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Total and viable microbial cell counts are increasingly important for applications

including live biotherapeutic products, food safety, and probiotics. In

microbiology, cells are quantified using methods such as colony forming

unit (CFU), flow cytometry, and polymerase chain reaction (PCR), but di�erent

methods measure di�erent aspects of the cells (measurands), and results may

not be directly comparable across methods. In the absence of a ground-truth

reference material for cell count, one cannot quantify the accuracy of any

cell counting method, which limits method performance assessments and

comparisons. Herein, a modified analysis of cell counting methods based on

the ISO 20391-2:2019 standard was developed and demonstrated for microbial

cell samples diluted over a log-scale range of concentrations. Escherichia

coli samples ranging in concentration from ∼5 x 105 cells/mL to 2 x 107

cells/mL were quantified using CFU, Coulter principle, fluorescence flow

cytometry, and impedance flow cytometry. Quality metrics modified from the

ISO standard were calculated for each method and shown to be repeatable

across replicate experiments. The quality metrics illustrate large di�erences

in proportionality and variability across methods, with total cell counts in

good agreement and viable cell count having more variability. As the ISO

standard is meant to guide fit-for-purpose method selection, interpretation

of the results and quality metrics can drive method choice and optimization.

The framework introduced here will help researchers select fit-for-purpose

counting methods for quantification of microbial total and viable cells across a

range of applications.

KEYWORDS

measurement quality metrics, absolute cell count, microbial cell viability, fluorescence

flow cytometry, impedance flow cytometry, CFU, proportionality

Introduction

High confidence total and viable microbial cell count measurements are challenging

but critical for the rigorous characterization of microbial cell products, a growing field

of biotechnology that includes live biotherapeutic products, probiotics, and microbial

reference materials (Jackson et al., 2019; FDA-CFSAN, 2018; FDA-CBER, 2016a,b).

Quantifying the number of microbes present in a sample is also critical for other

fields including food safety, water quality, antimicrobial testing, and microbiome

characterization. Total microbial cell count is used as a normalization factor when
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reporting results (e.g., results “per cell”) and is a quantification

of all microbes, live and dead, present in a sample. For example,

there is great interest in optimizing molecular methods such

as polymerase chain reaction (PCR) or genomic sequencing to

accurately characterize microbial samples. However, results from

these methods are challenging to interpret without a total cell count

or genome count before DNA extraction to quantify measurement

biases (Galazzo et al., 2020; McLaren et al., 2019). Viable microbial

cell count can indicate the health of a microbial culture or product

and is often used for potency measurements, such as for fecal

microbiota transplantations (Ferring Pharmaceuticals Inc., 2022).

Viable count is also important for microbial reference materials

used to quantify limits of detection for sterility tests that support

the safety and purity of biomanufactured products, such as cell and

gene therapies (Gebo and Lau, 2020; Lin-Gibson et al., 2021).

Colony forming unit (CFU) assays are the bedrock of

traditional microbiology and industrial microbial cell counts

(Martini et al., 2024; Jasson et al., 2010; Clausen et al., 2018).

CFU assays quantify culturable subpopulations based on the

number of colonies that grow on solid media and represent a

straightforward, accessible, and time-proven method often used

synonymously with viable cell count. However, limitations in the

CFUmethod, for example a long time-to-result or inability to count

dead cells, drive industry toward alternative or complementary

cell counting methods. Newer measurement technologies that

report total and/or viable cell counts include fluorescence flow

cytometry and impedance-based instruments. These methods can

be quicker and higher throughput than CFU, but they do not

explicitly measure cell growth. Instead, these methods quantify on

other measurands, meaning the quantity intending to be measured

(VIM, 2017). Fluorescence flow cytometry relies on scattered and

fluorescent light to calculate total particle concentration and can

also characterize cells using fluorescent probes. Many fluorescent

probes are designed to measure cell health properties such

as membrane integrity, membrane potential, metabolic activity,

and DNA replication, though implementation typically requires

optimization for each microbial sample of interest (Müller and

Nebe-von-Caron, 2010; Veal et al., 2000). Impedance techniques

can measure each particle passing through an aperture or channel

and calculate the number of particles per unit volume. The

BactoBox (SBT Instruments) and Multisizer (Coulter counter,

Beckman Coulter) are two instruments1 that detect particles as

changes in impedance though the detection technologies differ

(Graham, 2022; Clausen et al., 2018; Bertelsen et al., 2023).

Comparison among these measurands and understanding where

differences arise can be critical drivers of protocol development for

specific use cases for microbial cell counting (Jordal et al., 2023).

These different measurands may not agree for a sample of

interest and each stakeholder will have unique cell counting needs,

so many factors must be considered when selecting a cell counting

method(s) for a particular application. Measurement quality varies

1 Certain commercial materials and equipment are identified to specify

the experimental procedure. In no instance does such identification imply

recommendation or endorsement by NIST or that the material or equipment

identified is necessarily the best available for the purpose.

withmethod and can often indicate that onemethod is more fit-for-

purpose than another. While many stakeholders are interested in

accuracy of a count value, accuracy cannot be determined without

a certified cell-based reference material, and the material would

need to be certified with values appropriate for each measurand

of interest. For example, this might require a material certified for

CFU, total cell count, and membrane potential. In the absence of

such materials, other quality metrics must be relied upon to guide

method selection. ISO 20391-2:2019: Biotechnology – Cell counting

– Part 2: Experimental design and statistical analysis to quantify

counting method performance provides a method to evaluate to

what extent a cell counting method is proportional by measuring

a stock solution diluted across a range of cell concentrations and

calculating measurement quality metrics including proportionality,

coefficient of variation, and R2 value (ISO, 2019). Proportionality is

a characteristic of an ideal measurement process whereby dilutions

of a sample by a given factor should result in corresponding

reductions in the measured values by the same factor and intersect

the origin. For example, a sample diluted by half should result in a

measurement that is half the concentration of the original sample.

