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Soil microbiome profiling is crucial for understanding microbial diversity and its roles 
in ecosystem functioning and agricultural productivity. Recent advancements in 
high-throughput sequencing, particularly Pacific Biosciences (PacBio) and Oxford 
Nanopore Technologies (ONT), offer long-read sequencing capabilities that enhance 
microbial community analysis. In this study, we performed a comparative evaluation 
of 16S rRNA gene sequencing using Illumina (V4 and V3–V4 regions), PacBio 
(full-length and trimmed V3–V4/V4 regions), and ONT (full-length) to assess 
bacterial diversity in soil microbiomes. We analyzed three distinct soil types and 
applied standardized bioinformatics pipelines tailored to each platform. To ensure 
comparability, sequencing depth was normalized across platforms (10,000, 20,000, 
25,000, and 35,000 reads per sample). Our results demonstrated that ONT and 
PacBio provided comparable bacterial diversity assessments, with PacBio showing 
slightly higher efficiency in detecting low-abundance taxa. Despite differences 
in sequencing accuracy, ONT produced results that closely matched those of 
PacBio, suggesting that ONT’s inherent sequencing errors do not significantly 
affect the interpretation of well-represented taxa. Our study demonstrated that, 
regardless of the sequencing technology used and the choice of the target region 
(full-length 16S rRNA gene or its regions), microbial community analysis ensures 
clear clustering of samples based on soil type. The only exception is the V4 
region, where no soil-type clustering is observed (p = 0.79). These results provide 
a comprehensive evaluation of sequencing platform performance.
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Introduction

Microbiome profiling is essential for understanding the complex 
living network within soil that plays an important role in agricultural 
systems (Mas-Carrió et al., 2018). It provides vital information on soil 
ecology (Chen et  al., 2021) and helps in identifying microbiomes 
indicative of soil fertility and crop production, which is crucial for 
developing sustainable agriculture (Zhang et al., 2022).

Despite the importance of soil microbiome profiling, conventional 
techniques such as culturing and PCR-based methodologies face 
significant limitations. One major challenge is the high diversity and 
heterogeneity of soil microbial community (MC), which complicates 
the detection and monitoring of microbial responses to different 
management practices (Erlandson et al., 2024). Additionally, there is 
a lack of soil-specific reference databases available to classifiers, which 
hinders the accurate representation of the soil community complexity 
(Edwin et al., 2024).

Recent advancements in soil microbiome characterization have 
been driven by the development and application of high-throughput 
sequencing (HTS) techniques (Garg et  al., 2024) which simplify 
description of MC composition in various habitats compared to 
traditional methods (Zhang G. et al., 2024; Zhang T. et al., 2024) and 
allow the development of modern indicators of soil biological quality 
(Djemiel et al., 2022). Traditional methods like culturing and Sanger 
sequencing are limited by biases and low throughput, often 
underrepresenting microbial diversity. HTS analyzes thousands to 
millions of DNA sequences in parallel, offering identification of both 
abundant and rare taxa, enabling assessment of functional potential 
and exploration of MC dynamics across spatial and temporal scales. 
Additionally, HTS reduces time and cost by automating processes, 
providing rapid, large-scale analysis of soil ecosystems, crucial for 
studying biogeochemical cycles, plant-microbe interactions, and 
environmental responses (Caporaso et al., 2012).

Amplicon sequencing of the 16S ribosomal RNA (16S rRNA) 
gene is considered a reliable and efficient method for taxonomic 
classification of MC and analyzing their associated characteristics 
(Yarza et  al., 2014). Third-generation sequencing solutions, 
represented by PacBio and ONT, appear to be  superior platforms 
compared to traditional methods such as Illumina and Sanger 
sequencing due to their ability to produce long reads, allowing for 
full-length 16S rRNA gene sequencing, which offers finer taxonomic 
resolution (Garg et  al., 2024). Traditional short-read methods 
(100–400 bp), such as Illumina, usually target hypervariable regions, 
e.g., V3–V4 (Klindworth et al., 2013), which can lead to ambiguous 
taxonomic assignments (Callahan et al., 2019). Long-read sequencing 
overcomes this limitation and improves species-level identification.

PacBio platform, utilizing the circular consensus sequencing 
(CCS) model, is capable of fully covering the complete 16S rRNA 
sequences, providing high-resolution species-level identification with 
an exceptional accuracy exceeding 99.9% (Johnson et al., 2019). The 
high accuracy of PacBio reads is achieved through multiple passes of 
the same DNA molecule, which offers detailed insights into specific 
genomic regions (Garg et al., 2024). The existing data on ONT use in 
16S rRNA sequencing is more controversial due to higher error rates 
compared to PacBio (Zhang et  al., 2023). Meanwhile, recent 
modifications of ONT, with the latest reagent kits, flow cells with 
double reader-head (particularly, R10.4.1 flow cell used in current 
study), and basecalling algorithms significantly improved the base 

accuracy to over 99% (Ermini and Driguez, 2024). Additionally, 
application of algorithms developed precisely for MC profiling from 
full-length 16S rRNA sequences, such as Emu, ensures generation of 
fewer false positives and false negatives than alternative methods, thus 
reducing the error rates (Curry et al., 2022). Furthermore, a recent 
study reported Q-scores close to Q28 (~99.84% base accuracy) for 
ONT reads, emphasizing the notable improvement in sequencing 
quality achieved by Nanopore platforms in recent years (Zhang 
G. et  al., 2024; Zhang T. et  al., 2024). This trend of increasing 
basecalling accuracy, coupled with improved library preparation 
protocols and real-time data processing, highlights the rapidly 
growing potential of ONT for accurate and large-scale 
metataxonomic studies.

In recent years, both PacBio and ONT sequencing platforms have 
significantly improved in accuracy, enabling more precise analysis of 
MC. However, challenges remain, such as the higher error rates 
inherent to ONT reads and the reliance on error-correction algorithms 
in PacBio sequencing (Zhang et al., 2023).

Although comparative studies of microbiome sequencing data, 
including soil microbiomes, have been conducted, they typically focus 
on pairwise platform comparisons and often lack biological replication 
(Stevens et al., 2023; Yeo et al., 2024; Biada et al., 2025). In contrast, 
our study includes three independent biological replicates per soil 
sample, enabling a more robust comparison of three sequencing 
technologies (Illumina, PacBio, ONT) and minimizing random 
variation. This approach enhances the reliability of diversity estimates 
and strengthens conclusions regarding the comparative performance 
of the platforms. However, few studies have evaluated the combined 
impact of sequencing technology, read depth, and analytical tools on 
soil microbiota profiling using full-length 16S rRNA gene sequencing. 
Our work addresses this gap by directly comparing all three platforms 
under controlled conditions, incorporating multiple sequencing 
depths and a standardized bioinformatic pipeline.

