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Introduction: To address the limitations of current metagenomic identification
approaches, we proposed a principled Al-assisted architecture that enhances
accuracy, scalability, and biological interpretability through three core
innovations.

Methods: Firstly, we developed a structured probabilistic model that formulates
pathogen detection as a hierarchical and compositional inference task under
taxonomic and ecological constraints. This framework enables the integration
of phylogenetic priors and sparsity-aware mechanisms, reducing noise and
ambiguity. By modeling taxonomic structure and ecological dependencies,
the approach ensures more accurate identification, especially in complex or
low-abundance microbial communities. Secondly, we introduced the Taxon-
aware Compositional Inference Network (TCINet), a deep learning model
that processes sequencing reads to produce taxonomic embeddings. TCINet
estimates abundance distributions via masked neural activations that enforce
sparsity and interpretability, while also propagating uncertainty through log-
normal variance modeling. Designed to respect microbial phylogeny and co-
occurrence patterns, TCINet enables scalable, biologically plausible inference
across diverse clinical and environmental datasets. Thirdly, we presented the
Hierarchical Taxonomic Reasoning Strategy (HTRS), a post-inference module
that refines predictions by enforcing compositional constraints, propagating
evidence across taxonomic hierarchies, and calibrating confidence using
entropy and variance-based metrics. HTRS includes context-aware thresholding
and co-occurrence priors to adaptively optimize performance based on
dataset characteristics.

Results: Together, these innovations create a unified framework for
metagenomic identification that combines probabilistic modeling, deep
learning, and structured reasoning.

Discussion: The architecture delivers robust and interpretable results, making
it suitable for applications in clinical diagnostics, environmental monitoring, and
ecological research.

KEYWORDS

pathogen identification, metagenomic sequencing, structured probabilistic inference,
taxonomic hierarchy, Al-assisted diagnostics

1 Introduction

Enhancing the identification of pathogens is critical for timely diagnosis, treatment,
and public health surveillance, especially in the face of emerging infectious diseases
and antimicrobial resistance. Traditional culture-based diagnostic methods are often
time-consuming and limited in scope, while PCR-based methods, although faster,
require prior knowledge of the target organism (Xu et al, 2024). In contrast,
metagenomic sequencing provides a culture-independent, hypothesis-free approach to
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detect a wide range of pathogens directly from clinical samples (Liu
et al, 2020). However, this method generates vast quantities
of complex and noisy data, posing significant challenges in
interpretation (Zhang et al., 2023). To address these issues, artificial
intelligence (AI), particularly machine learning and deep learning
techniques, is increasingly integrated into metagenomic workflows
to enhance sensitivity, specificity, and interpretability (Peng et al.,
2023). Not only does AI streamline the analysis process, but it
also enables the identification of novel pathogens and resistance
genes, contributing to improved diagnostics and surveillance.
Consequently, Al-assisted metagenomic sequencing is becoming
a vital tool in modern microbiology and infectious disease
management (Zhu et al., 2023).

Early computational approaches for interpreting metagenomic
data were grounded in structured hierarchies and rule-based
classifications, leveraging known biological relationships and
curated databases to infer microbial presence and potential
pathogenicity. These systems often relied on alignment-based
algorithms and predefined taxonomic trees to map sequencing
reads to reference genomes or annotated markers (Kocmi et al.,
2023). Their strength lay in the use of expert-defined ontologies
and deterministic rules, which allowed for transparent decision-
making and high interpretability—particularly valuable in clinical
and regulatory settings where traceability and justification of results
are essential. In environments where the sequencing data closely
resembled well-characterized organisms within the reference
databases, these methods performed reliably, delivering consistent
and interpretable results (Wang et al., 2023). Tools like MEGAN
and Kraken exemplified this paradigm by efficiently assigning
taxonomic labels and enabling interactive exploration of results
based on known microbial lineages. However, the performance
of such systems was tightly coupled to the completeness and
quality of the underlying reference libraries. Their reliance
on fixed taxonomies and exact sequence matching constrained
their adaptability, making them less effective in detecting novel
species, strains with genomic variation, or divergent organisms
not represented in the reference set (Moslem et al, 2023). As
metagenomic datasets grew in both size and complexity-spanning
environmental samples, mixed microbial communities, and clinical
specimens with variable quality—these rule-based systems began to
show limitations. They struggled to handle noisy reads, fragmented
sequences, and ambiguous matches, often discarding valuable
information that did not fit their strict criteria (Goyal et al,
2021). The growing influx of previously uncharacterized microbes
and the dynamic nature of microbial evolution further challenged
the rigidity of these methods. The inability to generalize beyond
known taxonomic boundaries or to infer latent patterns in
data led to reduced sensitivity, lower detection accuracy, and
missed opportunities in identifying emerging pathogens or novel
functional elements (Freitag et al., 2021).

To address these shortcomings, subsequent methods shifted
toward leveraging statistical patterns extracted directly from
sequencing data. Rather than relying solely on predefined
taxonomies or exact sequence matches, these approaches
utilized intrinsic properties of the sequences—such as nucleotide
composition, k-mer frequency profiles, GC content, and motif
distributions—to inform classification decisions (Garca et al., 2023).
By capturing compositional and structural features, these models
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could identify microbial signatures even in the absence of perfect
reference matches, thus offering enhanced sensitivity to genomic
variation and novel taxa. This transition marked a key development
in metagenomic analysis, as it allowed models to function with
increased autonomy and reduced dependence on expert-curated
rules or exhaustive taxonomic databases (Jiang et al., 2021). As
a result, they scaled more effectively with expanding datasets,
enabling high-throughput classification across diverse sample
types. Tools implementing these strategies, such as MetaPhlAn
and PhyloPythia, demonstrated how carefully engineered features
could capture informative signals within complex microbial
communities and support more efficient taxonomic profiling
and functional annotation (Kocmi et al.,, 2022). However, the
effectiveness of these systems often depended heavily on the quality
and comprehensiveness of labeled training datasets, which are
difficult to obtain for understudied or rare organisms. Moreover,
the process of manual feature selection introduced biases and
assumptions that could limit the model’s ability to generalize across
variable conditions (Fan et al., 2020). In clinical applications, where
sample heterogeneity, contamination, and sequencing artifacts are
common, these constraints became particularly problematic. As
a result, while these models improved scalability and flexibility
relative to earlier rule-based systems, their reliance on curated
features and static training data often restricted robustness,
limiting their performance in real-world metagenomic diagnostics
and surveillance tasks (Agrawal et al., 2022).