Previous work at NIST has demonstrated how the ISO standard

can be applied to mammalian cells to compare counting methods

(Sarkar et al., 2017; Pierce et al., 2023). The current work makes one

large modification to the ISO 20391-2:2019 experimental protocol

by allowing dilution factors that span more than one order of

magnitude (i.e., are on the log scale). This modified design better

accommodates the wide range of cell concentrations common in

microbial experimental designs (e.g., antimicrobial effectiveness) or

samples (e.g., natural microbiomes).

Here, the objective was to develop a modified ISO experimental

design and analysis method suitable for logarithmic scale and

demonstrate its application to compare microbial counting

techniques. We measured a model laboratory species, Escherichia

coli NIST0056, using four methods (CFU, Coulter principle,

fluorescence flow cytometry, and impedance flow cytometry) for

a total of six reported measurements (three total cell count

measurements and three viable cell count measurements). Blinded

samples that ranged in concentration from ∼5 x 105 cells/mL

to 2 x 107 cells/mL were quantified with each method operating

with fixed acquisition conditions. A polymeric bead sample

was also quantified with total particle count methods based on

fluorescence and Coulter principle. To account for the fact that

the dilution factors in this study were evenly spaced on a log-

scale, the ISO standard calculations and statistical procedures

were modified accordingly. Similar to the ISO standard, this work

compares the proportionality, magnitude, and variability of cell

countmeasurements across different countingmethods. Additional

analyses were also performed, including evaluating repeatability

of metrics across multiple dates, quantifying different sources

of experimental variability via hierarchical Bayesian modeling,

determining the extent to which proportional “sub-ranges” exist

for the various methods, and evaluating the impact of sample

order. Results for this use case are discussed with a focus

on how to determine which methods are fit-for-purpose. The

demonstrated experimental design and mathematical analyses can

be directly implemented by other microbial researchers who wish

to characterize their methods to better quantify their microbes

of interest.
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Materials and methods

Overview

The methods used to count the bacterial cells were CFU,

Coulter principle (Graham, 2022), fluorescence flow cytometry,

and impedance flow cytometry. The operator for eachmethod, who

also performed the data analysis, was held constant. From the three

methods, six count datasets for cells were reported (Table 1). Raw

data and analysis code are available at https://doi.org/10.18434/

mds2-3410 (Parratt et al., 2025).

Total particle counts were reported in the Multisizer, BactoBox,

and CytoFLEX datasets. Viable cell counts were reported in

the BactoBox, CytoFLEX, and CFU datasets. Experiments were

performed on four separate dates with two biological replicates

for CFU and Multisizer and three biological replicates for

BactoBox and CytoFLEX (Table 2). Polymer bead counting was

also performed on a single date using two of the instruments

(CytoFLEX, Multisizer). It is critical to note that the quality metrics

calculated here are a result of the entire measurement process,

which includes the starting material, experimental operators,

experimental processing steps, instrument acquisition settings, and

data analysis. Thus, shorthand names are used for the datasets

to avoid emphasizing method identities, since results cannot be

extended to others’ measurement processes.

Cell preparation

Study design was established to determine the range of cell

concentrations, number of levels, and dilution factors to be

TABLE 1 The underlying method principle, measurand, and instrument

are listed for each dataset.

Dataset Method
principle

Measurand Instrument

Total-A and

Bead-A

Coulter

principle

Particle count Multisizer 4

Total-B Impedance Particle count BactoBox

Total-C and

Bead-C

Fluorescence Particle count CytoFLEX LX

Viable-B Impedance Intact count BactoBox

Viable-C Fluorescence Non-intact count CytoFLEX LX

Viable-D Growth Colony count (CFU) Growth at 37◦C

The instrument, measurand, underlying measurement principle, and method-specific

dilutions are listed for each dataset.

tested. These determinations were specific to the instruments

and cell type under consideration and should be modified as

needed for other systems. Lyophilized bacterial cells were selected

as the test sample, as many microbial reference materials are

produced in a lyophilized format. Previous characterization of

the lyophilized material (not shown) indicated that tube-to-tube

variability was relatively low and that materials were stable at

the recommended storage temperature of 4◦C. Four separate

experiments were performed on different dates and are referred

to as “biological replicates,” with a new cell stock made for each

experiment. To generate a biological replicate, four lyophilized

bacterial pellets (Escherichia coli NIST0056, custom manufactured

by Microbiologics, Inc., stored at 4◦C) were equilibrated at room

temperature and each rehydrated in 1mL phosphate buffered saline

(PBS, Corning, catalog # 46-013-CM). All four rehydrated pellets

were then added to one tube containing 36mL PBS to generate a

single sample of ∼2 x 107 cells/mL (Figure 1). This stock was then

diluted into six dilution factors evenly spaced in log-scale, with

three replicate samples (“sample replicates”) per dilution factor

prepared separately for a total of 18 samples (Figure 1 and Table 3).

Samples were then divided into 4 aliquots and transferred to each

operator with blinded labeling. Samples were provided in semi-

random order with sample replicates for each dilution factor spaced

throughout the experiment duration. Samples were stored at 4◦C

until acquisition, for up to 5 h depending on themethod and sample

order. Each operator collected a pre-specified 1 or 2 technical

replicate measurements of each sample (“observation replicates”)

for a total of 5 observations per dilution factor or 30 acquisitions per

method, as shown in Figure 1. Each operator reported final results

before the samples were unblinded. This process was repeated for

each biological replicate.