Building on this experimental design, we systematically assessed 
the performance of PacBio, ONT, and Illumina platforms in detecting 
bacterial diversity in soil samples. By analyzing full-length 16S rRNA 
gene sequences across different read depths (10,000, 20,000, 25,000, 
and 35,000 reads per sample), we compared alpha and beta diversity 
metrics and examined the taxonomic resolution of each platform. This 
study provides new insights into the relative strengths and limitations 
of each technology for soil microbiome research.

Materials and methods

Soil samples collection

The size of the experimental plots was 15 m × 18 m, the 
experiment was located in 3-fold replication. Soil samples were 
collected at the 0–10 and 10–20 cm soil layers. The sample for analysis 
was an average sample of 5 individual ones, collected at each spatial 
replication of the experiment, with three replications of the 
experiment. On the long-term fallow, soil sampling was carried out 
according to the same scheme. Soil samples were collected from 
medium-humus, medium-loamy chernozem (Luvic Chernozem) in 
the forest-steppe region of the Ob area (coordinates: 54° 53′13.5″ N, 
82° 59′36.7″E). The soil samples were delivered to the laboratory, 
passed through a sieve with a cell diameter of 1 mm under sterile 
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conditions, placed in sterile containers and stored at −20°C until DNA 
extraction. Thus, the pattern of obtaining samples for each soil type: 2 
layers, 3 replications.

DNA extraction

Samples were homogenized and then DNA was extracted using 
the Quick-DNA Fecal/Soil Microbe Microprep kit (Zymo Research, 
United States) following the manufacturer’s protocol. The extracted 
DNA was quantified using a Qubit 4 Fluorometer (Thermo Fisher 
Scientific, United States) and quality was assessed by electrophoresis 
in 1% agarose gel. ZymoBIOMICS Gut Microbiome Standard (D6331) 
was extracted using the same protocol.

16S rRNA gene sequencing on the PacBio 
platform

The full-length 16S rRNA gene was amplified from 5 ng of 
genomic DNA using the universal primers 5′-GCATC/barcode/
AGRGTTYGATYMTGGCTCAG-3′ and 5′-GCATC/barcode/
RGYTACCTTGTTACGACTT-3′ (PN 101-599-700, PacBio 
Protocol), each tagged with sample-specific PacBio barcodes for 
multiplexed sequencing. PCR amplification was performed over 
30 cycles: denaturation at 95°C for 30 s, annealing at 57°C for 30 s, 
and extension at 72°C for 60 s. Post-PCR quality was assessed 
using a Fragment Analyzer (Agilent Technologies, United States), 
and equimolar DNA concentrations from each sample were 
pooled. Library preparation was conducted with the SMRTbell 
Prep Kit 3.0 (PacBio, United  States) following PacBio’s 16S 
SMRTbell protocol. Library concentration and size were measured 
using the Qubit HS DNA Kit (Invitrogen, United States) and a 
Fragment Analyzer. Sequencing was performed on the PacBio 
Sequel IIe system with a run time of 10 h.

16S rRNA gene sequencing on the MinION 
platform

PCR amplification, library preparation, and sequencing on the 
MinION platform were performed as described in our previous work 
(Strokach et al., 2025). Briefly, the 16S rRNA gene was amplified using 
the primers 27F (AGAGTTTGATYMTGGCTCAG) and 1492R 
(GGTTACCTTGTTAYGACTT), and amplicons were purified with 
KAPA HyperPure Beads (Roche, Switzerland). Libraries were 
prepared using the Native Barcoding Kit 96 (SQK-NBD109.96) and 
sequenced on an R10.4.1 flow cell (FLO-MIN114) with the MinION 
Mk1B device. Sequencing data were acquired using MINKNOW 
software (ver. 24.06.14). Basecalling was performed using dorado (ver. 
7.6.7) (dorado) with hac model and Phred score >7.

16S rRNA gene sequencing on the Illumina 
platform

PCR amplification, library preparation, and sequencing on the 
Illumina platform were performed as described in our previous work 

(Larin et  al., 2024). The V3–V4 region was amplified using primers 
incorporating Illumina adapter sequences: forward (TCGTCG 
GCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGC 
AG) and reverse (GTCTCGTGGGCTCGGAGATGTGTATAAGAGA 
CAGGACTACH VGGGTATCTAATCC) (Klindworth et al., 2013). For 
the V4 region, the primers 515F (TCGTCGGCAGCGTCAGATG 
TGTATAAGAGACAGGTGBCAGC MGCCGCGGTAA) and 805R 
(GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACN V 
GGGTMTCTAATCC) were used. Amplification was conducted using 
the Tersus Plus PCR Kit (Evrogen, Russia), followed by indexing with 
Illumina dual indices. Library quality and size distribution were assessed 
using a high-sensitivity DNA chip (Agilent Technologies), and 
quantification was performed with the Quant-iT DNA Assay Kit, High 
Sensitivity (Thermo Fisher Scientific, United States). Sequencing was 
carried out on the MiSeq platform (Illumina, United States) using the 
MiSeq Reagent Kit v2 (500 cycles) and 20% Phix.

Bioinformatics and statistical analysis 16S 
rRNA data from ONT

Raw ONT reads were downsampled to 10,000, 20,000, 25,000 
and 35,000 reads using the Python Bio package. Adapter sequences 
were removed using Porechop (ver. 0.2.4)1 with default parameters. 
Reads were filtered using Chopper (ver. 0.6.0) (De Coster and 
Rademakers, 2023) with the parameters -l 1,300 and --maxlength 
1,600, removing sequences with a Phred score below 10 or outside 
the length range of 1,300–1,600 nucleotides. Taxonomic 
classification was performed using the Emu pipeline (ver. 3.4.5) 
(Curry et  al., 2022), which analyzed the processed sequences. 
Additionally, NanoStat (ver. 1.6.0) (De Coster et al., 2018) was 
used to generate comprehensive quality and distribution statistics 
for the filtered reads. Processed data were imported into RStudio 
(ver. 2023.12.0 + 369, R ver. 4.3.2) for downstream analysis using 
the MicrobiotaProcess package (ver. 1.17.1) (Xu et  al., 2023). 
Statistical significance between groups was determined using 
distance-based permutational multivariate analysis of variance 
(PERMANOVA) via the mp_adonis function, with Bray–Curtis 
distances and significance set at p < 0.05 based on 9,999 
permutations. ZymoBIOMICS Gut Microbiome Standard were 
processed the same way as the soil ONT data except the initial step 
of rarefaction. Results of taxonomic annotation were imported 
into Rstudio for further analysis.

