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Salmonellosis is one of the main foodborne diseases in Eastern and Southern

Africa, however its di�erent forms are not fully understood. Based on studies

conducted over 20 years, the review discusses how invA, the spv operon,

the cdtB-pltAB typhoid toxin cassette, the adhesion factor bapA, and loci

related to stress responses (pagC, mgtB) a�ect pathogenic strains isolated

from livestock, wildlife, produce, and humans from various countries. Findings

reveal pronounced ecological and geographic variation, S. Typhimurium and

S. Enteritidis in Ethiopia’s dairy chain and Tanzanian backyard poultry carry spv at

rates exceeding 80%, while whole-genome studies from South Africa document

the continent’s most extensive accessory-gene repertoires and identify fully

virulent strains in reptiles and market vegetables. Human outbreaks mirror this

diversity, Nairobi pediatric isolates harbor universal hilA/sopB and Stn; Ugandan

epidemics rely on chromosomal factors despite minimal spvB; Rwandan Moero

serovars uniquely possess the cytolethal-distending-toxin cassette. Altogether,

the data suggests a significant need for syncing genomic disease surveillance

with the One-Health approach, this will allow for early detection of hybrid and

migrating bacteria, shielding children, serious disease su�erers, and those serving

the food sector against more spread of dangerous pathogens.
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1 Introduction

Health authorities worldwide continue to consider Salmonella as a major public health

threat that causes 93.8 million foodborne infections with around 150,000 deaths annually

each year. Such infections stand as major contributors to global expenses from foodborne

diseases (EFSA., 2019; ECDC EFSA., 2022). Foodborne diseases persist considerably

across Africa because of weak food safety structures that face regulatory limitations and

outdated facilities. Grasping the factors that cause Salmonella throughout the food supply

chain enables the creation of successful prevention measures (WHO, 2015). Salmonella

contamination throughout Africa creates substantial healthcare risks for the population

which result in recorded outbreaks that lead to hospital admissions and death alongside

economic expenses (Ibrahim et al., 2018; Elafify et al., 2022). The lack of available resources

and inadequate law enforcement continues to make complete control measures difficult

which demonstrating the importance of establishing joint regional monitoring and support

operations (Habib and Mohamed, 2022; Teklemariam et al., 2023).
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Salmonella enterica is the main pathogenic member of the

Enterobacteriaceae family and is one of the global leaders in causing

bacterial gastroenteritis. Salmonellosis remains a serious public

health concern across different European nations (Al-Gallas et al.,

2022). The cellular invasion and survival of Salmonella bacteria

inside macrophages represent an essential pathogenic process since

it allows the bacteria to escape host immunity while remaining

inside the host (Pinedo et al., 2022). The intracellular lifestyle of

these bacteria creates diagnostic and therapeutic challenges because

traditional treatment methods often fail to eliminate bacteria from

intracellular reservoirs. Targeted intervention strategies aimed at

intracellular survival mechanisms are essential to achieve effective

outcomes for clinical capabilities and public health management

of salmonellosis.

Bacterial virulence-related genes present in Salmonella

efficiently initiate and accelerate the development of foodborne

illnesses. The genetic elements give the pathogen the ability to

adhere to host cells while breach tissues while escaping immune

detection leading to increased infection potential (Vilela et al.,

2020). The investigation of these genes represents a necessary step

for the development of specific interventions to control Salmonella

outbreaks and their prevention efforts. The need to grasp the

molecular sequences that regulate bacterial aggression together

with environmental stress paths is highlighted by such investigative

work (Mohamed et al., 2022).

Experimental animal studies confirm Salmonella strains with

specific virulence genes responsible for cellular attachment

including intra-cellular survival present more hazardous infections,

resulting in higher mortality than virulence-deficient strains

(Khalefa et al., 2021; Hull et al., 2022; Mohamed et al.,

2024). Salmonella Pathogenicity Islands (SPIs) genomic clusters

increase experimental infection risks and lead to severe disease

manifestations (Kombade and Kaur, 2021). Scientific studies of

clinical microbial isolates have proven the existence of correlations

between particular virulence marker occurrences and human cases

of salmonellosis severity (Wang et al., 2020; Borah et al., 2022).