Bead preparation

Beadmeasurements were performed on a single date using only

the Multisizer and CytoFLEX. To generate the bead stock, beads

(Fluoresbrite R© YG Microspheres 1.00µm, Polysciences, catalog #

17154-10) were added to PBS to ∼5 x 107 beads/mL. This stock

was diluted to eight levels evenly spaced in log-scale, and three

replicate samples were prepared for each dilution factor for a total

of 24 samples. The dilution factors were 1 (5 x 107 beads/mL),

0.412 (2.06 x 107 beads/mL), 0.1694 (8.47 x 106 beads/mL), 0.0698

(3.49 x 106 beads/mL), 0.0286 (1.43 x 106 beads/mL), 0.0118 (5.9

x 105 beads/mL), 0.00486 (2.43 x 105 beads/mL), and 0.002 (1

x 105 beads/mL). Samples were then divided into 2 aliquots and

transferred to each operator with blinded labeling. Randomization

TABLE 2 Instrument list.

Instrument Bio. rep. 1 Bio. rep. 2 Bio. rep. 3 Bio. rep. 4 Bead rep. 1

BactoBox Y Y Y

CFU∗ Y Y

CytoFLEX LX Y Y Y Y

Multisizer 4 Y Y Y

List of instruments used for each Biological or Bead replicate experiment (Bio. Rep. with E. coli NIST0056 or Bead Rep.).
∗CFU was performed manually, not by an instrument.
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FIGURE 1

Experimental design diagram. Visualization of the relationships among levels of replication. The biological replicate was divided into six dilution

factors (df) with three sample replicates per dilution factor. Sample replicates were divided into aliquots for each operator. Operators performed

instrument-specific processing steps to record data for observation replicates.

TABLE 3 Cell Concentrations.

Dilution factor 1 0.478 0.2285 0.1095 0.0525 0.025

Approximate cell concentration (cell/mL) 2 x 107 9.56 x 106 4.57 x 106 2.19 x 106 1.05 x 106 5 x 105

Based on the cell concentration of the cell stock solution, target dilution factors were expected to result in samples with the listed cell concentrations. The cell concentrations are calculated by

multiplying the stock cell concentration by the dilution factor. All cell concentrations are approximate because no ground-truth reference material exists.

format, observation replicate generation, and data reporting were

the same as for the cell experiments.

BactoBox

Data collection
BactoBox (SBT Instruments, hardware version 7.3) was utilized

per manufacturer’s protocols. PBS was diluted to 0.11X and

0.22µm filtered before use to achieve a conductivity within the

operational range of the instrument. For each replicate observation,

101 µL of sample was added to 10mL PBS in a 15mL conical

tube, vortexed, and measured. Thus, observations are performed

on concentrations ∼100X more dilute than the prepared sample

replicates. The total particle number, intact cell number, and

timestamp were recorded for each sample. After each sample run,

a “blank” tube was run to reduce material carryover that might

otherwise artificially increase counts. For the first two biological

replicates 0.11X PBSwas used as a blank, and for the third biological

replicate 70 % (by volume) isopropanol was used. The instrument

requires disinfection with 70 % (by volume) isopropanol after every

20 measurements. When disinfection was performed, an additional

0.11X PBS blank was run afterwards to rinse the tubing.

Data processing
Any count values below 10,000 were not quantifiable by

BactoBox and were reported as “NA” for analysis in R. Intact counts

in the blank samples were generally too low for the BactoBox to

report, and thus no “background” correction was performed. Total

counts were quantified for most blank samples, but no correlation

was found between sample count and subsequent blank count

for BioRep1 (Supplementary Figure 1). However, in BioRep2, the

counts in the blank samples were unexpectedly high partway

through the study. Therefore, the first blank after running a sample

was used to estimate the “background” for each BioRep, and this
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was subtracted from the reported total counts. Negative values

derived from this correction were converted to NA for analysis.

Since BioRep4 did not use 0.11X PBS as a blank and did not

have any reported blank counts, the blank values from the first

two biological replicates were averaged and used for background

subtraction of BioRep4. Final counts were reported after correcting

for the dilution into 0.11X PBS.

CFU
CFU assays were performed by drip plating on Tryptic Soy

Agar plates prepared from Tryptic Soy Broth (BD Bacto, catalog

# 211825) and 1.5 % (by mass) Agar (BD Bacto, catalog # 214010).

Two 96-well plates were prepared with 180 µL PBS per well. Each

sample replicate was vortexed, and 20 µL of the cell sample was

added to the first column in the plate to make the first 10X dilution.

A multi-channel pipetter was used to serially dilute 20 µL across

the next four columns (to 105 dilution). For replicate observations,

a second separate dilution of the sample replicate was prepared in

the well plate. After completing the dilutions, the multi-channel

pipetter was set to 10 µL, and dilutions 102 to 105 from each

row were drip plated onto agar plates. Thus, observations were

performed on concentrations ranging from 102 times to 105 times

more dilute than the sample replicates. A PBS negative control plate

was also prepared. Samples were incubated for 17 h to 19 h at 37◦C.

Colonies were manually counted, and CFU was determined by

selecting dilution(s) with colony counts between 5 to 50. If multiple

dilutions with 5 to 50 colonies were present, the geometric mean

was used to calculate CFU.

Multisizer

Data collection
The Multisizer (Beckman Coulter Multisizer 4 with a 20µm

aperture tube) was used for all samples. First, size calibration

beads (Beckman Coulter 2.0µm Coulter CC Size Standard L2,

catalog # 6602794) were run per manufacturer’s instructions.

AccuvetteTM (Beckman Coulter) sample holders were prepared

with 9.987 g (≈10mL) ± 0.05 g of 0.1µm filtered 0.9% sodium

chloride irrigation solution (Baxter, catalog # 2F7124). Immediately

before each acquisition, the sample replicate was briefly vortexed,

500 µL cells or beads were added to a prepared Accuvette, and

gently inverted to mix. Thus, observations were performed on

concentrations ∼21X more dilute than the prepared samples. For

replicate observations, separate Accuvettes were prepared. Samples

were run with an acquisition volume of 100 µL. Between samples,

the aperture tube was flushed with saline and then immersed in an

Accuvette filled with saline for rinsing.

