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The impact of the flooding-draining process on soil ecosystems is complex and 
dynamic. However, the specific effects of different drainage durations on soil 
microorganisms and metabolites remain unclear. This study adopted a multi-omics 
research method. After nontargeted metabolomics analysis of lipids as the main 
metabolite, microbial diversity analysis and lipidomics analysis were conducted 
to determine the main influencing factors. Subsequently, correlation analysis 
was performed with physiological and biochemical data to logically explore the 
changes in soil microorganisms and metabolites during the drainage process (Day 
1 after drainage, R1; Day 2, R2; Day 3, R3; Day 4, R4; and Day 5, R5). The results 
revealed that S-PPO, S-POD, and S-CAT decreased with prolonged drainage 
time, whereas the soil redox potential (Eh-mV) and POD increased. Among the 
various postdrainage comparison groups, lipids and lipid-like molecules were the 
predominant metabolites. Among lipids, the TG subclass of glycerolipids (GLs) and 
the Cer subclass of sphingolipids (SPs) were the most abundant. The TG subclass 
was consistently present in the lipid correlation networks across all comparison 
groups, with TG (15:0/18:1/18:1) exhibiting significant differences between the 
R4 and R1 groups. Redox reactions involving lipids were associated mainly with 
triglycerides, with the most pronounced reduction observed on the second day 
postdrainage. The most pronounced lipid reduction reaction was observed on 
the second day after drainage. Notable differences in bacterial abundance were 
detected between the R4 and R5 groups. At the phylum level, the dominant 
bacterial communities primarily comprised Actinobacteriota and Chloroflexi, with 
the bacterial community structure being significantly influenced by drainage. 
The predominant fungal communities were composed of mainly Ascomycota 
and Rozellomycota. Actinobacteriota and triglyceride (TG) lipids were the major 
components affected during the drainage period. Correlations were identified 
among environmental factors, lipids, and microbial communities, indicating their 
cooperative interactions. The results of this study indicate that with the increase 
in water intake time, the redox reactions in soil lipids and the richness of bacterial 
communities in rice soil significantly increase. At the same time, rapid remodeling 
can have an impact on soil ecosystems, which helps to better understand the 
adaptation strategies of rice soil ecosystems under adversity.
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Introduction

The increasing severity of global climate change has intensified 
extreme weather events, posing significant challenges to global 
ecosystems (Bolan et al., 2023). Flooding, as a typical manifestation of 
this phenomenon, has profoundly impacted agricultural production 
and the ecological environment while also significantly disturbing soil 
microbial ecosystems (Han et al., 2024; Furtak and Wolińska, 2023).

Soil microorganisms are the most active and sensitive biological 
components of the soil ecosystem. They are essential for sustaining 
soil fertility and boosting crop yields by participating in the 
decomposition, transformation, and energy flow of organic matter 
(Jansson and Hofmockel, 2020). However, flooding disasters can lead 
to decreased soil aeration and reduced redox potential, which affect 
the composition and function of soil microbial communities (Ponting 
et al., 2021). Previous studies have extensively investigated the effects 
of soil drying and rewetting on microbial communities, metabolites, 
proteins, and gene expression (Weitz et al., 2020; Couvillion et al., 
2023; Warren, 2020). However, our understanding of how flooded 
paddy soils influence microbial physiology and metabolism following 
water withdrawal remains limited. Microbial communities are highly 
sensitive to environmental disturbances, which can simultaneously 
reshape both their metabolic activities and taxonomic structure. 
Understanding how individual microbial populations adjust their 
metabolic functions under stress conditions is essential, as such 
adaptations influence interspecies metabolic networks and cooperative 
interactions. These shifts at the metabolic level may ultimately drive 
broader changes in community assembly and impact ecosystem-level 
processes such as nutrient cycling and energy flow (Zelezniak et al., 
2015). Additionally, soil microorganisms can produce a range of 
biomarkers, such as lipids, through their metabolic activities. These 
biomarkers can indicate past conditions in soil microbial communities, 
providing important clues for understanding the response 
mechanisms of soil microorganisms during the flooding–drainage 
process (Summons et al., 2022). As a key component of soil microbial 
communities, the lipidome can reflect the diversity and functionality 
of these communities according to its composition and variations.

The rapid reshaping of soil microbial communities and lipidomes 
during the flooding–drainage process may be influenced by various 
factors, including soil physicochemical properties, the initial state of 
the microbial communities, and the duration of flooding (Vives-Peris 
et  al., 2020). Different types of microorganisms respond to 
environmental changes at varying speeds and in different ways. For 
example, some anaerobic microorganisms can quickly adapt to 
hypoxic environments, whereas some aerobic microorganisms may 
be suppressed during the initial stages of flooding but can rapidly 
recover after drainage (Yuan et al., 2023). The soil organic matter and 
nutrient contents can also affect microbial metabolic activities and 
community structure (Ling et al., 2021). Nontargeted metabolomics 
can detect all detectable metabolites in soil samples in an unbiased 
manner, thereby revealing extensive changes in soil metabolic 
pathways during the flooding–drainage process. These metabolites, as 
direct products of microbial activity or response markers to 
environmental stress, can provide detailed information about changes 
in the functional status of soil ecosystems (RoyChowdhury et  al., 
2022). Soil microorganisms can cause carbon fixation in the soil during 
the remodeling process (Afridi et al., 2022). Meanwhile, the utilization 
of soil may lead to changes in soil microbial diversity, thereby affecting 

greenhouse gas emissions (Kroeger et al., 2021). Nutrient availability 
can also be altered by changes in microorganisms and lipids (Pedrinho 
et al., 2024). Currently, omics technologies are becoming increasingly 
important in the field of rice research, and increasing numbers of 
studies are using omics research methods. Through the combination 
of multiple omics fields, scientific research can be conducted logically 
(Iqbal et al., 2021). Through nontargeted metabolomic analysis, we can 
identify the activation or inhibition of key metabolic pathways during 
the flooding–drainage process and thus enhance our understanding of 
the adaptive strategies of soil ecosystems under stress (Gui et al., 2024). 
Recent advances in mass spectrometry have significantly enhanced the 
fields of lipidomics and metabolomics, enabling the characterization 
and quantification of tens of thousands of features representing known 
lipid and metabolite species, far beyond the limited scope of traditional 
targeted analyses (Edwards, 2023). As an emerging research tool, 
lipidomics can provide detailed information about microbial 
membrane lipid composition and metabolic status and therefore help 
reveal microbial adaptive mechanisms during environmental changes. 
Moreover, compared to transcriptomic approaches that measure 
mRNA levels, lipid-based profiling provides a more temporally stable 
reflection of microbial metabolic states, capturing metabolic changes 
over longer timescales (Balser et al., 2019; Ding et al., 2021).

This research examines the dynamic alterations in soil microbial 
community structure, functionality, and metabolome throughout the 
flooding–drainage cycle. At present, the results obtained via 
conventional analysis are not accurate. However, multi-omics analysis 
can obtain final results through precise analysis at various omics levels 
(Shahrajabian and Sun, 2023). By integrating nontargeted metabolomics, 
lipidomics, and microbiome techniques, this study first analyzed the 
metabolite composition and major metabolites in the R1–R5 treatment 
group. Subsequently, the lipid metabolites and microorganisms in the 
R1–R5 treatment group were analyzed to further confirm the main lipid 
metabolites and microbial communities that affect the water return 
process and to perform correlation analysis with microbial and 
physiological biochemical data to determine the key factors in the 
process of flooding and water return. Additionally, we  explore the 
factors driving changes in soil microorganisms and lipidomes by 
combining measurements of soil physicochemical properties with 
environmental factor monitoring. This study aims to elucidate the rapid 
remodeling mechanisms of the soil microbiota and lipidomes during the 
flooding–water recession process. By integrating soil microbial ecology 
with lipidomics, our findings contribute to the theoretical framework of 
soil ecology and provide a scientific basis and practical guidance for 
ecological conservation and sustainable agricultural development. Due 
to the rapid remodeling of microorganisms and lipids in soil under 
stress, which can have an impact on soil ecosystem functions, this 
integrated method help solve soil ecosystem problems. Moreover, this 
research offers new perspectives and strategies for responding to 
extreme climatic events under the context of climate change.

