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The human microbiome, once regarded as a passive passenger, is now recognized
as a dynamic and essential determinant of human physiology, shaping immunity,
metabolism, neurodevelopment, and therapeutic responsiveness across the lifespan.
Advances in multi-omic technologies, experimental models, and computational
approaches have revealed mechanistic insights into how microbial communities
modulate host systems across diverse body sites, including the gut, skin, lungs,
oral cavity, and reproductive tract. The clinical translation of this knowledge has
begun to redefine early-life programming, cardiometabolic regulation, immune
homeostasis, heuropsychiatric resilience, and cancer therapy response. Innovative
strategies such as phage therapy, live biotherapeutics, precision nutrition, and
microbiota transplantation illustrate the therapeutic potential of harnessing microbial
functions to prevent or treat disease. In parallel, large-scale initiatives cataloging the
microbiome of underexplored niches, such as the vagina and skin, are advancing
health equity by broadening representation in microbial reference datasets. Yet
significant challenges persist, including interindividual variability, incomplete
functional annotation of microbial “dark matter,” and the absence of validated
biomarkers. Addressing these gaps requires standardized methodologies, harmonized
regulatory frameworks, and longitudinal studies across diverse populations. This
review outlines the progress and remaining hurdles in translating microbiome
science into clinical practice and concludes that the microbiome now stands
at the forefront of a paradigm shift, transforming concepts of disease etiology,
therapeutic design, and the future of individualized medicine.
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Introduction

The human microbiome, a complex and dynamic ecosystem of microorganisms, plays a
fundamental role in regulating immunity, metabolism, and neuroendocrine signaling
throughout life (Jyoti and Dey, 2025; Zheng et al., 2020; Farzi et al., 2018). Once considered
passive bystanders, microbial communities are now recognized as active participants in
maintaining health and contributing to disease pathogenesis via intricate crosstalk with host
pathways across multiple organ systems (O’Riordan et al., 2025; Macpherson et al., 2023;
Gilbert et al., 2025). Recent comprehensive reviews have underscored that the gut microbiota
functions as both a guardian of host homeostasis and a driver of diverse pathologies, with
implications spanning gastrointestinal, metabolic, immune, and neurological diseases (Chen
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F et al, 2023; Li H. et al,, 2022; Afzaal et al., 2022). Importantly,
interindividual variability in microbiome composition, driven by diet,
geography, host genetics, antibiotic exposure, and age, remains a key
barrier to reproducibility and complicates the development of
universally applicable diagnostic and therapeutic tools.

Advancements in high-throughput sequencing, multi-omics
integration, and experimental modeling have revealed mechanistic
insights into how the microbiome modulates host resilience or
vulnerability to disease (Xu et al., 2024; Maifeld et al., 2021). These
studies highlight the microbiome’s duality in health and disease, where
shifts in taxonomic composition, functional gene profiles, and
metabolite production can influence both protective and pathogenic
outcomes (Afzaal et al, 2022). These discoveries are driving
translational efforts across clinical disciplines, spurring development
of targeted interventions such as probiotics, prebiotics, bacteriophage
therapy, and microbiota transplantation (Federici et al., 2022; Huang
etal,, 2024). Yet, the therapeutic potential of the microbiome remains
constrained by high interindividual variability and the absence of
standardized microbial biomarkers (Gilbert et al., 2025).

Immune signaling emerges as a central conduit for microbiota-host
interactions, with microbial metabolites and structural components
influencing immune homeostasis across both mucosal and systemic
compartments (Macpherson et al., 2023). Dysbiosis-related immune
perturbations have been implicated in conditions ranging from
inflammatory bowel disease (IBD) and diabetes to neuropsychiatric
and cardiovascular disorders (Federici et al., 2022; O'Riordan et al.,
2025; Maifeld et al., 2021). Particularly, pharmacological perspectives
have emphasized the therapeutic relevance of microbiome modulation,
proposing probiotics, engineered strains, and metabolite-based
therapies as intervention-ready tools to restore immune balance and
metabolic function (Chen F et al., 2023; Li H. et al., 2022).

Recent advances have highlighted novel translational strategies, such
as phage consortia targeting Klebsiella pneumoniae or intermittent fasting
protocols, that reprogram the microbiome and attenuate inflammation
in clinical contexts like IBD and metabolic syndrome (Federici et al.,
2022; Maifeld et al., 2021). Concurrently, large-scale initiatives such as
the Vaginal Microbial Genome Collection (VMGC) are shedding light
on low-biomass ecosystems, expanding our understanding of microbial
contributions to reproductive and systemic health (Huang et al., 2024).

Collectively, these insights reflect a paradigm shift in microbiome
science: from descriptive associations to intervention-ready,
mechanistically grounded models. The growing body of evidence
positions the human microbiome at the center of precision medicine,
where microbiota-informed diagnostics and therapeutics are
increasingly recognized as integral to the prevention and treatment of
complex diseases (Ma et al., 2024; Porcari et al., 2025; Afzaal et al.,
2022). This review synthesizes key developments in the clinical
translation of microbiome research, focusing on therapeutic
applications, anatomical niche-specific insights, and the remaining
challenges in integrating microbiome-based tools into precision
medicine (Macpherson et al., 2023; Gilbert et al., 2025; Huang
etal., 2024).

Gastrointestinal tract microbiome

The gastrointestinal tract harbors one of the most complex and
functionally diverse microbial ecosystems in the human body
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(Figure 1). From the moment of birth, this microbiome begins to
shape immune development, metabolic programming, and mucosal
integrity (Milani et al., 2017). However, the structure and function of
the gut microbiota are not static; they evolve dynamically from infancy
through adulthood and are shaped by environmental, dietary, and
clinical exposures. Understanding the microbiome’s developmental
trajectory, from the neonatal period to maturity, provides a critical
foundation for targeted therapeutic strategies across the lifespan.

The neonatal gut microbiome in early life
programming

The neonatal period represents a foundational stage in human
development during which the gut microbiome is seeded and begins
to evolve, exerting long-lasting effects on host physiology, immunity,
and metabolism. Colonization begins at birth and is largely dictated
by maternal microbial transmission and environmental exposures.
Vaginal delivery facilitates maternal transfer of Lactobacillus,
Prevotella, and Sneathia, which colonize the neonate’s gastrointestinal
tract (Dominguez-Bello et al., 2010). By contrast, cesarean delivery is
associated with enrichment of skin-derived taxa such as Staphylococcus
and Corynebacterium, reduced maternal transmission of Bacteroides,
and delayed acquisition of commensals like Bifidobacterium,
producing a distinct microbial profile from that of vaginally delivered
infants (Dominguez-Bello et al., 2010; Shao et al., 2019; Reyman et al.,
2019). This early divergence has been linked to increased risk of
immune dysregulation and metabolic disorders, including obesity,
asthma, and allergies, later in life (Yuan et al., 2016). Longitudinal
studies have shown that while infancy is marked by rapid microbial
succession, the gut microbiome generally reaches a stable, adult-like
configuration by approximately 2-3 years of age (Yatsunenko et al.,
2012; Stewart et al., 2018). This developmental milestone marks the
establishment of the core microbiome, which provides functional
resilience but remains modifiable by diet, antibiotic exposure, and
geography throughout life (Tamburini et al., 2016).

Preclinical models have confirmed that these early microbial
differences are not merely compositional but also functional. For
instance, neonatal mice inoculated with vaginal microbiota from
women dominated by Lactobacillus crispatus versus those with
Gardnerella vaginalis and Atopobium vaginae show differential
outcomes in metabolism, immune function, and neurodevelopment
(Jasarevi¢ et al,, 2021; Jasarevi¢ et al, 2018). These effects are
modulated further by the maternal environment during gestation,
particularly in cases of maternal obesity or vaginal dysbiosis,
underscoring the interplay between prenatal and postnatal microbial
exposures in determining offspring health trajectories (Marquez
Ibarra et al., 2025).

Postnatal nutrition plays a critical role in shaping the early-life
gut microbiome and immune development. Breastfeeding not only
supplies essential nutrients but also delivers maternal microbes and
bioactive compounds, notably human milk oligosaccharides
(HMOs), which are pivotal in guiding microbial colonization
(Kijner et al., 2022). HMOs serve as selective substrates for
Bifidobacterium infantis, a key early colonizer that has co-evolved
with the human host to dominate the infant gut niche. Colonization
by B. infantis promotes immune homeostasis by suppressing
pro-inflammatory Th2 and Thl7 cytokines, enhancing IFN-f
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The human microbiome. Organ-specific healthy and pathogenic taxa relevant to clinical translation.
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expression, and activating immunoregulatory pathways such as
galectin-1 signaling (Henrick et al., 2021). Disruption of this delicate
microbial succession can have lasting immunological consequences.
A recent prospective birth cohort study showed that neonatal
antibiotic exposure significantly impaired vaccine-induced antibody
responses, an effect attributed to the depletion of beneficial
Bifidobacterium species during critical windows of immune

programming (Ryan et al., 2025).