An additional database was created based on the Genome 
Taxonomy Database (GTDB) genus database by using emu 
build-database command from Emu pipeline (ver. 3.4.5). The 
created database was used for taxonomic classification with the 
same tools as in case with standard emu database for 
further comparison with results of analysis of Illumina 
V3–V4 region reads. To ensure taxonomic consistency across 
replicates, we applied an additional filtering step at the species 
level. Each soil sample was sequenced in triplicate, and only 
bacterial taxa detected in all three replicates of a given sample 
were retained.

1 https://github.com/rrwick/Porechop
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Bioinformatics analysis of full-length 16S 
rRNA data from PacBio

Demultiplexing of the sequencing reads was performed with PacBio 
lima (2.5.1). HiFi reads (CCS reads with a predicted accuracy ≥Q20) 
were extracted using SAMtools (1.13) (Danecek et  al., 2021) and 
converted to FASTQ format using PacBio bam2fastq (1.3.1). Primers 
were trimmed from each read using cutadapt (4.2) (Martin, 2011). To 
enable direct comparison with ONT sequencing data, PacBio reads were 
downsampled to 10,000, 20,000, and 25,000 reads using the Python Bio 
package. These reads were processed using Chopper (ver. 0.6.0), Emu 
(ver. 3.4.5), and NanoStat (ver. 1.6.0) with the same parameters as those 
applied to ONT data. The resulting data were imported into RStudio 
(ver. 2023.12.0 + 369, R 4.3.2) and analyzed following the same 
workflow used for ONT data. The Procrustes test was applied to 
compare the taxonomic data structure of ONT and PacBio on every 
sequencing depth. The protest function with 999 permutations from 
vegan R package (ver. 2.6-6.1) was used to carry out this test.

Bioinformatics analysis of V3–V4 and V4 
regions of 16S rRNA data for PacBio

Cutadapt (ver. 4.9) (Martin, 2011) was used to extract specific 16S 
rRNA regions from full-length PacBio reads. For the V4 region, 
primer sequences 515F (GTGYCAGCMGCCGCGGTAA) and 805R 
(GGATTAGATACCCTGGTA) were applied with the 
following parameters:

-g “GTGYCAGCMGCCGCGGTAA; rightmost. GGATTAGATA 
CCCTGGTA”

-e 0.2
--discard-untrimmed
Similarly, the V3–V4 region was extracted using primers 341F 

(CCTACGGGNGGCWGCAG) and 801R 
(GACTACHVGGGTATCTAATCC) with the same Cutadapt 
parameters. The extracted sequences were processed using the 
DADA2 pipeline (ver. 1.30.0) (Callahan et al., 2016) with the following 
settings: Filtering and trimming: filterAndTrim(truncLen = 0, 
maxN = 0, maxEE = 2, truncQ = 2, rm.phix = TRUE).

Chimera removal: removeBimeraDenovo(method = “consensus”).
Taxonomic classification was performed using the GTDB genus 

database and DADA2 R package.

Bioinformatics analysis of 16S rRNA data 
for Illumina

Raw Illumina paired-end reads were processed using the fastp tool 
(ver. 0.22.0) (Chen et  al., 2018) for quality control and adapter 
removal, with the --detect_adapter_for_pe option enabled. The 
adapter-free paired-end reads were then merged using the same tool 
with the --merge option. Further processing was conducted using the 
DADA2 pipeline (ver. 1.30.0) (Callahan et al., 2016) with GTDB genus 
database. To maintain consistency with PacBio V3–V4 and V4 
datasets, 18,000 reads were randomly subsampled from the merged 
reads for downstream analysis. The bioinformatics workflow followed 
the same approach as for PacBio data, including taxonomic 
classification and microbial community diversity assessments.

Comparative analysis of 16S rRNA gene 
sequencing using Illumina and ONT

Illumina V3–V4 region of 16S rRNA gene sequencing data were 
processed using the DADA2 pipeline, with taxonomic classification 
performed against the GTDB genus-level database (file GTDB_
bac120_arc122_ssu_r202_Genus.fa.gz) (Alishum, 2021). For ONT 
full-length 16S rRNA sequencing data the Emu pipeline was used. 
We used the same database as for Illumina data and modified it to 
make it compatible with Emu to ensure consistency in taxonomic 
assignment. Bacterial taxa detected in all three replicates of a given 
sample were retained.

Comparative analysis of sequencing 
technologies

For cross-platform comparisons, all sequencing reads were 
preprocessed using platform-specific tools to ensure consistency. Emu 
(ver. 3.4.5) was used for ONT and PacBio full-length reads, while the 
DADA2 pipeline (ver. 1.30.0) with the GTDB genus database was applied 
to PacBio V4/V3–V4 and Illumina reads (Figure 1). This standardized 
approach allowed for a direct comparison of sequencing platforms in 
terms of taxonomic resolution and MC profiling.

All of the scripts we applied you can find via this link: https://github.
com/mromanov2001/Comparative-Evaluation-of-Sequencing-Platformsfor- 
16S-rRNA-Based-Soil-Microbiome-Profiling.

The raw sequencing data obtained using PacBio, ONT and Illumina 
sequencing were submitted to the NCBI Sequence Read Archive (SRA) 
and are accessible under the following BioProject identifiers: 
PRJNA1190309 (for 16S rRNA gene sequencing on ONT), 
PRJNA1190314 [for 16S rRNA gene sequencing on Pacific Biosciences 
(PacBio)], PRJNA1190320 and PRJNA1190324 (for V3–V4 and V4 
region of the 16S rRNA gene sequencing data on Illumina (MiSeq) 
respectively).

Results

PacBio vs. ONT: read depth affects the 
efficiency of species identification

We compared the performance of the PacBio and ONT sequencing 
platforms at varying read depths to analyze the MC in soil samples. The 
initial mean read count was 41,070 for PacBio and 83,617 for ONT. After 
filtering, the average read count remained almost unchanged for PacBio 
(40,856), while ONT experienced a more substantial reduction, retaining 
69,896 reads on average. The percentage of reads filtered out was 
significantly lower for PacBio (0.52%) compared to ONT (16.7%), 
reflecting the higher sequencing error rate associated with ONT. Detailed 
information on the initial read counts for each sample is provided in 
Supplementary Table S1. To evaluate the effect of read depth on bacterial 
diversity detection, raw sequencing reads were downsampled to 10,000, 
20,000, 25,000, and 35,000 per sample. The latest number of reads was 
chosen due to minimal reads presence among PacBio samples data. Since 
each sample was sequenced in three biological replicates, we applied an 
additional filtering criterion to ensure the reliability of detected bacterial 
taxa. Only bacterial species that were consistently present across all three 
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replicates of a given sample were retained for further analysis. This 
approach minimizes the impact of random sequencing errors and rare 
artifacts, enhancing the robustness of taxonomic assignments and 
comparative assessments between sequencing platforms.