Materials and methods

Experimental materials and growth 
conditions

The experiment was conducted in 2023 at the College of 
Agriculture, Yangzhou University (the specific coordinates are 
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119.423282 degrees east longitude and 32.389204 degrees north 
latitude), using Yangzi 6, an early-maturing late japonica conventional 
rice variety, as the experimental material in a pot cultivation setup.

The pot cultivation method was adopted following the approach 
of Zhu et  al. (2022). Field management was standardized before 
transplantation, and after transplantation, irrigation and pest control 
were carried out according to high-yield cultivation practices.

The experiment was conducted using plastic buckets (inner 
diameter: 25 cm, height: 30 cm) for the bucket cultivation. The seeds 
were sown on May 26, 2023, and rice plants were transplanted on June 
18. Cultivated soil was collected from the 0–20 cm plow layer of paddy 
fields, air-dried naturally, and then ground to pass through a 100-mesh 
sieve. Seedlings with good and consistent growth were selected for 
transplanting, with 3 holes per barrel, 2 seedlings per hole, and 15 kg 
soil per pot. Post-transplantation water, disease, and pest management 
followed high-yield cultivation practices. The plants were placed in 
two large water tanks, water was added, and the barrels were 
submerged to the upper part of the rice seedlings. The plants remained 
submerged for 6 days. Samples were collected after 6 days of flooding 
(0 days, soil after flooding), and on the 1st, 2nd, 3rd, 4th, and 5th days 
after rewetting, corresponding to R1, R2, R3, R4, and R5, respectively.

Sample collection

Soil rhizosphere microorganisms and root samples were collected 
following the method outlined by Sun et al. (2024).

Rice rhizosphere soil samples were collected 10 cm from the plant 
at a depth of 20 cm and placed in sampling tubes, with 10 g of soil 
obtained per treatment.

For rice root system sampling, whole rice plants were carefully 
excavated using appropriate tools, and the rhizosphere soil adhering 
to the roots was collected.

Three biological replicates of both the rhizosphere soil and the 
roots were obtained for each treatment. All samples were flash-frozen 
in liquid nitrogen prior to transport to the laboratory and subsequently 
stored at −80 °C in an ultra-low-temperature freezer until analysis.

Metabolite extraction, detection, and data 
analysis

Metabolite extraction and detection were conducted following the 
method described by Zhu et al. (2024). Soil samples (50.00 g) were 
accurately weighed for the extraction of metabolites using 400 μL of a 
methanol–water (4:1, v/v) solution with 0.02 mg mL−1 
L-2-chlorophenylalanin as the internal standard. A pooled quality 
control (QC) sample was created by combining equal volumes of all 
samples as part of the system conditioning and quality 
control procedures.

Metabolite data analysis was performed following the method 
described by Xiong et al. (2022). LC-MS analysis was performed using 
the Thermo Fisher Scientific UHPLC-Q Exactive platform.

Chromatographic separation was achieved on a UPLC HSS T3 
column (100 mm × 2.1 mm, 1.8 μm) with the following parameters: 
column temperature maintained at 40 °C, mobile phase consisting of 
(A) 0.1% formic acid aqueous solution and (B) 0.1% formic acid in 
propanol/acetonitrile mixture, and a constant flow rate of 0.4 mL/min. 

Sample injection volume was set at 2 μL. Mass spectrometric detection 
employed an electrospray ionization (ESI) source with dual polarity 
scanning capability (positive/negative ion modes).

Microbial DNA extraction and amplicon 
analysis

DNA extraction and 16S sequencing were performed according to 
the method of Zhu et  al. (2022). Microbial genomic DNA was 
extracted from the soil samples using the E.Z.N.A.® Soil DNA Kit 
(Omega Bio-tek, Norcross, Georgia, United  States). The V3–V4 
hypervariable region of the bacterial 16S rRNA gene was amplified 
using the forward primer 338F (5′-ACTCCTACGGGAGGCAGCAG-3′) 
and the reverse primer 806R (5′-GGACTACHVGGGTWTCTAAT-3′). 
For fungal community, the ITS sequences were amplified using the 
primers ITS1F (5′-CTTGGTCATTTAGAGGAAGTAA-3′) and ITS4R 
(5′-TCCTCCGCTTATTGATATGC-3′). Primers were tailed with 
PacBio barcode sequences to distinguish each sample. Amplification 
reactions (20-μL volume) consisted of 4 μL of 5 × FastPfu buffer, 2 μL 
of 2.5 mM dNTPs, 0.8 μL of forward primer (5 μM), 0.8 μL of reverse 
primer (5 μM), 0.4 μL of FastPfu DNA Polymerase, 10 ng of template 
DNA and DNase-free water. PCR amplification was performed as 
follows: initial denaturation at 95 °C for 3 min; 27 cycles of denaturing 
at 95 °C for 30 s, annealing at 55 °C for 30 s and extension at 72 °C for 
45 s; single extension at 72 °C for 10 min; and then holding at 4 °C 
(T100 Thermal Cycler PCR thermocycler, BIO-RAD, United States). 
After electrophoresis, the PCR products were purified using AMPure® 
PB beads (Pacific Biosciences, CA, United States) and quantified with 
Qubit 4.0 (Thermo Fisher Scientific, United States). Sequencing of the 
equimolar pooled purified amplicons was performed using paired-end 
sequencing on the Illumina PE250 platform (Illumina, San Diego, 
United States).

Equimolar pooled purified amplicons were sequenced using 
paired-end sequencing on an Illumina PE250 platform (Illumina, San 
Diego, United  States). Post-demultiplexing, sequences underwent 
quality filtering using fastp (v0.19.6) and were subsequently merged 
with FLASH (v1.2.11). High-quality sequences were de-noised using 
the DADA2 plugin in the QIIME2 (version 2020.2) pipeline with 
recommended parameters, achieving single nucleotide resolution 
based on sample error profiles. Amplicon sequence variants (ASVs) 
are typically referred to as DADA2-denoised sequences. ASVs were 
taxonomically assigned using the Naive Bayes consensus taxonomy 
classifier in QIIME2 with the SILVA 16S rRNA database (v138). 
Metagenomic functions were predicted using PICRUSt2, based on 
ASV representative sequences. PICRUSt2 is a software suite that 
utilizes HMMER to align ASV representative sequences with reference 
sequences. ASV representative sequences were integrated into a 
reference tree using EPA-NG and Gappa. The 16S gene copies were 
normalized to the levels of castor. MinPath was employed to predict 
gene family profiles and map them to gene pathways. The entire 
analysis process was aligned with PICRUSt2 protocols.

