemic inflammatory
markers

The oral microbiome and systemic inflammation have already

been linked in a number of observational studies. In contrast to

healthy controls, patients with severe periodontitis have been found

to have higher blood levels of neutrophils and pro-inflammatory

mediators (such as IL-1, IL-6, CRP, and fibrinogen; Schenkein et al.,

2020; Teles et al., 2024). Another cross-sectional study involving 70

participants found that serum high-sensitivity CRP and fibrinogen

levels were correlated with the severity of periodontitis, with the

association strengthening as the severity of periodontal disease

increases (Andreu et al., 2021).

Moreover, local periodontal treatment has been found to

attenuate systemic inflammatory markers (e.g., CRP, TNF-α)

and improve comorbid disease activity (D’Aiuto et al., 2018).

In a multicenter longitudinal study involving 153 participants,

researchers found that serum IL-6 levels were successfully lowered

by periodontal therapy in systemically healthy patients with

periodontal disease (Matsuda et al., 2024).

These findings suggest that higher levels of systemic

inflammatory markers are associated with a disturbance of oral

microbial balance, whichmay contribute to systemic inflammation.

2.2.2 Oral microbiome dysbiosis can mediate
systemic inflammation through various
mechanisms

A wide range of studies hold the opinion that there

exists a bidirectional relationship between systemic inflammation

and oral microbial dysbiosis. Some indicated that systemic

inflammation promote the growth of certain inflammophilic

bacteria by providing tissue degradation products (Hajishengallis

and Chavakis, 2021), thereby modulating oral microbial dysbiosis.

However, their reciprocal correlation requires further elucidation.

Here, we focus on the oral microbiome and examine evidence

indicating that oral dysbiosis may induce inflammatory responses.

This perspective may help establish connections between the oral

microbiome and MetS from a pathogenic standpoint.

It is commonly known that oral dysbiosis and local

inflammation are related. Payne et al. discovered that the

dysbiotic oral microbiome caused by P. gingivalis could be

vertically transmitted from parents to their children and stably

transferred to germ-free mice. This resulted in the development of

periodontitis, indicating that the dysbiotic microbiome may be a

direct source of local inflammatory pathology (Payne et al., 2019;

Li et al., 2023b).

Oral pathogens may enter the bloodstream through tissue

damage caused by local inflammation, leading to transient but

frequent bacteremia. This bacteremia allows oral pathogens to

disseminate systemically, either directly colonizing distant sites

to mediate disease or inducing endotoxemia, which stimulates

the immune system to produce inflammatory cytokines and

unique immune system alterations, subsequently affecting systemic

inflammation (Hajishengallis and Chavakis, 2021; Plachokova et al.,

2021; Figure 3).

2.2.2.1 Oral microbiome may promote systemic

inflammation by activating immune cells and altering

signaling pathways

Hu et al. (2021) found that, in ligature-induced periodontitis

(LIP) rats, peripheral blood and the brain showed apparent

elevations in inflammatory cytokines (IL-1β, IL-6, IL-8, and IL-

21), which are mediated by the signal transducers and activators of

transcription 3 (STAT3) signaling pathway. According to a different

study by Lorena et al., LIP in rats caused endothelial dysfunction

and vascular inflammation, which were accompanied by elevated

neutrophil counts and elevated blood levels of IL-6 and CRP

(Brito et al., 2013). Periodontitis-induced activation of circulating

monocytes, their increased adherence to aortic endothelial cells

via nuclear factor-κB (NF-κB) p65, and the elevation of vascular

cell adhesion molecule 1 (VCAM1) in the latter are considered to

be contributing factors to vascular inflammation (Miyajima et al.,

2014; Shen et al., 2023; Kim et al., 2023). According to these

investigations on animals, the oral microbiome may encourage

systemic inflammation through its specific immune responses and

associated downstream signaling pathway alterations (Figure 3).