Frontiers in Microbiology

While breastfeeding is a dominant driver of early microbial
colonization, formula feeding and mixed feeding also exert significant
effects on gut diversity and physiology. Formula-fed infants typically
harbor lower abundances of Bifidobacterium and Lactobacillus, with
increased colonization by Clostridium and Enterobacteriaceae,
resulting in a more adult-like microbiota in early life (Penders et al.,
2006; Stewart et al, 2018). This microbial divergence has been
associated with altered SCFA production, heightened gut permeability,
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and increased risk of immune-mediated disorders (Ho et al., 2018).
Mixed-fed infants often display intermediate microbial profiles,
reflecting contributions from both breast milk and formula (Wang
M. et al, 2025). Emerging strategies incorporating prebiotics,
probiotics, or synthetic human milk oligosaccharides into infant
formula show potential to partially restore the protective functions of
breastfeeding, improving microbiota composition and supporting
immune development (Puccio et al., 2017; Hedrick et al., 2021).

Beyond HMOs, breast milk also contains complement proteins
that shape the gut microbial landscape through a Cl-dependent,
antibody-independent mechanism. These proteins selectively lyse
specific gram-positive commensals, promoting the establishment of a
microbial community that confers resistance against enteric pathogens
(Pietrasanta et al., 2024). Experimental models have demonstrated
that neonates deprived of complement-containing milk exhibit
dysbiosis and heightened susceptibility to infections, supporting the
immunomodulatory function of breast milk beyond passive immunity
(Xu et al., 2024).

In vulnerable populations such as preterm infants, where
microbiota development is often disrupted, clinical interventions have
shown promising results. A large network meta-analysis concluded
that prophylactic administration of multistrain probiotics, with or
without prebiotics or lactoferrin, significantly reduces the incidence
of severe necrotizing enterocolitis, sepsis, and feeding intolerance,
while also shortening the time to full enteral feeding and hospital stays
(Wang et al., 2023). These findings highlight the translational potential
of microbiota-targeted strategies in neonatal care. Furthermore,
targeted administration of B. infantis to undernourished infants has
been shown to promote weight gain and reduce intestinal
inflammation, offering a microbial solution to severe acute
malnutrition in low-resource settings (Barratt et al., 2022).

Although cesarean-section births remain essential in many
clinical situations, their impact on early microbial transmission has
prompted interest in interventions such as vaginal microbiota transfer
(Hourigan et al,, 2022). A randomized controlled trial demonstrated
that vaginal seeding in C-section-born neonates partially restores
maternal microbial transmission and alters neonatal microbiota
composition in both skin and stool (Mueller et al., 2023). These
findings support the growing recognition that early microbial
exposures are critical determinants of health, and that intentional
modulation of the neonatal microbiome may serve as a novel
therapeutic avenue. Overall, the neonatal gut microbiome is a dynamic
and responsive ecosystem that plays a central role in early-life
programming. Its development is governed by birth mode, maternal
microbial reservoirs, breastfeeding, and nutritional interventions
(Catassi et al., 2024).

Maturation and plasticity of the adult gut
microbiome

The adult gut microbiome represents a dynamic yet relatively
stable ecosystem that plays a fundamental role in maintaining host
homeostasis, influencing metabolic processes, modulating immune
responses, and contributing to neuroendocrine signaling (Ma et al.,
2024). In contrast to the neonatal microbiome, which undergoes rapid
succession in early life, the adult gut microbiota preserves a stable core
configuration while retaining flexibility to adapt to environmental
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factors, notably diet, antibiotics, and disease states (Tamburini et al.,
20165 Aurora and Sanford, 2024). While host genetics exerts some
influence on microbial composition, large-scale population analyses
have demonstrated that environmental determinants, particularly diet
and lifestyle, overwhelmingly outweigh genetic variation in shaping
gut microbiota (Rothschild et al., 2018). Beyond genetics, cultural and
geographic transitions can rapidly remodel microbial communities. A
notable example is the US immigration study, which revealed that
Southeast Asian immigrants experienced accelerated microbiome
‘westernization, characterized by reduced diversity and loss of fiber-
degrading taxa, changes that paralleled increased metabolic risk
(Vangay et al., 2018).

One of the most striking features of the adult gut microbiota is its
metabolic versatility. The gut microbial community harbors immense
genetic and enzymatic diversity, encoding ~150 times more genes than
the human genome (Qin et al., 2010; Human Microbiome Project
2012). 'This
biotransformation of dietary components, bile acids, xenobiotics, and

Consortium, metabolic reservoir enables the
host-derived molecules, with profound implications for health and
disease (De Vos et al., 2022). For instance, secondary bile acids,
produced through microbial transformation of host bile salts, exhibit
anti-inflammatory properties and contribute to gut barrier integrity.
Dysbiosis-induced depletion of these metabolites has been linked to
intestinal inflammation, as seen in ulcerative colitis and pouchitis,
where reduced abundance of Ruminococcaceae correlates with
secondary bile acid deficiency and heightened inflammation (Sinha
et al., 2020).

The adult microbiome also interfaces intricately with systemic
metabolic regulation. In individuals with prediabetes, dietary
interventions tailored to postprandial glycemic responses were shown
to alter microbiota composition more significantly than traditional
Mediterranean diets (Ben-Yacov et al., 2023). These changes,
particularly increases in microbiota alpha diversity, were causally
linked to improvements in hemoglobin Alc, lipid profiles, and weight
control, underscoring the microbiome’s role as a mediator and
modulator of cardiometabolic health (Napoli et al., 2024). Moreover,
microbial metabolites such as short-chain fatty acids (SCFAs) and
indole derivatives regulate pathways implicated in glucose metabolism,
lipid balance, and inflammation, positioning the microbiome as both
a target and effector of precision nutrition strategies (Zheng
etal., 2022).

In adults, gut microbial composition is strongly associated
with noncommunicable diseases beyond metabolic syndrome
(West et al., 2015). Disorders such as IBD, colorectal cancer
(CRC), rheumatoid arthritis, depression, and neurodegenerative
shifts
composition, loss of microbial diversity, and altered functional

diseases show consistent links with in taxonomic
gene profiles (Sun W. et al., 2024). Microbiome-wide association
studies have become instrumental in identifying microbial
signatures predictive of disease risk or therapeutic response. These
studies highlight not only the importance of specific taxa but also
functional genes, metabolites, and ecological interactions that
underpin disease states (Gilbert et al., 2016, 2018). Importantly,
single-cell and spatial tissue-omics approaches now link specific
microbial and immune features to defined therapeutic outcomes
in IBD: an IL-1-driven inflammatory fibroblast-neutrophil
module marks multi-therapy non-response in deep ulcerative
lesions (Friedrich et al., 2021); baseline enrichment of bile acid
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7a/p-dehydroxylation (bai) gene-harboring Clostridia (e.g., the
Clostridium scindens group) predicts response to anti-cytokine
biologics (anti-TNF/ustekinumab) (Lee et al., 2021); higher
baseline abundance of Roseburia inulinivorans and a
Burkholderiales species is associated with clinical remission on
vedolizumab (Ananthakrishnan et al., 2017); and pretreatment
enrichment of Ki67* memory CD4" T cells identifies vedolizumab
non-responders (Mennillo et al., 2024).

Antibiotic treatment is one of the most significant disruptors of
the adult gut microbiome, often leading to increased vulnerability to
infections (Ramirez et al., 2020). Clostridioides difficile infection (CDI)
is a well-characterized example of this phenomenon, where antibiotic-
induced depletion of key microbial taxa, particularly those involved
in bile acid metabolism, creates a permissive environment for
pathogenesis (Sulaiman et al., 2024). The loss of these taxa enriches
conjugated bile acids that promote C. difficile spore germination while
depleting secondary bile acids that normally inhibit its toxin activity.
Restoring microbial bile-metabolizing functions has proven clinically
effective in reducing CDI recurrence (Vinay et al., 2025). Interventions
such as fecal microbiota transplantation (FMT) and next-generation
live biotherapeutics like SER-109 reestablish microbial diversity and
functionality, providing a mechanistic link between microbiota
restoration and improved outcomes (Mullish and Allegretti, 2021;
Feuerstadt et al., 2022). Complementary strategies, including probiotic
co-administration during antibiotic therapy, have also demonstrated
efficacy. A recent randomized controlled trial showed that multi-strain
probiotics preserved microbial alpha diversity and significantly
reduced the expansion of antibiotic resistance genes (John et al., 2024).
Beyond CDI, emerging evidence highlights additional consequences
of microbiome disruption. For instance, antibiotic-mediated depletion
of Clostridia has been linked to sorbitol intolerance, a reversible
phenotype corrected through targeted reintroduction of sorbitol-
consuming bacterial strains. This murine study demonstrated that
targeted probiotic reintroduction of sorbitol-consuming Clostridia
corrected antibiotic-induced sorbitol intolerance, highlighting the
potential of microbiota-based restoration strategies to mitigate
antibiotic-induced metabolic dysfunction (Lee J. Y. et al., 2024).