Metabolomics analysis

Raw LC-MS data were processed using Progenesis QI software 
(Waters Corporation, Milford, United States), and a three-dimensional 
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data matrix in CSV format was generated, containing sample 
metadata, metabolite identities, and mass spectral intensities. Internal 
standards and known false-positive peaks—including instrumental 
noise, column bleed, and derivatization artifacts—were removed, 
followed by deredundancy and peak pooling. Metabolites were 
identified by matching against the HMDB,1 Metlin,2 and the self-
curated Majorbio Database (MJDB) from Majorbio Biotechnology 
Co., Ltd. (Shanghai, China).

The annotated data matrix was then uploaded to the Majorbio 
Cloud Platform3 for statistical and bioinformatics analyses. Variables 
with more than 80% non-zero values in at least one group were 
retained to reduce missingness. Remaining missing values were 
imputed using the minimum observed intensity. To correct for 
systematic errors introduced by sample preparation or instrument 
variation, total sum normalization was applied. Variables with a 
relative standard deviation (RSD) exceeding 30% in quality control 
(QC) samples were excluded. The data were subsequently log10-
transformed to approximate a normal distribution.

Multivariate statistical analyses, including principal component 
analysis (PCA) and orthogonal partial least squares discriminant 
analysis (OPLS-DA), were conducted using the ropls package (Version 
1.6.2) in R. Model stability was validated by 7-fold cross-validation. 
Differential metabolites were identified based on variable importance 
in projection (VIP) scores greater than 1 from the OPLS-DA model 
and p-values less than 0.05 from Student’s t tests. Functional 
interpretation of differential metabolites was performed through 
pathway annotation using the KEGG database.4 Enrichment analysis 
was carried out using the scipy.stats module in Python, with Fisher’s 
exact test used to identify pathways significantly associated with 
experimental treatments.

Data preprocessing and annotation

Data preprocessing refers to the method of Zhu et al. (2022). After 
MS detection, the raw LC-MS data were preprocessed and annotated. 
Data processing was performed using Progenesis QI software (Waters 
Corporation, Milford, United States). The output was a CSV-formatted 
3D data matrix containing sample details, metabolite identifiers, and 
MS response intensities.

To enhance data accuracy, the matrix was refined by removing 
internal standard peaks and known false-positive peaks (e.g., noise, 
column bleed, and derivatization reagent peaks). The matrix was 
further processed by deduplication and peak merging. Metabolites 
were identified using databases such as HMDB, Metlin, and MajorBio.

The processed data were then imported into the MajorBio cloud 
platform for analysis. Metabolic features present in at least 80% of the 
sample groups were retained. For samples with metabolite levels below 
the quantification threshold, the minimum value was estimated. 
Variables with a relative standard deviation (RSD) exceeding 30% in 
QC samples were excluded. A final data matrix was created using 
log10 transformation to facilitate further analysis.

1  http://www.hmdb.ca/

2  https://metlin.scripps.edu/

3  https://cloud.majorbio.com

4  https://www.kegg.jp/kegg/pathway.html

Data analysis

Physiological and biochemical data were organized and visualized 
using Adobe Illustrator CS6 and WPS 2021. Correlation analysis and 
significance testing were performed using SPSS 18.0, with statistical 
significance determined by Tukey’s test.

Results

Analysis of physiological and biochemical 
indicators

The PPO activity of R3 was consistent with that of R2 and both 
were significantly lower than that of R1 (p < 0.05), showing no 
significant difference, whereas R4 exhibited a 50.93% decrease 
compared with R1, and R5 presented a substantial decline of 67.26% 
relative to R1 (Figure 1A). POD activity also showed a continuous 
decrease from R1 to R5, with significant variations observed between 
R1 and R2 (p < 0.05), as well as between R3 and R4, R5. Specifically, 
R2 was significantly lower than R1 (p < 0.05), with a reduction of 
36.3%, while R3 displayed a decline of 42.04% compared with R1. The 
POD activities in R4 and R5 decreased by 56.21 and 60.39%, 
respectively, relative to those in R3 (Figure 1B).

CAT activity followed a similar trend to both PPO and POD 
activity, exhibiting a gradual decline. Notable differences were 
observed between R1 and R4, as well as between R1 and R5. Compared 
with R1, R2 showed a minor reduction of 1.8%, while R3 decreased by 
2.16%. The CAT activity in R4 decreased by 2.81% compared to that 
in R1, and R5 exhibited the most significant reduction (p < 0.05), with 
a 5.03% decline relative to that in R1 (Figure 1C).

The redox potential (Eh) reflects the aeration status of soil. As the 
duration of drainage increased, Eh progressively rose, remaining positive, 
indicating that the sampled soil was in a reduced state. Significant 
differences were evident among R1, R2, R3, R4, and R5 (p < 0.05). From 
R2 onward, Eh showed a slight increase in each treatment, with R2 
increasing by an average of 60 mV compared with R1, representing a 
7.83% increase; R3 increased by 187 mV compared with R1, or 20.84%; 
R4 increased by 235 mV compared with R1, or 24.97%; and R5 increased 
by 382 mV compared with R1, or 37.89% (Figure 1D). This suggests that 
as the processes of flooding and drainage progress, soil physiological and 
biochemical activities gradually decline, accompanied by an increase in 
redox potential. We hypothesize that these changes in soil physiological 
and biochemical processes may be associated with redox transformations 
involving soil microbial communities and lipid components.

Metabolic profiling analysis

Principal component analysis (PCA) on the four comparison 
groups revealed that in the comparison between R2 and R1, PC1 
accounted for 54.20%, and PC2 accounted for 20.70%, with some 
overlap suggesting a certain degree of similarity (Figure 2A). In the 
comparison between R3 and R1, PC1 accounted for 42.50% of the 
variation, and PC2 accounted for 22.00%, highlighting significant 
differences (p < 0.05), as the two groups were distinctly separated 
(Figure 2B). For the comparison between R4 and R1, PC1 had a value 
of 40.80%, and PC2 had a value of 22.00%, with no overlap and with 
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notable differences observed (Figure 2C). In the comparison between 
R5 and R1, PC1 accounted for 35.20%, and PC2 accounted for 25.70%, 
indicating some overlap and similarity (Figure 2D).

Partial least squares discriminant analysis (PLS-DA) was 
performed on the metabolite profiles of the four comparison groups. 
In the comparison between R2 and R1, the explained variances of 
Component 1 (Comp1) and Component 2 (Comp2) were 37.60 and 
34.40%, respectively, with a greater intergroup separation observed in 
the R2 group compared to the N1 treatment group (Figure 2E). In the 
comparison between R3 and R1, Comp1 and Comp2 accounted for 
34.80 and 25.70% of the variance, respectively. For the R4 vs. R1 
comparison, Comp1 and Comp2 explained 31.50 and 31.80% of the 
variance, respectively. Notably, both R3 and R4 exhibited lower 
intergroup separation compared to the R1 treatment group 
(Figures 2F,G). In the R5 vs. R1 comparison, Comp1 and Comp2 
accounted for 30.60 and 19.70% of the variance, respectively, with the 
R5 group showing greater intergroup separation than the R1 treatment 
group (Figure 2H). Overall, all four comparison groups demonstrated 
clear and substantial intergroup separation, indicating strong 
classification performance and high reliability of the PLS-DA models.