Data processing
The Multisizer software was used to calculate sample

concentration. The “Coincident Correction” feature was applied in

the software to account for single events deemed likely to consist

of two or more particles. The software automatically calculates the

number of objects/mL for the original, undiluted sample replicate

based on the acquired volume, dilution into saline, and selected size

range. For cell runs, objects with an equivalent diameter ranging

from 0.8µm to 2.2µm were counted. For bead runs, objects

with an equivalent diameter ranging from 0.8µm to 1.616µm

were counted.

CytoFLEX LX

Data collection
Cell sample preparation: Two fluorescent probes were utilized

to enable two types of count. Hoechst33342 is a cell-permeant

probe that primarily binds double stranded DNA; Hoechst-positive

events were classified as cells. DiBac is a cell membrane potential

probe that permeates cells with a compromised membrane and

Hoechst-positive/DiBac-negative events were counted as intact

cells. Hoechst33342 working stock (HWS) was prepared by

diluting 20 mmol/L Hoechst33342 (Thermo Fisher Scientific,

catalog # 62249) to 2 mmol/L in PBS. DiBac working stock

(DWS) was prepared by diluting 2 mmol/L DiBac4(3) (Bis-(1,3-

Dibutylbarbituric Acid)Trimethine Oxonol; Biotium, catalog #

61011) in dimethylsulfoxide (DMSO) to 0.2 mmol/L in PBS.

Compensation controls were generated by adding each probe to

a separate tube of cells for a final concentration of 8 µmol/L

Hoechst and 0.8 µmol/L DiBac. HWS and DWS were combined

in equal volumes to make probe working stock (PWS). A cell-

free probe control was generated from PBS and PWS at the

same concentrations as the compensation controls. Controls were

protected from light and incubated for at least 15min at room

temperature. After data from controls were collected, the test

samples were vortexed, 500 µL was pipetted into a microcentrifuge

tube, and PWS added for a final concentration of 8µmol/L Hoechst

and 0.8 µmol/L DiBac. For each replicate observation, a separate

sample aliquot with probes was prepared. After probes had been

added to all samples, tubes were incubated at 37◦C, 120 rpm for

30min then stored at 4◦C until immediately before acquisition.

Samples were not washed after staining to avoid loss of cells.

Cell and bead sample processing: Beads were used as prepared

after the dilutions were generated. System startup and quality

control were performed on the flow cytometer (CytoFLEX LX,

Beckman Coulter) per manufacturer’s instructions. For each

sample, 50 µL was diluted into 150 µL PBS in a flow tube

(4X dilution). Samples were run for 4min at 10 µL/min (the

lowest possible flow rate) with the acquisition conditions in

Supplementary Table 1. After each observation of a cell sample, a

PBS blank was acquired for 30 s at ∼100 µL/min to rinse. All fcs

files were exported for analysis in RStudio.

Data processing
Separate gating schemes were designed for cell and bead

samples, then applied to all relevant data files. The application

of the gating scheme is demonstrated in Supplementary Figure 2.

Final counts were reported after back-calculating the concentration

based on the acquired volume and dilution used in the flow

cytometry-specific sample preparation.

For cell and bead gating: The first minute of data was removed

due to high rates of low scatter/Hoechst-negative events, then a
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logicle transform was applied to the four channels of interest (FSC,

VSSC, NUV450, B525).

For the cell gating: A representative file for gate definition

was generated by concatenating four files evenly spaced across an

experiment’s duration, and a gate identifying cell events was defined

on NUV450 and VSSC. The Hoechst-only compensation control

was used to define a threshold gate in the B525 channel to separate

events with high and low membrane potential (assigned to dead

and viable, respectively). Data were not compensated due to the

small spillover between probes (confirmed with the single-color

controls) and because there were only two fluorescent channels

of interest.

For the bead gating: Manual gates were added on SSC and

B525 to delineate three peaks corresponding to singlet, doublet, and

triplet events.

Statistical analysis

Several metrics were computed, including proportionality

index, variability, precision, and proportionality constant, to

characterize and compare the behavior of each counting method.

Detailed methods, including the stan model, are available in the

Supplementary material. Two outlier points were removed before

analysis (Supplementary Figure 3).

Proportionality index

As outlined in ISO 20391-2:2019, an idealized counting process

should follow the proportional relationship:

E (Y) = xβpc

That is, the expected mean cell concentration, E(Y), is

proportional to the dilution factor, x, with an associated

proportionality constant, βpc. Here, Y is a random variable

representing the observed cell concentration, and E (Y) is the

expected value, or mean, of Y . This model implies that diluting

a sample by a given factor should be reflected by a proportional

decrease in the resulting measured cell concentration of that

sample. Any systematic deviation from this model implies there is

some discrepancy between the particular counting method and an

ideal counting process. As our data are evenly spaced in log-scale,

we use a similar approach, but the proportional assumption is made

on the log-scale. Equally spacing the dilution factors in log-space

allows for more stable statistical procedures vs. applying the ISO

calculations directly to the linearly scaled (raw) data, as the unequal

spacing of the dilution factors on the raw scale leads to imbalances

in how different observations are weighted for the various statistical

methods. Furthermore, instead of analyzing concentration directly,

we evaluate concentration scaled by the dilution factor, which

should be a constant for a proportional relationship. The advantage

of the concentration scaled by dilution factor is that it is easier to

visually diagnose deviations from proportionality and differences

in concentration. The proportional model can then be expressed as:

E

(

log

(

Y

x

) )

= log(βpc)