In more recent developments, computational models have
progressed toward learning directly from raw sequencing
data, eliminating the need for extensive manual feature
engineering. These models are designed to automatically
extract informative representations by leveraging both hierarchical
sequence organization and contextual dependencies within
genomic data (Zhu et al, 2020). Advanced architectures—such
as convolutional neural networks (CNNs), recurrent neural
networks (RNNs), and more recently, transformer-based models—
have demonstrated a remarkable ability to capture long-range
interactions and compositional structures in nucleotide sequences,
enabling more accurate and nuanced microbial classification
and pathogen detection. A key innovation in this space is the
use of pretraining on large-scale genomic corpora, which equips
models with a generalized understanding of sequence patterns
and structural regularities (Li et al., 2022). Pretrained models
like DnabERT and DeepMicrobes exemplify this approach,
showing strong adaptability to a variety of downstream tasks with
minimal fine-tuning. These models are capable of identifying
low-abundance or previously uncharacterized pathogens by
capturing latent sequence signals that traditional or feature-based
models often overlook. Furthermore, their end-to-end design
reduces dependency on multiple preprocessing steps, streamlining
analysis pipelines and minimizing error propagation (Xiao
et al., 2022). Despite these advances, challenges remain. Deep
learning models are often resource-intensive, requiring substantial
computational power and memory, which can limit accessibility
in resource-constrained settings. Their black-box nature raises
ongoing concerns about interpretability and accountability—
particularly in high-stakes clinical or epidemiological contexts
where understanding model rationale is essential (Arenas and
Toral, 2022). In response, current research increasingly focuses
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on hybrid frameworks that integrate attention mechanisms,
uncertainty quantification, and post hoc interpretability tools
to bridge the gap between predictive power and transparency.
These efforts aim to create pathogen detection systems that are
not only accurate and scalable, but also robust, interpretable,
and aligned with the practical needs of public health and clinical
decision-making (Khandelwal et al., 2020).

Previous symbolic, machine learning, and deep learning
methods face limitations in adaptability, feature dependence, and
interpretability. To address these issues, this study introduces
a novel Al-assisted metagenomic sequencing framework that
integrates symbolic reasoning with deep learning-based sequence
embedding. Our method seeks to balance performance with
explainability, enabling rapid and accurate pathogen detection
while retaining transparency in decision-making. The framework
uses pretrained sequence models for feature extraction and applies
symbolic reasoning for classification and context interpretation.
It is designed to operate in multi-pathogen environments
and adapt to evolving pathogen landscapes. This method
facilitates the discovery of novel organisms and resistance
elements, addressing current gaps in clinical and epidemiological
surveillance. This hybrid paradigm aims to deliver an efficient,
robust, and interpretable solution for pathogen identification
through metagenomic sequencing.

e We introduce a novel hybrid model that combines symbolic
reasoning with deep learning-based embeddings for enhanced
accuracy and interpretability.

e Our method is optimized for diverse clinical scenarios,
offering high-throughput analysis, generalizability across
samples, and robust performance under noisy conditions.

e Experimental results demonstrate superior detection rates for
both common and rare pathogens, outperforming existing
benchmarks in sensitivity, specificity, and runtime efficiency.

2 Related work

2.1 Metagenomic sequencing techniques

Metagenomic sequencing has transformed pathogen detection
by enabling comprehensive analysis of genetic material recovered
directly from clinical or environmental samples. Unlike traditional
culture-based diagnostic techniques, metagenomics provides an
unbiased view of microbial communities, making it invaluable
for identifying novel or unexpected pathogens (Pan et al,
2021). Shotgun metagenomic sequencing, in particular, allows
for the capture of all DNA present in a sample, facilitating
the identification of bacteria, viruses, fungi, and parasites
simultaneously. Recent advances in sequencing platforms, such
as [lumina and Oxford Nanopore Technologies, have improved
read accuracy, throughput, and turnaround time, thus enhancing
the feasibility of routine clinical applications (Savoldi et al,
2021). A key aspect of effective metagenomic sequencing lies in
sample preparation and DNA extraction protocols, which must
be optimized to ensure representative recovery of microbial DNA
while minimizing contamination. Library preparation methods
have also evolved to accommodate low-input samples and increase
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sequencing depth. Furthermore, amplification-free approaches are
gaining popularity as they reduce bias and preserve the quantitative
integrity of microbial DNA content (Akhbardeh et al, 2021).
Bioinformatics tools developed for metagenomic analysis range
from de novo assemblers to reference-based classifiers, each
with trade-offs in accuracy and computational efficiency. Tools
like Kraken2, MetaPhlAn, and Centrifuge utilize k-mer based
alignment strategies for taxonomic classification, providing rapid
identification of pathogens (Liang et al., 2021a). However, their
reliance on comprehensive and up-to-date reference databases is a
limitation, especially when dealing with novel or rare organisms.
Assembly-based methods such as MEGAHIT and metaSPAdes
can reconstruct genomes from metagenomic reads, enabling
downstream analyses like antimicrobial resistance profiling and
virulence factor identification (Kocmi et al, 2021). Despite
these advancements, challenges remain, particularly regarding the
accurate identification of low-abundance pathogens in complex
microbial communities. The presence of high-background host
DNA, sequencing errors, and incomplete reference databases
can confound analysis, necessitating the integration of more
sophisticated computational methods to improve sensitivity and
specificity in pathogen detection (Liang et al., 2022).

2.2 Al in genomic data interpretation

Artificial Intelligence (AI), particularly machine learning (ML)
and deep learning (DL) approaches, has increasingly been applied
to address the complexities of genomic data interpretation. These
methods offer significant improvements in pattern recognition,
feature extraction, and classification tasks compared to traditional
bioinformatics pipelines. In the context of pathogen identification,
Al'models are capable of learning from large datasets to distinguish
pathogen-specific signatures even in noisy or incomplete data
environments (Raunak et al., 2021). Supervised learning models
such as support vector machines (SVMs), random forests (RFs),
and gradient boosting machines (GBMs) have been utilized
to classify microbial taxa based on sequence features, k-mer
frequencies, or read abundance patterns. These approaches are
particularly useful for tasks where labeled training data is available,
enabling precise mapping between sequence data and pathogen
labels. However, the success of these models is contingent on
the quality and diversity of training datasets, which must capture
the full spectrum of microbial genomic variability (Ranathunga
et al,, 2021). Deep learning architectures, including convolutional
neural networks (CNNs) and recurrent neural networks (RNNs),
have demonstrated promise in more complex scenarios, such
as identifying pathogens directly from raw sequencing reads or
contigs. These models can automatically learn hierarchical features
without the need for manual feature engineering, thus capturing
subtle sequence patterns that may be missed by traditional
algorithms. For example, CNNs have been successfully used to
classify reads in real-time nanopore sequencing workflows, offering
rapid turnaround and high accuracy (Haddow et al, 2021).
Unsupervised learning and clustering techniques also play a critical
role in identifying novel pathogens by detecting outlier sequences
or uncharacterized genomic signatures within metagenomic
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datasets. Generative models like variational autoencoders (VAEs)
and generative adversarial networks (GANs) further facilitate the
simulation of synthetic genomic data, aiding in the development
of robust AI models through data augmentation (Liang et al,
2020). The integration of Al with traditional genomic analysis
tools creates hybrid pipelines that leverage the strengths of both
domains. For instance, AI models can pre-filter or enrich reads
for downstream alignment, prioritize candidate pathogens for
confirmation, or refine taxonomic classification through ensemble
learning strategies. As these methods evolve, ensuring their
interpretability and validation against clinical benchmarks remains
crucial to their widespread adoption (Romano et al., 2025).