The occurrence of the stn gene which produces enterotoxin is

associated with higher hospitalization rates andmore severe clinical

expressions in patients (Nikiema et al., 2021).

Advances in whole-genome sequencing (WGS), a method

that determines the complete DNA sequence of an organism’s

genome at a single time, have facilitated detailed analysis of the

genetic features that underpin Salmonella virulence. By examining

the complete genomes of various isolates, scientists have been

able to map the distribution and frequency of virulence genes

across different strains, shedding light on their role in disease

severity and immune evasion (Mohamed et al., 2025). The genomic

findings validate previous research demonstrating that particular

genetic patterns relate to infections that spread deeply into the

body and resist treatment (Nikiema et al., 2021). Additionally,

functional genomics approaches including gene knockouts and

expression analysis in both in vitro and ex vivomodels have proven

instrumental in clarifying the specific contributions of individual

virulence genes to pathogenesis. These experimental frameworks

not only validate the importance of these genes in promoting

Salmonella infection but also help assess their role in determining

clinical outcomes (Lozano-Villegas et al., 2023).

Some genetic virulence components missing in Salmonella

isolates from food sources diminish their ability to produce clinical

salmonellosis (Wang et al., 2020). The virulence genes produce

proteins that help bacteria establish residence and invade host cells.

These microbe strains become less pathogenic because of their

absence or reduced expression levels of essential virulence genes

(Vilela et al., 2020). Ingestion of bacteria with lower virulence

often results in mild or no apparent symptoms in human bodies.

Organisms that lack necessary virulence factors demonstrate a

reduced ability to spread in human digestive tracts which decreases

the chance of infections after contact with contaminated material

(Wang et al., 2020). The health risk potential of foodborne

Salmonella strains originates from the virulence genes that they

contain or lack. Detecting genetic markers serves vital functions

for both danger evaluation in public health and intervention

development for foodborne infection control (Habib et al., 2023b;

Oueslati et al., 2023).

The pathogenic capabilities of Salmonella species result from

virulence genes that exist as Salmonella Pathogenicity Islands

(SPIs) throughout the bacterial chromosome (Dougnon et al.,

2017). The five classified SPIs provide essential knowledge to

scientists and SPI-1 along with SPI-2 stand out because they

encode the Type III secretion systems (T3SSs) (Cerny and Holden,

2019; Lerminiaux et al., 2020). The interaction between SPI-1

and SPI-2 demonstrates different functions because SPI-1 enables

cell invasion and triggers inflammation whereas SPI-2 drives

phagocytic cell survival across the body (Wemyss and Pearson,

2019). The genetic construct invA within SPI-1 exists across all

Salmonella strains because it serves as the critical factor for

host cell penetration. The spiC gene encoded by SPI-2 produces

essential secretion system components required for virulence while

operating independently from flagellar structures (Hasan, 2021;

Wang et al., 2021). Both SPI-3 and SPI-4 exist throughout all

Salmonella lineages however, the patterns of occurrence for SPI-4

and SPI-5 remain uncertain (Wang et al., 2020). SPI-4 contributes

to early interactions with intestinal epithelial cells and supports

long-term colonization, including the orfL gene linked to survival

within macrophages (Albanwawy and Abdul-Lateef, 2021). SPI-5

is involved in multiple stages of the infection process, with pipD

playing a notable role (Wang et al., 2020). Additionally, Salmonella

harbors extra-chromosomal virulence determinants such as the

Salmonella virulence plasmid (spvRABCD), which enhances

systemic dissemination and enables replication at extraintestinal

sites (Dougnon et al., 2017; Hsu et al., 2019). Polyamines, which

are present in elevated concentrations in various fermented,

aged, and plant-derived foods, serve critical functions in cellular

homeostasis and microbial viability. In the context of foodborne

pathogens such as Salmonella, elevated dietary polyamine levels

may enhance bacterial resilience within the gastrointestinal tract,

potentially contributing to heightened virulence and persistence

during infection. This association suggests that polyamines may

play a significant role in modulating pathogen-host interactions.