As described in the ISO 20391-2:2019 standard, we use the

Proportionality Index (PI) as a metric of deviation from the

idealized proportional model. To compute the PI, we first fit a

flexible model (for example, a higher order polynomial model) that

can adapt to non-proportional trends in the data. We then fit the

proportional model specified above and compute a measurement

of distance between the fitted flexible model and the fitted

proportional model. A smaller PI indicates that the data closely

follow a proportional relationship, while a larger PI suggests greater

deviation from the proportional model. For this analysis we use the

following PI metric based on the mean of absolute residuals for the

log-scaled concentrations:

PI
(

x, y
)

=
1

n

∑

i=1

|ŷi − f̂i|

Where ŷi is the predicted log cell concentration at a log dilution

factor of xi for the proportional model [fitted using the data, (x, y)],

f̂i is the corresponding predicted value using the flexible model,

and n is size of the given sample. This metric thus measures

the empirical deviation between the idealized proportional model

and a flexible model that is sensitive to any non-proportionality

found in the observed data. The proportional model was estimated

as follows:

log

(

Yrs

x

)

= log(βpc)+ ǫ

Above, βpc is the true proportionality constant to be estimated,

and ǫ is a mean zero Gaussian random variance with unknown

variance σ 2. Here Yrs represents the average of the replicate

observations in each replicate sample (following the same approach

as outlined in the ISO 20391-2:2019 standard).

The flexible model is similar, but with additional terms:

log

(

Yrs

x

)

= β0 + β1 log(x)+ β2 log(x)
2 + β3log (x)3 + ǫ

The additional components can adapt to non-proportionality

in the observed data. Specifically, β1, β2, and β3represent

coefficients for polynomial terms that can account for non-

proportionality. Differences between the two models’ predicted

mean responses indicate deviation from proportionality (with

larger differences implying larger deviation from proportionality).

To compute uncertainties for the PI, we apply the non-

parametric bootstrap as described in the ISO 20391-2:2019

standard. That is, we compute the PI on numerous (i.e., thousands)

of resampled datasets, where each datapoint is sampled with

replacement. The collection of resampled PI values constitutes an

approximation of the sampling distribution of the PI, which we can

use to compute confidence intervals using the appropriate quantiles

from the bootstrap distribution.

Variability and precision

For characterizing the variability (or precision) of a cell

counting method, we fit a Bayesian hierarchical model, as this

approach allows us to model the nested nature of our data and
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to measure the various sources of variability introduced at each

layer. Specifically, we account for the fact that measurements

from the same biological replicate and replicate sample are not

independent. Taking this structure into account allows us to

estimate the magnitudes of variability at each level of the hierarchy:

variability due to differences in (1) biological replicate, (2) replicate

sample, and (3) measurement error of the instrument (observation

replicates). We can also aggregate these sources of variability

to estimate the total variability of each counting method. The

hierarchical model is defined as follows:

log

(

Y

x

)

= β0 + β1 log (x) + β2log (x)2 + β3 log (x)3

+ δbiological replicate + δsample replicate + ǫ

The δ terms above are introduced as random effects to account

for the nested structure of the data. Each δ represents an offset

from the true functional relationship to account for variability

among biological replicates and between sample replicates. Each

δ is assumed to follow a mean zero Gaussian distribution with an

associated variance term for the variability due to both biological

replicate and sample replicate. Uncertainties for each contribution

to the overall variability are provided via the posterior distributions

for the variance parameters for δbiological replicate, δsample replicate, and

ǫ. The model was fit using the stan_lmer function from the

rstanarm R library (Goodrich et al., 2024).

One consequence of this model is that it assumes that

the variability of the log of the concentrations scaled by the

dilution fraction is constant. Specifically, the variance at any

concentration is:

Var

(

log

(

Y

x

))

= σ 2
biological replicate + σ 2

sample replicate + σ 2
ǫ

This assumption on variance holds if, on the raw scale, the

standard deviation of the concentrations is proportional to the

mean concentration, which is commonly observed in practice. Such

an error structure implies that variability grows at a faster rate

than with other common assumptions on variance, for example,

the assumption that variance is proportional to the mean (as is the

case with the Poisson distribution, which is a typical consideration

for counting processes). If this assumption holds, then we can

characterize the variability of the full dilution series at once, which

allows for simple comparisons of variability between counting

methods. However, if this assumption is clearly violated, then a

slightly more complex model may be needed, for example, one that

allows the variability in the log concentrations to change linearly

with the dilution fraction.

Proportionality constant

The proportionality constant (PC), βpc, represents the

magnitude of proportional change in measured concentration

for a given change in the dilution factor. This value can also be

interpreted as the estimated cell concentration when the stock

solution from the experiment has not been diluted (i.e., dilution

factor is one). The proportionality constant is estimated via fitting

the proportional model to the observed data. Specifically, for each

counting method, we use the following model:

log

(

Y

x

)

= log(βpc)+ δsample replicate + ǫ

In a similar manner as above, we estimate this model using the

rstanarm package, which interfaces to the stan library. We then

use samples obtained from the posterior distribution p(βpc|x, y)

to compute estimates and uncertainties for the proportionality

constant, βpc.

Results

Overview

We performed four separate experiments with cell samples and

one with bead samples, and quality metrics were calculated for each

dataset. We present these results as a useful case study to describe

implementation of the qualitymetrics. Additional results are shown

in Supplementary material.

Proportionality index

A proportional model was fit to the data from each biological

replicate for each method (Figure 2A), and the PIs were calculated

(Figure 2B). Evaluating the proportional model fits is useful for

understanding the resulting PIs, and Figure 2A shows fits for

the separate biological replicates (solid lines). For a perfectly

proportional system, the plot would show a horizontal line (dashed

lines), as is close to the case for Total-A and Total-C. Total-B

and Viable-B both diverge from proportionality at one end of the

dilution factors, as does one replicate of Viable-D. Lastly, Viable-C

has a repeatable, consistent deviation from proportionality. After

understanding trends in the proportional model fit, Figure 2B

can be easier to interpret. Total-A and Total-C have the lowest

PI (indicating they are more proportional), and Viable-B and

Viable-D estimates are slightly higher due to small deviations from

proportionality visible in the fits. Lastly, Viable-C and Total-B have

greater deviation from proportionality, though the high uncertainty

in the Total-B estimates makes it more difficult to interpret.