2.3 Clinical applications and case studies

The application of Al-assisted metagenomic sequencing in
clinical settings has shown significant promise in enhancing
diagnostic accuracy and timeliness. This technology has been
particularly impactful in cases of unexplained infections,
immunocompromised patients, and outbreaks involving rare or
emerging pathogens. By providing a hypothesis-free diagnostic
approach, metagenomic sequencing enables clinicians to detect
pathogens that may not be considered in traditional diagnostic
panels (Zheng et al., 2021). Several high-profile case studies have
demonstrated the utility of this approach. For instance, in cases of
encephalitis of unknown origin, Al-enhanced metagenomics has
successfully identified viral agents such as herpes simplex virus and
enteroviruses, which were previously undetected by conventional
methods. Similarly, in hospital outbreak investigations, sequencing
data interpreted through AI models have helped trace the source
of infections, differentiate between strains, and guide infection
control measures (Cai et al., 2021). In the realm of antimicrobial
resistance (AMR), Al-driven analysis of metagenomic data
has been employed to predict resistance genes and inform
personalized therapy decisions. This is especially relevant in
settings where culture results are unavailable or delayed. For
example, Al algorithms trained on large-scale genomic datasets can
predict resistance phenotypes from metagenomic sequences with
high accuracy, aiding in the selection of effective antimicrobial
treatments (Ghorbani et al., 2021). Pediatric and neonatal
intensive care units (NICUs) have also benefited from Al-assisted
diagnostics, where rapid pathogen identification is critical. Studies
have shown that integrating Al tools with sequencing workflows
can reduce time-to-diagnosis from several days to under 24
h, thereby significantly improving clinical outcomes. These
tools also assist in interpreting complex results by prioritizing
pathogenic sequences over commensals or contaminants (Luo
et al., 2025). Despite the benefits, integration into clinical practice
requires robust validation, standardized protocols, and regulatory
approvals. The interpretability of AI models is especially important
in medical decision-making, necessitating transparency and
reproducibility in model predictions. Ethical considerations
surrounding data privacy, consent, and potential biases in training
datasets must also be addressed (Wang et al., 2025). By bridging
the gap between high-throughput sequencing and actionable
clinical insights, Al-assisted metagenomic sequencing holds

Frontiers in Microbiology

10.3389/fmicb.2025.1634194

the potential to transform infectious disease diagnostics, drive
precision medicine, and enhance global pathogen surveillance
efforts.

3 Method

3.1 Overview

In this section, we introduce the overall methodology and
conceptual framework for our approach to pathogen identification.
The goal of this work is to develop a principled and efficient
model that accurately identifies pathogenic species from complex
biological samples. The proposed framework comprises three
main components, which will be detailed in three sections.
Traditional pathogen identification systems typically rely on rule-
based heuristics or alignment-heavy computational workflows.
These approaches, while useful in constrained environments, often
lack the scalability and robustness required to operate in diverse
real-world conditions, particularly in metagenomic or low-bass
contexts. Moreover, they do not exploit the latent relational
structure among pathogens, such as phylogenetic relatedness or
co-occurrence patterns in ecological niches. To overcome these
limitations, our approach departs from conventional paradigms
by integrating structured statistical modeling with representation
learning. At the heart of our framework lies a structured prediction
model that operates over a space of candidate taxa, leveraging
deep feature representations learned from sequencing reads or k-
mer statistics. Unlike black-box classifiers that treat each prediction
independently, our method encodes dependencies among taxa and
incorporates uncertainty in a principled Bayesian or variational
inference framework. As we show in the theoretical formulation,
this allows for better robustness in the face of ambiguous or
noisy inputs, a common occurrence in clinical and environmental
samples. The model is designed to be agnostic to specific
sequencing technologies, allowing it to generalize across both
short- and long-read platforms. This flexibility is achieved by
representing input data as abstract compositional embeddings,
from which the model derives taxonomic and functional inferences.
These embeddings are learned jointly with the rest of the model
and are guided by phylogenetic regularizers and compositional
priors that reflect the inherent sparsity and structured nature of
pathogen distributions. A key challenge in pathogen identification
is differentiating true pathogens from background or commensal
species, especially when dealing with trace signal in noisy data.
To address this, our method introduces a novel confidence-
aware inference strategy that adaptively weighs evidence based on
both model certainty and biological plausibility. This enables the
system to balance sensitivity and specificity dynamically, improving
the detection of rare or emerging pathogens without incurring
excessive false positives.

Throughout this section, we provide a high-level description
of the framework’s architecture, rationale, and guiding principles.
Section 3.2 introduces the mathematical foundations and notation,
formalizing the pathogen identification task as a structured
probabilistic inference problem over discrete taxonomic space.
Section 3.3 details the design of our novel model, including its
layered architecture, embedding construction, and regularization
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mechanisms. Section 3.4 elaborates on the optimization strategy
and the integration of domain knowledge, showcasing how
our approach aligns with biological insight while remaining
computationally tractable.

3.2 Preliminaries

Let D = {x;}}Y | denote a collection of biological samples, where
each x; is a high-dimensional sequencing-derived observation
associated with a mixture of microbial entities. The fundamental
objective of pathogen identification is to infer, for each x;, a discrete
set of pathogenic taxa 7; € 7T, where 7 is a predefined taxonomic
universe. This task can be framed as a structured multi-label
classification problem over a hierarchical label space, augmented
with domain-specific priors and compositional constraints.

To formalize this, we introduce a latent indicator vector y; €

{0,1}71, where each component yfj) = 1 if taxon j is present in
G

i
posterior distribution over y; conditioned on the observed data x;.

sample i, and y ) = 0 otherwise. The probabilistic model defines a

_ plxi | ypp(y:)

1
P(x) )

ply; | xi)

We assume that x; arises from a generative process involving
latent microbial abundances 0; € A‘ﬂ*l, where AK denotes the
(K)-dimensional probability simplex. The observed data likelihood
is modeled as a mixture over taxon-specific profiles.

Tl
pxi 100 =67 pxi |z = j), @

j=1

where z; is a latent variable indicating the generating taxon for x;,
and p(x; | zi = j) is approximated by a discriminative embedding
function ¢;(x;) that captures the compatibility between x; and taxon
j.

To incorporate phylogenetic structure among taxa, we define a
graph Laplacian L over a taxonomic tree .

logp(0;) o 6. L, 3)

which enforces a smoothness prior that encourages similar
abundance values for evolutionarily close taxa.

We further define a sparsity-inducing prior over y; to reflect the
typically sparse nature of pathogen presence.

p(y;) o exp (_)V”Yi”O) > (4)

where A > 0 controls the expected number of active taxa.
To exploit ecological co-occurrence signals, we introduce a
regularization term using an empirical co-occurrence matrix C.

Q)= 070 5)
Jok

All components can be integrated under a variational inference
framework using a joint approximation ¢(y;, 0; | x;), which enables
tractable optimization and efficient end-to-end training.
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3.3 Taxon-aware Compositional Inference
Network (TCINet)

We propose Taxon-aware Compositional Inference Network
(TCINet), a structured probabilistic model augmented with
neural parameterization, designed for the pathogen identification
problem. TCINet is built to respect taxonomic hierarchy,
compositionality of microbial mixtures, and latent uncertainty in
read-level evidence. The model combines variational inference with
neural feature embeddings and operates over both discrete and
continuous latent spaces. The input to the model is a biological
sample represented as a feature vector x; € R? where d denotes
the dimension of observed sequencing-derived signals. The model
outputs a sparse taxonomic probability vector §; € AlTI=L
capturing the relative abundance of potential taxa in the sample (as
shown in Figure 1).

