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Agricultural Sciences, Beijing, China 

Brucellosis and tuberculosis are two zoonotic, chronic infectious diseases 
caused by bacteria of the genus Brucella and Mycobacterium, respectively, which 
pose significant hazards to both animal husbandry and human health. Currently, 
mixed infections of these two pathogens are prevalent in livestock production; 
thus, establishing a molecular diagnostic method for the simultaneous detection 
and analysis of brucellosis and tuberculosis is crucial for the prevention and 
control of these diseases. By utilizing conserved regions within the genomes 
of Brucella and Mycobacterium, we designed specific primers and probes. After 
optimizing the developed qPCR assay conditions, we determined the lower 
limit of detection to be ten copies/ μL. Cross-testing with other bovine-derived 
pathogens demonstrated no cross-reactivity. Repeatability tests indicated that 
the coefficient of variation for the developed qPCR assay was less than 4.10% 
both within and between batches. We employed both the developed qPCR 
assay and a commercial qPCR assay to analyze sixty mixed infection samples of 
Brucella and Mycobacterium from various regions. The results revealed positivity 
rates of 100% and 96.67% for Brucella, and 100% and 95.00% for Mycobacterium, 
respectively. These findings indicate that a highly sensitive, specific, reproducible, 
and versatile qPCR method has been developed for the simultaneous quantitative 
detection of Brucella and Mycobacterium, which can be applied in studying the 
pathogenesis and epidemiology of these pathogens. 
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1 Introduction 

Brucellosis, caused by Brucella infection, is a zoonotic systemic infectious disease 
primarily responsible for abortion, retention of the fetal coat, stillbirths, and weak calves in 
ewes, as well as testicular and epididymitis and arthritis in bulls (Dawood et al., 2023; Yang 
et al., 2023). The bacterium was first identified and isolated by the Scottish pathologist and 
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microbiologist (David, 1887). The disease often manifests as a 
chronic or latent infection that can be transmitted via aerosols and 
poses a potential biological threat (Wang et al., 2021). Tuberculosis 
is a chronic infectious disease affecting both humans and animals, 
caused by bacteria of the genus Mycobacterium, characterized by 
tuberculous nodular granulomas in tissues and organs, alongside 
necrotic foci of caseation and calcification (Ramos et al., 2020; 
Reis et al., 2021). This disease can occur year-round, with a higher 
incidence observed in housed cattle. Factors such as overcrowding, 
darkness, dampness, poor hygiene, excessive labor and milking, 
and inadequate nutrition can facilitate the occurrence and spread 
of the disease (Santos et al., 2020; Pozo et al., 2022). Dairy cows 
and buffaloes are particularly susceptible. Transmission primarily 
occurs through the respiratory and digestive tracts, but can also 
occur via the placenta or during mating (Santos et al., 2022). 
Tuberculosis-infected animals serve as the main source of infection, 
with the tuberculosis bacillus distributed throughout various organ 
foci (Jalili et al., 2020; Perez-Morote et al., 2020). Diseased 
animals can excrete pathogens through feces, milk, urine, and 
tracheal secretions, contaminating the surrounding environment 
and facilitating the spread of infection (Dorn-In et al., 2020; Barnes 
et al., 2023). Brucellosis and tuberculosis are critically important 
to public health concerning livestock products, as they not only 
jeopardize livestock production but also pose serious risks to 
human health (Martinez-Guijosa et al., 2020; Zai et al., 2021). 
Therefore, the detection of both pathogens is essential in the study 
of bovine brucellosis and Mycobacteria (Allen et al., 2021; Zhang 
et al., 2025). 

Rapid detection methods are crucial for the effective control of 
brucellosis and Mycobacterium infections (Pereira et al., 2022; Qin 
et al., 2024). In recent years, a quantitative real-time PCR (qPCR) 
has been developed that facilitates the accurate and reproducible 
quantification of gene copies (Ginzinger, 2002). This method 
has been extensively utilized to quantify the genomic copies of 
pathogenic microorganisms. qPCR has emerged as a powerful 
alternative in microbiological diagnostics due to its simplicity, 
rapidity, reproducibility, and high sensitivity when compared to 
other diagnostic methods (Chen et al., 2020). 