Therefore, elucidating the link between polyamine concentrations

in food and microbial pathogenicity is essential for informing

targeted strategies aimed at mitigating foodborne illnesses and

safeguarding public health (Mohamed et al., 2019a; Krysenko and

Wohlleben, 2022).
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2 Overview of virulence determinants
in Eastern and Southern Africa

2.1 Materials and methods

This study utilized a narrative review approach to synthesize

findings related to Salmonella virulence genes in East and Southern

Africa. A comprehensive literature search was conducted using

electronic databases such as PubMed (https://pubmed.ncbi.nlm.

nih.gov/) and Google Scholar (https://scholar.google.com/) to

identify relevant studies published over the last two decades (Paré

et al., 2015). Only peer-reviewed materials maintained scientific

rigor for the review process so non-peer-reviewed pieces such as

opinion writing letters to the editor or anecdotal documentation

were excluded. The search was refined using specific keywords

per country “Salmonella virulence genes Ethiopia.” Studies were

included if they reported on the virulence gene profiles of

Salmonella isolates from food, environmental, or human sources

within African countries. Articles that lacked relevant data or failed

tomeet inclusion criteria were excluded from the review (Paré et al.,

2015).

2.2 Virulence factors in Eastern and
Southern Africa

In Eastern and Southern Africa, salmonellosis causes real

concerns for public health, especially when hot weather blackouts,

and shortages of water, favor bacterial persistence and foodborne

transmission (Mohamed et al., 2019b; Mohamed, 2024). Because

they come into contact with animals, raw meat, and dirty

food, veterinarians, livestock and poultry farmers, employees

at slaughterhouses, traders of live chickens, market butchers,

and house-food handlers are more likely to contract diseases

(Mohamed and Habib, 2023). These observations set the stage

for understanding how various virulence genes in Salmonella

contribute to its transmission and impact in this region. Even

though the threat is real, there are very few country-specific studies

on Salmonella infections in humans in lands as far apart as Burundi

and South Africa over the last 20 years, so research is needed for

each region to guide prevention steps.

Building on this context, Table 1 compiles the virulence factors

found in Salmonella enterica taken from foods, livestock, wildlife,

and humans in Eastern and Southern Africa. The invA invasion

gene, found only in those bacteria that can enter cells, was found

in 80–100% of the strains in Ethiopia, Kenya, Tanzania, Botswana,

and South Africa (Munuo et al., 2022; Beyene et al., 2024; Bywater

et al., 2024; Webale, 2024). In addition, the spv operon located on

plasmids (spvABCRD) supports the bacteria’s systemic movement.

Over 83% of the S. Typhimurium and S. Enteritidis were studied

in Ethiopian dairy (Beyene et al., 2024) and over 81% of the S.

Enteritidis from Tanzanian backyard poultry had the gene, but the

same was negative for other serovars like S. Ball or S. Blockley

(Rukambile et al., 2021). The spv was found in 14% of animals but

62% of human clinical samples in routine conditions and remained

at 100% during the outbreak.

While invA and spv are central to virulence, regional genome

sequencing efforts have uncovered broader profiles.Whole-genome

studies from South Africa have discovered the greatest number

of additional genes in the region (Mlangeni et al., 2024; Ramatla

et al., 2024). Many industrial broilers contained the adhesion

gene bapA, enterotoxin sopB, typhoid-toxin cassette genes cdtB-

pltAB, gut stress-resistance genes pagC, and stress-response gene

mgtB, whereas backyard flocks had these features at lesser and

more variable levels (Ramatla et al., 2020; Mlangeni et al., 2024).

Researchers found that Limpopo reptiles carried a lot of the type-III

secretion regulator prgH (Mlangeni et al., 2024), while Botswana’s

market vegetables hosted only virulent lead-containing invA, both

supporting the significance of including fresh products in One-

Health tracking (Bywater et al., 2024).