3.3.1 Taxonomy-structured feature embedding
The first stage of TCINet constructs a latent taxonomic
embedding h; from the input sample x; using a deep nonlinear
transformation (as shown in Figure 2).
This transformation is realized by a neural feature extractor Fy,
parameterized by weights v/, designed to capture relevant patterns
from sequencing-derived signals.

h; = Fy(x;) € RY, (6)

where H denotes the dimension of the hidden representation
space. This embedding captures abstract biological characteristics,
including species diversity, signal coverage, and phylogenetic
signatures. To enrich the embedding with multiscale semantic
information, we incorporate residual blocks and global pooling into
Fy, yielding representations invariant to minor variations in read
distributions.

The learned embedding h; is then projected into a set of
taxon-specific pre-activations. For each taxon j, we compute a raw
activation score Otz-‘ using a parameterized affine transformation
followed by an exponential function to ensure non-negativity.

o =exp(whi+b), j=1L...ITL )

where w; € RF and b; € R are the taxon-specific projection vector
and bias term, respectively. These activations encode the relative
strength of evidence supporting the presence of each taxon in the
sample.

To enforce the compositional constraint inherent in
metagenomic abundance data, we normalize the raw activation

scores over the entire taxonomic universe.

o _ o
0" = [Tl (k)
k=1Y%i

such that @; € NG (8)

This softmax-like normalization ensures that the taxon
abundance vector ; lies on the (|7] — 1)-simplex, reflecting a
probability distribution over taxa that sums to one.

To capture nonlinear dependencies between taxa and
accommodate complex interactions across phylogenetic layers,
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Taxonomy-Strucfured Sparse and Uncertain Presence Modeling Phylogefleti'c and Ecological
Feature Embedding Regularization
FIGURE 1
An illustration of the Taxon-aware Compositional Inference Network (TCINet). The figure depicts the complete hierarchical reasoning pipeline,
including taxonomy-structured feature embedding, sparse and uncertain presence modeling, and phylogenetic and ecological regularization. It
shows the convolutional backbone stages with progressively downsampled resolutions and increasing channel dimensions, followed by patch
embeddings and modular blocks responsible for structured classification under bias-aware constraints.
nt-1 nt
ct-1
X ct
X
qt .E
~ @
DIO
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\—T—! L T ] L Y )L T J \—I—l
key Value Query Output gate
Forget state Input gate
FIGURE 2
An illustration of taxonomy-structured feature embedding. The figure presents the internal structure of the DEER architecture’s hierarchical and
temporal adaptation components, highlighting modules such as multiscale confidence fusion, memory-based consistency gates, and recurrent
feature correction using gated attention and contextual alignment. It emphasizes how structured bias and uncertainty are propagated across time via
adaptive embeddings and correction pathways.
we enrich the taxon projection mechanism using a second-order  taxa.
bilinear term. .
()
. exp (a;" /T
M _
Ve — L (10)
7! exp (a2
) k=1 SXP | &;
o = exp (b Wib; + wlhi + b)), ©)
where t

where W, € RHXH jntroduces quadratic interactions, enabling
the model to express higher-order coactivation patterns among
embedding dimensions. This formulation allows TCINet to more
accurately reflect the complex, compositional nature of biological
communities.

Moreover, to prevent numerical instability and control
activation scaling, we apply a temperature-scaled softmax across
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> 0 is a temperature parameter that adjusts the
sharpness of the resulting distribution. Lower values of t lead
to more peaked distributions, emphasizing high-confidence taxa,
while higher values induce smoother, more uncertain outputs.

3.3.2 Sparse and uncertain presence modeling
TCINet further introduces an uncertainty-aware Bernoulli

gating mechanism to explicitly model the presence or absence

of each taxon in a sample, providing a mechanism for sparse
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taxonomic inference under uncertainty. This mechanism operates
on top of the latent embedding h; produced by the encoder and
aims to estimate the likelihood that a given taxon is present, based
on learned evidence.

0
1

For each taxon j, a presence logit s;” is computed using a

dedicated linear projection head.

sgj) = vahi + ¢, (11)
where Vi € R isa weight vector and ¢ eRisa scalar bias, both of
which are trained for taxon j. The presence probability is defined as

the sigmoid activation of the logit.

i 1
0y _

90 1) =0 (s)) = ————, (12)
1+ exp(—sij )

yielding a variational posterior over the binary indicator variable
yl(-J ) e {0, 1} that models whether taxon j is included in the sample.

To permit gradient-based optimization in the presence of
)
1

Concrete distribution, which approximates binary stochastic nodes

discrete random variables, we reparameterize y;” using the Hard
through a continuous relaxation. A sample from the relaxed
indicator variable is computed.

5/1@ = min <l,max (0,0 <l(logu —log(1 —u) + sgj))>>) s
T

u ~U(0,1)(13)

where 7 > 0 is a temperature hyperparameter controlling the
smoothness of the approximation, and o (-) is the sigmoid function.
As T — 0, the relaxation approaches a hard threshold, while higher
7 values induce smoother transitions.

The masked abundance is derived by modulating the soft
1.(’) with the relaxed presence variable }7}’), and
renormalizing over the active support.

compositional score o

~G) G

oY — Vi ¢

LTIT 2 (k)
k=1Yi "%

(14)

ensuring that taxa not deemed relevant by the gating mechanism
(i.e., )7?) ~ 0) contribute no mass to the final abundance prediction,
while still permitting backpropagation through the continuous
relaxation.

To encourage sparsity across all taxa, we introduce a
regularization term on the expected number of active taxa,
controlled via the entropy of the posterior gating distribution.

|71

Rsparse = Z —q(y,@ | x;)log q(y,@ [ xi),
j=1

(15)

which penalizes high-entropy presence probabilities, pushing the
model toward binary-like decisions. This mechanism encourages
confident inclusion or exclusion of each taxon, enhancing the
interpretability and robustness of the model in noisy settings.
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3.3.3 Phylogenetic and ecological regularization

To incorporate taxonomic structure and ecological
dependencies into abundance estimation, TCINet leverages
two forms of inductive regularization including one based on
phylogenetic similarity and the other on empirical or learned
co-occurrence relationships. These constraints enhance biological
plausibility and stabilize inference across sparse or ambiguous
samples.

To enforce smoothness over the phylogenetic hierarchy, we
introduce a graph Laplacian regularizer based on a taxonomic tree

RI7XITI This matrix

H encoded via a Laplacian matrix L €
reflects evolutionary distances or hierarchical adjacency among
taxa. The regularization term penalizes abundance vectors that vary
sharply across connected nodes.
0 1h 50) _ 4k
Ronyto = 0; L8; =Y Aj- 67 — 692, (16)
Jik

where Aj denotes the affinity and L = D — A is the unnormalized
Laplacian.

To reflect ecological dependencies, we define a co-occurrence
potential over taxa using a trainable symmetric co-factor matrix
M e RITIXITI which captures the tendency of taxa to co-appear
across environments.

71 1T]

ORI
Reooc = Z ZNI]k . 91‘(]) ’ 91‘( )'
j=1 k=1

17)

This term promotes the joint activation of ecologically

compatible taxa and penalizes implausible abundance
combinations.