Various detection methods for Brucella and Mycobacterium 
have been documented in the literature, including PCR techniques 
targeting the Brucella Bcsp31 gene and the Mycobacterium pncA 
and RD1 genes (Abdel-Hamid et al., 2021). Mascarenhas et al. 
validated qPCR technology for detecting Mycobacterium bovis and 
Brucella abortus in raw cow’s milk (Mascarenhas et al., 2020). While 
these methods can identify pathogenic factors associated with 
Brucella and Mycobacterium, they exhibit significant limitations 
due to the complex and chaotic infection dynamics of these 
pathogens (Pinto et al., 2024; Kurmanov et al., 2022). Specifically, 
existing detection methods are unable to simultaneously detect the 
pathogenic factors of both Brucella and Mycobacterium; they can 
only assess each pathogen individually (Gabbassov et al., 2021; 
Rerkyusuke et al., 2024). Consequently, designing a method for the 
simultaneous detection of pathogenic factors from both Brucella 
and Mycobacterium is of paramount importance for advancing 
research in this area. 

This study aims to establish test methods for the rapid 
detection of brucellosis and tuberculosis in dairy cows, assess the 

contamination status of fresh milk, and trace transmission routes. 
To achieve this, we designed specific primers and probes targeting 
the conserved regions of the Brucella Omp25 and Mycobacterium 
Mpt83 genes, and developed a dual qPCR method utilizing TaqMan 
probes. This method will be widely used in the detection of Brucella 
and Mycobacterium, laying the foundation for disease diagnosis 
and epidemiological investigations. 

2 Materials and methods 

2.1 Strains and clinical samples 

The strains of Brucella spp., Mycobacterium spp., Escherichia 
coli, Salmonella, Streptococcus, Staphylococcus, and Pasteurella 
multocida utilized in this study were preserved in the laboratories 
of the Centre for Prevention and Control of Animal Diseases in 
Shandong Province. Milk, blood, and vaginal swab samples from 
animals suspected of brucellosis and tuberculosis were collected at 
cattle farms in a specific region of China. Positive clinical samples 
were isolated, identified, and stored by the China Animal Health 
and Epidemiology Centre. 

2.2 Specific primers and probes 

In this study, specific primers and probes were designed based 
on the conserved regions of the Brucella Omp25 gene and the 
Mycobacterium Mpt83 gene. The DNASTAR MegAlign software 
was used to align the Omp25 gene and the Mpt83 gene, respectively, 
to identify conserved regions and verify the specificity of the 
designed probes and primers. 

2.3 DNA extraction and qPCR assay 

Total DNA was extracted using the Bacterial Genomic 
DNA Extraction Kit (50 preps, Catalog DP302; TIANGEN, 
Beijing, China) following the manufacturer’s instructions. All 
DNA templates were stored at −80◦C until use. The developed 
qPCR assay was performed in a 25 μL reaction system (Gold 
Star Probe Mixture; CWBIO, CW0932M, Beijing, China), which 
included 12.5 μL of 2  × Gold Star Probe Mixture, 0.5 μL of  
Brucella forward primer (10 μM), 0.5 μL of  Brucella reverse primer 
(10 μM), 0.5 μL of  Mycobacterium forward primer (10 μM), 0.5 
μL of  Mycobacterium reverse primer (10 μM), 0.5 μL of  Brucella 
probe (10 μM), 0.5 μL of  Mycobacterium probe (10 μM), 7.5 
μL of ddH2O, 1.0 μL of  Brucella DNA template, and 1.0 μL 
of Mycobacterium DNA template. The developed qPCR assay 
was conducted using the Gentier 96 E/96 R Fully automated 
medical PCR analysis system. The reaction conditions included an 
initial denaturation at 95◦C for 10 m, followed by forty cycles of 
denaturation at 95◦C for 15 s and annealing/extension at 60◦C for 
1 m. During the extension step, fluorescent signals were collected. 
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2.4 Optimization of conditions for the 
developed qPCR assay 

In this study, we optimized the concentrations of primers 
and TaqMan-probes, as well as the annealing temperature, to 
achieve the lowest Ct value with high fluorescence intensity. Six 
concentrations (0.1 M, 0.2 M, 0.4 M, 0.6 M, 0.8 M, and 1.0 M) 
suitable for primers and probes were tested, with three replicates 
for each concentration, while keeping other factors constant. After 
identifying the optimal concentrations of primers and TaqMan-
probes, we evaluated five different annealing temperatures (56◦C, 
58◦C, 60◦C, 62◦C, and 64 ◦C), again with three replicates for 
each temperature group. The optimal annealing temperature was 
selected based on the assay results. 