Studies have found that Salmonella strains causing cases or

outbreaks in humans share many genes that allow them to

attack, spread within the body, and release toxic compounds. The

gene core invasion invA was found in all of Nairobi’s pediatric

diarrhea isolates by Webale, (2024) and in South Africa 88%

by Bisi-Johnson et al. (2011), however a decade earlier in rural

Kenya, it was unexpectedly absent from S. Typhi (Onyango et al.,

2010). Salmonella regulator hilA and effector sopB were also

detected in 100% of bacteria in Webale’s Kenyan cohort, hinting

at strong SPI-1 invasion of current non-typhoidal strains (Webale,

2024). Plasmid-supported spv genes that promote intracellular

growth and infection in the blood were rare or not detected in

Nairobi, but were prevalent in Zimbabwe (Nhidza et al., 2012;

Farai, 2014), some regions of western Kenya (Onyango et al.,

2010), and hospital samples from Tanzania (Rukambile et al.,

2021). In line with this, epidemic strains in Uganda lack the

spvB, indicating that they survive through a combination of

chromosomal genetic factors (over 80% for all of them) (Kagirita

et al., 2017).

Further, a similar variation was found in the ctdt for the

cytolethal distending toxin, which appeared exclusively in Rwanda’s

Moero (Byukusenge, 2019), while Stn was found in every Nairobi

sample (Webale, 2024). Lastly, the flagellar gene fliC was present

in only 13% of South African samples (Bisi-Johnson et al.,

2011), which agrees with the expectation that bacteria living

in the airways can avoid immune responses by losing their

flagella. These findings reinforce the notion that the distribution

and function of virulence genes vary significantly across the

region and must be interpreted within local ecological and host

contexts. Hence, the combination of these trends reveals that

virulence is affected by the host population, and local conditions,

and monitoring of the Salmonella genome is important to

predict changes to plasmid-mediated virulence and to guide local

control efforts.

Surveillance, however, remains fragmented and heavily reliant

on single-gene PCR panels that may overlook emerging hybrid

pathotypes or misclassify partial plasmid variants (e.g., spvD-only

isolates from Malawi) (Kumwenda et al., 2024). It is important

to use WGS routinely since it can provide in-depth information

on virulence, track how plasmids spread, and detect any serovars

linked to typhoid toxins in non-typhoid bacteria (Mohamed et al.,

2024). A unified WGS strategy would also resolve concerns about

exchanging regional products, including South African eggs in

Frontiers inMicrobiology 03 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1631550
https://pubmed.ncbi.nlm.nih.gov/
https://pubmed.ncbi.nlm.nih.gov/
https://scholar.google.com/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Mohamed and Habib 10.3389/fmicb.2025.1631550

TABLE 1 Prevalence of virulence genes in Salmonella serotypes isolated from food and human sources in East and Southern Africa.

Regional
distribution

Source of
samples
(food or
human)

Temporal
trends

Salmonella

serotypes
(total number)

Virulence
genes (%)∗

Methods for
detecting
virulence
genes

References

East Africa

Ethiopia

Northwest part of

Ethiopia

Sources from dairy

supply chain and

associated regions

June 2022 to August

2023

Uganda (n= 11) invA (100), spvC (0) PCR technique Beyene et al., 2024

S. enterica subsp.

Diarizonae (n= 7)

invA (100), spvC (0)

Typhimurium (n= 6) invA (100), spvC

(83.3)

Bredeney (n= 2) invA (100), spvC (0)

Enteritidis (n= 1) invA (100), spvC

(100)

Urbana (n= 1) invA (100), spvC (0)

Southern Ethiopia Raw milk samples Salmonella isolates

(n= 40)

invA (80) PCR technique Gebeyehu et al.,

2022

Kenya

Nairobi city Diarrheic children

under 5 years

2024 Salmonella isolates

(n= 9)

invA (100), hila

(100), sopB (100),

Stn (100)

PCR technique Webale, 2024

Rural Western

Kenya

Clinical Salmonella

enterica

February 2004 to

June 2005

Salmonella typhi isolates

(n= 3)

invA (0), spvA

(33.3), spvB (33.3),

spvC (33.3), spvD

(33.3), spvR (33.3)