Increasing the number of reads per sample led to a significant rise 
in the number of identified species for both PacBio and ONT 
(Table 1). As the read count increased from 10,000 to 20,000, the 
number of identified species rose 1.58-fold for PacBio (348 to 549) and 
1.7-fold for ONT (267 to 461). At 25,000 reads, species counts reached 
1,16 for PacBio and 1,1 for ONT, further increasing to 1,23 and 1,3, 
respectively, at 35,000 reads (Table 1), while the average percentage of 
unclassified reads remained low, at 0.12% for PacBio and 0.04% for 
ONT (Supplementary Table S2). These results highlight the positive 

correlation between read depth and species identification. When 
analyzing the rarefaction curves, we observed that bacterial diversity 
in the samples reached a plateau after 35,000 reads, indicating 
sufficient taxonomic coverage (Supplementary Figure S1).

To further evaluate the impact of ONT basecalling accuracy on 
downstream taxonomic profiling, we applied the Dorado basecaller in 
both high accuracy (HAC) and super-accuracy (SUP) models to ONT 
sequencing data from the ZymoBIOMICS Gut Microbiome Standard. 
Precision, recall, and F1-score were calculated, considering only bacterial 
species with a relative abundance greater than 0.5% as present. All 
metrics were identical for both basecalling modes: precision = 0.91, 
recall = 0.77, and F1-score = 0.83. The number of reads retained after 
filtering was also comparable between the two models: 39,323 for SUP 

FIGURE 1

Data analysis workflow.

TABLE 1 The number of bacterial species identified from sequencing data obtained using PacBio and ONT platforms at different read depths.

Number of reads per sample Number of species detecteda

PacBio ONT Delta %

10,000 348 267 23.3

20,000 549 461 16

25,000 637 519 18.5

35,000 784 663 15.4

aWilcoxon signed rank exact test shows no significant difference in number of identified species between PacBio and ONT platforms (p-value = 0.125).
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and 38,423 for HAC (Supplementary Table S1). Moreover, the overall 
taxonomic composition of the standard was consistent with the 
manufacturer’s expected profile in both basecalling models, indicating 
reliable identification of dominant taxa regardless of the model used 
(Supplementary Table S3). It is important to note that the Dorado sup 
mode requires substantially more computational time and resources.

Majority of species are common to both 
platforms

After evaluating the relationship between read depth and the 
number of identified species, we assessed the overall overlap in 
species detected by each sequencing technology (Figure  2). 
Approximately half of the total identified species were detected by 
both technologies, with 55.7% overlap at 10,000 reads, increasing 
to 57.6% at 20,000, 56% at 25,000, and 57.5% at 35,000 reads. 
Additionally, PacBio identified a greater number of unique species 
compared to ONT, detecting 20.5% more at 10,000 reads, 13.7% 
more at 20,000, 16% more at 25,000, and 13.2% more at 35,000 
reads, suggesting its higher sensitivity toward certain bacterial 
taxa. When analyzing unique species in the metataxonomics 
community for each sequencing technology, the observed 
differences are mainly attributed to bacteria whose proportion 
usually does not exceed 0.5% of the total read count and only in 
rare cases reaches 2% (Supplementary Table S4).

Diversity analysis and sequencing 
technology clustering

After evaluating the overlap of species identified by both 
technologies, we analyzed the alpha diversity for each group using the 
Shannon index to assess species richness in relation to sequencing 
depth (Supplementary Figure S2). The comparison showed statistically 
significant differences (p < 0.01) between ONT and PacBio data at 
10,000 reads (Supplementary Figure S2A). However, with an increase 
in read numbers to 20,000, 25,000 and 35,000, no statistically 
significant differences were observed (Supplementary Figures S2B–D). 
To further investigate the impact of sequencing technology on MC 
composition, we analyzed beta diversity. Regardless of the read count, 
samples consistently formed two distinct clusters corresponding to the 
sequencing technology used (Supplementary Figure S3). However, the 
application of the Procrustes test for every sequencing depth resulted 
in p-value equal to 0.001 and consequently showed that the structure 
of MC were similar for both technologies. This indicates that each 
platform contributes uniquely to bacterial diversity detection but they 
both can be used for overall interpretation of MC structure. The top 
six bacterial genera identified in sequencing data using ONT and 
PacBio platforms were Brevitalea, Solirubrobacter, Baekduia, 
Vicinamibacter, Bacillus and Gaiella (Figure  3). Notably, these 
dominant genera remained consistent across all sequencing depths, 
indicating that increasing the number of reads does not significantly 
alter the identification of the most abundant taxa.

FIGURE 2

Venn diagram showing common and unique bacterial species between PacBio and ONT sequencing platforms. The comparison was conducted 
across groups with read counts of (A) 10k, (B) 20k, (C) 25k, and (D) 35k.
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Illumina vs. ONT: differences in sensitivity 
and taxonomic profiling

Our comparative analysis of 16S rRNA gene sequencing on 
Illumina and ONT revealed distinct differences in the sensitivities 
between platforms. Despite a similar read count, a notable 
variance was observed in the Shannon index (Figure 4A). In total, 
Illumina reads accounted for identification of 232 genera, while 
ONT detected 545. The Venn diagram shows that 188 genera 
(31.9%) were shared between both platforms (Figure  4B). 
Furthermore, the results indicate that taxonomic identification 
from Illumina reads is skewed toward Actinomycetes and related 

bacteria, while ONT reads detect relatively more Bacilli bacteria 
(Figure 4C).

PacBio vs. Illumina: comparative analysis of 
V3–V4 and V4 regions

To ensure comparability between sequencing platforms and 
minimize the influence of differences in read count and the 16S rRNA 
region analyzed, PacBio reads were trimmed to the V3–V4 and V4 
regions to align with Illumina data (Supplementary Table S1). After 
trimming, only 18,000 reads per sample on average were retained for 
analysis. Identical bioinformatic pipelines were then employed to 

FIGURE 3

Relative abundance of bacteria at the genus level for ONT and PacBio. The horizontal axis represents the sequencing technology groups, while the 
vertical axis shows the relative abundance (%). Comparisons were made across groups with read counts of (A) 10k, (B) 20k, (C) 25k, and (D) 35k.

https://doi.org/10.3389/fmicb.2025.1633360
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Veselovsky et al. 10.3389/fmicb.2025.1633360

Frontiers in Microbiology 08 frontiersin.org

analyze sequence data from both platforms. The analysis of the V3–V4 
region on the Illumina platform provided slightly greater insight into 
the bacterial diversity of soil samples compared to the V4 region 
analyzed on the same platform (Figure 5A). However, when comparing 
the same regions sequenced using PacBio technology, the results 
showed a statistically higher number of bacterial genera identified in the 
soil samples, highlighting the enhanced resolution of PacBio for full-
length and targeted 16S rRNA analysis (Figure 5A).

