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Hand, foot, and mouth disease (HFMD) represents a globally prevalent infectious 
disease that is caused by enteroviruses. Enterovirus A71 (EV-A71), coxsackievirus 
A16 (CVA16), and coxsackievirus A6 (CVA6) are recognized as the predominant 
causative agents of HFMD. CVA16 is a member of the genus Enterovirus within the 
family Picornaviridae. B1a and B1b are the most prevalent subgenotypes, whereas 
the B1c subgenotype is relatively scarce. In this study, a comprehensive analysis 
was conducted on 15 of CVA16 B1c strains isolated from samples of patients 
diagnosed with HFMD in Jixi (Heilongjiang Province, China) in 2022. Subsequently, 
whole genome sequencing of these strains was carried out. Phylogenetic origin 
and potential recombination events were analyzed by aligning sequences of 
isolated of CVA16 B1c strains with related sequences deposited in GenBank. The 
CVA16 B1c isolates examined in this study exhibited a high degree of similarities. 
Specifically, the nucleotide similarity within the VP1 region ranged from 99.6 to 
100%. The average nucleotide substitution rate of CVA16 B1c viruses worldwide 
was estimated to be 5.14 × 10−3 (4.13–6.27 × 10−3) substitution/site/year, and the 
most recent common ancestor could be traced back to 2003. The earliest CVA16 
B1c strain isolated in China was traced back to 2011. Transmission pathway analysis 
suggested that Chinese strains may have originated in India. Recombination analysis 
showed that CVA16 B1c strains likely undergone recombination events with EV-A71 
and CVA4. In conclusion, the analysis of a cluster of CVA16 B1c cases detected 
for the first time in Heilongjiang Province not only expanded the gene sequence 
library of CVA16 B1c strains in China but also offered an epidemiological basis for 
further investigations into the antigen–antibody interactions and pathogenicity 
of CVA16 B1c.
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1 Introduction

Hand, foot and mouth disease (HFMD) is an infectious disease 
caused by various enteroviruses. It typically presents with mouth 
ulcers and rash on the hands and feet (Zhu et al., 2023). In 1957, 
an illness caused by coxsackievirus (mainly CVA16) was first 
reported in Toronto. Fever and mouth ulcers were characteristic 
manifestations of HFMD (Robinson et al., 1958). Previous studies 
have identified EV-A71 and CVA16 as the major causative 
pathogens of HFMD, which caused large-scale outbreaks in the 
United States and Asia–Pacific region (Zhu et al., 2023; González-
Sanz et al., 2019; Noisumdaeng et al., 2019; Liu et al., 2000; Bible 
et al., 2008). CVA16 was first isolated in South Africa in 1951. 
According to the phylogenetic tree and genetic diversity of the 
VP1 gene, CVA16 strains can be divided into three genotypes: A, 
B, and D (Hu et al., 2021). Gene group B viruses can be further 
divided into B1a, B1b, B1c, and B2 clades (Zhang et al., 2010a). B2 
was the dominant clade before 2000, but B1 has gradually replaced 
B2 as the most common clade after 1997 (Perera et  al., 2007). 
Genotype D was first identified in Peru in 2009 and then spread to 
France from 2011 to 2014 (Hassel et  al., 2017). In 2016, the 
SH-HP-16-51 strain was isolated in a patient with mild HFMD in 
Shanghai, China, and tested positive for the D gene (Wang 
et al., 2018a).

In 2005, the CVA16 B1c subtype was isolated in Malaysia for 
the first time. In recent years, CVA16 B1c has been detected 
successively in Malaysia (Chen et al., 2013; Perera et al., 2007; Chan 
et al., 2012), Japan (Mizuta et al., 2013), India (Ganorkar et al., 
2017; Mamidi et al., 2024; Rao et al., 2017; Palani et al., 2016), and 
other countries. Among them, the HFMD study that broke out in 
the Andaman Islands of India in 2013 showed that CVA16 was the 
main pathogenic factor and was closely related to the B1c gene 
group (Palani et al., 2016). In China, CVA16 B1a and B1b strains 
co-circulated and spread continuously (Liu et al., 2000; Zhang et al., 
2010a; Han et  al., 2020). However, B1c was only detected in 
Shanghai in 2014 (Wang et al., 2018b), Xinjiang in 2017, Beijing in 
2016 and 2022 (Hu et al., 2021; Liang et al., 2024), Guangdong in 
2018 and 2023 (Xie et al., 2020; Zeng et al., 2025), lacking systematic 
epidemiological analysis. In this study, CVA16 B1c isolates detected 
in Jixi (Heilongjiang Province, China) in 2022 were analyzed using 
molecular epidemiology approaches. The evolution and 
propagation origins of B1c strains in China were explored using 
comparisons with similar sequences in GenBank. These results 
enrich the CVA16 B1c gene database in China and provide scientific 
data for further prevention and control of infections caused by 
these viruses.