PCR technique Onyango et al.,

2010

Rwanda

Northern Province

of Rwanda

Animal 2019 Typhimurium (n= 1) spvA (100), spvB

(100), spvC (100),

spvD (100), spvR

(100)

Whole-genome

sequencing (WGS)

Byukusenge, 2019

Humans Moero (n= 3) cdtB (100), pltA

(100), pltB (100)

Tanzania

Morogoro,

Tanzania

Chicken October 2019 and

May 2021

Salmonella isolates

(n= 11)

invA (100), iroB

(100)

PCR technique Munuo et al., 2022

Rural Central

Tanzania

Chicken 2021 Typhimurium (n= 1) spvB (100), spvC

(100), spvR (100)

Whole-genome

sequencing (WGS)

Rukambile et al.,

2021

Enteritidis/Gallinurum

(n= 1)

spvB (100), spvC

(100), spvR (0)

Ball (n= 4) spvB (0), spvC (0),

spvR (0)

Haardt/Blockley (n= 1) spvB (0), spvC (0),

spvR (0)

Braenderup (n= 1) spvB (0), spvC (0),

spvR (0)

Kibong’oto

Infectious Diseases

Hospital

Clinical Salmonella

enterica

June 2019 Typhimurium (n= 8) invA (50), spvC

(37.5)

PCR technique Mkangara et al.,

2020

Uganda

Mulago National

Referral Hospital,

Tororo Hospital,

and Kasese District

Clinical Salmonella

enterica

Between 2007 and

2009

Salmonella isolates

(n= 25)

spvB (80), spiA (88),

pagC (92), msgA

(92), sipB (84), spaN

(92)

PCR technique Kagirita et al., 2017

(Continued)
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TABLE 1 (Continued)

Regional
distribution

Source of
samples
(food or
human)

Temporal
trends

Salmonella

serotypes
(total number)

Virulence
genes (%)∗

Methods for
detecting
virulence
genes

References

Human epidemic Salmonella isolates

(n= 23)

spvB (4.3), spiA

(82.6), pagC (82.6),

msgA (95.6), sipB

(87), spaN (95.6)

Cattle Salmonella isolates

(n= 7)

spvB (14.3), spiA

(85.7), pagC (85.7),

msgA (85.7), sipB

(85.7), spaN (85.7)

Pigs Salmonella isolates

(n= 2)

spvB (0), spiA (50),

pagC (50), msgA

(100), sipB (100),

spaN (100)

Poultry Salmonella isolates

(n= 12)

spvB (0), spiA

(66.7), pagC (66.7),

msgA (75), sipB

(83.3), spaN (83.3)

Southern Africa

Botswana

Northern Botswana

in Chobe District

Vegetables obtained

from retail markets

2022 Salmonella isolates

(n= 7)

invA (100) PCR technique Bywater et al., 2024

Malawi

Blantyre, Malawi Queen Elizabeth

Hospital

2024 Typhimurium (n= 1) spvA (0), spvB (0),

spvC (0), spvD

(100), macB (100)

Whole-genome

sequencing (WGS)

Kumwenda et al.,

2024

South Africa

Mahikeng city of

North West

Province, South

Africa

Healthy broiler

chickens from

chicken abattoirs

2024 Typhimurium and S.

Enteritidis (n= 22)

hilA (100), ssrB

(100), pagC (100),

1), bapA (36.4),

sopB (31.8), marT

(22.7), vexA (18.2),

nlpI (18.2), oafA

(13.6), cdtB (27.3),

spvB (18.2),

pagN (0)

PCR technique Ramatla et al., 2024

Gauteng Province,

South Africa

Chickens sold at the

informal chicken

market

2023 Salmonella isolates

(n= 157)

invA (100), spiC

(91.7), shdA (87.8),

mgtB (83.4), sopE

(77.7) pefC (0.6),

sefC (2.5)