Beyond the gastrointestinal tract, the adult gut microbiome exerts
systemic effects through the gut-immune-brain axis. Microbial
metabolites can influence neuroinflammation, glial cell function, and
blood-brain barrier integrity (Loh et al, 2024). Studies have
demonstrated that microbial composition correlates with neurological
outcomes and that specific taxa modulate neuroactive compounds and
neurotransmitter pathways (O'Riordan et al., 2025; Macpherson et al.,
2023; Loh et al,, 2024; Sinha et al., 2020). These findings are reshaping
our understanding of the microbiotas role in psychiatric and
neurodegenerative conditions.

Altogether, the adult gut microbiome represents a highly adaptable
and influential player in human health. Advances in multiomics,
computational modeling, and clinical translation are paving the way
for microbiome-based diagnostics and therapeutics (Rozera et al.,
2025). However, challenges such as defining a “healthy” microbiome,
accounting for interindividual variability, and establishing causal
mechanisms remain. Nonetheless, the clinical potential of microbiome
modulation, whether through diet, prebiotics, probiotics, live
biotherapeutics, or microbiota-derived compounds, is becoming
increasingly tangible (Ben-Yacov et al., 2023; Gilbert et al., 2025;
Gilbert et al., 2018).
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The gut microbiota-brain axis in
neurological health

The gut microbiota-brain axis is an intricate, bidirectional
communication network that connects the gastrointestinal tract with
the central nervous system (CNS), profoundly influencing brain
development, behavior, mood, and cognition (Carabotti et al., 2015).
This axis integrates neural, immune, endocrine, and metabolic
pathways, many of which are shaped by microbial signals originating
in the gut. Recent research has moved beyond descriptive correlations
to uncover mechanistic insights into how microbial communities and
their metabolites interact with the host’s nervous and immune systems
to regulate neurodevelopmental and neurodegenerative processes
(Zheng et al., 2020; O’Riordan et al., 2025).

Communication along the gut-brain axis occurs through multiple
overlapping channels. Neural signaling is mediated predominantly via
the vagus nerve, which transmits sensory information from the gut to
the brain and modulates motor responses, immune tone, and gut
physiology (Sun et al.,, 2023). The enteric nervous system (ENS),
sometimes referred to as the “second brain,” operates autonomously
but is tightly linked with both the gut microbiota and the CNS through
neuroimmune and neuroendocrine pathways (Macpherson et al.,
2023). Microbial metabolites such as SCFAs, neurotransmitters (e.g.,
serotonin, dopamine, GABA), and bile acid derivatives influence
neuronal activity either locally within the ENS or systemically after
crossing the blood-brain barrier (Agirman and Hsiao, 2021; Liu et al.,
2022; Loh et al., 2024).

The immune system plays a central role in microbiota—brain
communication. Gut microbes shape the development and function
of microglia which are essential for synaptic pruning, neuronal
maturation, and response to injury or disease (Loh et al., 2024).
Disruption of gut microbial diversity can impair microglial maturation
and trigger aberrant neuroinflammatory responses. These effects have
been implicated in multiple CNS disorders, including depression,
autism spectrum disorders (ASDs), and neurodegenerative diseases
such as Alzheimer’s and Parkinson’s (Loh et al., 2024; O’'Riordan et al.,
2025; Liu et al., 2022). Notably, metabolites such as SCFAs and
tryptophan metabolites regulate cytokine production, modulate the
permeability of both the gut and blood-brain barriers, and influence
the activation of peripheral immune cells that can traffic into the CNS
under pathological conditions (O’Riordan et al, 2025; Sun
X. et al., 2024).

In neurodegeneration, gut dysbiosis has been shown to contribute
to disease pathogenesis. For example, alterations in microbial
composition and metabolic output precede cognitive decline in
Alzheimer’s disease models (Krishaa et al., 2023). Multi-omics
approaches have identified key microbial metabolites that interact
with orphan G-protein-coupled receptors (GPCRs) in the brain,
regulating neuroinflammatory and neurodegenerative cascades (Qiu
et al, 2024). Agmatine and phenethylamine, two gut-derived
metabolites, were found to reduce tau hyperphosphorylation in iPSC-
derived neurons from Alzheimer’s patients, offering proof-of-concept
for microbiome-targeted interventions (Qiu et al., 2024).

Additionally, enteroendocrine cells in the gut epithelium act as
sensors of microbial and nutritional cues, releasing gut hormones such
as GLP-1 and PYY that signal to the brain via vagal afferents and
modulate satiety, stress responses, and metabolic regulation (Barton
etal., 2023). These mechanisms are particularly relevant in the context
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of obesity and eating disorders, where maladaptive gut-brain signaling
contributes to disrupted energy homeostasis (Gruber et al., 2025).

Experimental evidence from germ-free and antibiotic-treated
animal models has consistently demonstrated that the absence or
alteration of the gut microbiota impacts neurogenesis, synaptic
plasticity, and emotional behavior (Delgado-Ocana and Cuesta, 2024;
Luczynski et al., 2016). Transplantation of microbiota from individuals
with depression into healthy rodents recapitulates depressive-like
behaviors, highlighting the potential for microbial manipulation to
alter brain function (Gheorghe et al., 2022). Beyond animal work,
human evidence also supports a role for microbiota-targeted
interventions in mood disorders. A systematic review of clinical FMT
studies reported significant reductions in depressive and anxiety
symptoms across multiple cohorts, underscoring translational
relevance of these findings (Chinna Meyyappan et al., 2020).
Importantly, longitudinal interventional studies in ASD have shown
that FMT can significantly and durably reduce core ASD symptoms.
In children with ASD and gastrointestinal comorbidities, open-label
“microbiota transfer therapy” improved both gastrointestinal and
behavioral outcomes, with benefits persisting at 2-year follow-up
(Kang et al., 2017, 2019). More recently, an oral lyophilized FMT trial
in children demonstrated sustained improvements in Autism Behavior
Checklist and Childhood Autism Rating Scale scores, alongside
enhanced sleep quality (Li Y. et al., 2024). Early adult and adolescent
trials are now underway, reflecting growing interest in microbiome-
targeted interventions for ASD.

The gut microbiota-brain axis constitutes a dynamic interface
through which microbial communities influence CNS structure and
function. Advances in mechanistic understanding, encompassing
microbial metabolites, immune signaling, neurodevelopment, and
neurotransmitter regulation, have opened new avenues for therapeutic
strategies targeting the microbiome in neurodevelopmental,
neuropsychiatric, and neurodegenerative disorders (Gheorghe et al.,
2022; Jacobson et al., 2021; Macpherson et al., 2023; Liu et al., 2022).
Lastly, early human trials suggest modest neuromodulatory potential
of microbiota-based interventions. A recent double-blind, placebo-
controlled study reported that a multi-strain probiotic supplement
modestly improved subjective mood perception in healthy adults,
although it did not significantly affect clinical depression scores,
indicating subtle yet measurable effects on brain function (Johnson
and Steenbergen, 2025).

Microbial influences on cardiometabolic
disorders

The gut microbiome has emerged as a central regulator of
cardiometabolic health, exerting influence through complex
interactions with host metabolism, immunity, and endocrine signaling
(Tang et al., 2017). Dysbiosis, or the imbalance of microbial
communities, has been strongly associated with key features of
metabolic syndrome, including obesity, insulin resistance,
dyslipidemia, and hypertension (Hassan et al., 2024).

Gut microbial metabolites are major mediators of these effects.
SCFAs such as acetate, propionate, and butyrate, are produced through
microbial fermentation of dietary fiber, enhance insulin sensitivity,
regulate appetite, and support gut barrier integrity (Nogal et al., 2021).

Conversely, metabolites like trimethylamine-N-oxide (TMAO),
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derived from microbial metabolism of choline and carnitine, have
been implicated in the promotion of atherosclerosis and cardiovascular
disease risk (Cao et al., 2022). Advances in systems biology have
enabled deeper insights into these associations. Integrative analyses
combining metagenomics, metabolomics, and clinical phenotyping
have revealed that interindividual variation in microbial metabolite
profiles correlates with diverse cardiometabolic traits, highlighting
potential targets for intervention (Yang S. Y. et al., 2025; Sabih Ur
Rehman et al., 2025). Complementing these findings, metaproteomic
profiling has identified specific microbial proteins linked to SCFA
biosynthesis and inflammatory pathways that are predictive of
cardiovascular risk, opening avenues for non-invasive biomarker
development (Yang C. et al., 2025). In addition to SCFAs and TMAO,
emerging research has uncovered a novel microbial pathway involving
the conjugation of amino acids to bile acids. This functional
mechanism exerts immunomodulatory effects and further expands
the known repertoire of host-microbiota interactions relevant to
metabolic and inflammatory regulation (Lin et al., 2025).