Variability

An additional advantage of ISO 20391-2:2019-like experiments

is the ability to investigate overall variability and estimate which

replicate level contributed the most variability. There were large

differences in overall variability for the methods tested, with all

methods except Total-B having lower variability than Viable-

D (CFU) (Figure 3A). While most methods showed constant

variance across the dilution series, Total-B tended to have higher

variability at the lower dilution fractions. Thus, the large amount

of variability detected in the Total-B method is likely attributable

to the lower half of the dilution series, and the variability may

be comparable to some of the other methods if only higher

dilution fractions are considered. Next, the relative sources of
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FIGURE 2

Proportional model fits and proportionality index across method and biological replicate. (A) Raw data from each biological replicate are displayed

separately for each method with the y-axis giving Concentration (in cells per mL) divided by Dilution Factor and the x-axis showing Dilution Factor.

Both axes are in log10 scale. Colors correspond to method type, the proportional model fit for each is indicated as a dashed line, and the

non-proportional fit as a solid line. (B) The PI for each biological replicate is shown for each method. Data points represent the computed PI, and

vertical bars indicate 95 % bootstrap intervals. Colors correspond to method type.

variability can be evaluated (Figure 3B). In this work, the three

levels of variability are between biological replicates (days, n= 2–3),

sample replicates (n= 18 per biological replicate), and observation

replicates (n = 30 per biological replicate). Total-B and Viable-D

had the highest estimated variability for sample and observation

replicates. Viable-C was the only method where biological replicate

variability was highest. Otherwise, sample replicate variability and

observation replicate variability estimates did not show distinct

trends. All variabilities are given as standard uncertainties for

the particular source of uncertainty. As a consequence, the total
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FIGURE 3

Total variability and sources of variability from cell experiments. (A) Total variability by method. (B) Variability attributed to each replicate level by

method. Data points represent posterior medians, and vertical bars indicate 95 % credible intervals. Biological replicates (Bio), sample replicates

(Samp), and observation replicates (Obs) are shown for each method. Colors correspond to method types.

variability in Figure 3A is not a sum of the separate variabilities in

Figure 3B (since, in general, the standard uncertainty of the sum of

uncorrelated random components is not equal to the sum of their

individual standard uncertainties).

Variability could also come from the order in which samples

were prepared and acquired, as cells could potentially die,

aggregate, or multiply during the experiment. This type of order-

dependent variability was minimized as the cells were kept cold

in nutrient-free media during data collection. To confirm no

meaningful effect was observed, the slope of the residuals was

investigated as a function of the preparation order and the

acquisition order. No method showed a consistent trend in

residuals as a function of the acquisition order or preparation order

(Supplementary Figure 4).

Proportionality constant

In addition to evaluating the quality of the measurements,

the absolute estimates of cell concentration can be compared

using PCs to evaluate measurement bias or true differences

between methods (Figure 4). While the measurands differ, all

of these methods are often used to report total cell or viable

cell counts. Overall, there was little difference in PC estimates

across biological replicates, but there were differences across

methods. Total cell number and viable cell number were not

expected to agree, because the starting stock was prepared

from a lyophilized cell formulation known to have contain

some dead cells instead of a fresh culture. The three total cell

measurements have similar estimates for PC, though the Total-

B estimates have larger uncertainties. Estimates from viable cell

methods disagree, with Viable-B giving the highest estimate

and Viable-D giving the lowest estimate. The Viable-C PC

estimate, which falls between the other two, is derived from

noticeably non-proportional measurements that agree more with

the Viable-B measurements at high cell concentrations and Viable-

D measurements at low cell concentrations (Figure 2A). Insights

from the raw data that may explain this are detailed in the

discussion section.

Discussion

In this study, a new framework to assess microbial cell counting

methods was developed and applied to demonstrate comparisons

across common counting methods as a representative use case.

The specific experimental design and data analyses are both
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FIGURE 4

Proportionality constants for biological replicates across method. Proportionality constant estimates (in cells/mL) are shown on the y-axis vs.

biological replicates are shown on the x-axis. Data points represent posterior medians and vertical bars indicate posterior 95 % credible intervals.

Colors correspond to method type.

required for the appropriate application of the framework. The

ISO 20391-2:2019 experimental design and mathematical analyses

for cell counting methods were modified to calculate measurement

quality metrics for log-scale microbial cell datasets. Example

datasets were collected to demonstrate how results and quality

metrics can be used to inform fit-for-purpose method selection.

Measurement quality metrics support measurement assurance and

give context when results from different methods disagree. Since

measurements such as total or viable cell count have no ground-

truth reference materials, quality metrics are critical for evaluating

relative method performance.

Proportionality over a large concentration range is particularly

important for microbial cell counting methods since sample cell

concentrations may span several orders of magnitude. Variation

in levels of proportionality is not always noticeable on the

linear scale and challenging to compare without supporting

statistics, such as PI. An important caveat for PI comparisons

is that the experimental design (i.e., dilution factors, sample and

observation replicate numbers) must be consistent throughout all

experiments to be compared. We used the PI to summarize relative

proportionality (Figure 2). For example, Total-A and Total-C have

lower PI estimates (better proportionality) than CFU (Viable-

D) (Figure 2B), suggesting a total particle count measurement

paired with CFU may be valuable for measurement assurance.