As illustrated in Figure 5B, 61.2% of bacterial genera were identified 
by both PacBio and Illumina platforms for the V3–V4 and V4 regions. 
However, PacBio sequencing detected a significantly broader range of 
unique genera (24.6% for the V3–V4 and V4 regions), whereas Illumina 
data has nothing unique for the V3–V4 and V4 regions. This highlights 
the higher resolution and broader taxonomic coverage of PacBio 
sequencing. Figure 5C further supports these findings, demonstrating 
that PacBio sequencing detects a greater number of minor bacterial 

species compared to Illumina. This broader detection contributes to the 
higher alpha diversity observed with the PacBio platform, underscoring 
its enhanced capacity for capturing low-abundance taxa.

PacBio sequencing detects a greater number of minor bacterial 
species, contributing to the increased alpha diversity observed with this 
platform (Figure 5C). However, certain genera show notable differences 
between the sequencing technologies. For example, the relative 
abundance of Blastococcus, Sphingomicrobium, and GWC2-73-18 is 
significantly higher in Illumina sequencing compared to PacBio.

Additionally, both Illumina and PacBio technologies show specific 
trends based on the analyzed regions. When analyzing the V3–V4 
region, both platforms detect significantly higher levels of JACDCA01 
bacteria. Similarly, analysis of the V4 region reveals significantly more 
bacteria from the genus Sphingomicrobium with Illumina technologies. 
Notably, across all regions analyzed by both platforms, the genus Palsa-
739 (Actinobacteria) exhibits a nearly identical level of representation, 

FIGURE 4

Comparative taxonomic analysis using Illumina and ONT. Raincloud plot of the alpha diversity index (Shannon) across different sequencing 
technologies (A). The Wilcoxon rank-sum test was applied to determine statistical differences between experimental groups (n = 48 for each 
technology). (B) Venn diagram demonstrates the overlap in identified genera between different sequencing technologies. (C) Linear discriminant 
analysis (LDA) effect size was used to determine signature genera across sequencing technologies. The barplot illustrates genera with LDA score 
greater than 4.
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highlighting the consistency of these technologies in detecting certain 
bacterial groups.

Evaluating the sensitivity of ONT, PacBio, 
and Illumina for 16S rRNA gene sequencing

Our comparative analysis of 16S rRNA gene sequencing using 
ONT, PacBio, and Illumina platforms revealed significant differences 
in their sensitivities. To ensure consistency and accuracy, sequencing 
data were preprocessed using platform-specific tools. Emu was 
employed for ONT and PacBio full-length gene sequences, while the 

DADA2 pipeline with the GTDB database was used for taxonomic 
classification at the genus level for PacBio V4/V3–V4 and 
Illumina regions.

For the analysis, 20,000 reads per sample were selected for ONT 
and PacBio, while 18,000 reads were used for PacBio and Illumina 
regions. This read depth was chosen to ensure comparability with 
previously presented results. The analysis showed that ONT and 
PacBio provide comparable bacterial diversity assessments (Figure 6 
and Supplementary Table S5). In contrast, analysis of the V3–V4 and 
V4 regions using Illumina demonstrated significantly lower taxonomic 
diversity compared to ONT and PacBio. These findings underscore 
the importance of selecting an appropriate sequencing platform to 

FIGURE 5

Taxonomic classification comparison for V4 and V3–V4 regions between PacBio and Illumina sequencing platforms (n = 48 for each technology). 
(A) Shannon alpha diversity, indicating differences in diversity captured by each platform. The Wilcoxon rank-sum test was applied to determine 
statistical differences between them. (B) Venn diagram showing the overlap in bacterial genera identified by PacBio and Illumina. (C) Relative 
abundance of bacterial genera, comparing the taxonomic composition detected by both technologies.
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achieve the desired level of taxonomic resolution and address specific 
research objectives.

Consistency of group separation across 
sequencing technologies

Our analysis demonstrates that the choice of sequencing 
technology does not significantly impact the ability to detect group 
separation within the experimental dataset. Regardless of whether 
ONT, PacBio, or Illumina platforms were used, all sequencing 
technologies consistently identified distinct bacterial community 
compositions corresponding to predefined experimental groups 
(Figure 7). This consistency is evident from the clustering patterns 
observed in the principal coordinate analysis (PCoA) plots and further 
confirmed by permutational multivariate analysis of variance 

(PERMANOVA), which showed statistically significant group 
separation (p < 0.05) across all platforms and regions analyzed, with 
the exception of the V4 region (Figures 7; Supplementary Figure S4).

The use of ONT (Figure 7A), PacBio (Figure 7B), and Illumina 
(V3–V4) (Figure 7F) technologies enabled the clear separation of three 
distinct soil groups based on their metataxonomics composition. This 
separation was consistently observed across these platforms, reflecting 
their robustness in identifying group-level differences in MC.

However, when analyzing beta diversity in the V4 region (Illumina), 
such distinct group separation was not observed. No statistically 
significant differences were detected between the groups, highlighting 
a limitation in the resolution of this approach. This limitation is further 
supported by alpha diversity analysis (Supplementary Figure S4), which 
shows that for the V4 region (Illumina), the gray soil group does not 
significantly differ from the permafrost meadow black soil group 
(Supplementary Figure S4E, p = 0.79). These findings suggest that while 

FIGURE 6

Heatmap depicting the presence/absence of microbial genera across different sequencing technologies. The heatmap illustrates microbial genera 
defined by the GTDB database. Blue indicates presence, while gray represents absence. The y-axis lists GTDB-annotated microbial genera, and the 
x-axis denotes different sequencing technologies. The left color bar indicates taxonomic classification at the phylum level. Clustering was performed 
using Euclidean distance and complete linkage.
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all sequencing technologies are effective at detecting group-level 
differences, their resolution and ability to distinguish between closely 
related groups may vary depending on the sequencing platform and the 
targeted 16S rRNA region.

Discussion

Soils are complex ecosystems characterized by immense variability 
in ecological properties and MC structure on both global and local 
scales (Fierer, 2017). Numerous studies have documented the intricate 

relationships between microbial traits and soil characteristics, with 
most focusing on individual parameters such as pH, temperature, 
vegetation, texture, soil moisture content, nitrogen levels, organic 
matter, or contaminants (He et al., 2006; Ge et al., 2008; Fierer et al., 
2009; Lauber et al., 2009; Griffiths et al., 2011; Lanzen et al., 2016; Liu 
et al., 2016; Zhou et al., 2016). These studies have provided valuable 
insights into specific interactions, yet they often fail to capture the 
multifaceted nature of soil ecosystems.