Diet is a potent modulator of the gut microbiome and its
metabolic output. In a randomized trial, supplementation with
resistant starch for 8 weeks significantly improved insulin sensitivity
and promoted weight loss in overweight individuals (Li H. et al,,
2024). These benefits were attributed to enrichment of beneficial taxa
such as Bifidobacterium adolescentis, modulation of bile acid
metabolism, and attenuation of intestinal inflammation. Similarly,
dietary fiber interventions have been shown to enhance microbial
diversity and shift metabolic profiles toward anti-inflammatory
phenotypes, underscoring the importance of microbial fermentation
products in host metabolic regulation (Gilbert et al., 2025). Beyond
fiber, caloric restriction and intermittent fasting also reshape the
microbiota. A study in patients with metabolic syndrome
demonstrated that a five-day fasting protocol, followed by a DASH-
style refeeding regimen, resulted in sustained reductions in systolic
blood pressure, BMI, and medication use (Maifeld et al., 2021). These
effects were linked to shifts in microbial taxa capable of SCFA
production and modulation of T-cell immune subsets, including Th17
and regulatory T cells. In addition, fermented dietary components
offer another avenue for microbiota-targeted interventions. A recent
randomized trial demonstrated that daily kombucha consumption
enriched SCFA-producing gut microbes and led to modest reductions
in systemic inflammation, supporting the potential of fermented
beverages as adjunct therapies for cardiometabolic health (Ecklu-
Mensah et al., 2024).

The microbiotas contribution to weight regulation extends
beyond acute effects. Microbiome composition and functional profiles
at baseline have been found to predict individual responses to weight
loss interventions, independent of BMI and diet (Diener et al., 2021).
Functional traits such as bacterial replication rates and carbohydrate
degradation pathways were associated with successful weight loss,
highlighting the role of microbial ecology in shaping metabolic
resilience. However, diet-induced microbiome changes are not always
durable. Post-dieting weight regain, often seen in yo-yo dieting, has
been mechanistically linked to persistent alterations in microbial
composition that reduce energy expenditure and increase
susceptibility to future weight gain. In murine models, this phenotype
was transmissible via fecal microbiota transfer and was partially
interventions such as flavonoid

reversible by post-biotic

supplementation (Thaiss et al., 2016). Recent human and animal
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evidence further implicates Bacteroides vulgatus and its metabolite
pantothenate in dietary sugar preference and glucose homeostasis.
Mechanistically, pantothenate-driven activation of free fatty acid
receptor 4 (FFAR4) enhances GLP-1 secretion, thereby influencing
satiety and sweet taste preference (Zhang et al., 2025). These findings
extend the microbiome’s role from passive modulation of energy
balance to active regulation of dietary behavior through gut-
endocrine signaling.

Pharmacological and microbial therapies are being explored to
restore metabolic balance. In patients with type 1 diabetes, adjuvant
supplementation with probiotic strains such as Lactobacillus salivarius,
L. johnsonii, and Bifidobacterium animalis resulted in decreased
HbA1lc levels and inflammatory cytokines, providing clinical support
for microbiota modulation as a complementary strategy in glycemic
control (Wang C. H. et al., 2022). Moreover, artificial sweeteners,
widely used in attempts to reduce caloric intake, have paradoxically
been shown to impair glucose metabolism by inducing dysbiosis. This
highlights the need for careful evaluation of microbiome-related
consequences of dietary interventions (Suez et al., 2014).

Finally, weight loss itself has been shown to remodel the
metabolomic profile in type 2 diabetes. In the DiRECT trial, remission
of diabetes was accompanied by favorable shifts in lipids, amino acids,
and other metabolites, many of which were influenced by microbial
metabolism (Corbin et al., 2024). These findings reinforce the concept
that the microbiome is both a mediator and a marker of metabolic
improvement. The gut microbiome plays a pivotal role in
cardiometabolic health, with its composition, functional potential,
and metabolic output all contributing to disease risk and therapeutic
outcomes (Tang et al., 2017). Microbiome-informed interventions,
whether dietary, probiotic, or pharmacologic, represent a promising
frontier in personalized medicine for metabolic diseases (Gilbert et al.,
2025; Cao et al., 2022; Li H. et al., 2024; Diener et al., 2021).

Intersections between cancer,
inflammation, and the gut microbiome

The relationship between cancer, inflammation, and the gut
microbiome is multifaceted, reflecting a complex interplay between
microbial communities, host immunity, and oncogenic processes (Lei
et al., 2025). Accumulating evidence indicates that gut dysbiosis,
characterized by loss of beneficial taxa and expansion of
pro-inflammatory or genotoxic microbes, can both contribute to
carcinogenesis and modulate the efficacy of cancer therapies (He
etal., 2025).

Chronic inflammation is a known driver of tumorigenesis, and the
gut microbiome plays a critical role in shaping inflammatory responses
(Li Z. et al., 2024; Hanahan, 2022). Pathobionts such as Klebsiella
pneumoniae, Enterococcus faecium, and Bacteroides fragilis have been
identified in patients with IBD and CRC, and their expansion is often
associated with disease exacerbation and immune dysregulation
(Chow et al,, 2011; Chandra et al.,, 2021). In experimental models,
colonization with clinical IBD-derived K. pneumoniae strains induces
intestinal inflammation, while targeted phage therapy directed at these
strains has shown promise in reducing disease severity without
disrupting commensal populations (Federici et al., 2022).

In cancer, the immunomodulatory capacity of the gut microbiota
is particularly relevant for patients receiving immune checkpoint

Frontiers in Microbiology

10.3389/fmicb.2025.1632435

blockade (ICB) (Kang et al., 2024; Lei et al., 2025). Studies have
demonstrated that specific bacterial taxa, including Akkermansia
muciniphila, Bifidobacterium pseudocatenulatum, and Faecalibacterium
prausnitzii, are enriched in responders to ICB and are associated with
improved outcomes across multiple tumor types (Derosa et al., 2022;
Lei et al., 2025). These microbes appear to enhance antigen
presentation, T-cell activation, and tumor infiltration by CD8 + T cells
(Li X.etal, 2022; Lee et al,, 2022; Bjork et al., 2024). Seminal murine
studies first established causality for these interactions. Sivan et al.
demonstrated that commensal Bifidobacterium promoted antitumor
immunity and synergized with PD-L1 blockade (Sivan et al., 2015),
while Vétizou et al. showed that CTLA-4 blockade required the
presence of gut microbiota, with Bacteroides fragilis mediating
therapeutic efficacy. These foundational discoveries laid the
groundwork for subsequent clinical translation (Vétizou et al., 2015).
Advancements in spatial omics technologies have further illuminated
these microbiota-immune interactions at the tissue level. The
MicroCart platform, for instance, enables high-resolution spatial
profiling of microbial niches within inflamed colonic tissues,
uncovering localized signatures of immune suppression that may
facilitate tumor progression (Zhu et al., 2025).

FMT has emerged as a novel strategy to overcome ICB resistance.
In patients with metastatic melanoma who failed prior PD-1 blockade,
FMT from long-term responders restored responsiveness in a subset
of patients. These clinical responses were accompanied by shifts in
immune cell infiltration and tumor microenvironment
reprogramming, supporting a causal role for the microbiome in
modulating therapeutic outcomes (Baruch et al., 2021; Davar et al.,
2021). Longitudinal profiling of these patients revealed that durable
responders exhibited distinct microbial trajectories throughout
treatment, marked by the stable or increasing abundance of
immunoregulatory taxa, further supporting the link between
microbiome dynamics and therapeutic outcomes (Bjork et al., 2024).
Building on these findings, synthetic biology approaches are being
developed to engineer microbial therapeutics. For instance, genetically
modified strains of E. coli Nissle 1917 have been designed to selectively
colonize colorectal tumors and deliver immunomodulatory proteins
directly within the tumor microenvironment, offering a novel means
of enhancing antitumor immunity (Gurbatri et al., 2024).

Diet and lifestyle also influence this axis. Adherence to a
Mediterranean diet, rich in fiber, polyphenols, and omega-3 fatty
acids, has been associated with improved responses to ICB in
melanoma patients (Bolte et al., 2023). This dietary pattern fosters a
microbiome composition favorable for immunomodulation and may
reduce immune-related adverse events. Similarly, dietary fiber and
probiotic intake have been linked to improved ICB outcomes,
reinforcing the notion that microbiota-targeted nutritional strategies
can potentiate cancer therapy (Spencer et al., 2021). The mechanistic
underpinnings of these associations involve microbial metabolites
such as SCFAs, secondary bile acids, and tryptophan derivatives,
which can influence immune cell function, epithelial barrier integrity,
and systemic inflammation. For instance, SCFAs promote regulatory
T cell expansion and mucosal homeostasis, while depletion of these
metabolites in dysbiotic states exacerbates tumor-promoting
inflammation (Li X. et al., 2022; Gilbert et al., 2025).

Collectively, these insights underscore the dual role of the gut
microbiome as both a driver of cancer-related inflammation and a
modifiable determinant of immunotherapy response (Xie et al., 2025).
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Integrating microbiome diagnostics and interventions such as FMT,
probiotics, diet modification, and phage therapy into oncology could
offer new avenues for enhancing treatment efficacy and reducing
toxicity (Wang L. et al., 2025; Rivera-Orellana et al., 2025). However,
challenges remain in standardizing microbial signatures, ensuring
safety in immunocompromised patients, and understanding
interindividual variability in microbiome-mediated responses (Gilbert
etal., 2025; Li X. et al., 2022; Abdelsalam et al., 2023).