Additionally, PI can be used to optimize a single method by

comparing PIs from different sample processing protocols. For

example, the first two Method-B experiments were performed with

0.11X PBS rinses, and the third experiment used a disinfectant

rinse. It was expected that proportionality would be improved

(lower PI) for whichever rinse led to greater reduction in carryover

events. Although the estimated PI was lower for the third

experiment, it is difficult to reach a definitive conclusion given the

small sample size and large uncertainty in PI estimates for Total-

B. Since proportionality is a key quality indicator for microbial

cell counting methods, PI is a useful tool for intra- and inter-

method comparisons.

The quality metrics can also be used to evaluate the impact

of data analysis decisions on results from a single dataset. For

example, the Viable-C dataset (Supplementary Figure 5) could be

further analyzed to determine if different gating parameters result

in more proportional results, or the Total-B dataset could be

reanalyzed using different estimates of non-cellular “background”

events. In general, thresholding leads to zero background events

in blank samples for some methods, but other methods will still

have measurable background events. For methods with non-zero

background event counts, it is important to justify how to adjust

cell counts to reflect the background since adjustments could have

a significant impact on PI estimates, particularly if measurements

at lower cell concentrations are of comparable magnitude to the

blank. We also investigated whether our PI results would change

significantly if we considered only a sub-range of the measured

dilution factors (Supplementary Figure 6) and found only minimal

changes that did not alter conclusions. However, this sub-range

analysis could be valuable if sample concentrations were not in

the operating range of a method, such as for Method B and the

lowest cell concentration tested here. Overall, evaluating the PI is

a straight-forward way to compare cell count methods.

Measurement variability can also inform method selection.

The experimental design had three levels of replication (biological,

sample, observation) such that variability at each level could be

quantified separately, in addition to overall variability (Figure 3).

As expected, CFU had among the highest overall variability.

The analysis also breaks down the variability due to observation

vs. sample vs. biological replicate. The goal is to use sample

replicates to estimate variability due to sample preparation

and observation replicates to estimate variability due to the

measurement instrument or procedure. For methods where sample

replicate variability is higher, more samples could be generated and

measured fewer times. Formethods where the observation replicate

variability is higher, the opposite could be done. Evaluating the

estimated variability at each replicate level therefore can help

determine where to focus improvement efforts.
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Another metric, the PC value, is used to estimate the starting

stock cell concentration while incorporating the full dilution

series via the proportional model fit (Figure 4). The PC values

can be critical for method selection and are informational

when comparing methods, because values could diverge due

to measurement biases and/or differences in measurands. Some

differences in PC were expected: for example, PC for total cell

counts should generally be higher than PC for viable cell counts.

Additionally, the three viability methods have different measurands

and therefore do not assay the same cell properties. There is

widespread acknowledgment that viability is more complex than

a cell’s ability to multiply, and cell health is better understood as

a continuum that includes metabolic activity, membrane integrity,

and membrane potential (Díaz et al., 2010; Nebe-von-Caron et al.,

2000). Our study emphasizes two points to consider. First, the

relationship between cell health metrics may depend on sample

preparation, as was seen in another method comparison study

(Jordal et al., 2023). The work herein used lyophilized cells, so

a portion of the cells may still have some level of membrane

potential and integrity but may not be capable of growing. If a

fresh culture were used, the PC values across viability methods

may be in better agreement. Second, total count measurements can

add crucial context to viability measurements and identify issues

that might otherwise go unnoticed. For example, the Viable-C data

has relatively poor proportionality that could be due to the cell

sample or the counting method. We concluded it was not due to

the cell sample since Viable-B measured the membrane integrity

of the same samples and gave more proportional results. The

non-proportional Viable-C data is also not due to the instrument

since the Total-C data demonstrate that the instrument can count

total cells proportionally at the given dilution factors. Therefore,

we concluded that the viable cell counting protocol itself is

non-proportional, likely due to the ratio of cells to available

fluorescent probe, which is an important consideration when

making viability measurements.

After all the analyses have been completed, results can be used

to drive fit-for-purpose method selection. This selection process

could place greater weight on certain analyses depending on the

needs of a particular use case. For example, one possible use case

is selecting a newer method to replace or support CFU, which is

the gold standard for cell count but has numerous disadvantages

(Jasson et al., 2010). Using the example datasets in this work,

we considered whether any of the total count or viable count

methods performed better than CFU (Viable-D) across all analyses.

As previously stated, these conclusions are only applicable to our

measurement processes and would need to be validated for other

measurements or microbes. CFU was less proportional than most

other methods, with Total-A, Total-C, and Viable-B methods all

resulting inmore desirable (lower) PI estimates. CFUwas alsomore

variable than all the methods tested here apart from Total-B. These

results suggest mean that Total-A, Total-C, and Viable-B might be

useful in replacing CFUmeasurements if they were fit-for-purpose.

However, the PC values of all these methods are significantly higher

than CFU, likely due to the measurands (particularly for total cell

count) or measurement biases. Another option is Viable-C as that

method had a PC estimate more similar to CFU, but Viable-C had

a higher PI estimate which may make it a less suitable replacement.

Therefore, from these specific datasets, no one method could be

concluded as a perfect replacement for CFU and there would

be trade-offs if a replacement needed to be selected. Other users

should perform similar evaluations for their own measurement

processes and measurement needs to decide which methods are

fit-for-purpose. We suggest several key considerations to others

wishing to apply the framework demonstrated here:

1. If possible, test the same operational range across all methods to

facilitate comparisons

2. Select controls carefully if background subtraction is needed to

avoid influencing PI estimates

3. Replicates on multiple days may not be critical to estimate

relative method performance for some use cases

4. Log-scale lends itself to testing a wide concentration range and

analyzing sub-regions as appropriate

Beyond analyses and measurands, there are other method-

related considerations that may be important when determining

whether a method is fit-for-purpose. Methods have a range

of operator expertise requirements, associated instrumentation

costs, necessary reagents, maintenance requirements, and time-

to-result. For example, CFU was the least costly method to

perform, but the required incubation time (overnight) increased

the time-to-result as compared to other methods. The other

methods report results immediately after measurement, and

many fluorescent flow cytometers can operate automatically

for higher throughput. Additionally, the instruments have a

range of purchase costs, operator training requirements, and

space requirements to consider. A fluorescent flow cytometer

paired with probe selection has the greatest number of potential

characterizations but requires substantially more investment into

method development. The fluorescent flow cytometry dataset

indicates further work investigating concentration-dependent

probe partitioning into the cells or induced cell death may be

needed (Supplementary Figure 6). All these considerations could

also impact final method selection.