2.5 Standard plasmid preparation, 
construct standard curves, and sensitivity 

The Omp25 gene (85 bp) of Brucella was amplified using 
specific forward (Brucella-F) and reverse (Brucella-R) primers. 
Similarly, the Mpt83 gene (85 bp) of Mycobacterium was 
amplified using designated forward (Mycobacterium-F) and reverse 
(Mycobacterium-R) primers. The resulting PCR products were 
cloned into the plasmid vector pUC57 and subsequently verified 
through sequencing. The validated plasmids, pUC57-Omp25 
and pUC57-Mpt83, were purified using the Rapid Plasmid 
Miniaturization Kit (TIANGEN, DP105, Beijing, China) and 
quantified with a De Novix DS-11 spectrophotometer. A 10-fold 
dilution of the plasmids, pUC57-Omp25 and pUC57-Mpt83, was  
prepared in 10 × Tris-EDTA buffer (pH 7.4) for the construction 
of a standard curve and to ascertain the detection limit of the 
developed qPCR assay. 

2.6 Specificity analysis of the developed 
qPCR assay 

In this study, the specificity of the developed qPCR assay 
was validated in triplicate using the following bovine bacterial 
species: B. abortus, M. bovis, E. coli, Salmonella, Streptococcus, 
Staphylococcus, and P. multocida. 

2.7 Repeatability analysis of the developed 
qPCR assay 

The dilutions of pUC57-Omp25 and pUC57-Mpt83, with 
concentrations ranging from 1.0 × 108 – 1.0 × 102 copies/μL, were 
assessed over three consecutive days, with each day’s assay repeated 
three times. The reproducibility of the developed qPCR assay was 
evaluated by calculating the intra- and inter-batch Coefficients of 
Variation (CV) based on the assay results. 

2.8 Clinical samples detection 

Sixty clinical samples suspected of Brucella and Mycobacterium 
infections were analyzed using the developed qPCR assay in this 
study and commercial kits. These samples were sourced from 
various regions, including Shandong, Inner Mongolia, and Henan. 
Sterile Phosphate-Buffered Saline (PBS) served as a control in 
the experiments. 

2.9 Statistical analysis 

Statistically significant differences in mean detection rates were 
determined using one-way ANOVA, conducted with Graph Pad 
Prism version 6. A p-value < 0.05 was considered significant, while 
a p-value < 0.01 was regarded as extremely significant. 

3 Results 

3.1 Primers and probes analysis 

The probes and primers utilized in this study were specifically 
designed based on the Omp25 gene of Brucella and the Mpt83 
gene of Mycobacterium, as detailed in Table 1. Sequence analysis 
confirmed that the primers and probes are situated within 
highly conserved regions of the Brucella Omp25 gene and the 
Mycobacterium Mpt83 gene, as illustrated in Figure 1. Notably, 
the primers and probes exhibit a perfect match with Brucella 
and Mycobacterium sequences, demonstrating 100% homology to 
these sequences. 

3.2 The developed qPCR assay 

The concentrations of primers and probes that resulted in 
high fluorescence were established (Figures 2A-D). The optimized 
volume for the developed qPCR assay reaction was set at 25 μL, 
comprising 12.5 μL of 2  × Gold Star Probe Mixture, 0.5 μL of  
the Omp25 forward primer, 0.5 μL of the  Omp25 reverse primer, 
0.5 μL of the  Omp25 probe, 0.5 μL of the  Mpt83 forward primer, 
0.5 μL of the  Mpt83 reverse primer, 0.5 μL of the  Mpt83 probe, 
1.0 μL of the  Omp25 DNA template, 1.0 μL of the  Mpt83 DNA 
template, and 7.5 μL of ddH2O. Although acceptable amplification 
was observed at temperatures ranging from 56◦C to 64◦C, the 
optimal conditions for the developed qPCR assay were determined 
to be at 60◦C (Figure 2E). 