Oral microbiome

The oral microbiome is a highly complex and dynamic microbial
ecosystem that plays critical roles in both oral and systemic health
(Figure 1). It ranks as the second most diverse microbial community
in the human body after the gut, comprising over 700 species of
bacteria as well as fungi, viruses, and protozoa (Peng et al., 2022).
These microorganisms colonize distinct niches in the oral cavity,
including the tongue, teeth, gingival crevice, hard and soft palates, and
tonsillar tissues, each of which provides unique environmental
conditions for microbial growth and interaction (Deo and Deshmukh,
2019; Mark Welch et al., 2020).

This microbial community is not randomly distributed. Instead,
it is spatially structured into micron-scale biofilms shaped by host-
microbe interactions, saliva flow, and intermicrobial competition.
These biofilms form stratified architectures on oral surfaces, with taxa
displaying habitat-specific patterns of colonization that enable
complex polymicrobial cooperation or antagonism (Mark Welch et al.,
2020; Hajishengallis et al., 2023). For example, Streptococcus mutans,
a keystone pathogen in dental caries, establishes acidogenic and
aciduric niches that promote enamel demineralization, while
Fusobacterium nucleatum functions as a bridging organism that
physically links early colonizers such as Streptococcus sanguinis with
late colonizers including Porphyromonas gingivalis, a major
periodontal pathogen (Hajishengallis et al., 2023; Lamont et al., 2018;
Sedghi et al., 2021).

Periodontal diseases such as gingivitis and periodontitis are classic
examples of how dysbiosis in the oral microbiome can drive chronic
inflammation and tissue destruction (Hou et al., 2022). In a controlled
experimental gingivitis model, localized inflammation was shown to
propagate molecular changes in distant, clinically healthy oral tissues,
highlighting how microbially induced inflammation can exert
systemic effects even within the oral cavity (Kerns et al., 2023). These
inflammatory responses vary among individuals and have been
classified into distinct inflammatory responder types, underscoring
the heterogeneity in host-microbe interactions.

Beyond oral health, the oral microbiome has systemic
implications. Evidence increasingly links oral dysbiosis with diseases
such as diabetes, cardiovascular disease, adverse pregnancy outcomes,
and neurodegenerative conditions (Hajishengallis et al., 2023; Gao
et al., 2018). Oral bacteria can translocate into the bloodstream,
influence immune responses, and alter the inflammatory landscape of
distal organs. For instance, Fusobacterium nucleatum, often enriched
in periodontitis, has also been implicated in CRC (Hajishengallis et al.,
2023; Peng et al.,, 2022). Host genetic factors also influence oral
microbiome composition. Twin studies have shown that monozygotic
twins share more similar oral microbial profiles than dizygotic twins,
and that heritable bacteria tend to diminish with age and increased
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sugar intake. However, cariogenic species appear to be more
environmentally driven, reflecting lifestyle, dietary habits, and hygiene
practices (Gomez et al., 2017). Furthermore, lifestyle factors such as
smoking and e-cigarette use significantly alter the oral microbiome
(Chattopadhyay et al., 2024; Yang et al., 2023). E-cigarette users,
despite appearing clinically healthy, exhibit oral microbial profiles
similar to those found in severe periodontitis. These include higher
representation of pathogenic species and enhanced pro-inflammatory
signaling, indicating that such exposures may act as chronic
perturbations that destabilize oral microbial ecosystems (Ganesan
et al., 2020).

Advances in next-generation sequencing and metagenomics have
facilitated deeper characterization of these microbial communities
and their functions. The Human Oral Microbiome Database (HOMD)
continues to serve as a central resource, cataloging species, genomic
data, and associated phenotypes (Gao et al., 2018). Large-scale
population studies have also revealed that the oral microbiome is
shaped by age, health status, and social factors such as cohabitation or
even classmate interactions, emphasizing the need to contextualize
microbiome data within broader biological and sociocultural
frameworks (Willis et al., 2022). Lastly, these insights underscore the
oral microbiome’s relevance not only as a sentinel for oral diseases but
also as a potential diagnostic and therapeutic target for systemic
conditions. Efforts to modulate the oral microbiome, through
improved hygiene, targeted antimicrobials, prebiotics, probiotics, or
microbiota-informed precision interventions, offer promising avenues
for maintaining health and preventing diseases (Hajishengallis et al.,
2023; Gilbert et al., 2025).

Lung microbiome

The lung microbiome, once believed to be negligible due to the
presumed sterility of the lower respiratory tract, is now recognized as
a critical modulator of pulmonary health and disease (Natalini et al.,
2023; Figure 1). This ecosystem consists of a diverse array of
microorganisms that colonize both the upper and lower airways. In
healthy individuals, the lung microbiome maintains a delicate
equilibrium, influenced by microbial immigration from the oral cavity
and upper airways, as well as by clearance mechanisms such as
mucociliary transport, alveolar macrophages, and surfactant activity
(Belizério et al., 2023; Natalini et al., 2023; Li R. et al., 2024).

The microbial biomass in the lungs is low compared to the gut but
exhibits a dynamic composition, shaped by constant microbial influx
and selective clearance. Dominant taxa in healthy lungs typically
include members of the phyla Firmicutes, Bacteroidetes,
Proteobacteria, and Actinobacteria. Genera such as Streptococcus,
Prevotella, Veillonella, and Haemophilus are frequently detected, often
derived from the oral cavity via microaspiration (Li R. et al., 2024;
Natalini et al., 2023; Huffnagle et al., 2017). This equilibrium, however,
is disrupted in disease states. In conditions such as asthma, COPD,
pneumonia, and acute respiratory distress syndrome (ARDS), lung
microbial communities undergo significant shifts in composition and
function (Li R. et al., 2024). For instance, exacerbations of COPD are
characterized by increased abundance of Haemophilus, Moraxella,
Klebsiella, and Pseudomonas, accompanied by elevated levels of
proinflammatory cytokines like TNF-a. These microbial shifts not

only reflect but actively contribute to disease pathogenesis by
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modulating immune responses and enhancing tissue inflammation
(Huffnagle et al., 2017; Xue et al., 2023; Belizario et al., 2023).
Importantly, lung microbiota also interacts with systemic immunity.
Dysbiosis may skew T cell differentiation toward inflammatory
subsets such as Th1 and Th17, which in turn perpetuate pulmonary
inflammation. Conversely, the presence of immunomodulatory genera
like Lactobacillus and Veillonella in certain COPD phenotypes suggests
a potential for microbiota-based immune regulation (Xue et al., 2023).

The lung microbiome also plays a role in cancer development and
progression. Several studies have identified distinct microbial
signatures associated with lung cancer. Enrichment of genera such as
Streptococcus, Veillonella, Megasphaera, and Acidovorax has been
linked to tumor tissues and may influence oncogenesis through
chronic inflammation, immune evasion, or modulation of host
signaling pathways (Natalini et al., 2023; Ramirez-Labrada et al., 20205
Gilbert et al., 2025). Furthermore, microbial dysbiosis has been
associated with poorer responses to immunotherapy, and antibiotic
use before ICBs treatment correlates with reduced progression-free
and overall survival (Thapa et al., 2024; Zapata-Garcia et al., 2024).

Recent evidence also supports the concept of a bidirectional
gut-lung axis, wherein microbial metabolites and immune signals
from the gut influence lung homeostasis and vice versa (Dora et al.,
2024). For example, gut-derived SCFAs can reduce airway
inflammation, while respiratory infections can perturb gut microbial
communities (Natalini et al., 2023; Levan et al., 2019). Despite these
advances, challenges remain in defining a “healthy” lung microbiome
and translating observational findings into effective clinical
interventions. Contamination during sampling, low microbial
biomass, and interindividual variability complicate analysis.
Nevertheless, the therapeutic potential of manipulating the lung
microbiota through probiotics, targeted antimicrobials, or even
microbial transplantation represents a promising frontier in
respiratory medicine (Natalini et al., 2023; Gilbert et al.,, 2025;
Belizario et al., 2023).

Skin microbiome

The skin microbiome is a rich and dynamic ecosystem composed
of diverse microorganisms, including bacteria, fungi, viruses, and
mites that reside on the skin’s surface and within its appendages (Chen
et al., 2022; Figure 1). This microbiota plays a fundamental role in
maintaining cutaneous health, educating the immune system, and
preventing colonization by pathogenic organisms (Bautista et al.,
2025a). Human skin, with its highly heterogeneous structure, featuring
sebaceous, moist, and dry regions, provides distinct ecological niches
that support site-specific microbial communities (Byrd et al., 2018;
Grice and Segre, 2011). The most dominant bacterial phyla on the skin
are Actinobacteria, Firmicutes, Proteobacteria, and Bacteroidetes. These
include species such as Cutibacterium acnes, Staphylococcus
epidermidis, and Corynebacterium spp., which serve critical roles in
maintaining skin homeostasis. These commensals not only provide
colonization resistance but also produce antimicrobial peptides
(AMPs), modulate immune responses, and degrade skin lipids for
nutrient acquisition (Byrd et al., 2018; Grice and Segre, 2011; Nakatsuji
et al., 2021a; Wu and Xie, 2025). For instance, coagulase—negative
staphylococci (CoNS) can secrete bacteriocins and autoinducing
peptides that suppress the growth and virulence of Staphylococcus
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aureus, a common skin pathogen that frequently exacerbates atopic
dermatitis (AD) (Nakatsuji et al., 2021a, 2021b).