2 Materials and methods

2.1 Ethics statement

All throat swab samples collected in this study were sent to the 
national laboratory after being processed at provincial and municipal 
levels. All specimens were collected after informed consent was obtained. 
The experimental protocol was approved by the Second Ethics Review 
Committee of the National Institute for Viral Disease Control and 
Prevention at the Chinese Center for Disease Control and Prevention.

2.2 Sample collection and virus isolation

In 2008, China established a national HFMD pathogen 
surveillance network. Representative samples from each province are 
sent to the national HFMD laboratory for verification. Clinical cases 
of HFMD are diagnosed according to the Guidelines for the Diagnosis 
and Treatment of HFMD (2018 edition) (Li et al., 2018). In this study, 
isolates from throat swab samples of children with mild HFMD, 
originally sent from the Heilongjiang Province in 2022, were used. 
Samples were collected from Jixi (n = 46), Harbin (n = 5), Jiamusi 
(n = 6), Yichun (n = 3), Qiqihar (n = 12), and Mudanjiang (n = 1). The 
samples were treated and inoculated into human rhabdomyosarcoma 
cells. The infected viral suspension was harvested after a complete 
cytopathic effect was observed. The samples were transported to the 
National Polio Laboratory for further isolation and identification 
within 24 h according to a rigorous cold chain procedure. The VP1 
sequence was amplified using the universal EV primers. The genotype 
was determined using a criterion of VP1 nucleotide similarity >75% 
(amino acid similarity >85%) (Oberste et  al., 1999; Oberste and 
Pallansch, 2005). MEGA7.0 software (v7.0.25; Sudhir Kumar, Arizona 
State University, Tempe, AZ, USA) (Kumar et al., 2016) was used to 
compare VP1 sequences, construct the phylogenetic tree through the 
“Models” option and reference sequence, and set the bootstrap value 
to 1,000 for the tree test. The gene subtype was determined based on 
the aggregation of the reference sequences in the evolutionary tree.

2.3 CVA16 B1c whole genome sequencing

The complete genome sequence was obtained using a “primer 
walk” strategy. 0001S48 was used as the upstream primer to amplify the 
start 5′ part of the sequence, and 7500A was used as the downstream 
primer to amplify the end 3′ part of the sequence (Yang et al., 2003). 
Sequencher software and online Oligonucleotide Properties Calculator1 
were used to design primers for segmented amplification. Some 
primers were taken from a previous study by Han et  al. (2020) 
(Supplementary Table S1). A QIAGEN One-Step RT-PCR kit was used 
(QIAGEN, Hilden, Germany). Amplification was performed using the 
following steps: reverse transcription (50°C, 30 min, 94°C, 2 min), 
sequence amplification (94°C, 30°C, 50°C, 30°C, 72°C, 1 min 20 s) for 
40 cycles, treatment at 72°C for 7 min, and preservation at 4°C. PCR 
products were identified using 1% agarose gel electrophoresis and sent 
to Tsingke Biotechnology Co., Ltd. (Beijing, China) for sequence 
determination. The sequencing results were collated and spliced using 
Sequencher (v5.4.5) to obtain the final complete genome sequence.

2.4 Analysis of VP1 sequences in CVA16 
strains from Jixi City

MEGA7.0 software (v7.0.25) (Kumar et al., 2016) was used to 
verify the results of CVA16 genotyping. Nucleotide and amino acid 
genetic distances were calculated by “DISTANCE” program. The 
results of CVA16 genotyping were verified according to the division 

1 https://www.northwestern.edu/
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principle of 15–25% nucleotide difference of different genotypes 
within the same serotype proposed by Brown et  al. (1999). 
Nucleotide and amino acid similarities of different gene subtypes of 
Jixi CVA16 strains were calculated using Sequence Identity Matrix 
program in BioEdit (v7.0.9.0) (Hall, 1999). ESPript3.0 online 
website was then used to analyze different Jixi CVA16 VP1 gene 
subtype area locus mutations (Robert and Gouet, 2014). The 
PROVEAN program was used to evaluate whether the variations 
had an impact on the function of the VP1 protein. Use −2.5 as the 
reference threshold (a score ≤ − 2.5 is considered harmful 
compilation, and a score > − 2.5 is considered neutral variation) 
(Choi et al., 2012).