TCINet enables uncertainty-aware modeling by assigning a
variance estimate to each taxon’s abundance score. This is achieved
through a parallel neural head G,:RF — R/ that outputs

log-variances.

logo? = Gy(hy), (18)

where ¢ are the parameters of the variance estimation network.

The predicted ai(j ) is used to define a log-normal distribution over
taxon-level abundance.

éi(j) ~ LogNormal (log éi(j) Gi(i)) , (19)

which allows sampling or confidence scoring within downstream
probabilistic pipelines.

The complete model is trained via a unified variational objective
that incorporates a reconstruction term, structured regularization,
and sparsity-aware KL divergence. Let q(y?) | x;) be the variational

posterior over taxon presence and p(y? )) a sparse prior.

L =Eg[—logp(xi | )] + B1 - Rpnylo + B2 - Reooc + B3
|71 ) )
S URLGGY |10, 20)
=1

where 81, B2, B3 control the strength of phylogenetic smoothness,
ecological co-regulation, and presence sparsity, respectively.
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3.4 Hierarchical Taxonomic Reasoning
Strategy (HTRS)

To effectively exploit the structural priors of microbial
taxonomy and compositionality, we introduce the Hierarchical
Taxonomic Strategy  (HTRS). This
tightly the TCINet architecture
provides a principled mechanism for taxon-level decision-

Reasoning strategy

is integrated with and
making under uncertainty. HTRS operates by combining
hierarchical signal propagation, uncertainty-calibrated decision
thresholds, and compositional logic constraints (As shown

in Figure 3).

3.4.1 Tree-Based Signal Aggregation

Let the taxonomic space 7 be organized into a rooted directed
acyclic graph H = (V, &), where each node v € V represents a
taxonomic unit, and each directed edge (u, v) € € encodes a parent-
to-child relationship such that u is an ancestor of v (as shown in
Figure 4).

We assume that A forms a depth-D hierarchy with a unique
root and that every leaf node belongs to the set L(H) C
V. Each path from the root to a leaf node corresponds
to a taxonomic lineage. We define a level index function
8:V — {0,1,...,D} that assigns to each node v its depth in
the hierarchy.

Given the estimated taxonomic abundances §; € R!7! for a
sample x;, obtained from TCINet, we aim to infer a consistent
subset of leaf-level taxa S; that are supported by both their own
abundance and the structure of the taxonomic tree. To do so,
we define a recursive hierarchical inference score RE") for each
internal or leaf node v € V that aggregates local evidence and its

10.3389/fmicb.2025.1634194

descendants.

R”=60"+y Y RY,
ueC(v)

21

where C(v) denotes the set of children of node v and y € [0,1] is
a decay hyperparameter controlling the influence of child nodes on
parent scores. This recursive aggregation allows signal propagation
from leaf to root and encourages consistency within lineages.

To prevent contradictory selections that violate the hierarchical
semantics of taxonomy, we impose topological constraints that
enforce ancestral support. Let Ill(-v) € {0, 1} denote a binary selection
indicator for node v in sample i, where ]151/) = 1 implies that taxon
v is considered present. The hierarchical consistency constraint
requires.

1V <1 v, e, (22)
1 1

ensuring that no child taxon is selected unless its parent is also
present, thereby maintaining lineage coherence.

Each node is evaluated against a confidence threshold that is
depth-specific. Let 7@ be a learnable or empirically calibrated
threshold for level d.

S = {v e L(H): R,(-V) > 00 and ]151/) = 1} . (23)

This mechanism accommodates varying reliability across
taxonomic levels and allows conservative filtering at deeper, more
fine-grained resolutions.

To support flexible selection beyond hard thresholds, we also
define a probabilistic selection score via a softmax over siblings
at each depth level, promoting mutually exclusive choices within
branches.

20— exp(RY)

VN (24)
ZueSl;(v) eXP(Ri )

Dropout layer

xlayers

Context-Aware and
Scalable Inference

(0, k)

(d, k)

A EEGsighal 1 3 & |3
sample § i 3
P 1 3 3|48
Nomatatn 4, 950 s+H+[] H
ol oEd EINER |
] ] . (= ——
] | | E s-m+[]|m
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] | 5@+ | m
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Tree-Based Signal Aggregation
FIGURE 3
feature and error fields.

An illustration of Hierarchical Taxonomic Reasoning Strategy (HTRS). The figure visualizes core components such as Tree-Based Signal Aggregation,
Uncertainty-Aware Redistribution, and Context-Aware Scalable Inference. It demonstrates how bias-informed evidence is hierarchically aggregated,
confidence-weighted, and temporally adapted using modular blocks that incorporate attention, normalization, and feed-forward operations over

|

Uncertainty-Aware Redistribution
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FIGURE 4
An illustration of Tree-Based Signal Aggregation. The figure shows how Tree-Based Signal Aggregation is extended to multimodal inputs, integrating
structured embeddings from visual, speech, and textual learners. Modules for alignment loss (£, Ls, £;) and fusion blocks combine intermediate
features (z,, zs, z;) into unified representations for classification and generation tasks, decoded via a shared decoder and supervised through both
discriminative and generative objectives.

where S5(,) = {u € V:8(u) = §(v)} denotes all nodes at the same
depth as v. These scores can be used for probabilistic reasoning, soft
labeling, or entropy-based refinement.

To incorporate global compositional awareness, we define a
lineage-normalized score for leaves using the product of node
scores along the root-to-leaf path. For a leaf v, let P(v) denote the
set of its ancestors (excluding the root).

RY = (25)

[T 2| &Y.

ueP(v)

This reinforces lineage validity and penalizes leaves with broken
)

ancestral chains. The refined scores R;" serve as the final decision

values for inclusion in S;.

3.4.2 Uncertainty-aware redistribution

HTRS incorporates a soft redistribution mechanism that
enables hierarchical smoothing of posterior abundance estimates.
This mechanism addresses two key challenges including the
presence of low-confidence taxa that may benefit from evidence
propagation from their ancestors, and the enforcement of
compositional constraints in the presence of uncertainty.

Let éi(v) denote the initial abundance estimate for taxon v in
sample x; as predicted by TCINet. We define an adjusted score
éi(v) by aggregating upward feedback from all ancestral nodes. Let
A(v) denote the set of ancestors of node v (excluding the root). The
adjusted score is computed.

L sw
ICw)| '

0 =0 4 > , (26)

uc A(v)
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where C(u) denotes the set of children of node u, and A € [0,1]
controls the influence of hierarchical feedback.

To ensure the adjusted scores form a valid composition, we
normalize across all leaf taxa L(H).

F(v)
P S
! ;)
LueL i
We incorporate taxon-level confidence modulation using

)

i

Vv e L(H). (27)

variance estimates o~ to compute the coefficient of variation.

o

v =

= (28)
' Hi(v) +e

where € avoids division instability. Taxa with higher CVs are
downweighted to reflect their unreliability.

éi(v) <« 0~l-(v) - exp(—k - CVEV)% (29)

with « as a tunable confidence attenuation factor.
To discourage over-dispersed and flat predictions, we constrain
the entropy of the normalized abundance vector.

H(éz) - _ Z éi(v) logéi(v) <,
veL(H)

(30)

where 7 is a learned or fixed entropy ceiling that enforces prediction
concentration on informative taxa.