Advanced sequencing technologies, including 16S rRNA gene
sequencing and shotgun metagenomics, have revealed an
extraordinary taxonomic and functional diversity within the skin
microbiome (Wensel et al., 2022). Unlike culture-based methods that
are biased toward easily cultivable species, these techniques allow for
strain-level resolution and functional annotation. Such resolution is
crucial, as strains within the same species (e.g., S. epidermidis) may
possess dramatically different immunological and antimicrobial
properties (Byrd et al., 2018; Grice and Segre, 2011).

The skin microbiome is also closely intertwined with immune
regulation. Microbial signals can influence both innate and adaptive
immunity through Toll-like receptors (TLRs), cytokine cascades, and
AMP induction (Liu et al., 2023). For example, Cutibacterium acnes
can promote inflammation via SCFA-mediated histone deacetylase
inhibition in sebocytes, contributing to the pathogenesis of acne
(Sanford et al., 2019). In contrast, specific microbial metabolites and
cell-wall components can downregulate proinflammatory responses
and promote tissue repair. Staphylococcus hominis and Roseomonas
mucosa have demonstrated the ability to modulate epithelial responses
and restore barrier function in AD, supporting the potential of
bacteriotherapy for skin disorders (Nakatsuji et al., 2021b; Myles
et al., 2020).

Disruptions in the skin microbiota are increasingly recognized as
contributors to disease. In AD, for instance, overgrowth of S. aureus
promotes inflammation, suppresses AMP expression, and correlates
with disease severity (Di Domenico et al., 2019). Patients with AD
often lack protective commensals such as CoNS that can inhibit
S. aureus colonization through quorum sensing interference and
bacteriocin production. Restoring these protective strains via topical
application has shown efficacy in clinical trials, reducing microbial
burden and improving symptoms (Nakatsuji et al., 2021b; Myles et al.,
2020). Moreover, the skin microbiota can shape disease outcomes
beyond classical dermatological conditions, as illustrated by its
contribution to inflammation and delayed healing in cutaneous
leishmaniasis through IL-1f signaling pathways (Farias Amorim
etal., 2023).

Age is another important determinant of skin microbiome
structure. In infants, the skin microbiome is seeded predominantly by
maternal sources and evolves in response to environmental exposures,
skin maturation, and immune development (Wang Y. R. et al., 2022).
A recent genome catalog of early-life skin microbiota expanded our
understanding of its diversity and revealed functional elements related
to immune modulation and skin barrier support, such as sphingolipid
biosynthesis and AMP-associated pathways (Shen et al., 2023). Lastly,
the skin microbiome is not merely a passive inhabitant of the
epidermis but an active participant in the maintenance of cutaneous
and systemic health. Advances in multi-omic tools have uncovered
their contributions to immune regulation, disease modulation, and
therapeutic innovation (Farias Amorim et al., 2023; Nakatsuji et al.,
2021b; Grice and Segre, 2011; Byrd et al., 2018; Gilbert et al., 2025).

Vaginal microbiome

The human vaginal microbiome plays a pivotal role in maintaining
reproductive and systemic health (Figure 1). It is a low-diversity but
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highly specialized ecosystem, typically dominated by Lactobacillus
species such as L. crispatus, L. iners, L. jensenii, and L. gasseri, which
collectively contribute to the production of lactic acid and the
maintenance of an acidic pH (3.5-4.5) that inhibits pathogen
colonization (Pramanick et al., 2019; Kwon and Lee, 2022; Lebeer
etal., 2023; Spencer et al., 2023). These bacteria also interact with host
epithelial cells, modulate local immune responses, and may
be vertically transmitted to offspring during birth, potentially
influencing neonatal immune development and long-term health
outcomes (McCauley et al.,, 2022; Gilbert et al., 2025). The vaginal
microbiota is classified into community state types (CSTs), with four
dominated by Lactobacillus species (CST-I: L. crispatus; CST-II:
L. gasseri; CST-III: L. iners; CST-V: L. jensenii) and CST-IV
characterized by high bacterial diversity, often including Gardnerella,
Atopobium, Prevotella, and other anaerobes (Kwon and Lee, 2022;
Lebeer et al, 2023). Notably, L. iners, while common, is often
associated with transitional or dysbiotic states and lacks the robust
protective functions attributed to L. crispatus (Pramanick et al., 2019;
Kwon and Lee, 2022). The microbial community shifts dynamically in
response to hormonal changes, menstruation, childbirth, and lifestyle
factors, as shown in large-scale cohorts such as the Isala project
(Lebeer et al., 2023).

Dysbiosis of the vaginal microbiome is implicated in numerous
clinical conditions. In bacterial vaginosis (BV), Lactobacillus
abundance is depleted and replaced by polymicrobial communities
rich in Gardnerella vaginalis, Fannyhessea vaginae, and Prevotella spp.,
contributing to biofilm formation, elevated pH, and chronic
inflammation (Lebeer et al., 2023; Huang et al., 2024). Although often
asymptomatic, BV increases the risk of preterm birth, pelvic
inflammatory disease, and susceptibility to sexually transmitted
infections (Pramanick et al., 2019; Kwon and Lee, 2022; Lev-Sagie
et al,, 2019). In contrast, vulvovaginal candidiasis (VVC), caused
primarily by Candida albicans, reflects a fungal overgrowth in an
otherwise Lactobacillus-rich environment. A recent study revealed
that VVC-associated C. albicans strains induce stronger epithelial cell
detachment and reduced type I interferon responses, distinguishing
them from commensal strains and suggesting differential virulence
potential (Reid et al, 2001). These insights may support the
development of phenotypic assays to better stratify VVC risk and
refine antifungal therapy (Sala et al., 2023). Probiotic strategies using
specific Lactobacillus strains such as L. rhamnosus GR-1 and
L. fermentum RC-14 have demonstrated the ability to restore normal
vaginal flora, particularly in women with recurrent BV or depleted
Lactobacillus communities (Reid et al., 2001). These strains, when
administered orally or vaginally, can reestablish microbial balance and
reduce recurrence rates (Gilbert et al., 2025). However, efficacy may
vary based on host factors, strain-specific properties, and baseline
microbiota composition (McCauley et al., 2022).

Vaginal microbiota transplantation (VMT) has recently emerged
as a promising intervention for refractory BV. In a proof-of-concept
trial, VMT from screened healthy donors led to long-term remission
in most patients with recurrent BV, with restoration of Lactobacillus
dominance and symptomatic relief (Lev-Sagie et al., 2019). These
results parallel the success of FMT in gastrointestinal conditions, yet
highlight the need for regulatory oversight, donor standardization,
and longitudinal safety data (Gilbert et al., 2025). The vaginal
microbiome influences mucosal immunity through both direct and
indirect mechanisms. Lactobacillus species, especially L. crispatus, can
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modulate host immunity via secretion of bioactive compounds,
including p-carboline alkaloids that suppress type I interferon
responses and promote immune tolerance (Gilbert et al., 2025; Reid
et al., 2001). Moreover, vertically transmitted Lactobacilli such as
L. jensenii have been shown to inhibit activation of antigen-presenting
cells and attenuate allergic responses in animal models, suggesting a
role in intergenerational immune imprinting (McCauley et al., 2022).

The recent construction of the Vaginal Microbial Genome
Collection, encompassing over 33,000 reference genomes across
bacteria, fungi, and viruses, has substantially expanded our
understanding of vaginal microbial diversity and function (Huang
etal., 2024). This database revealed that over 85% of viral operational
taxonomic units and many bacterial species remain uncultured,
underscoring the vast unexplored diversity of the vaginal ecosystem.
Moreover, many functional genes linked to immune modulation,
epithelial adhesion, and biofilm formation remain to be experimentally
validated (Huang et al., 2024; Kwon and Lee, 2022). Beyond typical
microbiota, opportunistic colonizers like Group B Streptococcus (GBS)
exploit host-microbiome interactions for persistence in the vaginal
niche. Recent work has shown that GBS uses a Type VII secretion
system (T7SS) with subtype-specific effectors that can influence
epithelial colonization and immune modulation (Spencer et al., 2023).
These mechanisms may help explain the variability in GBS carriage
and its implications for neonatal infection risk.

Microbiome-based therapeutics and
clinical translation

Microbiome-based therapeutics have evolved from empirical
FMT to rationally engineered interventions, including defined
microbial consortia, genetically modified strains, prebiotics, and
phage therapies (Mimee et al., 2016; Bajaj et al., 2022; Gulliver et al.,
2022). As of 2025, at least 22 industry-sponsored Phase 2 and 3 trials
(with NCT registration) are underway, targeting conditions across
gastroenterology, oncology, neonatology, dermatology, and neurology
(Figure 2). In Clostridioides difficile infection (CDI), MBK-01
(NCT05201079) and VE303 (NCT06237452) are leading Phase 3
candidates demonstrating efficacy and safety over fidaxomicin or
donor-derived EMT (Reigadas et al., 2020). In neonatology, IBP-9414
(NCT03978000) is being tested to prevent necrotizing enterocolitis in
preterm infants. MaaT Pharmas MaaT013 (NCT04769895) and
MaaT033 (NCT05762211) address gastrointestinal graft-versus-host
disease using pooled FMTs. RDC Clinical’s Maolactin (NCT06104917)
targets GI dysfunction, and Kibow Biotech’s KT-301 (NCT05407389)
is under Phase 2 evaluation for chronic kidney disease (Gilbert
etal., 2025).