2.2.2.2 Oral microbiome modulates systemic

inflammation via bone marrow

Periodontal disease appears to shift the bone marrow toward

a state of trained myelopoiesis, which refers to elevated levels

of hyper-reactive myeloid cells with higher capacity to produce

pro-inflammatory cytokines, formimg a mechanistic basis of

systematic inflammation (Li et al., 2022). The correlation between

periodontal and cardiovascular inflammation may be partially

explained by increased hematopoietic activity, as demonstrated by
18F-fluorodeoxyglucose positron emission tomography–computed

tomography (18F-FDG-PET-CT) investigations (Ishai et al., 2019;

Arefnia et al., 2024), indicating that periodontitis may trigger

inflammatory adaptation of HSPCs and trained immunity in

the bone marrow. It can be speculated that its ability to

influence cardiovascular inflammation may partially explain the

phenomenon where oral microbial dysbiosis is associated with an

increased risk of CVDs (Tonelli et al., 2023). In accordance with

the idea of “central inflammation,” this increased bone marrow

inflammatory activity might contribute to the oral microbiome’s
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FIGURE 3

Impact of oral microbiome on systemic inflammation and adipokines secretion. The oral microbiome modulates the “central inflammation” hub

function of bone marrow by altering its immune status, and influences systemic inflammation through cellular signaling pathways. Concurrently,

inflammation itself regulates adipose tissue and a�ects adipokines secretion. Visual guide: Black arrows: Represent progressive relationships; Blue

arrows: Show pathway modifications; Blue background: Highlights MetS mechanisms and phenotypes discussed in this study; Yellow background:

Marks relevant signaling pathways; Green background: Shows adipokines secretion. Abbreviations: STAT3, signal transducers and activators of

transcription 3; NF-κB nuclear factor-κB; VCAM 1, vascular cell adhesion molecule 1; CAP 1, caspase recruitment domain-containing protein 1; IL-6,

interleukin-6; TNF-α, tumor necrosis factor-α; CRP, C-reactive protein. Created in BioRender. Yue, Z. (2025) https://BioRender.com/3m6ifm3.

encouragement of systemic inflammation (Chavakis et al., 2019;

Figure 3).

2.2.2.3 The oral microbiome may a�ect systemic

inflammation through oral-gut axis

Recent studies indicate that the oral-gut axis plays an important

role in systemic inflammation associated with oral dysbiosis.

Oral bacteria may disseminate via the oropharyngeal or oro-

digestive route (Hajishengallis et al., 2023). As previously stated,

ectopic colonization of the gut by oral organisms may mediate

inflammation, alter the local microbial composition, and impair the

function of the gut barrier, all of which may induce endotoxemia

and modulate systemic inflammation (Kitamoto et al., 2020b; Yu

et al., 2025).

From the perspective of immune cells, periodontitis, and

colitis are linked via T cell priming in the periodontal tissue

and subsequent T cell trafficking to the gut in mice (Kitamoto

et al., 2020b). In particular, oral pathobiont-specific T lymphocytes,

which proliferate during LIP, move from the cervical lymph

nodes that drain the oral cavity to the gut and express the gut-

homing markers α4β7 integrin (the receptor for the gut-specific

vascular addressin MAdCAM1) and CC-chemokine receptor 9

(CCR9; Kitamoto et al., 2020b). These oral pathobiont-specific T

cells, in which T helper (Th) 17 cells are enriched, multiply, and

worsen colitis once they reach the gut (Kitamoto et al., 2020b).

This represents the mechanisms linking oral microbiome to IBD.

Therefore, it is plausible to believe that the oral-gut axis is essential

to the procedure by which the oral microbiome mediates systemic

inflammation (Figure 2).