3.3 Establishment of the standard curves 

The triplicate standard curve plots demonstrate a linear 
correlation between the logarithm of the copy number and the 
cycle threshold (CT) values, as illustrated in Figure 3. The  Brucella 
standard curve equation is given by Y = – 2.7405X + 39.531, where 
Y represents the threshold cycle and X denotes the logarithm of the 
standard. The linear correlation coefficient (R²) for this standard 
curve is 0.9941 (Figure 3A). Similarly, the Mycobacterium standard 
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TABLE 1 Primers and probes used in this study. 

The developed qPCR assay Oligo Sequence (5-3) Length (bp) Positions (segment) 

Brucella Forward primer ATGATCTGGCCGGTACGACT 20 566–585 (Omp25) 

Probe FAM-TCGCAACAAGCTGGACACGCAGG-TAMRA 23 588–610 (Omp25) 

Reverse primer AGAACTTGTAGCCGATGCCGAC 22 642-640 (Omp25) 

Mycobacterium Forward primer AGTACCCTGACCTCGGCTCT 20 289–308 (Mpt83) 

Probe CY5-CCACCAACGCCGCATTCGACAAGC-BHQ3 24 380–403 (Mpt83) 

Reverse primer ATCCTGCTCGGACTCGCCTG 20 484–503 (Mpt83) 

FIGURE 1 

Result of sequence analysis. The results show that the primers and probes are situated within highly conserved regions of the Brucella Omp25 gene 
and the Mycobacterium Mpt83 gene. (A) The Brucella Omp25 gene. (B) The Mycobacterium Mpt83 gene. 

curve is represented by the equation Y = – 2.8543X + 39.642, with 
Y as the threshold cycle and X as the logarithm of the standard. The 
linear correlation coefficient (R²) for the Mycobacterium standard 
curve is 0.9915 (Figure 3B). 

3.4 Sensitivity of the developed qPCR assay 
reaction 

The sensitivity of the developed qPCR assay was evaluated by 
diluting the DNA standard plasmid from 1.0 × 109 copies/ μL to  
1.0 × 100 copies/ μL. The results indicated that the assay’s lowest 
limit of detection was 1.0 × 10 copies/ μL (Figure 4). 

3.5 Specificity of the developed qPCR assay 
reaction 

In this study, five distinct bovine pathogens were utilized to 
evaluate the specificity of the developed qPCR assay detection. 
PBS served as the negative control. Strong fluorescent signals 

were observed in reactions involving Brucella and Mycobacterium, 
while the signals from the other three pathogen samples and 
the PBS control remained at baseline levels under the optimized 
reaction conditions. Consequently, Brucella and Mycobacterium 
were effectively distinguished from the other pathogens based on 
the variation in signal intensity (Figure 5). 

3.6 Repeatability of the developed qPCR 
assay 

The intra- and inter-assay reproducibility was assessed in 
triplicate over three different days using 10-fold serial dilutions 
of standard plasmid DNA, ranging from 1.0 × 108-1.0 × 102 

copies. The results indicated that the intra-assay and inter-assay 
Coefficients of Variation (CV) for the Brucella qPCR method were 
0.72 to 4.10 and 0.70 to 2.96, respectively (Table 2). Similarly, 
the intra-assay and inter-assay CVs for the Mycobacterium qPCR 
method were 1.17 to 2.49 and 0.89 to 2.78, respectively (Table 3). 
These findings suggest that the developed qPCR assay exhibits 
high reproducibility. 
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FIGURE 2 

Optimization of the developed qPCR assay conditions. (A) Primer and (B) probe concentrations for the Brucella qPCR. (C) Primer and (D) probe 
concentrations for the Mycobacterium qPCR. (E) Annealing temperature. 