In oncology, EO2401 (NCT04116658) is a microbial peptide
vaccine for glioblastoma, while GEN-001 (NCT05419362) and
KBL697 (NCT04911751) are being tested in combination with
checkpoint inhibitors for gastric and biliary tract cancers (Reardon
et al., 2023; Lee J. et al,, 2024). Inflammatory and immune-related
conditions are also key targets: VE202 (NCT05370885) and
STM-103H (NCT05003804) are consortia being tested in ulcerative
colitis and atopic dermatitis, respectively, and AUP-16
(NCTO06111183) is a genetically modified topical strain for diabetic
foot ulcers (Gilbert et al, 2025). Neurological and metabolic
indications include AB-2004 (NCT04895215) for ASD, MSH-1031

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1632435
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

Bautista et al. 10.3389/fmicb.2025.1632435

MaaT013 #CTOMG%QS Phase 2 and phase 3 clinical trials evaluating

microbiome-based therapeutics
1Bp-0414 [J Phase 3= NCT03978000 Gl-aGvHD
MaaT033 I Phase 8 = NCTO5762211 4 pj1o-HSGT prophylaxis
l I Enema
MBK-01 I Phase 3=NCT05201079  ocrotizing enterocolitis Pooled FMT
A N

KT-301 _cmsmnsg

hronic kidney disease

VE303 I Phase 3 - NCT06237452
col Defined consortiul

GEN-001 WCTOSM 9362

CRS3123 I Phase 2 - NCT04781387

Gastric cancer ~
VE202 hammcmssmses 4
" Uicerative colitis ) i
/ Single strain

KBL697 I Phase 2 - NCT04911751
“ U Biliary tract cancer

S
Maolactin __CTOM 04917

Infantile colic

B94 h_ICT06385054 - Biologic
Gl dysfunction
™
BGY-1601-VT _cmmsoggo
""Bacterial vaginosis Small molecule

|
E02401 hmmﬁucmm 16658 LB
Peptide vaccine
HEM1036 |1 Phase 2 - NCT05527301 /
Glioblastoma

Multispecies

STM-103H I Phase 2 - NCT05003804
" Atopic dermatiti

AB-2004 #cmwgws
IBS-D

0PS-2071 _cmsgzaagz
Autism

Gut-restricted sorbent

Prebiotic

Next-gen probiotic

MSH-1031 I Phase 2 - NCT05556824.
s GERD
AUP-16 I Phase 2 - NCT06111183
ung and renal cancer
M strain Tobical
p2261 hﬂumucmwesno - SRS
Diabetic foot ulcers Engineered strain

ILP100 hmmcmssomw— |
FIGURE 2

Landscape of phase 2 and 3 clinical trials evaluating microbiome-based therapeutics. This Sankey plot visualizes the translational flow of microbiome-
based therapies across key domains: therapeutic agent, target disease, modality of intervention, delivery route, clinical trial phase and number. Each
stream illustrates the relationship between components, emphasizing the diversity of clinical applications and development strategies within the
microbiome field. Data include 22 active trials representing interventions in gastrointestinal, metabolic, neurologic, oncologic, dermatologic, and
pediatric disorders. CDI: Clostridioides difficile infection; Gl-aGvHD: Gastrointestinal acute graft-versus-host disease; Allo-HSCT: Allogeneic
hematopoietic stem cell transplantation; GERD: Gastroesophageal reflux disease; IBS-D: Irritable bowel syndrome with diarrhea; LARS: Low anterior
resection syndrome; Pooled FMT: Pooled fecal microbiota transplant; GM strain: Genetically modified microbial strain. This was designed through the
SankeyMATIC code available at github.com/nowthis/sankeymatic.
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(NCT05556824) for GERD, and B94 (NCT06385054) for infantile
colic. Other novel applications include BGY-1601-VT for bacterial
vaginosis (NCT06450990), p2261 for lung and renal cancers
(NCT05865730), OPS-2071 for IBS-D (NCT05923892), and
HEM1036 for low anterior resection syndrome (NCT05527301).
Additionally, ILP100-Topical (NCT05608187) and CRS3123
(NCT04781387) are being tested for diabetic ulcers and CDI,
respectively (Gilbert et al., 2025). These trials reflect a critical
maturation of the field toward precision-targeted, regulated
therapeutics—yet ongoing challenges such as interindividual
microbial variability and the need for validated biomarkers must
be addressed to enable broader clinical adoption.

Risk and challenges in microbiome-based
therapeutics

While microbiome-based therapies offer significant clinical
promise, they are accompanied by a spectrum of risks and challenges
that must be carefully considered to ensure safe and effective
translation into clinical practice. One of the foremost concerns is the
unpredictable ecological outcome of introducing live microbes, via
FMT, probiotics, or engineered consortia, into a host’s existing
microbial ecosystem. These interventions can inadvertently disrupt
microbial balance, promote pathobiont overgrowth, or facilitate
horizontal gene transfer, including the spread of antibiotic resistance
genes (Gulliver et al., 2022; Hitch et al., 2022). Safety concerns are
particularly acute in vulnerable populations, such as
immunocompromised patients or those with epithelial barrier
dysfunction. Cases of sepsis and transmission of multidrug-resistant
organisms have been reported in association with improperly screened
FMT, underscoring the need for rigorous donor selection and
microbial quality control (Matuchansky, 2015). Even probiotics,
traditionally perceived as benign, have in rare cases led to bloodstream
infections or immune complications, especially when administered
outside of tightly controlled clinical settings (Sarita et al., 2024).

One of the foremost challenges is interindividual variability in
microbiome composition and function. Differences in baseline
ecology can alter colonization success, metabolite production, and
immune modulation, leading to divergent clinical outcomes for the
same intervention. For example, probiotics shown to be effective in
one cohort may fail in another due to differences in dietary patterns,
antibiotic history, or host genetics (Murga-Garrido et al., 2021;
Rothschild et al., 2018; Qin et al., 2022). Longitudinal studies also
reveal that microbiome communities are highly individualized and
remain stable over years, highlighting the difficulty of standardizing
interventions across populations (Zhou X. et al, 2024). This
underscores the need for predictive microbial and host biomarkers to
guide therapeutic personalization, while also recognizing that
technical variability from sequencing platforms, DNA extraction
methods, and bioinformatics pipelines can further produce
inconsistent taxonomic and functional profiles (Gulyas et al., 2024).
these

standardized mock communities, and spike-in controls have been

To mitigate discrepancies, benchmarking initiatives,
developed to provide internal reference points for bias correction
(Bokulich et al., 2020; Tourlousse et al., 2022). More recently,
Al-driven

normalization strategies have emerged as powerful tools for

bioinformatic  frameworks and  cross-platform
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harmonizing heterogeneous datasets and enhancing reproducibility
across multi-cohort studies.

To ensure reproducibility across microbiome studies, standardized
protocols must be implemented at every stage of the workflow,
including sample collection, processing, and data analysis. At the
pre-analytical level, harmonization of collection methods, stabilization
agents, and storage conditions is essential to minimize variability
introduced by environmental and handling factors. During DNA
extraction and library preparation, the use of validated kits, bead-
beating settings, and standardized primers should be consistently
reported, alongside the incorporation of mock communities and
spike-in controls to benchmark technical bias (Bokulich et al., 20205
Tourlousse et al., 2022). Sequencing protocols should define minimum
depth requirements, quality thresholds, and control samples across
runs to enable cross-study comparability. Equally critical are
bioinformatic standards: version-locked pipelines, consistent reference
databases, and compositional data—aware statistical frameworks that
prevent false discoveries (Gulyds et al., 2024; Rosati et al., 2024).
Finally, adherence to community reporting guidelines and transparent
deposition of raw data, metadata, and analysis workflows in public
repositories will provide the foundation for reproducibility and equity
in clinical translation (Tedersoo et al., 2021).

From a regulatory standpoint, microbiome-based therapeutics,
particularly those involving live or genetically modified organisms,
face significant challenges in classification, approval, and
commercialization. Regulatory frameworks vary across regions, and
there is ongoing debate over how to best ensure safety, consistency,
and efficacy in products that cannot be defined by a single molecular
entity. The lack of harmonized standards for manufacturing, donor
screening, and microbiome characterization further complicates
product development and comparability across clinical trials
(Guglielmetti et al., 2025). Finally, the long-term consequences of
microbial manipulation remain largely unknown. While short-term
safety data are accumulating, few studies have examined the durable
effects of altering microbiome composition during critical
developmental windows or in chronic diseases. Given the deep
integration of the microbiome into host metabolic, immune, and
neurological systems, unintended outcomes may emerge only over
extended follow-up (Cox et al., 2014; Quigley and Gajula, 2020).