Nontargeted metabolomic analysis

From the bar chart of metabolite numbers across the comparison 
groups, the R2 vs. R1 comparison identified a total of 28 upregulated 

and 54 downregulated metabolites. In the R3 vs. R1 comparison, 45 
upregulated and 165 downregulated metabolites were found, while in 
the R4 vs. R1 comparison, 118 differentially abundant metabolites were 
identified, comprising 32 upregulated and 86 downregulated 
metabolites. In the R5 vs. R1 comparison, 136 upregulated and 50 
downregulated metabolites were identified (Figure  3A and 
Supplementary Tables S1–S4). The Venn diagram of metabolites for 
each comparison group shows that R2 vs. R1 has 40 unique metabolites, 
accounting for 48.78% of the total metabolites. In the R3 vs. R1 
comparison, 125 unique metabolites were found, accounting for 
59.52% of the total. For R4 vs. R1, 37 unique metabolites were 
identified, accounting for 31.36% of the total. In the R5 vs. R1 
comparison, there were 138 unique metabolites, representing 74.19% 
of the total metabolites. Moreover, the number of metabolites common 
to all four groups was only 3, accounting for 0.005% of the total 
(Figure 3B). Analysis of the HMDB compound charts for the R2 vs. R1 
comparison revealed the following composition: lipids and lipid-like 
molecules (30.77%), organic heterocyclic compounds (14.10%), 
benzoic acid derivatives (12.82%), organic oxidized compounds 
(8.97%), and organic acids and their derivatives (7.69%) (Figure 3C). 
In the R3 vs. R1 comparison, the composition was as follows: lipids and 
lipid-like molecules 35.18%, organic acids and derivatives 16.58%, 
organic heterocyclic compounds 13.57%, organic oxidized compounds 
10.05%, and aromatic compounds, 9.55% (Figure 3D). In the R4 vs. R1 
comparison, the composition was as follows: lipids and lipid-like 
molecules (33.33%), organic heterocyclic compounds (15.79%), 

FIGURE 1

Physiological and biochemical indicators. (A) Soil polyphenol oxidase (S-PPO) activity. (B) Soil peroxidase (S-POD) activity. (C) Soil catalase (S-CAT) 
activity. (D) Redox potential. The short lines in the line graphs represent standard error. The data are shown as the mean ± s.e.m. (n = 3). Lowercase 
letters indicate significance at the 0.05 level.
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FIGURE 2

PCA and PLS-DA score plots. (A) PCA score plot for the R2 vs. R1 comparison. (B) PCA score plot for the R3 vs. R1 comparison. (C) PCA score plot for 
the R4 vs. R1 comparison. (D) PCA score plot for the R5 vs. R1 comparison. (E) PLS-DA score plot for the R2 vs. R1 comparison. (F) PLS-DA score plot 
for the R3 vs. R1 comparison. (G) PLS-DA score plot for the R4 vs. R1 comparison. (H) PLS-DA score plot for the R5 vs. R1 comparison.
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organic acids and their derivatives (14.04%), organic oxidized 
compounds (10.53%), and benzoic acid derivatives (9.65%) (Figure 3E). 
In the comparison between R5 and R1, the composition was as follows: 
organic heterocyclic compounds constituted 28.18%, lipids and lipid-
like molecules made up 16.02%, organic acids and their derivatives 
comprised 15.47%, benzoic acid derivatives accounted for 10.50%, and 
organic oxidized compounds represented 8.29% (Figure 3F).

Distribution of lipid carbon chain length 
and unsaturation

The distribution bar chart of lipid metabolites categorized by 
carbon chain length revealed that the highest concentrations of lipid 
metabolites were observed at carbon chain lengths of 34, 36, 50, 52, 
and 54, with respective counts of 16, 19, 15, 17, and 15 species. Notably, 
lipid metabolites with a carbon chain length of 36 were the most 
prevalent, constituting 9.5% of the total lipid metabolites (Figure 4A). 
Additionally, 118 types of unsaturated lipids were identified. Saturated 
fatty acyls (SFAs) comprised 39 types, accounting for 33.0508% of the 
total; monounsaturated fatty acyls (MUFAs) consisted of 22 types, 

representing 18.6441%; polyunsaturated fatty acyls (PUFAs) included 
19 types, making up 16.1017%; odd-chain fatty acyls (ODD) featured 
20 types, accounting for 16.9492%; and the remaining unknown types 
numbered 18, comprising 15.2542% of the total (Figure 4B).

From the radar chart of lipid content by unsaturation type, the 
highest content was observed for 16:0 lipids, reaching 8,993. The next 
greatest contents were observed for 18:0 and 18:1 lipids, with contents 
of 6,580 and 6,129, respectively. The contents of 16:1 and 18:2 lipids 
were comparable, both with approximately 5,000, while 15:0 and 17:0 
lipids exhibited similar contents of approximately 2,200 (Figure 4C). 
In the radar chart of lipid content by carbon chain length, the highest 
content was obtained for lipids with a carbon chain length of 36.0, 
followed by lipids with a length of 52.0, with contents of 2,493 and 
2,208, respectively. The contents of lipids with a carbon chain length 
of 34.0 and 54.0 were similar (Figure 4D).

Lipid classification analysis

In a total of five soil samples, 203 unique lipid species were 
identified. The lipids were categorized into three main classes: GLs, 

FIGURE 3

Analysis of metabolite numbers and shared metabolites. (A) Bar chart of metabolite numbers for each comparison group. (B) Venn diagram showing 
the number of shared metabolites among the comparison groups. Compound classification statistics. (C) Compound content statistics for the R2 vs. 
R1 comparison. (D) Compound content statistics for the R3 vs. R1 comparison. (E) Compound content statistics for the R4 vs. R1 comparison. 
(F) Compound content statistics for the R5 vs. R1 comparison. The selected HMDB hierarchy (superclass, class, or subclass) is displayed in descending 
order according to the number of metabolites, along with the percentage they occupy. In each pie chart, different colors represent different HMDB 
classifications, and the area reflects the relative proportion of metabolites within that classification.
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glycerophospholipids (GPs), and SPs. Among the unique lipids, 59.6% 
(121) were classified as GLs. These species were classified into 
subclasses of diacylglycerols (DGs), monostearin (MG), 
monogalactosyl diacylglycerols (MGDGs), and triacylglycerols (TGs). 
Among the 121 lipid species, 102 were classified into the TG subclass. 
Moreover, 15 (7.3%) unique glycerophospholipids were identified, 
including diacylglycerophosphocholine (PC), lysophosphatidylcholine 
(LPC), diacylglycerophosphoethanolamine (PE), 
phosphatidylethanolamine (PEt), and diacylglycerophosphoinositol 
(PI). Finally, 61 (30%) SPs were identified, including ceramides (Cer), 
SPH, and sphingomyelin (SM), with Cer being the most abundant, 
accounting for 90.1% of the identified SPs (Figure  5A). The lipid 
classification results indicate that TG represented the largest 
proportion among all lipid classes, averaging 56.73%, followed by Cer, 
with an average of 24.57%. The mean contents of the remaining nine 
lipid subclasses did not exceed 5%. The subclass with the lowest 
average content was PI, at 1.03% (Figure 5B). The radar chart of lipid 
content according to classification revealed that in the GL category, 
TG had the highest content, reaching 13,035, followed by DG, MG, 
and MGDG, with respective contents of 1,568, 685, and 371 

(Figure  5C). In the SP radar chart, Cer was the most abundant, 
followed by sphingosine (Sph) and sphingomyelin (SM), with contents 
of 6,831, 730, and 130, respectively (Figure 5D). In the GP radar chart, 
PC had the highest content, reaching 793, followed by LPC > PE > PEt 
> PI, with contents of 452, 271, 167, and 119, respectively (Figure 5E). 
Only one subclass, StE, was found in the sterol (ST) radar chart, with 
a content of 126 (Figure 5F). Wax esters (WE) and cholesteryl esters 
(Co) were identified in the fatty acid (FA) radar chart, with contents 
of 446 and 352, respectively (Figure 5G).