2.5 Phylogenetic analysis

To elucidate the global evolutionary origin of CVA16 B1c 
strains, complete CVA16 VP1 sequences were obtained from 
GenBank and screened using TempEst software. Outliers were 
identified according to the vertical distance from the root to the 
node and residual, using the “root-to-tip” option to check the 
correlation (Rambaut et al., 2016). The “Models” package in MEGA 
software (v7.0.25) was used to select the optimal nucleotide 
replacement model. The molecular clock model was analyzed using 
a strict and an uncorrelated, relaxed clock combined with constant 
velocity, exponential growth, and logarithmic growth as the priority 
population growth modes. The Markov chain Monte Carlo method 
implemented in BEAST software (v1.10.4) (Suchard et al., 2018) 
was used, the chain length was set to 500,000,000, and the sampling 
frequency was set to 50,000. Convergence was tested using Tracer 
(v1.7.1) with an effective sample size > 200 as the criterion 
(Rambaut et  al., 2018). A Bayesian maximum clade credibility 
(MCC) tree was constructed using TreeAnnotator (v1.10.4), and the 
top 10% of the sample trees were removed as burn-in. Phylogenetic 
trees were visualized using FigTree (v1.4.4). To analyze the 
dynamics of population diversity, Bayesian skyline plots were 
constructed based on the complete VP1 sequences.

2.6 Evolutionary analysis

To determine the source of CVA16 B1c strains in China, the 
global dynamic propagation of CVA16 B1c viruses was analyzed. 
An asymmetric alternative model with the Bayesian stochastic 
search variable selection option was selected in BEAST to infer the 
spread rate of the possible regions of different nodes and to 
reconstruct the ancestral origin of all strains. SpreadD3 (Bielejec 
et al., 2016) was used to calculate migration paths and Bayesian 
factor values (BF) between different regions. The BF value was used 
as the criterion to determine possible paths. BF > 100 indicated 
extremely strong evidence support, 10 < BF ≤ 100 indicated strong 
evidence support, and 3 < BF ≤ 10 indicated moderate evidence 
support. The numbers of Markov jumps and rewards used for state 
transitions between different regions were used to describe the 
migration states entering and leaving a region (Minin and 
Suchard, 2008).

2.7 Recombination analysis

The whole genome sequences of the selected CVA16 B1c strains 
divided into the 5′-UTR, P1, P2, and P3 regions were compared with 
those of the CVA16 prototype strain. The EV-A prototype strain 
sequence was obtained from GenBank, and phylogenetic trees of 
CVA16 B1c and EV-A prototype strains were constructed based on 
the 5’-UTR, P1, P2, and P3 regions. BLAST was used to screen for 
other group A sequences with more than 85% similarity to each region 
of CVA16 B1c. Sequences from India, Malaysia, France, and China 
were randomly selected, along with one sequence from this study. 
Potential Recombination event analysis was conducted using SimPlot 
software (version 3.5.1) and Recombination Detection Program 
(RDP4, version 4.100). Seven methods from RDP4 were adopted, 
including RDP, GENECONV, 3Seq, Chimaera, SiScan, MaxChi and 
BootScan. Recombination detected by at least three of the seven 
methods was judged to be possible, with p ≤ 0.05 (Martin et al., 2015). 
The Kimura’s two-parameter model was adopted in Simplot for the 
nucleotide substitution model, and the ratio of nucleotide transition 
and transversion was set to 2.0 (Lole et al., 1999). The recombinant 
results were verified using BioEdit by comparing the similarity 
between the reference sequence, recombinant donor, and prototype 
strain in different segments.

3 Results

3.1 Pathogen spectrum composition in 
HFMD samples isolated in the Heilongjiang 
Province in 2022

The VP1 sequence was determined in 73 positive specimens from 
six cities in the Heilongjiang Province. There were significant 
differences in the pathogen spectrum composition (Figures 1A,B). 
CVA16 was mainly detected in Jixi, where most specimens were 
collected. The highest pathogen diversity was detected in Qiqihar. 
CVA16, CVA6, CVA4, and CVA10 strains were isolated there, with 
CVA6 strains being the predominant pathogens. In the present study, 
isolates detected in Harbin and Jiamusi were represented by a single 
subtype, CVA16 and CVA6, respectively. The lowest number of 
samples was sent from Mudanjiang, with only one CVA16 positive 
case. Overall, CVA16 strains were isolated from the largest number of 
detected cases, accounting for 60% (44 cases, mainly CVA16 B1a). 
CVA6 strains were second most prevalent (30%; Figure 1C). Further 
analysis of CVA16 positive samples from Jixi showed that 15 B1c 
strains were detected (Figure 2). This accounted for 43% of CVA16 
samples from Jixi (Figure  1D). For more details, please refer to 
Supplementary Table S2.