PCR technique Mokgophi et al.,

2024

Limpopo Province,

South Africa

Wild Reptiles 2023 Salmonella isolates

(n= 30)

pagN (100), hilA

(96.7), ssrB (96.7),

prgH (86.7), marT

(86.7)

PCR technique Mlangeni et al.,

2024

Mafikeng, South

Africa

Poultry farms 2019 Salmonella isolates

(n= 46)

invA (100), spy (39),

hilA (9), misL (30),

sdfI (13), orfL (11),

spiC (9)

PCR technique Ramatla et al., 2020

South Coast in

South Africa

Animals 2018 Salmonella isolates

(n= 106)

invA (100), iroB

(30.2), pipD (62.3),

spiC (18.9), int1

(34.9)

PCR technique Mthembu et al.,

2019

Eastern Cape, South

Africa

Patients with

diarrhea, Nelson

Mandela Academic

Hospital Complex

(NAMHC)

2011 Salmonella isolates

(n= 119)

invA (88.2),

fliC (12.6)

PCR technique Bisi-Johnson et al.,

2011

(Continued)

Frontiers inMicrobiology 05 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1631550
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Mohamed and Habib 10.3389/fmicb.2025.1631550

TABLE 1 (Continued)

Regional
distribution

Source of
samples
(food or
human)

Temporal
trends

Salmonella

serotypes (total
number)

Virulence
genes (%)∗

Methods for
detecting
virulence
genes

References

Zimbabwe

Zimbabwe Human 2014 Salmonella isolates

(n= 13)

Spv (61.5) PCR technique Farai, 2014

Animal Salmonella isolates

(n= 36)

Spv (13.9)

Selected locations

of Zimbabwe

Human (outbreak) 2012 Salmonella isolates

(n= 8)

Spv (100) PCR technique Nhidza et al., 2012

Animals Salmonella isolates

(n= 32)

Spv (37.5)

∗The percentage (%) of Salmonella serotypes is calculated from the positive samples (isolated target bacteria).

Uganda’s markets and Tanzanian beef entering Malawi, direct

intervention programs for poultry in Malawi, improvements to

salad greens cold storage in Botswana, and supervising plasmids for

both Malawi and Zimbabwe (Habib et al., 2023a).

Overall, it is clear that invA functions as a unique identifier

for African Salmonella. Still, the presence of plasmids and

pathogenicity islands heavily affects the sickness profile and is

linked to the host, habitat, and how much is produced in African

countries. As seen with Campylobacter in the Gulf region, young

children, people whose immune systems do not work properly,

and groups of workers are especially at risk from Salmonella. This

highlights the need for integrated, cross-sectoral surveillance that

links human, animal, food, and environmental data using advanced

genomic tools. Integrating surveillance for humans, animals, food,

and environments with the help of WGS and well-equipped

and skilled laboratories is required to handle the growing issues

related to invasive and foodborne salmonellosis in Eastern and

Southern Africa.

3 Conclusions

This review noted that Salmonella enterica’s infection

mechanisms in Eastern and Southern Africa are driven primarily

by the common invA gene, as well as by different secondary

factors such as the plasmid-borne spv operon, typhoid toxin

genes, adhesion proteins such as bapA, and stress-related loci

such as pagC and mgtB, among others. High carriage rates of

spv in Ethiopia’s dairy chain, Tanzanian backyard poultry, and

Zimbabwean outbreak strains underscore its pivotal role in

systemic disease. Whole-genome data from South Africa reveal

even broader repertoires that vary with production intensity

and ecological niche. Fresh-produced isolates in Botswana and

reptile reservoirs in Limpopo further illustrate how fully virulent

strains move beyond traditional livestock pathways. Nonetheless,

surveillance is not complete since using single-gene PCR panels

fails to detect hybrids and certain plasmid fragments. This finding

suggests these isolates have other, yet unidentified, ways to cause

disease. By applying these results, researchers should regularly keep

watch over the genetic makeup, monitor the sharing of plasmid

resistance, and prepare different strategies to address it. For this

reason, knowledge of the source is vital for planning steps like

improving the cold chain and reptile management.
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