FIGURE 3 

Standard curve of the the developed qPCR assay. The triplicate standard curve plots indicate a linear correlation between the Log of the copy 
number and the Cycle Threshold Value (CT). The logarithm values of the detected concentrations of the DNA standards (X axis) ranged from 1.0 × 
108 to 1.0 × 102 copies/μ L, and used the corresponding Threshold cycle (CT value) of each reaction tube fluorescent signal approaching the set 
threshold (Y axis) of the amplification to perform linear regression. Three replicates were tested for each dilution. (A) Standard curve of Brucella. (B) 
Standard curve of Mycobacterium. 
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FIGURE 4 

Sensitivity of the developed qPCR assay targeting (A) Brucella and (B) Mycobacterium. Sensitivity was assessed using serial dilutions of DNA standard 
plasmids, with a limit of detection of 1.0 × 10 copies/μL. NC, Nuclease-free water. 

FIGURE 5 

Specificity test results of real-time PCR assay using different strains. 
The results showed that this method can effectively distinguish 
Brucella and Mycobacterium from other pathogens. 

3.7 Clinical sample application 

Sixty clinical samples (milk, blood, vaginal swabs) from animals 
co infected with Brucella and Mycobacterium from various regions 
of China, were evaluated using both the developed qPCR assay 
and commercial qPCR kits. The prevalence rates of brucellosis and 
Mycobacterium were found to be 96.67% and 95%, respectively, 
according to the commercial qPCR kits. In contrast, the prevalence 
rates determined by the developed qPCR assay were 100% for both 
brucellosis and Mycobacterium (Tables 4, 5). These findings suggest 
that the developed qPCR assay exhibits superior detection accuracy. 

4 Discussion 

Brucellosis is a zoonotic infection caused by the gram-
negative, partially intracellular bacterium Brucella (Okafor 
et al., 2022). This pathogen infects a wide range of hosts, 
including cattle, sheep, pigs, and other mammals (Khairullah 
et al., 2024). The primary manifestations of brucellosis in 
livestock include undulant fever, infertility, abortion, arthritis, 

and orchitis (Selim et al., 2019). In contrast, tuberculosis is a 
chronic zoonosis caused by Mycobacterium, characterized by 
progressive wasting, the formation of tuberculous nodules, and 
caseous necrotic foci in various tissues and organs (Lu et al., 
2022; Rossi et al., 2020). Epidemiological investigations have 
revealed a cross-infection between Brucella and Mycobacterium, 
resulting in decreased milk production, lower annual calving 
rates, and reduced meat production (Loiseau et al., 2019; 
Bonilla-Aldana et al., 2023; Pellegrini et al., 2022). These 
factors lead to significant economic losses in the cattle 
industry and severely impact the development of the animal 
husbandry sector. 

Currently, there is no efficient method for the simultaneous 
detection of Brucella and Mycobacterium; therefore, there is a 
significant need for a rapid, highly sensitive, and specific method 
for their simultaneous detection in both the bovine industry and 
the research community (Triguero-Ocana et al., 2020; Khoshnood 
et al., 2022; Zeineldin et al., 2023; Zheng et al., 2024). In this study, 
we established a dual TaqMan-based real-time PCR assay targeting 
the Omp25 gene of Brucella and the Mpt83 gene of Mycobacterium. 
Verified through a series of experiments, the developed qPCR 
assay demonstrates high sensitivity, specificity, and reproducibility. 
The limit of detection for both Brucella and Mycobacterium was 
determined to be 1.0 × 10 copies/ μL. The developed qPCR 
assay yielded a strong fluorescent signal exclusively for Brucella 
and Mycobacterium, with intra-assay and inter-assay variability 
measured at less than 4.10% and 2.78%, respectively. Sixty clinical 
samples (milk, blood, vaginal swabs) from animals co infected 
with Brucella and Mycobacterium from various regions of China 
were tested using the developed qPCR assay and commercial 
qPCR assays. The positivity rate for the developed qPCR assay 
test for infection was 100%, while the positivity rates for the 
commercial qPCR tests were 96.67% for Brucella and 95.00% for 
Mycobacterium, indicating that the sensitivity of the former is 
superior. The high sensitivity demonstrated by the developed qPCR 
assay in this study is significant in low-load infections, where there 
is a risk of false negative results. However, the use of the developed 
qPCR assay requires certain experimental conditions, which limits 
their applicability for on-site detection of pathogens. In addition, 
this study did not set up an Internal Amplification Control (IAC), 
so it cannot be ensured that the master mix was in an optimal 
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TABLE 2 Intra- and inter-assay variability of Ct values of assay in detection of Brucella. 