Analysis of lipid metabolism

This study examined the common and unique lipid metabolites 
across four comparison groups. The comparison of R2 and R1 revealed 
41 lipid metabolites, 38 of which were upregulated and 3 of which were 
downregulated. For the R3 versus R1 comparison, 4 metabolites were 
upregulated, and 1 was downregulated. The R4 versus R1 comparison 
revealed 5 lipid metabolites, all of which were downregulated. In the 
R5 versus R1 comparison, there were 2 upregulated and 3 

FIGURE 4

Lipid classification statistics. (A) Bar chart showing the distribution of lipid carbon chain lengths. The x-axis represents the lengths of lipid carbon 
chains, while the y-axis indicates the number of lipids with that carbon chain length. Lipid unsaturation classification statistics. (B) Pie chart illustrating 
the classification of lipid unsaturation. Different colors in the pie chart represent the quantities of various types, including saturated fatty acyls (SFA), 
monounsaturated fatty acyls (MUFA), polyunsaturated fatty acyls (PUFA), and odd-numbered fatty acyls (ODD). Lipid distribution content statistics. 
(C) Radar chart of lipid content by unsaturation type. (D) Radar chart of lipid content by carbon chain length. The grid lines, from inner to outer, 
represent lipid content from low to high, with the green shading formed by connecting the quantities classified by the number of double bonds.
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downregulated metabolites (Supplementary Figure S1A and 
Supplementary Tables S5–S8). To better understand the distribution 
of shared metabolites among these groups, a Venn diagram was 
generated, which indicated that R2 had 34 unique metabolites 
compared with R1, representing 82.92% of its total metabolites. The 
other three groups each had 2 unique metabolites, accounting for 40% 
of their total metabolites. Notably, there were no shared metabolites 
among the four groups (Supplementary Figure S1B).

Differential lipid classification

To further identify the specific lipid types involved in the flooding-
draining process, differential lipid classification analysis was conducted, 
and scatter plots were generated for the differential lipids across the four 
comparison groups. The scatter plot for R2 versus R1 revealed 41 
differentially abundant lipids, categorized into TG, Cer, SM, PC, MG, 
and MGDG, with TG accounting for 18 metabolites, representing 
43.90% of the total, followed by Cer with 16 metabolites, accounting for 
39.02% (Supplementary Figure S2A). In the R3 versus R1 plot, 5 lipids 
were identified, including DG, PC, TG, and Cer lipids, such as TG:TG 
(15:0/16:1/16:1) and TG (18:0/16:0/18:3) (Supplementary Figure S2B). 
The R4 versus R1 plot revealed five lipids from the TG subclass: TG 
(16:0/16:0/16:0), TG (16:1/14:0/14:0), TG (15:0/18:1/18:1), TG 

(16:1/16:1/20:5), and TG (15:0/15:0/16:0) (Supplementary Figure S2C). 
In the comparison between R5 and R1, five lipids were identified, 
including TG, Cer, and MGDG, with three lipids classified under the 
TG subclass: TG (16:0/16:0/16:1), TG (15:0/18:1/18:1), and TG 
(16:1/18:3/18:3) (Supplementary Figure S2D). TG (15:0/18:1/18:1) 
appeared in both the R4 versus R1 and R5 versus R1 comparisons.

Analysis of lipid correlations

We constructed networks and visualized them using network 
diagrams. The correlation network between R2 and R1 identified three 
types of lipids, namely, SP, GL, and GP, with respective counts of 17, 22, 
and 2. Within these lipid types, TG and Cer presented the highest 
counts at 18 and 16, representing 43.9 and 39.02% of the total lipid 
count, respectively. Notably, the clustering coefficient for TG 
(15:0/16:1/16:1) was 1, indicating complete connectivity among all 
adjacent nodes, while all Cer nodes had degree values exceeding 34 
(Figure 6A). In the correlation network comparing R3 to R1, only three 
nodes were detected, corresponding to SP, GL, and GP lipids; the SP 
was TG (15:0/16:1/16:1) (Figure  6B). The R4 versus R1 network 
revealed 5 nodes, all of which were classified as GL lipids within the TG 
subclass: TG (16:0/16:0/16:0), TG (16:1/14:0/14:0), TG (15:0/18:1/18:1), 
TG (16:1/16:1/20:5), and TG (15:0/15:0/16:0). Notably, TG 

FIGURE 5

Lipid classification annotations. (A) Lipid classification statistics chart. The x-axis represents the number of identified lipids in each subclass, while the 
y-axis shows the names of the subclasses. Different colors denote the major classes to which each bar belongs, including fatty acyls (FA), glycerolipids 
(GL), glycerophospholipids (GP), sphingolipids (SP), sterol esters (ST), prenyl lipids (PR), glycolipids (SL), and polyketides (PK). Lipid classification analysis. 
(B) Lipid classification change statistics chart. The x-axis represents different lipid subclasses, and the y-axis shows the total content of different groups 
within the same lipid class. The black short bars represent error bars. Bars representing different groups are distinguished by different colors. (C) Radar 
chart of GL class content. (D) Radar chart of SP class content. (E) Radar chart of GP class content. (F) Radar chart of ST class content. (G) Radar chart of 
FA class content. The grid lines extend from inner to outer, representing lipid content from low to high, with the green shading formed by connecting 
the content of each classification.
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(16:0/16:0/16:0), TG (16:1/14:0/14:0), and TG (16:1/16:1/20:5) also 
exhibited clustering coefficients of 1 (Figure 6C). In the R5 versus R1 
network, 5 nodes were identified, corresponding to SP and GL lipids, 
with three belonging to the TG subclass—TG (16:0/16:0/16:1), TG 
(15:0/18:1/18:1), and TG (16:1/18:3/18:3)—where TG (16:1/18:3/18:3) 
had a clustering coefficient of 1. TG (15:0/18:1/18:1) was also present, 
consistent with the R4 versus R1 comparison (Figure 6D). Analysis of 
the correlation network between lipid metabolites and environmental 
factors revealed that most nodes exhibited positive correlations, with 
two GP nodes showing negative correlations. Eleven lipids were found 
to be associated with environmental factors, including the TG, Cer, and 
LPC subclasses, with 8 TGs accounting for 72.72% of the total. The 
strongest associations were observed with S_POD, represented by TG 
(15:0/16:1/18:1), TG (18:1/17:1/18:1), TG (15:0/15:0/16:0), and TG 
(16:1/18:3/18:3) (Figure 6E).

Analysis of microbial diversity

The analysis indicated a significant difference in bacterial 
community richness between the R4 and R5 groups (p < 0.05), while 
diversity and evenness showed no significant differences. In the case 
of fungi, differences in richness, diversity, and evenness were observed 
across the groups, but these differences were also not significant. 
Therefore, it is evident that flooding followed by drainage leads to 
significant changes in bacterial richness (Supplementary Table S9).