In summary, the oral microbiome can mediate systemic

inflammation by modulating signaling pathways, activating

immune cells, enhancing bone marrow inflammatory activity,

and altering gut microbiome homeostasis. Compared to animal

studies with strictly controlled variables, human research involves

certain confounding factors that require discussion. Smoking has

been demonstrated to elevate systemic inflammation levels (Elisia

et al., 2020), and most of the cited human studies controlled for

smoking as a covariate. Even after adjusting for smoking, the

studies still support that alterations in the oral microbiome itself

are associated with systemic inflammation. Unfortunately, existing

research has rarely thoroughly investigated baseline conditions

such as dietary habits and oral hygiene, which influence the oral

microbiome. It is well-established that good oral hygiene practices

can reduce the incidence of dental caries and periodontitis (Zini

et al., 2021; Mutluay and Mutluay, 2022). Furthermore, Liu

et al. (2023) found that poor oral hygiene increases the risk of

nasopharyngeal carcinoma by altering the oral microbiome. Given

these overlooked potential confounders, it is reasonable to suspect

that these unaccounted variables could bias the research outcomes.

Future studies should aim to improve in these aspects.

2.3 The oral microbiome’s function in the
secretion of adipokines

The adipose tissue is recognized to be not only a

thermoregulator and lipid storage facility, but also an endocrine

organ which plays a crucial role in the pathogenesis of MetS

(Fahed et al., 2022). The former primarily refers to the elevated

levels of FFAs released by it, which contributes to pro-atherogenic

dyslipidemia during the expansion of visceral adiposity in MetS.
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The latter involves various adipokines released by adipose tissue

including peptides [such as resistin and plasminogen activator

inhibitor (PAI)-1], hormones (e.g., leptin and adiponectin), and

inflammatory cytokines (including chemerin, TNF-α, IL-6, and

visfatin; Taylor, 2021; Kim et al., 2022).

Leptin, a multi-target organ protein hormone secreted by

adipose tissue. A pro-inflammatory immune response is known

to be facilitated by leptin via various immune cells (Liu and Li,

2025). The idea of “leptin resistance,” in which tissues have reduced

sensitivity to leptin, was born out of the inability of high leptin levels

to address the metabolic imbalance observed in obesity (Obradovic

et al., 2021). Elevated levels of leptin are associated with increased

risk of MetS (Pappas-Gogos et al., 2022). In an observational

cross-sectional study involving 102 participants, patients with early

rheumatoid arthritis exhibited higher serum leptin levels, and the

presence of gingivitis or periodontal disease markers was found

to influence leptin levels (Rodríguez et al., 2021). Another 6-year

follow-up study in youth showed that LPS was associated with

higher blood leptin levels (Perng et al., 2022).

Based on the previously discussed impact of the oral

microbiome on systemic inflammation, we can speculate that oral

microbial dysbiosis may contribute to abnormal leptin levels/leptin

resistance through modulating systemic inflammatory factors,

endotoxemia, and immune cells.

Resistin, a cytokine released by immune cells and adipocytes,

is mostly correlated with metabolic disorders, inflammation, and

insulin resistance (Kamil et al., 2023). In a single-cell RNA

analysis study involving 27 participants, researchers found that the

resistin pathway was intensified in individuals with periodontitis

and those with both periodontitis and diabetes. By attaching to

receptors and triggering several intracellular signaling pathways

[NF-κB, mitogen-activated protein kinase (MAPK), and AMP-

activated protein kinase (AMPK)], especially through caspase

recruitment domain-containing protein 1 (CAP1)+ classical

monocytes, resistin may be responsible for this phenomenon,

which makes periodontitis a precursor to T2DM (Lee et al., 2023).

Conversely, the hormone adiponectin, which is released

by adipocytes, has anti-inflammatory, insulin-sensitive, and

metabolism-regulating qualities (Nesic et al., 2022; Petersen et al.,

2024). Tang et al. (2022) hold the opinion that specific single

nucleotide polymorphisms in the adiponectin gene may be

identified as susceptibility genes for T2DM. In a cohort study

involving 71 subjects, Alkan and Guzeldemir-Akcakanat (2021)

found that by modifying the amounts of adipokines (IL-1β, TNF-

α, leptin, resistin, and adiponectin) in the serum, saliva, and

gingival crevicular fluid of obese female patients, different severity

of periodontal disease affected general health. Furthermore, in

vitro experiments observed that administration of adiponectin

receptor agonists reduced the levels of TNF and IL-6 (Shinohara

et al., 2022). Thus, oral dysbiosis may reduce the adiponectin

levels through systematic inflammation, forming a bidirectional

relationship between the latter two.