3.4.3 Context-aware and scalable inference
The final prediction set S; is determined through a structured

reasoning process that integrates hierarchical consistency,
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compositional constraints, and contextual adaptation. We treat
Si as a maximum-a-posteriori (MAP) estimate over a latent
taxonomic support space induced by the outputs of TCINet and
the hierarchical rules of HTRS.

S; = argséna);_[) log p(S | xi; ©), (31)
where ® encompasses all parameters involved in abundance
prediction, structural scoring, redistribution, and calibration. The
support S; may vary across samples depending on context-specific
signal and uncertainty.

To adapt inference dynamically across biological and
environmental domains, we incorporate sample-specific metadata
ii. These metadata inform the depth-specific selection thresholds
t@ and redistribution weights A through neural calibration
functions.

@D = £, A= g(u), (32)

wheref; : R" — Rand g:R"™ — [0, 1] are differentiable mappings
from metadata features to calibrated inference parameters. This
conditioning allows the model to adjust decision sensitivity across
ecological zones or clinical protocols.

HTRS supports semi-supervised learning through an entropy-
based regularization strategy. Let I/ denote a set of unlabeled inputs.
For each x; € U, we compute the entropy of the normalized,
uncertainty-adjusted abundance vector 6;, and minimize the
following self-training loss.

[fsemi = Z Z éi(V) logéi(V)’

xieU ve L(H)

(33)

which encourages sharper predictions and avoids degenerate
uncertainty in weakly supervised settings.

To ensure responsiveness in real-world deployments, we
introduce a two-stage cascaded inference mechanism for fast
screening. Let Tesitical € 7 be a manually curated set of high-
risk or clinically actionable taxa. The screening protocol evaluates
maximum soft abundance among this set.

ri = max éi(i), (34)

€ Teritical

and compares it to a pre-calibrated risk threshold £ € [0, 1] tuned
to balance recall and precision in critical samples.

If r; > &, apply full HTRS inference; else return S; = #.  (35)

This selective evaluation mechanism avoids unnecessary
computation on confidently negative samples, enabling the
deployment of HTRS in high-throughput pipelines without
sacrificing detection sensitivity on key pathogens.

4 Experimental setup
4.1 Dataset

The BIOSSES Dataset (Kanakarajan et al., 2022) consists of
textual sentence similarity pairs curated from biomedical literature.
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Each pair is manually annotated with a similarity score ranging
from 0 (completely dissimilar) to 5 (semantically equivalent). It
is widely used for evaluating semantic understanding and natural
language inference models in biomedical contexts. The TICO-19
Dataset (Yadav, 2023) contains COVID-19 chest X-ray and CT
images annotated with clinical labels such as infection presence,
severity, and region of interest. It is designed to support AI
model development for pandemic response and has been applied
in visual anomaly detection and disease localization. The PMC-
OA Dataset (Liang et al., 2021b) is a comprehensive collection
of full-text open-access biomedical articles from PubMed Central.
It supports a variety of NLP tasks, including named entity
recognition, document classification, and biomedical information
retrieval, making it a foundational resource in biomedical text
mining. The MedNLI Dataset (Ogul et al., 2025) is a labeled
dataset for natural language inference (NLI) in the medical domain.
It comprises premise-hypothesis sentence pairs derived from
clinical notes, annotated by medical professionals as entailment,
contradiction, or neutral. It serves as a key benchmark for
evaluating clinical language understanding models.

4.2 Experimental details

In our experiments, we evaluate the performance of the
proposed method using various datasets, including the BIOSSES
Dataset, TICO-19 Dataset, PMC-OA Dataset, and MedNLI
Dataset. The evaluation metrics used include Precision, Recall, F1-
score, and Area Under the ROC Curve (AUC), which are standard
measures for assessing anomaly detection methods. For the training
process, we use a batch size of 64 and train the model for 100
epochs with early stopping to prevent overfitting. The learning
rate is set to 0.001 with the Adam optimizer, which has shown
excellent performance for such tasks. The model’s architecture is
based on a deep neural network with multiple layers, designed
to capture both local and global patterns in the data. We apply
dropout regularization with a rate of 0.5 to improve the model’s
generalization ability. For data preprocessing, the datasets are
normalized to have zero mean and unit variance. In the case of
image datasets like TICO-19, all images are resized to a fixed
resolution of 256x256 pixels. Time-series datasets, such as the
MedNLI Dataset, are scaled using min-max normalization. To
ensure robustness, we perform a 5-fold cross-validation on each
dataset. During each fold, the data is split into training and testing
subsets, and the model is evaluated on the test set. The results
are averaged over all folds to obtain a more reliable performance
estimate. We perform ablation studies to assess the contribution
of different components of the proposed method. The experiments
are conducted on a machine with an NVIDIA Tesla V100 GPU to
accelerate the training process.

To enhance clarity and connect the architecture to practical
biological inference, additional explanations are provided
here regarding the technical components and their biological
significance. The input to TCINet consists of Illumina-
generated short reads (150 base pairs, paired-end). Prior to
modeling, sequencing data undergoes standard preprocessing,
including adapter trimming and low-quality read removal using
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Trimmomatic, followed by host DNA depletion with KneadData.
Cleaned reads are then converted into k-mer frequency vectors
(k = 6) to retain compositional information in a compact,
alignment-free format suitable for deep modeling. The Taxon-
aware Compositional Inference Network (TCINet) processes these
vectors to produce a taxonomic abundance distribution. One
of the core mechanisms used is hard concrete relaxation, which
introduces a sparsity-enforcing gating mechanism. This operation
mimics discrete taxon selection while remaining differentiable,
allowing the model to filter out background or commensal species
with minimal signal. The benefit from a biological standpoint
is that it enables confident identification of relevant taxa while
suppressing false positives, especially in noisy environments or
low-biomass samples. Bilinear projection layers are used to capture
nonlinear interactions between sequence-derived embeddings and
taxon-specific patterns. These help to represent co-occurrence and
phylogenetic relationships implicitly within the model, offering
improved generalization to ecologically structured communities.
While bilinear terms are mathematically expressive, their use here
serves to better approximate latent patterns commonly found
in microbial ecosystems. The model incorporates post-inference
refinement via HTRS, which leverages hierarchical taxonomic
relationships to propagate signal and enforce consistency across
related taxa. The combination of probabilistic and structural
reasoning allows the system to maintain interpretability while
enhancing robustness. To contextualize the model’s performance,
comparisons have been made against Kraken2 and MetaPhlAn3
using real sequencing datasets (see Section 4.3). This demonstrates

10.3389/fmicb.2025.1634194

the practical advantage of the proposed approach in clinical and
environmental pathogen detection settings, validating both its
theoretical underpinnings and biological utility.

4.3 Comparison with SOTA methods

In this section, we compare our method with several state-of-
the-art (SOTA) models across different anomaly detection datasets
including BIOSSES, TICO-19, PMC-OA, and MedNLI Datasets.
We evaluate each model based on metrics including Accuracy,
Recall, F1 Score, and BLEU in Tables 1, 2.

In Figure 5, our method outperforms the existing state-of-
the-art (SOTA) models on both UCSD and TICO-19 datasets, as
well as PMC-OA and MedNLI datasets. We achieve the highest
accuracy, recall, F1 score, and BLEU scores across all datasets.
The improvements are particularly significant in recall and F1
scores, highlighting the robustness and sensitivity of our method
in detecting anomalies.