The relevance of the study lies in the growing need to accurately 
profile soil microbiomes, which play a crucial role in ecosystem 
functioning and agricultural productivity. Our study’s novelty stems 

FIGURE 7

Multidimensional scaling (MDS) biplot, providing a two-dimensional visualization of multidimensional taxonomic profiles derived from various 
sequencing platforms and 16S rRNA regions. The plots illustrate distinct clustering patterns consistent across sequencing technologies, reflecting 
group-level differences in microbial community composition: (A) ONT full-length; (B) PacBio full-length; (C) PacBio V4 region; (D) PacBio V3–V4 
region; (E) Illumina V4 region; (F) Illumina V3–V4 region. Statistical significance between groups was determined using PERMANOVA (n = 12, 18, 18 for 
black leached, permafrost meadow black and gray soil type respectively).
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from the detailed comparison of PacBio, ONT and Illumina 
sequencing technologies at varying read depths, highlighting their 
strengths and limitations in detecting bacterial species in soil samples. 
To enhance the robustness of our analysis, we included three biological 
replicates per soil sample and retained only taxa consistently detected 
across replicates. This strategy reduced random variation and 
improved the reliability of diversity estimates, allowing for more 
confident interpretation of platform performance.

Recent advancements in sequencing technologies, including 
PacBio, ONT, and Illumina platforms, have provided unprecedented 
opportunities to explore soil microbiomes in detail. These tools enable 
researchers to link microbial diversity with soil properties more 
comprehensively, offering insights into the complex mechanisms that 
govern MC composition and function. Such integrative approaches 
are crucial for advancing our understanding of the ecological 
processes underpinning soil ecosystems and their responses to 
environmental changes.

Alpha diversity analysis applying the Shannon index, a widely 
used metric accounting both species richness and evenness within a 
sample (Roswell et  al., 2021), showed statistically significant 
differences between ONT and PacBio data at 10,000 reads, but not at 
20,000, 25,000 and 35,000 reads. The results indicate that while low 
read depths may show significant differences in diversity metrics, due 
to their sensitivity to sequencing effort (Schloss, 2024), increasing the 
read depth mitigates this effect, leading to more comparable results 
between sequencing technologies. Such results at low sequencing 
depth can also be  caused by randomness during rarefaction of 
samples’ data. This aligns with the rarefaction curve analysis, which 
demonstrated that bacterial diversity in the samples reaches a plateau 
after 35,000 reads, indicating sufficient taxonomic coverage. These 
findings emphasize the importance of selecting an optimal read count 
for capturing the full scope of microbial diversity and are consistent 
with previously published data (Hussein et al., 2017; Mysara et al., 
2017). Higher efficiency of PacBio at lower read depth can 
be attributed to its longer read lengths and higher accuracy due to 
employment of circular consensus sequencing technology which is 
based on the generation of multiple reads of the same DNA molecule, 
thereby reducing random errors (Wang et al., 2019; Kim et al., 2024). 
PacBio’s high sensitivity in microbiome analysis has been previously 
demonstrated, showing 100% specificity and sensitivity in taxonomic 
classification of a mock community with 20 bacterial species (Earl 
et  al., 2018). ONT, on the other hand, offers advantages such as 
portability and cost-efficiency, but its sensitivity and accuracy are 
currently considered inferior to PacBio (Straub et al., 2020).

Despite technological differences, overall trends in alpha diversity 
remained consistent across sequencing platforms. Long-read 
technologies such as PacBio and ONT provide better coverage of 
hypervariable regions within the 16S rRNA gene, thereby improving 
taxonomic classification (Nygaard et  al., 2020; Santos et  al., 2020; 
Szoboszlay et al., 2023; Buetas et al., 2024). However, there are trade-
offs to consider when selecting a platform for microbiome analysis: 
while Illumina offers a more established and standardized 
bioinformatics pipeline, PacBio and ONT generate longer reads that 
can enhance resolution and accuracy in profiling bacterial 
communities. Moreover, current long-read classification tools, such as 
Emu, lack explicit chimera detection modules, which may affect data 
quality in complex communities. This highlights the need for further 
development of chimera-aware algorithms tailored to long-read 16S 

rRNA data. Other tools, such as VSEARSH (Rognes et al., 2016), can 
perform de novo chimera detection. However, in this study the 
chimera removal step is absent. Instead of this in order to make our 
taxonomic profiling more accurate we applied filtering of observed 
OTUs by their presence in biological repeats. In the broader context, 
ongoing improvements in basecalling algorithms (e.g., Dorado super 
mode), error-correction tools (such as Medaka and NanoCLUST), and 
new taxonomic classifiers specifically tailored for long, noisy reads 
(e.g., Emu) are helping to improve the reliability of ONT-based 
microbial profiling (Zhang G. et al., 2024; Zhang T. et al., 2024).

Beta diversity analysis revealed that samples formed two distinct 
clusters corresponding to the type of sequencing technology, 
indicating that each technology contributes uniquely to the detection 
of bacterial diversity and influences the outcomes of MC analysis. This 
distinct clustering suggests that PacBio and ONT may have different 
biases in detecting certain bacterial taxa, underscoring the importance 
of considering the choice of sequencing technology when interpreting 
MC data (Kim et al., 2024). Analysis of the overlap and uniqueness of 
species identified by each technology revealed that more than 57% of 
the total species were observed applying both technologies, indicating 
their complementarity in detecting bacterial diversity. This 
complementarity suggests that using both technologies in tandem 
could provide a more comprehensive view of the soil microbiome, a 
finding supported by previous research (Kim et al., 2024).

Both ONT and PacBio demonstrated a similar efficiency in 
identifying the top 6 bacterial genera. This suggests that key bacterial 
genera in the samples can be reliably detected even at lower sequencing 
depths, while additional sequencing primarily contributes to 
identifying low-abundance taxa.

Differences in the number of bacterial species detected in soil 
samples between PacBio and ONT may be attributed to several 
factors related to the technological characteristics of these 
platforms as well as bioinformatics data processing. A total of 
0.52% of reads from PacBio and 16.7% of reads from ONT failed 
filtering, indicating the lower accuracy of ONT. This lower 
accuracy can lead to errors in species identification, particularly 
in homopolymeric regions or when analyzing closely related 
sequences. In addition to differences in read accuracy and filtering 
rates, our results suggest that PacBio may be more effective than 
ONT in detecting low-abundance taxa in soil samples. This 
discrepancy could arise from differences in bioinformatic 
processing pipelines. For ONT, error correction algorithms often 
remove low-frequency variants, mistaking them for sequencing 
artifacts. In contrast, PacBio’s CCS provides high per-read 
accuracy (>99%) without aggressive filtering, thereby preserving 
rare sequence variants (Johnson et al., 2019). Furthermore, soil 
microbial communities include many high-GC-content 
organisms, which may be  systematically underrepresented in 
ONT datasets due to known biases in basecalling and pore-level 
performance. PacBio appears to be less affected by GC bias, which 
may further enhance its ability to recover rare taxa from complex 
environments like soil. Recent developments in ONT 
bioinformatics, particularly error correction tools based on 
machine learning and deep learning frameworks, are further 
enhancing read accuracy and taxonomic resolution. For example, 
DeChat, a novel tool that incorporates repeat- and haplotype-
aware models, significantly improves the correction of Nanopore 
reads in complex genomic regions (Liu et al., 2024). Although not 
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directly applied in our current 16S rRNA amplicon study, such 
methods hold promise for future integration into long-read 
metataxonomic pipelines, especially when dealing with highly 
diverse or repetitive microbial genomes. However, one of the 
inherent limitations of 16S rRNA gene sequencing lies in its 
inability to reliably distinguish between closely related bacterial 
species that share high sequence similarity in this gene. For 
instance, Veillonella rogosae and V. parvula exhibit 98% homology 
in their 16S rRNA gene sequences, which often leads to 
misidentification (Arif et al., 2008). This limitation underscores 
the need for whole-metagenome sequencing approaches to 
achieve more accurate species-level identification.