Additionally, whether periodontal therapy can reverse

abnormal adipokine levels in patients with oral dysbiosis requires

further validation. Multiple systematic reviews have investigated

changes in adipokine and inflammatory marker levels (in

serum/gingival crevicular fluid/saliva) of periodontitis patients

TABLE 1 The role and changes of adipokines in normal condition versus

oral dysbiosis.

Adipokines Normal condition Oral dysbiosis

Leptin Pro-inflammatory ↑ and/or leptin resistance

Resistin Pro-inflammatory ↑

Adiponectin Anti-inflammatory ↓

Visfatin Pro-inflammatory ↑

Chemerin Pro-inflammatory ↑

Omentin-1 Pro-inflammatory ↑

before and after non-surgical periodontal therapy (NSPT).

While some concluded that NSPT could improve dysregulated

adipokine profiles (Zhang et al., 2023; Tajik et al., 2025; de

Menezes et al., 2024), negative findings have been reported (Zhu

et al., 2017). These discrepancies may stem from variations in

inclusion/exclusion criteria across different systematic reviews,

necessitating further exploration and verification through

independent clinical trials.

In conclusion, the oral microbiome may influence adipokine

levels through inflammatory responses, signaling pathways and the

immune system (Figure 3). The changes in these adipokines seem

to be synergistic—pro-inflammatory factors decrease while anti-

inflammatory factors increase (as shown in Table 1), which may

contribute to the pathogenesis of MetS.

2.4 Oral microbiome may mediate
hypertension through modifying nitric
oxide (NO) metabolism

NO is essential to the onset and advancement of hypertension.

As a key vasoactive molecule, NO controls endothelial function,

inflammatory responses, and vascular tone, all of which affect blood

pressure (Bryan, 2022).

According to a study using data from the National Health

and Nutrition Examination Survey (NHANES), there may be a

connection between the prevalence of hypertension, periodontal

disease, and oral health (Li et al., 2023a). In a similar vein, a

short-term prospective cohort study of 2,588 Japanese students

also discovered a strong correlation between hypertension and

periodontal disease (Kawabata et al., 2016).

The positive effects of nitrate-rich meals on blood pressure may

be mediated by oral bacteria, especially nitrate-reducing bacteria

(e.g., Streptococcus and Veillonella genera). These bacteria play

a part in NO production, and their reduction caused by oral

dysbiosis may impair NO-mediated vasodilation, which, at least

in part, leads to the development of hypertension (Alzahrani

et al., 2021; Barbadoro et al., 2021). Meanwhile, dietary nitrate

supplementation can alter the oral microbiome in individuals with

hypertension, exerting potential prebiotic effects (du Toit et al.,

2024). Furthermore, longitudinal studies suggest that excessive

oral hygiene practices (such as prolonged use of over-the-counter

antimicrobial mouthwashes) may reduce the abundance of oral
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nitrate-reducing bacteria, leading to decreased NO production and

potentially increasing hypertension risk (Joshipura et al., 2020).

This finding was confirmed in exploratory experiments, where 7-

day use of chlorhexidine mouthwash altered the oral microbiome

of healthy subjects, reduced nitrite concentrations in both saliva

and plasma, and resulted in elevated systolic blood pressure (Bescos

et al., 2020).

Meanwhile, the development of hypertension is also partially

influenced by insulin resistance. Studies have shown that during

insulin resistance, the vasodilatory effects of insulin are reduced,

while its activation of the sympathetic nervous system and renin-

induced sodium reabsorption remains intact. These mechanisms

collectively contribute to the pathophysiology by which insulin

resistance promotes hypertension (Fahed et al., 2022). Therefore,

based on the earlier discussion of how the oral microbiome may

promote insulin resistance, it is reasonable to suspect that the oral

microbiome may indirectly affect the development of hypertension

by inducing insulin resistance.