We emphasize again that our results apply to the entire

measurement process, which includes the starting microbial cell

material, experimental operators, experimental processing steps,

instrumentation, instrument acquisition settings, and data analysis.

Therefore, none of our specific conclusions are extensible to

other laboratories, instrumentation, protocols, samples, or datasets.

For our locked-down protocols and samples, trends were similar

across biological replicates, suggesting that inclusion of multiple

biological replicates in the study design may not be critical to

obtain reasonable estimates of relative quality metrics in this

case. Previous work counting mammalian cells using a similar

approach also showed that biological replicates may not be critical

in all cases to draw high-level conclusions (Pierce et al., 2023).

However, results cannot be extended to any modified measurement

process such as new microbes, different protocols, or even different

operators; new studies would be required. A single experiment

using beads was performed with two methods to see whether

the observed trends would hold for a sample without biological

variability. We found similar results between Bead-A and Bead-

C (Supplementary Figure 7) which was also true for Total-A and

Total-C. It is possible that some sets of microbes behave similarly
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enough to be modeled by a study of one microbe. For example,

the results shown here might be extensible to other single cell

suspensions of microbes with a similar shape, but substantially

more work would be needed to evaluate this hypothesis. In other

cases, new datasets may be needed to estimate the proportionality

of count methods applied to other microbes. As we continue

to characterize more cell counting protocols, we expect to learn

more about which variables have the greatest impact on the

quality metrics.

There were also limitations in the studies we executed. Sample

concentrations ranged from ∼5 x 105 cells/mL to 2 x 107

cells/mL; however, each operator performed additional method-

specific dilutions such that the concentration range at time of

measurement differed acrossmethods. These differences were large,

ranging from a 4X dilution to a 100X dilution, which resulted

in some methods operating closer to an instrument’s limit of

detection. Additionally, all the methods required thresholding

during data analysis to classify which events are cells, intact cells,

or countable colonies. Manual thresholding will introduce operator

bias so automated thresholding methods can be a valuable tool for

increasing analysis repeatability and transferability (Finak et al.,

2016). Also, due to the large number of samples and wide range of

unknown concentrations to be assayed, a drip-plate CFU method

was selected, but other methods such as spread-plate CFU might

have lower variability and PI. These factors are expected to have

influenced our results and more studies could evaluate the impact

of these limitations on the observed quality metrics.

There are many avenues to expand upon the current work such

as making the experimental design and analysis easily accessible to

the end user and using the demonstrated framework to improve

microbial cell counting for a wide range of applications. The

“COMET” RShiny application was created (Pierce et al., 2023)

to help researchers implement the linear-scale analyses detailed

in ISO 20391-2:2019, and a similar application could be created

for the log-scale modified calculations. Future work applying

the framework to improve microbial cell counting could include

studies with modified protocols such that all methods measure

the same range of cell concentrations to allow a more “fair”

comparison of methods. The work could also be extended to

other microbes of interest to determine how measurement quality

metrics will vary depending on the microbe morphology or

phenotype. Additionally, studies could evaluate the impact of

method-specific protocol changes and use the metrics to drive

protocol optimization, including data analysis optimization. Of

particular interest would be enumerating multiple strains or species

in a mixture. Commercial microbial products often are a mixture

of microbes, and understanding how measurement quality varies

across high abundance and low abundance species could help

determine whether counting methods are fit-for-purpose for these

mixtures. These additional studies could help inform cell count best

practices for a range of samples and applications. Understanding

how different methods perform across samples will be crucial to

selecting and optimizing appropriate methods that enable accurate

quantification of challenging combinations of microbial cells and

matrix materials in complete microbiomes. Until ground-truth

microbiome referencematerials can be developed, the experimental

designs and analyses described here will be a valuable tool to

increase measurement assurance in microbial enumeration studies.

Conclusion

Cell count measurements are increasingly important for many

microbial industry and research applications, but CFU is by far

the most common certified value found on commercial microbial

reference materials. There are several reference values (CFU,

membrane-intact cell number, total cell number) that would need

to be certified to support all the cell counting methods tested

herein. Absent such reference materials, measurement quality

metrics can help support fit-for-purpose method selection. Here

we introduced modifications to ISO 20391-2:2019 appropriate

for microbial cell counting across log-scale concentration ranges.

We demonstrated the modified experimental design and data

analyses by measuring E. coli with three total and three viable

microbial cell count methods, and discussed how measurement

quality metrics can shed light on method performance. Our

results showed large differences among methods in terms of the

estimated proportionality index, variability, and proportionality

constant, all of which should be considered when determining

whether a method is fit for a particular purpose. Total particle

measurements from different methods resulted in approximately

the same estimated concentration, but with method-specific PI

estimates and variability. The total count methods tested here relied

on three different measurands, so it is notable that the PC values are

relatively close. Similarities between orthogonal methods such as

these are encouraging when working toward a ground-truth value.

Viable count estimates were more divergent between methods due

to differences in measurands and likely measurement bias as well,

emphasizing the importance of multi-method characterizations.

Other microbial researchers can apply the experimental design and

data analyses to evaluate their samples, methods, and protocols

to select fit-for-purpose measurement processes and increase

measurement assurance for microbial cell counting in a wide range

of applications.
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