Analysis of microbial community 
composition

The analysis revealed 1 shared species between R1 and R5; 2 species 
shared among R2, R3, R4, and R5; and 1 species shared among R1, R2, 
R4, and R5, resulting in a total of 10 shared fungal species across all 

treatment groups (Supplementary Figure S3B). The relative abundance 
analysis of the bacterial community revealed that the predominant phyla 
were Actinobacteriota, Chloroflexi, Proteobacteria, Acidobacteriota, and 
Firmicutes. The relative abundance of Actinobacteriota progressively 
increased from R1 to R5, with a relative abundance of 18.7% in R1 and 
reaching a maximum of 24.6% in R5. Chloroflexi accounted for 20.06, 
18.90, 21.37, 19.85, and 19.79% of the total bacteria in R1 through R5, 
respectively, with R3 accounting for the highest proportion. In R5, 
Proteobacteria and Acidobacteriota exhibited relative abundances of 16 
and 10.95%, respectively, while Firmicutes showed an abundance of 
11.65%, averaging 11.33% overall. The relative abundances of the 
remaining species were all below 5% (Supplementary Figure S3C). In 
the fungal community relative abundance analysis, two primary phyla 
were identified: Ascomycota and Rozellomycota. Ascomycota consistently 
demonstrated the highest relative abundance across all treatment 
groups, with values of 48.42, 42.09, 44.58, 58.30, and 40.39%; the 
maximum was observed in R4 and minimum in R5, with an average 
value of 46.75%. Rozellomycota had an average abundance of 2.25%, with 
a relative abundance of 27.58% in R5. The remaining species did not 
exceed 25% relative abundance (Supplementary Figure S3D). The 
bacterial PCoA plot, showing PC1 and PC2 values of 36.46 and 32.21%, 
respectively, indicated significant overlap and similarity among the 
communities (p < 0.05) (Supplementary Figure S3E). The fungal PCoA 
plot revealed that PC1 and PC2 accounted for 61.09 and 15.20% of the 
variance, respectively, with overlapping communities, suggesting notable 
similarity in community composition (Supplementary Figure S3F).

LEfSe multilevel species differential 
discrimination analysis

The bacterial LEfSe multilevel species hierarchy tree diagram 
identified eight differentially abundant species at the phylum level, 
including Firmicutes, Proteobacteria, Bacteroidota, Cyanobacteria, 

FIGURE 6

Univariate correlation network analysis. (A) Correlation network for R2 versus R1. (B) Correlation network for R3 versus R1. (C) Correlation network for 
R4 versus R1. (D) Correlation network for R5 versus R1. (E) Correlation network between lipid metabolites and environmental factors. In the figures, the 
size of the nodes indicates their degree, while different colors represent various classifications. The color of the connecting lines denotes the nature of 
the correlation, with red indicating positive correlation and blue indicating negative correlation. The thickness of the lines reflects the magnitude of the 
correlation coefficient.
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Chloroflexi, Verrucomicrobiota, Patescibacteria, and Desulfobacterota. 
Within the Firmicutes branch, Clostridium_sensu_stricto_11 was 
significantly enriched (p < 0.05). For Proteobacteria, the two 
significantly enriched taxa were Methyloligellaceae and 
Methyloligellaceae (p < 0.05). In Bacteroidota, five significantly 
enriched species were identified, namely, Bacteroidetes_vadinHA17, 
Bacteroidales, and Bacteroidetes_vadinHA17, with both Bacteroidales 
and Bacteroidetes_vadinHA17 belonging to the same category. 
Additionally, Aurantisolimonas and Dinghuibacter diverged from this 
category. The Cyanobacteria phylum also included two significantly 
enriched species: Oxyphotobacteria_Incertae_Sedis and 
Oxyphotobacteria_Incertae_Sedis (p < 0.05). Both Verrucomicrobiota 
and Patescibacteria contained one significantly enriched species each: 
Verrucomicrobiales and Saccharimonadales, respectively. 
Desulfobacterota had only one species without any other significantly 
enriched taxa (Figure 7A).

In the fungal LEfSe multilevel species hierarchy tree diagram, 
three differentially abundant taxa were identified: Basidiomycota, 
Ascomycota, and Chytridiomycota. Within Basidiomycota, four species 
were significantly enriched from the phylum to the genus level: Class 
Basidiomycota, Order Basidiomycota, Family Basidiomycota, and 
Genus Basidiomycota. In Ascomycota, there were no significantly 
enriched species at the phylum or class level; however, at the order 
level, Microascaceae and Thyridariaceae were significantly enriched 
(p < 0.05). At the family level, two significantly enriched species were 
identified (p < 0.05), namely, unclassified_o_Coniochaetales and 
Microascales. At the genus level, three significantly enriched species 
were found: unclassified_o_Coniochaetales, Clonostachys, and 
unclassified_f_Sporormiaceae. Chytridiomycota showed significant 
enrichment exclusively at the family and genus levels, specifically in 
Aquamyces and Aquamycetaceae (p < 0.05) (Figure 7B). Analysis of the 
LEfSe multilevel species hierarchy tree diagram revealed that 
Bacteroidota (bacteria) and Ascomycota (fungi) were the most 
abundant and taxonomically rich groups in both comparisons, 
suggesting their potential ecological importance in the soil 
environment during the water recession stage.

Correlation analysis

RDA of bacterial taxa and environmental factors was conducted 
at the phylum level; the results revealed that RDA1 accounted for 
17.65% and RDA2 accounted for 5.23%, these values explained an 
small percentage of variance. The environmental factor with the 
greatest influence on bacteria was S_CAT, followed by S_POD, and the 
least impactful factor was S_PPO, with all three factors exhibiting 
positive correlations. These factors were found in the first quadrant 
and were therefore negatively correlated with RDA1 and positively 
correlated with RDA2 (Supplementary Figure S4A). In the analysis of 
fungal taxa and environmental factors, RDA1 represented 42.24%, and 
RDA2 represented 1.17%. The order of environmental factors 
impacting fungi, from greatest to least, was S_CAT, S_PPO, and S_
POD, with all exhibiting negative correlations among themselves. S_
CAT was in the first quadrant, negatively correlated with RDA1 and 
positively correlated with RDA2, while S_PPO was in the fourth 
quadrant, positively correlated with RDA1 and negatively correlated 
with RDA2. S_POD was also in the first quadrant and was negatively 
correlated with both RDA1 and RDA2 (Supplementary Figure S4B). 

The correlations between bacteria and metabolites were further 
analyzed. PA (10:0/PGDI) was significantly negatively correlated with 
Zixibecteria, Campilobacterota, Dadabacteria, Methylomirabilota, and 
FW113 but significantly positively correlated with Spirochaetota, 
Deinococcota, and Firmicutes (p < 0.05). PG(TXB2/a-25:0) was 
significantly positively correlated with Bacteroidota and Firmicutes 
(p < 0.05). MG(a-13:0/0:0/0:0)[rac] was significantly positively 
correlated with Cyanobacteria (p < 0.05). Cer(d17:1/PGD2) was 
significantly positively correlated with Methylomirabilota but 
negatively correlated with Spirochaetota (p < 0.05), Deinococcota, 
Firmicutes, and Hydrogenedentes. LysoPA(a-25:0/0:0) was significantly 
positively correlated with Campilobacterota and negatively correlated 
with Margulisbacteria (p < 0.05), Halanaerobiaeota, and 
Hydrogenedentes. Cer(d17:1/PGE2) had no significantly positively 
correlated metabolites, while Cer(d17:1/PGD2) exhibited significant 
negative correlations with several taxa (p < 0.05) 
(Supplementary Figure S4C). Among the fungal metabolites, 
Cer(d17:1/PGD2) was significantly negatively correlated with 
Kickxellomycota and Rozellomycota (p < 0.05), while Cer(d17:1/PGE2) 
was negatively correlated with Kickxellomycota, Calcarisporiellomycota, 
and Blastocladiomycota. LysoPA(a-25:0/0:0) was significantly 
negatively correlated with Kickxellomycota and Calcarisporiellomycota 
(p < 0.05). Neither MG(a-13:0/0:0/0:0)[rac] nor PG(TXB2/a-25:0) was 
significantly correlated with any metabolites (p < 0.05). PA(10:0/
PGD1) was positively correlated with Rozellomycota 
(Supplementary Figure S4D).