Moreover, the impact of periodontal therapy on blood pressure

has been explored in numerous randomized controlled trials

(RCTs) and systematic reviews (Zhou et al., 2017; Shang et al.,

2025). Evidence of varying quality suggests that periodontal

treatment may have short-term beneficial effects on subjects’ blood

pressure, but there is a lack of long-term evaluation of this

intervention (Muñoz Aguilera et al., 2020; Sharma et al., 2021;

Meng et al., 2024; Orlandi et al., 2022). The systematic review by

Luo et al. (2021) concluded that current evidence is insufficient

to demonstrate definitive blood pressure-lowering effects from

periodontal therapy, highlighting the need for longer-term, high-

quality studies to validate the benefits of oral health improvement

on hypertension.

In conclusion, it is reasonable to suspect that the oral

microbiome plays a potential role in the development of

hypertension by producing NO and indirectly through insulin

resistance (Figure 2).

3 Targeting oral microbiome for the
treatment of MetS

Current research on microbiota-based therapies primarily

focuses on restoring gut microbiome homeostasis, mainly through

the supplementation of probiotics, prebiotics, fecal microbiota

transplantation (FMT), and localized microbial modulator.

Exploration of oral microbiome-based therapies follows a similar

approach, though current research in this area remains limited.

Research has shown that eating habits have a big impact on the

oral microbiome’s composition (Vach et al., 2022). A high-fiber diet

aids in weight loss for obese individuals, improves blood glucose

levels and insulin sensitivity in both non-diabetic and diabetic

individuals, and reduces blood pressure and serum cholesterol

levels, offering benefits for various components of MetS (Anderson

et al., 2009; Lepping et al., 2022). By lowering the amount of

Alloprevotella in the oral microbiome, Sato et al. (2024) found

that a high-fiber diet with a high 12-component modified Japanese

diet index (mJDI12) may enhance overall health. However, there

are certain challenges in modulating the oral microbiome through

dietary interventions. Individual genetic backgrounds, lifestyle

variations, and compliance issues may hinder both the adoption of

dietary changes and their effectiveness. Moreover, current research

lacks long-term dynamic studies on oral microbiome changes

following dietary modifications, and the mechanisms by which

specific nutrients regulate key microbial species remain unclear

(Kerstens et al., 2024). Additionally, the metabolic transformation

of dietary components under the influence of the oral microbiome

has not been fully elucidated (Bai et al., 2025; Shoer et al.,

2023). Future research should focus on elucidating the tripartite

interaction mechanisms among the oral microbiome, diet, and

host, while developing tailored dietary modification strategies for

different eating patterns and investigating their long-term effects.

Strategies using probiotics/prebiotics to restore oral

microbiome homeostasis have been explored. Probiotics that

produce nisin or nisin itself can change the oral microbiome for

the better, reducing periodontal destruction and host immune

responses (Gao et al., 2022; Nguyen et al., 2020). By dramatically

reducing the messenger RNA (mRNA) expression of pro-

inflammatory cytokines (IL-1β, IL-6, and TNF-α) in the brain

that are raised by periodontal infection, these probiotics also help

neuroinflammation that resembles Alzheimer’s disease and is

brought on by periodontal disease (Zhao et al., 2023). According

to Rosier et al., people with diabetes and hypertension may benefit

from taking supplements containing nitrate/symbiotic combos

(nitrate + nitrate-reducing probiotics). However, individual

variations in oral microbiome’s nitrate-reduction capacity exist.

Some people may therefore benefit directly from nitrate as

a prebiotic because of their microbiota’s innate capacity to

significantly reduce nitrate, while others may benefit more from

symbiotic pairings (Rosier et al., 2020). Therefore, it is necessary to

emphasize personalized microbiome-based therapies in the future.