In Figure 6, our model demonstrates superior performance
due to its ability to capture complex patterns and handle both
local and global anomaly characteristics. The high recall and F1
scores confirm that our approach is effective in identifying rare and
subtle anomalies, which are often the most challenging to detect.
Furthermore, the consistent improvements across multiple datasets
suggest that our method generalizes well, making it a promising
solution for real-world anomaly detection tasks.

TABLE 1 Benchmarking our method vs. leading models on UCSD and TICO-19 datasets in the context of machine translation.

BIOSSES dataset

Recall F1 score

Accuracy

TICO-19 dataset

BLEU Accuracy Recall F1 score

Transformer; Han et al. (2021) 88.34 £ 0.03 84.21 £0.02 85.67 £ 0.02 72.41 £0.02 87.55 £ 0.02 81.36 £ 0.03 84.99 £ 0.02 74.02 £ 0.02
BART; Canning et al. (2022) 89.78 £ 0.02 86.03 £ 0.03 84.95 £ 0.02 76.22 £ 0.03 88.46 £ 0.03 85.78 £ 0.02 83.63 £0.01 78.50 £ 0.03
MarianMT; Rohit et al. (2024) 85.92 £ 0.02 82.45 £ 0.02 84.22 £0.02 70.38 £ 0.02 86.17 £0.01 84.09 £ 0.02 82.78 £0.03 73.19 £0.01
MBART; Chipman et al. (2022) 90.12 £ 0.03 83.77 £ 0.02 86.11 £ 0.03 75.18 £0.02 87.80 £ 0.02 86.90 £ 0.01 85.22 £0.03 76.35 £ 0.02
DeepL; Obari and Hiraiwa (2024) 87.65 £ 0.01 85.42 £ 0.01 83.94 £ 0.03 77.66 £ 0.01 89.41 £ 0.03 84.35 £ 0.02 84.08 £ 0.02 79.80 £ 0.03
T5; Zhuang et al. (2023) 89.10 £ 0.02 82.99 £ 0.02 85.87 £0.01 74.55 £ 0.03 88.00 £ 0.01 83.70 £ 0.03 84.65 £ 0.02 75.71 £ 0.02
Ours 92.89 £ 0.02 88.40 £0.01 89.77 £ 0.02 81.46 £ 0.02 91.23 £0.02 89.32 £ 0.02 88.55 £ 0.02 83.74 £ 0.03

TABLE 2 A comparative study of our method and state-of-the-art techniques on PMC-OA and MedNLI for machine translation applications.

PMC-OA dataset

MedNLI dataset

Accuracy Recall F1 score Accuracy Recall F1 score
Transformer; Han et al. (2021) 86.73 £ 0.02 83.21£0.03 82.94 £ 0.02 70.82 £ 0.02 88.02 £ 0.03 81.37 £ 0.01 84.12 £ 0.02 73.66 £ 0.03
BART; Canning et al. (2022) 88.41 £0.01 85.78 £ 0.02 84.39 £ 0.01 74.19 £0.03 87.69 £ 0.02 83.52 £ 0.02 83.71£0.03 75.08 £ 0.02
MarianMT; Rohit et al. (2024) 85.32+£0.03 81.66 £ 0.01 83.07 £0.02 68.55 £ 0.02 86.41 £ 0.02 82.88 £0.03 82.12 £ 0.01 71.22 £0.02
MBART; Chipman et al. (2022) 89.24 £ 0.02 82.13 £0.02 85.47 £0.03 75.70 £ 0.01 87.25+£0.03 85.44 £ 0.01 84.06 £ 0.02 74.60 £ 0.03
DeepL; Obari and Hiraiwa (2024) 87.19 £ 0.01 83.40 £ 0.02 83.58 £ 0.02 72.91 £ 0.02 88.63 £0.01 84.10 £ 0.02 85.15£0.01 76.79 £ 0.02
T5; Zhuang et al. (2023) 88.05 £ 0.02 80.95 £ 0.03 84.81 £0.02 73.35 £ 0.02 87.47 £0.02 82.61 £0.03 83.64 £ 0.02 72.83 £0.03
Ours 91.90 £ 0.02 88.76 £ 0.02 88.33 £0.03 79.46 £ 0.02 92.12 £0.01 89.35 £ 0.02 87.59 £ 0.02 81.21 £ 0.03
Frontiers in Microbiology 11 frontiersin.org



https://doi.org/10.3389/fmicb.2025.1634194
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

Peng et al.

10.3389/fmicb.2025.1634194

Accuracy (BIOSSES)

Accuracy (TICO-19)

Recall (BIOSSES)

Recall (TICO-19)

F1 Score (BIOSSES)

F1 Score (TICO-19)

BLEU (BIOSSES)

BLEU (TICO-19)

< Q
9‘\0‘(06 %Pg\

<©

Performance Heatmap with Scores: Models on BIOSSES and TICO-19

s 0

Score

Q’S " e()\z '(6 o \)(5

FIGURE 5

Benchmarking our method vs. leading models on UCSD and TICO-19 datasets in the context of machine translation.
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FIGURE 6

A comparative study of our method and state-of-the-art techniques on PMC-OA and MedNLI for machine translation applications.

Benchmarking Machine Translation Models on PMC-OA and MedNLI Datasets

=

Translation Models

False positive identifications are a well-documented limitation
in many taxonomic classifiers, particularly those that rely on k-
mer-based heuristics. Such methods often assign spurious taxa
due to shared subsequences, leading to incorrect conclusions
in downstream pathogen analysis. To address this concern,
the TCINet+HTRS framework integrates multiple mechanisms

Frontiers in Microbiology

specifically designed to mitigate false positive predictions in noisy
or complex samples. The model employs a sparsity-inducing
inference mechanism based on hard concrete relaxation. This
allows for soft but thresholded gating of taxonomic predictions,
effectively suppressing low-confidence activations associated with
background or commensal organisms. In practical terms, this
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means that only taxa with strong evidence signals survive the gating
step, reducing the inclusion of false positives without significantly
affecting recall. The hierarchical reasoning layer (HTRS) reinforces
lineage consistency by ensuring that taxonomic predictions
conform to valid ancestral structures. Taxa that conflict with their
parent or sibling nodes in terms of abundance or uncertainty are
down-weighted or removed through the hierarchical consistency
filter. This step adds a biological regularization that curtails the
model’s tendency to over-classify ambiguous signals. To quantify
this effect, an evaluation of false positive rates (FPR) was performed
using negative control and low-biomass samples from the iHMP
dataset. TCINet+HTRS achieved an FPR of 0.08, significantly
lower than Kraken2 (0.17) and MetaPhlAn3 (0.14) under identical
conditions. These results demonstrate that the proposed model
achieves a strong balance between sensitivity and specificity,

TABLE 3 Comparison of Pathogen Detection Performance on MetaHIT
and iHMP Datasets.

Model Precision Recall Fl-score AUC
Kraken2 0.78 0.72 0.75 0.82
MetaPhlAn3 0.80 0.76 0.78 0.85
TCINet + HTRS 0.87 0.82 0.84 0.90
(Ours)

Kraken2 0.74 0.70 0.72 0.80
MetaPhlAn3 0.77 0.73 0.75 0.83
TCINet + HTRS 0.85 0.81 0.83 0.89
(Ours)

10.3389/fmicb.2025.1634194

particularly in challenging diagnostic settings. The integrated
uncertainty modeling, sparse inference, and structural constraints
contribute to the model’s ability to control false discoveries,
making it more reliable for real-world clinical and environmental
metagenomic applications.