The Illumina MiSeq platform, with a read length limitation of up 
to 600 bp, does not allow for full-length 16S rRNA gene sequencing. 
Instead, its hypervariable regions can be  used individually or in 
combination to evaluate bacterial community structures. Previous 
studies have demonstrated that the choice of primers and targeted 
regions significantly influences microbiome profiling results. These 
factors should therefore be carefully considered during the sequencing 
(Klindworth et al., 2013; Albertsen et al., 2015; Tremblay et al., 2015; 
Fouhy et  al., 2016; Rintala et  al., 2017; Fuks et  al., 2018; Zhang 
et al., 2018).

A substantial body of research has explored the impact of 
primer selection on microbiome community profiling. For 
example, studies have shown that the analysis of human 
microbiomes and microbial alpha diversity in fecal samples varies 
depending on whether the V3–V4 or V4–V5 region is targeted 
(Rintala et  al., 2017). Conversely, other studies have reported 
minimal differences in community profiling when regions such as 
V1–V3, V3–V4, or V4 are used within the same sample type. 
Comparable research conducted on environmental samples, such 
as water, suggests that the V4 region may be  more suitable for 
precise sequence assignment in the bacterial domain while also 
offering increased coverage (Zhang et al., 2018).

Albertson et al. reported differences in the distribution of bacterial 
taxa when targeting V1–V3, V3–V4, and V4 regions, yet observed 
similar alpha diversity values across these regions (Albertsen et al., 
2015). However, gaps remain in our understanding, particularly for 
highly diverse samples such as those derived from soil. Current studies 
lack detailed insights into the influence of 16S rRNA regions on 
bacterial community profiling for both environmental and biological 
samples. Furthermore, there is an absence of comprehensive analyses 
that include the use of combined regions such as V1–V3, V3–V4, V4–
V5, and V6–V8, which are frequently employed to enhance taxonomic 
accuracy in amplicon sequencing (Soriano-Lerma et al., 2020).

Future research should address existing gaps by investigating how 
different 16S rRNA regions and primer combinations influence the 
profiling of complex and diverse MC (Strokach et al., 2025). This 
discrepancy underscores the critical role of primer selection in 
microbiome studies. While region-specific primers, such as those 
targeting the V4 region, may enhance taxonomic resolution for 
specific groups (Kozich et  al., 2013; Zhou et  al., 2024), they risk 
overlooking minor bacterial populations essential for understanding 
MC complexity. In contrast, universal primers used for full-length 16S 
rRNA gene sequencing provide a more comprehensive view of 
community evenness, making them better suited for studies aiming to 
capture a broad range of taxa (Schloss et al., 2009; Caporaso et al., 
2012). These findings highlight the need to carefully consider primer 

design and target region selection when planning sequencing-based 
microbiome studies. Future research should further explore the trade-
offs between primer specificity and universality to optimize microbial 
diversity assessments across different environments (Abellan-
Schneyder et  al., 2021), ultimately improving the reliability of 
microbiome analyses and guiding the selection of sequencing 
strategies for both targeted and high-resolution profiling.

The observed differences in taxonomic profiles between regions 
sequenced on PacBio and Illumina platforms may be attributed to the 
primers used during the initial PCR step in library preparation. 
Primers targeting the full-length 16S rRNA gene, as used in PacBio 
sequencing, are designed to be more universal and inclusive, allowing 
for a broader representation of bacterial taxa, including low-abundance 
groups. In contrast, primers targeting the V4 region, often employed 
in Illumina sequencing, are more specific to certain bacterial species, 
which can limit their effectiveness in identifying minor taxa and 
reduce overall taxonomic resolution (Klindworth et al., 2013; Apprill 
et al., 2015).

In our analysis, we also observed differences in taxonomic 
composition depending on the sequencing technology used. 
Sequencing with the MiSeq platform showed an increased 
presence of the genera Peribacillus, Gaiella, and Neobacillus, 
whereas the ONT platform identified a higher number of taxa 
belonging to Palsa-739, Blastococcus, Sphingomicrobium, 
Sphingobium, and Bacillus. These results are consistent with 
literature data indicating that the sequencing platform has a 
significant impact on the relative abundance of taxa. Specifically, 
MiSeq sequencing tends to detect a higher proportion of 
Actinobacteria, Chloroflexi, and Gemmatimonadetes, while the 
abundance of Acidobacteria, Bacteroides, Firmicutes, 
Proteobacteria, and Verrucomicrobia is lower compared to the 
MinION platform (Stevens et  al., 2023). Thus, taxonomic 
identification based on Illumina reads appears to be biased toward 
Actinobacteria and related groups, whereas ONT enables the 
detection of a greater number of Bacilli representatives.

Our analysis demonstrated a high level of concordance in bacterial 
composition down to the genus level when using both sequencing 
platforms (Illumina and PacBio). A comparison of the presence and 
absence of taxonomically assigned bacteria showed that most genera 
were detected on both platforms, indicating that the obtained data are 
comparable and suitable for future genus-level comparisons (Buetas 
et al., 2024). Similar results, but using ONT, were reported in the study 
by Matsuo et al., which assessed the efficiency of full-length 16S rRNA 
gene sequencing with the MinION™ technology for analyzing human 
fecal samples. Their findings also confirmed that different sequencing 
platforms, particularly Illumina and ONT, provide reproducible 
results at the genus level (Matsuo et al., 2021).