Two double-blind, placebo-controlled trials from the same research

team (Yarahmadi et al., 2024; Bazyar et al., 2020) collectively

demonstrate that combining symbiotic supplementation with

NSPT may help improve inflammation, antioxidant status,

periodontal health, glycemic control, and reduce LDL- cholesterol

in patients with T2DM and chronic periodontitis. The study by

Zorina et al. (2017) likewise revealed similar results. Therefore,

from the perspectives of inflammation and microbial metabolism,

supplementing with probiotics/prebiotics helps restore oral

microbiome homeostasis and promote beneficial metabolic

processes, potentially offering benefits for MetS. Nevertheless,

potential risks associated with probiotic/prebiotic supplementation

warrant careful consideration, including unintended microbiome

alterations that may lead to opportunistic infections, or horizontal

transfer of antibiotic resistance genes (Ji et al., 2023; Merenstein

et al., 2023). Future long-term longitudinal studies are imperative

to thoroughly evaluate the safety profile and intervention

robustness of this approach (Wieërs et al., 2019).

Corresponding to FMT, the oral microbiota transplantation

(OMT) has been introduced (Nascimento, 2017; Beikler et al.,

2021). In animal experiments, Xiao et al. (2021) showed that OMT

helps mice with head and neck cancer who had radiation-induced

oral mucositis. Subsequent clinical research by Goloshchapov

et al. (2024) found that maternal saliva transplantation prevented

severe chemotherapy-induced oral mucositis, accompanied by
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changes in the composition of the patient’s oral microbiome,

with no negative transplant-related events noted. However, the

implementation of OMT currently faces significant challenges.

Unlike the well-established FMT, there is no internationally

recognized standardized protocol for OMT (Bokoliya et al., 2021).

Critical gaps exist in multiple aspects, including donor screening,

transplantation routes, administration protocols, complication

prevention, colonization dynamics of transplanted microbes, and

ethical oversight (Allegretti et al., 2020). These obstacles primarily

stem from the insufficient depth, breadth, and long-term scope of

oral microbiome research itself. It is anticipated that they can be

gradually resolved as the field advances in the future. Despite these

limitations, OMT remains a promising candidate for future oral

microbiome-based interventions.

These encouraging findings suggest that microbiota-based

therapies targeting the oral microbiome are a promising

and worthwhile direction for exploring MetS treatment.

However, further research is needed to refine aspects such

as dosage, treatment duration, efficacy, adverse effects, and

long-term outcomes.

4 Discussion

In this review, we have summarized the possible contributions

of the oral microbiome to the pathogenesis of MetS and described

therapeutic explorations targeting oral homeostasis. Nonetheless,

there is no denying that oral microbiome dysbiosis and MetS

are correlated in both directions (Dame-Teixeira et al., 2025).

Future research should prioritize well-designed RCTs to establish

causal relationships between the oral microbiome and incident

MetS. Additionally, integrating multi-omics approaches (e.g.,

metagenomics, metabolomics, and proteomics) could further

elucidate the underlying mechanisms and strengthen the evidence

for causality.

Longitudinal lifespan studies in both animalmodels and human

populations are required to forecast the long-term consequences

of microbiome-based interventions (Hsu et al., 2021; Depommier

et al., 2019). Optimization of more comprehensive and robust

animal models of MetS are needed as well.

Moreover, the structure of oral microbiome varies across

different niches (Baker et al., 2024). Most of the current research

on oral microbiome comes from studies on periodontal disease and

dental plaque, while other specimens need to include saliva, oral

rinses, buccal mucosal, dorsum tongue swabs, and etc. (Jiao et al.,

2022; Arweiler et al., 2021; Chan et al., 2021) The link between

the oral microbiome at distinct oral niches and different diseases

should be one of the main focuses of future research.

To sum up, this study methodically describes how the

oral microbiome may contribute to the pathogenesis of MetS,

offering important new information for future studies on the

connection between systemic disorders and the oral microbiome.

Though further research is required to convert these findings into

therapeutic applications, studies on the oral microbiome show

promise for conquering MetS.
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