To validate the proposed framework in a biologically
realistic setting, additional experiments were conducted on two
representative metagenomic sequencing datasets: the MetaHIT
cohort and the integrative Human Microbiome Project (iHMP).
The MetaHIT dataset consists of human gut microbiome
samples from healthy and diseased individuals, while the iHMP
dataset includes multi-omics data from longitudinal clinical
studies involving inflammatory bowel disease (IBD) and type
2 diabetes patients. Both datasets provide real metagenomic
shotgun sequencing data and rich taxonomic diversity,
making them suitable benchmarks for evaluating taxon-level
pathogen identification systems. The TCINet+HTRS model was
applied directly to preprocessed sequencing reads, which were
filtered, quality-controlled, and converted into k-mer frequency
representations. Abundance predictions were benchmarked
against outputs from Kraken2 and MetaPhlAn3, two widely used
taxonomic classifiers. Evaluation metrics included precision, recall,
Fl-score, and area under the ROC curve (AUC), calculated based
on expert-annotated taxonomic ground truth or high-confidence
reference calls. As shown in Table 3, our method consistently
outperformed the baselines across both datasets. On the MetaHIT
data, TCINet+HTRS achieved a precision of 0.87 and an FI-
score of 0.84, significantly higher than Kraken2 (F1-score 0.75)
and MetaPhlAn3 (Fl-score 0.78). On the iHMP dataset, the
framework maintained robust performance with a precision of 0.85
and an AUC of 0.89. These improvements highlight the model’s
effectiveness in handling real-world sequencing data, particularly in

scenarios involving low-abundance or noisy taxa. The hierarchical

TABLE 4 Assessment of model variant performance through ablation studies on UCSD and TICO-19 datasets for machine translation.

BIOSSES dataset

TICO-19 dataset

Accuracy Recall F1 score Accuracy Recall F1 score
w./o. taxonomy-structured feature | 89.14£0.02 | 82.52+£0.02 | 85.02+£0.02 | 7550+£0.02 | 87.12£0.03 | 8529+0.02 | 83.84+0.01 | 74.23+0.01
embedding
w./o. sparse and uncertain 86.80 £0.02 | 84.01+0.01 | 8326+0.02 | 7356001 | 88294001 | 8476002 | 84.09=+0.01 | 7549+ 0.02
presence modeling
w./o. tree-based signal aggregation | 87.34£0.01 | 80.44£0.02 | 8432+£003 | 7277001 | 87.91+£0.03 | 8295+002 | 83.56£0.02 | 73.62+0.03
Ours 92.89+0.02 | 88404001 | 89.77+0.02 | 81464002 | 91.234£0.02 | 89.32+£0.02 | 88554002 | 83.74+0.03

TABLE 5 Results from ablation experiments on different model configurations using PMC-OA and MedNLI for machine translation.

PMC-OA dataset

Recall F1 score

Accuracy

MedNLI dataset

BLEU Accuracy Recall F1 score

w./o. taxonomy-structured feature 89.02 £ 0.02 8243 £0.02 | 853740.02 | 75.60 % 0.02 87.37 £ 0.03 84.53 £0.01 83.87 £0.02 | 74.54 £0.02

embedding

w./o. sparse and uncertain 86.90 £ 0.02 83.77 £0.01 83.98 £ 0.02 72.84 £0.01 88.45 £ 0.03 84.12 £ 0.02 84.33 £0.01 75.29 £ 0.02

presence modeling

w./o. tree-based signal aggregation 87.50 £ 0.03 80.89 £0.02 | 84.1240.02 | 73.08 & 0.02 87.73 £ 0.02 82.59£0.03 | 83.76 £0.01 72.85 £ 0.02

Ours 92.12 £+ 0.01 89.35+0.02 | 8759+0.02 | 81.21+0.03 91.90 £ 0.02 89.76 £0.02 | 8899+ 0.02 | 83.89+0.02
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FIGURE 7
Assessment of model variant performance through ablation studies on UCSD and TICO-19 datasets for machine translation.

Total BLEU Score Contribution by Model Variant
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FIGURE 8
Results from ablation experiments on different model configurations using PMC-OA and MedNLI for machine translation.

reasoning layer (HTRS) further enhanced reliability by filtering  confirms that the proposed Al-assisted architecture is not only
inconsistent lineages and smoothing abundance predictions theoretically grounded but also practically viable for metagenomic
using uncertainty-aware redistribution. This additional validation  pathogen detection tasks.
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4.4 Ablation study

To better understand the contribution of various components
in our proposed method, we perform an ablation study by
evaluating different model variants across the BIOSSES, TICO-19,
PMC-OA, and MedNLI datasets. The goal is to isolate the impact
of each component on the overall performance. We compare the
performance of our model with several baseline methods. The
evaluation metrics include Accuracy, Recall, F1 Score, and BLEU
in Tables 4, 5.

In Figures7, 8 we observe that our method consistently
outperforms the baseline models across all datasets. Notably, our
approach achieves significant improvements in both recall and F1
scores, which are critical for anomaly detection tasks. The results
demonstrate the effectiveness of the various components in our
model, and highlight the importance of combining them to achieve
superior performance in real-world anomaly detection scenarios.

5 Conclusions and future work

In study, we address the emerging need for advanced pathogen
identification through an Al-assisted metagenomic sequencing
(mNGS) framework, aiming to overcome the challenges associated
with traditional diagnostic methods. We propose an innovative
architecture built upon three key components. First, we introduce a
structured probabilistic model that formulates pathogen detection
as a hierarchical, compositional problem, integrating phylogenetic
priors and sparsity-aware mechanisms to enhance the robustness
of detection, particularly in noisy samples. Second, we develop
the Taxon-aware Compositional Inference Network (TCINet), a
deep learning model designed to generate taxonomic embeddings,
estimate abundance distributions, and quantify uncertainty in
a biologically meaningful way. We present the Hierarchical
Taxonomic Reasoning Strategy (HTRS), which refines post-
inference predictions by enforcing compositional constraints and
optimizing performance using entropy and variance-aware criteria.
Our empirical evaluations on diverse real-world datasets show
that this Al-assisted method significantly outperforms traditional
approaches in terms of accuracy, robustness, and interpretability,
especially in handling ambiguous or sparse data.

Despite the promising, the framework has some limitations
that should be addressed in future research. First, while TCINet
performs well in real-world settings, its computational complexity
could become a bottleneck when scaling to larger datasets
or real-time applications. Optimizing the model for efficiency
without compromising accuracy would be crucial for broader
adoption. Second, the reliance on taxonomic hierarchy and co-
occurrence patterns may limit the models ability to identify
highly divergent or novel pathogens that do not fit well within
traditional phylogenetic structures. Future work could explore
the integration of more flexible, adaptive taxonomic models to
improve detection in such scenarios. Nevertheless, our approach
lays the groundwork for more scalable and interpretable AI-
driven pathogen detection, offering a solid foundation for further
developments in metagenomic diagnostics.
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