In summary, all three sequencing platforms (ONT, PacBio, and 
Illumina) are suitable for determining the composition of MC based 
on the 16S rRNA gene. In our study, we analyzed three different soil 
types, and the results of metataxonomics sequencing obtained from 
all platforms allowed for a clear differentiation between them. 
However, it is important to note that when using the Illumina 
technology to analyze only the V4 variable region, no distinct 
clustering of samples based on soil type was observed. Additionally, 
each platform exhibits taxonomic biases, which may complicate the 
comparison of results across studies utilizing different 
sequencing methods.
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Conclusion

A comparative analysis of the PacBio and ONT platforms for 
soil microbiome profiling revealed a high degree of similarity in 
the obtained data, with PacBio demonstrating slightly higher 
efficiency in identifying low-abundance taxa at lower sequencing 
depths. Our results highlight the importance of selecting an 
optimal sequencing depth and considering the specific 
characteristics of each technology when analyzing 
MC. We demonstrated that all three platforms (ONT, PacBio, and 
Illumina) are capable of assessing bacterial diversity in soil samples 
and distinguishing them into groups based on their origin. 
Furthermore, the data obtained from ONT are comparable to those 
from PacBio, indicating that sequencing errors inherent to ONT 
do not significantly impact the interpretation of well-represented 
taxa. Due to their long-read capability and the ability to analyze 
the full-length 16S rRNA gene, both ONT and PacBio offer 
advantages over Illumina for bacterial diversity assessment. Our 
study confirms that the choice of sequencing technology can 
substantially influence microbiome data interpretation. Future 
research should focus on improving bioinformatics approaches, 
particularly for the detection of rare taxa, while also accounting for 
taxonomic biases associated with different sequencing platforms.

Data availability statement

The raw sequencing data obtained using PacBio, ONT and 
Illumina sequencing were submitted to the NCBI Sequence Read 
Archive (SRA) and are accessible under the following BioProject 
identifiers: PRJNA1190309 (for 16S rRNA gene sequencing on ONT), 
PRJNA1190314 [for 16S rRNA gene sequencing on Pacific Biosciences 
(PacBio)], PRJNA1190320 and PRJNA1190324 [for V3–V4 and V4 
region of the 16S rRNA gene sequencing data on Illumina (MiSeq) 
respectively].

Author contributions

VV: Data curation, Formal analysis, Investigation, Methodology, 
Project administration, Supervision, Visualization, Writing – original 
draft, Writing – review & editing. MR: Data curation, Formal analysis, 
Investigation, Methodology, Visualization, Writing – original draft, 
Writing  – review & editing. PZ: Formal analysis, Methodology, 
Writing  – review & editing. AL: Formal analysis, Methodology, 
Writing  – review & editing. VB: Data curation, Formal analysis, 
Methodology, Writing  – review & editing. MM: Formal analysis, 
Methodology, Writing – original draft, Writing – review & editing. AS: 
Formal analysis, Methodology, Writing  – review & editing. NZ: 
Formal analysis, Investigation, Methodology, Validation, Writing – 
review & editing. SK: Formal analysis, Investigation, Visualization, 
Writing  – review & editing. AD: Formal analysis, Methodology, 
Validation, Writing – review & editing. AV: Conceptualization, Data 
curation, Funding acquisition, Investigation, Methodology, Project 
administration, Writing – original draft, Writing – review & editing. 
VP: Formal analysis, Investigation, Methodology, Validation, 
Visualization, Writing  – review & editing. FC: Formal analysis, 
Investigation, Methodology, Visualization, Writing – review & editing. 

DT: Formal analysis, Investigation, Methodology, Visualization, 
Writing  – review & editing. NM: Data curation, Investigation, 
Validation, Visualization, Writing – review & editing. OG: Formal 
analysis, Investigation, Writing – review & editing. AZ: Data curation, 
Formal analysis, Investigation, Validation, Writing – review & editing. 
KG: Data curation, Formal analysis, Investigation, Visualization, 
Writing – review & editing. KK: Conceptualization, Data curation, 
Formal analysis, Investigation, Methodology, Project administration, 
Resources, Supervision, Visualization, Writing  – original draft, 
Writing – review & editing.

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. This publication has been 
supported by the RUDN University Scientific Projects Grant System, 
Project No. 202760-2-000.

Acknowledgments

This work was performed using the core facilities of the Lopukhin 
FRCC PCM “Genomics, proteomics, metabolomics” (http://rcpcm.
org/?p=2806). The authors express gratitude to the Association of 
Specialists in the Field of Molecular, Cellular and Synthetic Biology 
(Russia) for their efforts in uniting specialists involved in this study.

Conflict of interest

NM was employed by Collagel LLC.
The remaining authors declare that the research was conducted in 

the absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or claim 
that may be made by its manufacturer, is not guaranteed or endorsed 
by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fmicb.2025.1633360/
full#supplementary-material

https://doi.org/10.3389/fmicb.2025.1633360
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://rcpcm.org/?p=2806
http://rcpcm.org/?p=2806
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1633360/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1633360/full#supplementary-material


Veselovsky et al. 10.3389/fmicb.2025.1633360

Frontiers in Microbiology 15 frontiersin.org

SUPPLEMENTARY FIGURE S1

Rarefaction curves illustrate dependence of Shannon alpha diversity index 
from the number of reads for ONT (A,C) and PacBio (B,D). Pictures (A,B) show 
average value (solid line) and SEM (smoothed area) while pictures (C,D) show 
Shannon indexes for each sample individually.

SUPPLEMENTARY FIGURE S2

Raincloud plots show Shannon alpha diversity index for PacBio and ONT 
sequencing platforms. The comparison was performed across groups with 
read counts of (A) 10k, (B) 20k, (C) 25k, (D) 35k. The Wilcoxon rank-sum test 
was applied to determine statistical differences between two sequencing 
platforms (n = 48 for each technology).

SUPPLEMENTARY FIGURE S3

Scatterplots of two-dimensional visualization of multidimensional taxonomic 
profiles derived from PacBio and ONT sequencing platforms. Statistical 
significance between groups was determined using PERMANOVA (n = 48 for 
each technology). The comparison was conducted across groups with read 
counts of (A) 10k, (B) 20k, (C) 25k, (D) 35k.

SUPPLEMENTARY FIGURE S4

Raincloud plots of the alpha diversity index (Shannon) across different 
sequencing technologies and 16S rRNA regions: (A) ONT full-length; 

(B) PacBio full-length; (C) PacBio V4 region; (D) PacBio V3–V4 region; 
(E) Illumina V4 region; (F) Illumina V3–V4 region. The Wilcoxon rank-
sum test was applied to determine statistical differences between soil 
types (n = 12, 18, 18 for black leached, permafrost meadow black and 
gray soil respectively).

SUPPLEMENTARY TABLE S1

Number of raw reads obtained for each sequencing technology.

SUPPLEMENTARY TABLE S2

Taxonomic classification of the ZymoBIOMICS Microbial Community Standard 
for ONT.

SUPPLEMENTARY TABLE S3

Unique bacterial species detected by ONT and PacBio.

SUPPLEMENTARY TABLE S4

Unique bacterial species detected by ONT and PacBio.

SUPPLEMENTARY TABLE S5

Taxonomic classification results across all sequencing technologies.
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