Copies of 
standard plasmid 
DNA 

Intra-assay variability of Ct values Inter-assay variability of Ct values 

Proportion of positive 
samplesa 

Ct Proportion of positive 
samplesa 

Ct 

Mean SD CV (%) Mean SD CV (%) 

108 1.00 16.75 0.69 4.10 1.00 17.27 0.39 2.26 

107 1.00 20.11 0.30 1.49 1.00 20.59 0.29 1.41 

106 1.00 23.29 0.25 1.07 1.00 24.01 0.71 2.96 

105 1.00 26.63 0.53 1.98 1.00 26.97 0.19 0.70 

104 1.00 28.78 0.67 2.33 1.00 29.04 0.61 2.10 

103 1.00 31.06 0.22 0.72 1.00 32.14 0.54 1.68 

102 1.00 34.50 0.41 1.19 1.00 35.12 0.55 1.57 

aProportion of positive= positive samples/total tested samples (n = 3). 

TABLE 3 Intra- and inter-assay variability of Ct values of assay in detection of Mycobacterium. 

Copies of 
standard plasmid 
DNA 

Intra-assay variability of Ct values Inter-assay variability of Ct values 

Proportion of positive 
samplesa 

Ct Proportion of positive 
samplesa 

Ct 

Mean SD CV (%) Mean SD CV (%) 

108 1.00 16.06 0.19 1.17 1.00 16.91 0.47 2.78 

107 1.00 19.69 0.37 1.88 1.00 20.05 0.19 0.95 

106 1.00 23.08 0.38 1.67 1.00 23.47 0.21 0.89 

105 1.00 26.76 0.38 1.41 1.00 27.59 0.73 2.65 

104 1.00 28.86 0.66 2.29 1.00 29.18 0.64 2.19 

103 1.00 32.45 0.81 2.49 1.00 33.02 0.83 2.51 

102 1.00 33.63 0.41 1.23 1.00 34.16 0.79 2.31 

aProportion of positive= positive samples/total tested samples (n = 3). 

TABLE 4 Clinical samples test results for brucellosis. 

Result by No. of 
samples 
(total, 60) 

The developed qPCR assay qPCR kita 

Pos.b Pos. 58 

Neg.c Neg. 0 

Pos. Neg. 2 

Neg. Pos. 0 

aCommercialized qPCR kits for brucellosis, bPos, Positive, cNeg, Negative. 

amplification state and that there were no inhibitors in the reaction, 
which is a limitation. 

In conclusion, we have clearly established and validated the 
developed qPCR assay for the quantification of Brucella and 
Mycobacterium due to its remarkable sensitivity, reproducibility, 
rapidity, versatility, and high-throughput potential compared to 
other diagnostic methods. This detection method has low intra-
and inter-assay variability and does not show cross-reactivity 
with other animal bacteria. Furthermore, its sensitivity surpassed 
that of commercial qPCR assays. These findings suggest that the 
assay can be utilized to simultaneously quantify Brucella and 

TABLE 5 Clinical samples test results for Mycobacterium. 

Result by No. of 
samples 
(total, 60) 

The developed qPCR assay qPCR kita 

Pos.b Pos. 57 

Neg.c Neg. 0 

Pos. Neg. 3 

Neg. Pos. 0 

a Commercialized qPCR kits for brucellosis, bPos, Positive, cNeg, Negative. 

Mycobacterium DNA from various regions, thereby contributing 
to epidemiological investigations of animals infected with Brucella 
and Mycobacterium. 

5 Conclusion  

The developed qPCR assay in this study serves as a reliable 
tool for the rapid and simultaneous detection of Brucella and 
Mycobacterium in clinical samples. This method will be beneficial 
for epidemiological investigations and outbreak surveillance of 
both Brucella and Mycobacterium. 
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