In summary, a balanced view of microbiome-based therapeutics
must weigh their clinical potential against documented and theoretical
risks. Addressing safety, interindividual variability, technical
heterogeneity, regulatory gaps, and mechanistic uncertainties through
standardized protocols, benchmarking efforts, mechanistic modeling,
and robust trial design will be critical to ensure these interventions are
both effective and safe across diverse patient populations (Metris et al.,
2025). Although the majority of microbiome-disease studies remain
associative, causal inference is increasingly supported by mechanistic
approaches such as gnotobiotic transfer experiments, engineered
microbial consortia, and metabolite add-back studies, which
demonstrate that specific taxa and functions can directly modulate
host immune and metabolic pathways (Sivan et al., 2015; Vétizou
et al,, 2015). Longitudinal human cohorts with dense multi-omic
profiling, combined with statistical frameworks such as causal graphs
and target trial emulation, are beginning to address temporality and
reduce confounding (Lloyd-Price et al., 2019; Hernan and Robins,
2016). Complementary strategies, including N-of-1 trials, synthetic
communities, Mendelian randomization using host genetic variants,
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and stable-isotope tracing to link microbial metabolites to host
physiology, provide rigorous tools to move from correlation to
causation (Zhou D. et al., 2024). Moving forward, reproducibility will
depend on harmonized protocols, mock-community benchmarking,
and inclusive, multi-site longitudinal studies that ensure findings
generalize across diverse populations (Sinha et al.,, 2017; Pasolli
etal., 2019).

Conclusions and future perspectives

The clinical translation of microbiome research is no longer a
distant prospect but an emerging reality that is reshaping diagnostics,
therapeutics, and personalized medicine (Gilbert et al., 2025). Across
diverse anatomical sites such as the gut, vagina, lung, skin, and oral
cavity, microbial communities orchestrate a myriad of physiological
functions, from immune calibration and metabolic regulation to
neuroendocrine signaling and barrier integrity (Ma et al., 2024). The
insights derived from advanced multi-omics approaches, mechanistic
modeling, and interventional trials have uncovered fundamental
principles underpinning host-microbe symbiosis and dysbiosis
(Macpherson et al., 2023; Natalini et al., 2023; Huang et al., 2024).

Therapeutic modulation of the microbiome has shown promising
results across a range of clinical settings. In metabolic syndrome, for
example, interventions such as intermittent fasting have demonstrated
the capacity to reduce blood pressure and body weight while reshaping
gut microbial composition toward SCFA-producing taxa with anti-
inflammatory properties (Maifeld et al., 2021). Inflammatory bowel
disease has become a prototype condition for microbiome-targeted
therapy, with phage consortia successfully suppressing pathobionts
like Klebsiella pneumoniae in murine models, offering a viable
alternative to broad-spectrum antibiotics (Federici et al., 2022).
Similarly, in neonates, bioactive components in breast milk such as
complement proteins, modulate microbial colonization and confer
protection against enteric infections through a Cl-dependent
mechanism, underscoring the role of maternal-microbiota-immune
crosstalk in early life programming (Xu et al., 2024).

Emerging research demonstrates that microbial signals extend
beyond local niches, influencing systemic physiology through inter-
organ communication networks. The gut-brain-immune axis
integrates microbial metabolites and neuroactive molecules that
regulate microglial maturation, blood-brain barrier permeability, and
behavior (Macpherson et al., 2023; O’Riordan et al., 2025). The lung
microbiome, once considered negligible, is now recognized as a
regulator of respiratory immune tone, with dysbiosis contributing to
asthma, COPD, and altered immunotherapy response in lung cancer
(Natalini et al, 2023). Likewise, dysbiosis in the oral and skin
microbiomes has been linked to systemic inflammation, impaired
wound healing, and autoimmune predisposition (Kerns et al., 2023;
Byrd et al., 2018).

Despite these advances, major challenges persist. The definition
of a “healthy” microbiome remains elusive due to interindividual
variability driven by geography, age, diet, lifestyle, and host genetics
(Lloyd-Price et al., 2016; Human Microbiome Project Consortium,
2012). Predictive biomarkers for treatment success are still
underdeveloped, and therapeutic outcomes remain heterogeneous.
Furthermore, large proportions of microbial “dark matter” remain
uncultured and functionally uncharacterized (Huang et al., 2024). The
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integration of microbial diagnostics into clinical workflows is further
complicated by regulatory uncertainty, safety considerations, and the
need for longitudinal data in diverse populations (Gilbert et al., 2025).
A major obstacle in advancing precision medicine is the integration
of microbiome data with other omics layers, including genomics,
transcriptomics, metabolomics, and epigenomics. Unlike host-derived
molecular data, microbiome datasets are inherently sparse,
compositional, and noisy, which complicates statistical modeling and
alignment with continuous data types (Busato et al., 2023). Technical
variability introduced by differences in sampling, sequencing
platforms, and bioinformatic pipelines leads to pronounced batch
effects, further limiting comparability across studies and cohorts (Yu
et al., 2024). In addition, a large fraction of microbial genes and
metabolites remains functionally uncharacterized, restricting the
capacity to link microbial features with host pathways in a biologically
meaningful manner. These challenges are compounded by the high
temporal and spatial dynamics of microbial communities, which
introduce variability absent in relatively stable host genomes. As a
result, causal inference across multi-omic layers remains difficult, and
reproducibility is often limited (Mangnier et al., 2025). Addressing
these obstacles will require the adoption of advanced computational
frameworks, including bioinformatics pipelines and Al-driven
integration tools, capable of harmonizing heterogeneous datasets
while ensuring interpretability for clinical application (Mani
etal., 2025).

Future strategies must explicitly address variability by leveraging
personalized stratification frameworks, focusing on functional rather
than taxonomic markers, integrating microbiome data with host
multi-omic layers, and ensuring inclusivity in cohort design to
enhance generalizability (Schupack et al., 2022; Muller et al., 2024;
Andreu-Sanchez et al., 2025).

Looking ahead, clinical microbiome research must prioritize the
development of mechanistic models that can explain and predict
host-microbiota interactions across tissues and disease states
(Gibbons et al, 2022). Standardization of microbial reference
genomes, expansion of multi-kingdom and strain-level annotations,
and implementation of high-throughput functional assays will
be essential to identify and validate therapeutic targets (Huang et al.,
2024). Personalized medicine approaches should leverage microbial
metrics (taxonomic composition, metabolite profiles), immune
response signatures, epigenetic signatures, and circadian rhythm
profiles to stratify patients and tailor interventions accordingly (Pérez-
Villa et al., 2023; Bautista et al., 2025b; Ocafia-Paredes et al., 2024;
Lopez-Cortés et al., 2021).

To operationalize these goals, computational tools and machine
learning algorithms are indispensable. Multi-omics integration
frameworks such as MOFA+ and DIABLO enable the extraction of
shared biological signals across microbial, metabolic, immune, and
host genomic layers (Argelaguet et al., 2020; Singh et al., 2019). Deep
learning architectures, including variational autoencoders and graph-
based models, allow for biologically constrained feature learning
from highly dimensional data (Baig et al., 2023; Kim et al., 2019).
These approaches support patient stratification into molecular
endotypes, prediction of therapy response or toxicity using
interpretable models such as elastic-net regression, gradient boosting,
and survival forests, and the identification of actionable microbial or
metabolic pathways through explainability techniques like SHAP
values (Wang C. et al, 2022; Rynazal et al, 2023). Critically,
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computational pipelines must incorporate external validation,
decision-curve analysis, and fairness checks to ensure clinical
robustness and equitable deployment.

Interdisciplinary collaboration across microbiology, immunology,
nutrition, neuroscience, and computational biology will be critical to
address these complexities and maximize translational impact. Lastly,
the human microbiome has moved from associative observation to
actionable science. By decoding the molecular grammar through
which microbial communities influence health and disease, we are
now positioned to design microbiome-informed therapies that are
precise, effective, and scalable. With careful attention to mechanistic
rigor, safety, and interindividual variability, microbiome research is
poised to reshape preventive and therapeutic paradigms across
medicine (Macpherson et al., 2023; Gilbert et al., 2025; Huang et al.,
2024; Natalini et al., 2023; Maifeld et al., 2021).

An important but often overlooked challenge in clinical
microbiome research is health equity (Ma et al., 2024; Foxx et al,,
2021). Current reference databases and classification tools are
disproportionately derived from cohorts in North America, Europe,
and East Asia, with limited representation from low- and middle-
income countries. One example is the microbiome signature of The
Cancer Genome Atlas (TCGA), in which more than 70% of
participants are White (Spratt et al., 2016; Guerrero et al., 2018; Chen
K. P et al, 2023). This geographic bias not only restricts our
understanding of global microbial diversity but also risks
misclassification and reduced diagnostic accuracy when applying
these tools across diverse populations (Blake, 2024). Addressing this
imbalance requires large-scale initiatives that prioritize inclusivity,
expand genome catalogs from underrepresented regions, and ensure
equitable access to microbiome-informed therapies. Without
deliberate attention to these gaps, the promise of microbiome-based
precision medicine may inadvertently exacerbate global health
disparities rather than reduce them (Fatumo et al., 2022; Pasolli et al.,
2019; Lee S. et al., 2024).
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