Correlation network analysis

Bacterial unifactorial network diagram analysis revealed 
associations among bacterial species at 27 phylum levels. Among 
these, five species exhibited relative abundances exceeding 6,000: 
Actinobacteriota, Chloroflexi, Proteobacteria, Acidobacteriota, and 
Firmicutes, with Actinobacteriota having the highest abundance of 
113,633. Latescibacterota and Bacteroidota displayed the most 
associations with other species, with a total of 8 associations. Notably, 
the clustering coefficient of NB1-j was 1, indicating that its nodes 
were fully connected with neighboring nodes. An analysis of the 
three centrality coefficients of all nodes revealed that Bacteroidota 
consistently ranked among the top five across all three centrality 
metrics, highlighting its significance in the network (p < 0.05) 
(Figure  8A). Similarly, the fungal unifactorial network diagram 
revealed associations among fungal species in 8 phyla. Among these, 
Ascomycota and Rozellomycota presented higher abundances. 
Mortierellomycota, Ascomycota, and Rozellomycota were 
independently associated, with clustering coefficients of 1, suggesting 
that these three species are completely interconnected. 
Zoopagomycota exhibited the highest number of associations with 
other species, totaling 3, and also had the highest values across all 
three centrality coefficients (Figure  8B). The correlation network 
analysis between bacterial metabolites and environmental factors 
revealed that most node-to-node interactions were negatively 
correlated. However, S_POD was positively correlated with 
Patescibacteria and Bacteroidota, while S_PPO was positively 
correlated with Calditrichota. The analysis indicated that 
Actinobacteriota had the highest abundance and was influenced by 
three environmental factors. S_CAT affected both Actinobacteriota 
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and p__GAL15 (Figure  8C). In contrast, the fungal metabolite–
environment factor correlation network showed that only one 
environmental factor influenced one metabolite: S_PPO negatively 
affected Chytridiomycota, although its clustering coefficient was 0, 
indicating minimal association between them (Figure 8D).

Discussion

The oxidation potential of the soil increased with the duration of 
drainage (Figure 1D), corroborating earlier research (Harpenslager 

et al., 2024; Mikutta et al., 2024). These results indicate that flooding 
and subsequent drainage significantly impact the physiological and 
biochemical characteristics of the soil. The PCA of four comparison 
groups revealed that R2-R1 and R5-R1 exhibited significant overlap 
(p < 0.05), indicating a certain degree of similarity (Figures 2A,D). In 
contrast, R3-R1 and R4-R1 were more distantly spaced, indicating 
differences (Figures 2B,C). Partial least squares discriminant analysis 
(PLS-DA) demonstrated clear separation among the four groups, 
underscoring the strong classification effect of the metabolites 
(Figures 2E–H). Metabolite analysis showed that in the R2-R1, R3-R1, 
and R4-R1 comparison groups, the number of downregulated 

FIGURE 7

LEfSe multi-level species differential discrimination analysis. (A) Bacterial LEfSe multi-level species hierarchy tree diagram. (B) Fungal LEfSe multi-level 
species hierarchy tree diagram. Nodes in different colors indicate microbial taxa that are significantly enriched in the corresponding groups and have a 
notable impact on inter-group differences; light yellow nodes represent microbial taxa that show no significant differences across groups or do not 
significantly affect inter-group differences.
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metabolites exceeded the number of upregulated metabolites, with 
R3-R1 displaying the highest number of differentially expressed 
metabolites. Conversely, R5-R1 had more upregulated metabolites 
(Figure 3A). The Venn diagram of metabolites indicated that R5-R1 
possessed the highest number of unique metabolites (Figure  3B), 
suggesting that the soil microorganisms experienced metabolite 
profile shifts under flooding and drainage conditions, followed by 
redox reactions over time. This aligns with previous findings from 
metabolomic analyses of flooded and postflooding grape seedlings 
(Peng et al., 2023). Additionally, the four comparison groups revealed 
the presence of diverse organic heterocyclic compounds, lipids and 
lipid-like molecules, organic acids and their derivatives, benzoic acids, 
organic oxidants, and phenolic compounds (Figures 3C–F), consistent 
with earlier studies (Wang et al., 2023).

The distribution aligns with previous findings on lipid 
distributions under salt stress (Xue et al., 2024). Additionally, the 
radar chart of unsaturated lipid contents revealed the prevalence of 
16:0, 16:1, 18:0, 18:1, and 18:2 lipids, consistent with prior research 
(Couvillion et al., 2023). The lipid metabolites were predominantly 
classified into four categories: GL, SP, GP, and FA (Figure 5A). In the 
lipid classification summary table, the most abundant lipid 
subclasses were TG from the GL class and Cer from the SP class 
(Figure 5B), corroborating findings from Pérez-Cova et al. (2022) 
and Xu et  al. (2024). Among the comparison groups, R2-R1 
exhibited the highest number of lipid metabolites, while the other 

three groups each had five (Supplementary Figure S1A). Unique 
lipid metabolites were also most abundant in the R2-R1 group, 
suggesting that lipid redox reactions stabilized over time, aligning 
with previous studies (Couvillion et al., 2023). Further validation 
through lipid differential classification analysis revealed the highest 
number of differential lipid species in the R2-R1 group, with TG 
lipids present in all comparison groups 
(Supplementary Figures S2A–D). Correlation network analysis 
indicated that R2-R1 had the most lipids, with TG (15:0/16:1/16:1) 
exhibiting a clustering coefficient of 1, indicating complete 
connectivity among adjacent nodes (Figure  6A). TG lipids (a 
subclass of GLs) were present in all groups (Figures  6B–D). 
Additionally, 11 lipid types were correlated with environmental 
factors, with TG lipids constituting 72.72% of the total lipids 
(Figure 6E). In previous studies, it has been found that the utilization 
efficiency of microbial carbon sources decreases, making it easier to 
accumulate neutral energy storage lipids such as TAG. And after the 
restoration of oxidative conditions, plant roots and microorganisms 
initiate β oxidation to decompose TAG for energy supply (Sun et al., 
2018; Dourou et al., 2018). These results highlight significant redox 
reactions in root soil lipids under flooding and drainage stress, 
confirming that TG lipids are major reductive lipids, consistent with 
previous findings (Chialva et al., 2020). This study found that the 
dominant bacterial communities Actinobacteriota and TG lipids 
undergo changes during rehydration. Previous studies have shown 

FIGURE 8

Correlation network analysis. (A) Bacterial univariate network diagram. (B) Fungal univariate network diagram. (C) Bacterial bivariate network diagram. 
(D) Fungal bivariate network diagram. The bivariate correlation network diagram primarily illustrates the correlation between species at a specific 
taxonomic level and environmental factors within the samples. The diagram displays species information with correlation coefficients of absolute 
values greater than or equal to 0.6 and p < 0.05. The color of the lines indicates the type of correlation: red represents positive correlations, while 
green indicates negative correlations. The thickness of the lines corresponds to the strength of the correlation; thicker lines signify stronger 
correlations between species, and a greater number of lines indicates closer connections between that species and others.
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that bacterial TG biosynthesis is mainly limited to the phylum 
Actinobacteria (Alvarez and Steinbüchel, 2002; Zhang et al., 2024), 
and fatty acids can enter the TCA cycle through ß oxidation or be 
resynthesized by fatty acid synthase. Therefore, we  believe that 
Actinobacteriota is correlated with TG lipids during rehydration. 
Meanwhile, previous studies have shown that microbial lipid 
metabolism (including TG) is closely related to Eh values. Through 
simulated oxidation/reduction alternation experiments, it was 
revealed how the red oxygen cycle controls Fe mineral dissolution 
and organic carbon release. Under lower Eh conditions, organic 
carbon tends to passively release and accumulate through reduction. 
Although TG lipids were not directly analyzed, it was emphasized 
that microbial organic carbon metabolism (including neutral lipid 
branch metabolism such as TG) may be regulated in a reducing 
environment (Schulz et al., 2024). The study emphasizes that the 
availability of oxygen determines the accumulation of Fe2+, microbial 
biomass, and degradability of C, with the central role of Fe as an 
electron acceptor mediating SOC mineralization (Li et al., 2021). In 
this study, it was found that TG lipids are correlated with 
physiological and biochemical characteristics, and changes in Eh can 
be  found to regulate the synthesis and decomposition 
pathways of TG.

This study examined bacterial and fungal community 
richness, diversity, and evenness across various treatment 
groups, identifying significant differences in bacterial richness 
between R4 and R5 (p < 0.05) (Supplementary Table S3), 
aligning with earlier research (Zhu et al., 2022; Gao et al., 2023). 
The bacterial community was primarily composed of 
Actinobacteriota, Chloroflexi, Proteobacteria, and 
Acidobacteriota (Supplementary Figure S3C), aligning with 
earlier research on rice rhizosphere bacteria under various water 
management conditions (Chialva et al., 2020) and confirming 
the predominant bacterial composition under drought and 
flooding stress in corn and wheat (Gao et al., 2023; Francioli 
et al., 2021). These findings are consistent with prior studies 
examining rice rhizosphere microbiota under diverse irrigation 
regimes (Chialva et  al., 2020) and further validate the 
characteristic bacterial assemblages observed in cereal crops 
subjected to drought and flooding stress (Gao et  al., 2023; 
Francioli et al., 2021).

For fungi, Ascomycota and Rozellomycota were the main 
groups identified under flooding and drainage stress 
(Supplementary Figure S3D), corroborating previous studies (Li 
et al., 2020). These microbial communities are consistent with 
those mentioned in previous studies that can promote plant 
growth (Santoyo et al., 2016). PCoA revealed high similarity in 
community composition among the five groups of bacteria and 
fungi (Supplementary Figures S3E,F), supporting earlier studies 
(Chialva et al., 2020). LEfSe analysis revealed that for bacteria, 
Bacteroidota was significantly enriched in R2, R3, and R4 
(p < 0.05), while for fungi, Ascomycota was predominantly 
enriched in R1 and R4, particularly in R4 (Francioli et al., 2021). 
RDA revealed that the environmental factors S_CAT, S_POD, and 
S_PPO were positively correlated with bacterial communities but 
negatively correlated with fungal communities, confirming that 
external water stress affected bacterial richness but not fungal 
richness. Previous research has indicated that increased soil 
enzyme activity is linked to increased microbial biomass due to 

precipitation (Yang et  al., 2017), while changes in pH due to 
variations in water levels affect soil enzyme activity (Xu et al., 
2023), supporting our findings. In the single-factor correlation 
network analysis, Actinobacteriota, Chloroflexi, Proteobacteria, 
and Acidobacteriota had the highest relative abundances among 
bacteria, with Actinobacteriota being the most abundant and 
Bacteroidota having the most associations 
(Supplementary Figures S4A,B). Among fungi, Ascomycota and 
Rozellomycota were relatively abundant. Previous studies have 
shown that Ascomycota and Rozellomycota play roles in 
promoting organic matter decomposition, secreting secondary 
metabolites, and supporting autotrophic processes (Yang et al., 
2025). Correlation analysis revealed that Actinobacteriota were 
influenced by three environmental factors 
(Supplementary Figure S4C), while among fungi, Chytridiomycota 
were impacted by soil polyphenol oxidase 
(Supplementary Figure S4D). The significant correlation observed 
between fungal diversity, community composition, and phenol 
oxidase activity in previous studies aligns well with the results 
obtained in this study (Toberman et al., 2008).

This study examined the dynamic changes in soil microbial 
community structure, function, and metabolome during flooding 
and drainage. The findings indicated decreases in S-PPO, S-POD, and 
S-CAT with prolonged drainage, along with increases in soil redox 
potential (Eh-mV) and POD over time. The composition and changes 
in major soil metabolites, lipids, fungi, and bacteria were also 
analyzed, providing a framework for further understanding the 
adaptation of rice soil ecosystems under adverse conditions. Due to 
the rapid changes in soil redox status caused by flooding and water 
withdrawal, the microbial community around the roots is affected, 
which in turn affects the nutrient absorption and resistance 
expression of rice. Additionally, the accumulation of nitrite and the 
entry of oxygen during drainage promote denitrification reactions 
and increase carbon dioxide emissions. Therefore, understanding the 
microbial metabolic network reconstruction induced by flooding and 
water withdrawal is of great guiding significance for optimizing 
agricultural management and mitigating greenhouse gas emissions.

Conclusion

In this study, flooding and subsequent drainage significantly 
influenced the composition of soil microbial communities and lipid 
profiles. With prolonged drainage, the activities of key soil enzymes—
including polyphenol oxidase, peroxidase, and catalase—gradually 
declined, whereas the soil redox potential increased over time. Redox 
changes in lipids were associated primarily with triglycerides, which, 
based on their dynamic behavior during drainage, were rapidly degraded 
and involved in oxidative energy supply. Notably, the most substantial 
lipid reduction occurred on the second day post-drainage. Drainage also 
markedly altered bacterial community structure, and environmental 
factors played a regulatory role in mediating the correlation between 
bacterial communities and lipid profiles. These findings suggest a 
coordinated interaction among microbial communities, lipid metabolites, 
and environmental variables. Moreover, the observed temporal shifts in 
microbial composition and lipid metabolism during drainage highlight 
their integrated response to changing hydrological conditions, which 

https://doi.org/10.3389/fmicb.2025.1632744
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Lu et al.� 10.3389/fmicb.2025.1632744

Frontiers in Microbiology 15 frontiersin.org

may contribute to enhanced soil ecosystem stability and adaptive 
resilience under external stressors.
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Glossary

S-PPO - Soil polyphenol oxidase

S-POD - Soil peroxidase

S-CAT - Soil catalase

Eh-mV - Soil redox potential

SFAs - Saturated fatty acyls

MUFAs - Monounsaturated fatty acyls

PUFAs - Polyunsaturated fatty acyls

ODD - Odd-chain fatty acyls

GLs - Glycerolipids

GPs - Glycerophospholipids

SPs - Sphingolipids

DGs - Diacylglycerols

MG - Monostearin

MGDGs - Monogalactosyl diacylglycerols

TGs - Triacylglycerols

PC - Diacylglycerophosphocholine

LPC - Lysophosphatidylcholine

PE - Diacylglycerophosphoethanolamine

PEt - Phosphatidylethanolamine

PI - Diacylglycerophosphoinositol

Cer - Ceramides

SM - Sphingomyelin

Sph - Sphingosine

ST - Sterol

WE - Wax esters

Co - Cholesteryl esters

FA - Fatty acid
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