3.2 Analysis of VP1 gene characteristics of 
CVA16 strains from Jixi

The genetic distances between all genotypes were calculated and 
compared. The inter-genotype genetic distances were greater than 
15%, whereas the intra-genotype distances were less than 15%. The 
genetic distances within each subtype of B genotype were 0.047–0.075. 
The genetic distances between the subtypes were 0.101–0.145, in the 
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range of 8–15%. The nucleotide similarities of Jixi CVA16 B1c isolates 
were 99.6–100%. The nucleotide similarities between Jixi CVA16 B1c 
and Heilongjiang Province CVA16 B1a and CVA16 B1b were 
86–88.5%. Four characteristic loci of amino acid mutations were 
revealed in CVA16 B1c and other clades in Jixi strains: P3S, V25A, 
I235V, and T240A (Supplementary Figure S1). The PROVEAN results 
showed that the PROVEAN scores of these four variations were 1.458, 
0.064, −0.063 and 0.304 respectively, all belonging to neutral mutations.

3.3 Evolutionary dynamics of CVA16 B1c

In total, 120 CVA16 B1c sequences from 2005 to 2022 were 
screened by TempEst (Supplementary Table S3), and an uncorrelated 
relaxed clock and logarithmic prior by marginal likelihood value were 
selected as the best molecular clock model for CVA16 B1c to construct 
the MCC tree. The average base substitution rate of CVA16 B1c 
worldwide was estimated at 5.14 × 10−3 substitution/site/year with a 
95% highest posterior density (HPD) of 4.13 × 10−3– 6.27 × 10−3 
substitution/site/year. The most recent common ancestor (MRCA) of 
global CVA16 B1c was dated to 2003 (95% HPD: 2000–2004; 
Figure 3A). All Chinese strains clustered with Indian strains. Chinese 
strains from 2022 were closely related to the Indian strains from 2018, 
with an approximate earliest origin in 2021. Chinese strains isolated 
from 2013 to 2017 were closely related to the Indian strains isolated in 
2013. The earliest strain, CVA16 B1c, isolated in China, was traced 
back to 2011 and was a Guangdong strain. No other related sequences 
were obtained during the same period, and this was presumed to be an 
imported case. All French and Japanese strains isolated in 2011 were 
most closely related to the Indian strains from 2010. It is likely that the 

Malaysian strains clustered into a single clade because they originated 
earlier. Bayesian skyline analysis showed that the effective population 
size changed over time (Figure 3B). It remained relatively stable until 
2011, after which three fluctuations were observed. The first wave 
occurred in 2011–2012, with a small increase in the population. The 
second wave witnessed a dynamic change of decline, increase and then 
decline from 2015 to 2018, and then tended to stabilize. In the third 
wave of 2021, the population showed a downward trend again.

3.4 Analysis of the geographical spread of 
CVA16 B1c

Markov jumps and rewards analysis showed that India, Russia 
and Malaysia were mainly export-oriented, whereas other countries 
were mainly import-oriented (Figure  3C). To analyze the global 
dynamic propagation of CVA16 B1c further, the propagation network 
of CVA16 B1c strains was reconstructed. Geographical transmission 
analysis was performed for CVA16 B1c sequences from seven 
countries (14 from China, one from France, 88 from India, seven 
from Japan, one from Kazakhstan, seven from Malaysia, and two 
from Russia). Eight migration paths supported by BFs were identified 
(Figure 4). BF > 6,000 from India to China provided extremely strong 
support to the notion that Chinese CVA16 B1c strains were imported 
from India. The main migration paths could be: (I) from India to 
China, (II) from Russia to Kazakhstan, (III) from India to Japan, (IV) 
from Japan to France, (V) from Malaysia to Russia, (VI) from 
Malaysia to India, (VII) from Russia to India, and (VII) from France 
to Japan.

FIGURE 1

Spectrum of pathogenic coxsackievirus strains from HFMD samples isolated in the Heilongjiang Province (China) in 2022. (A, B) are graphs of the 
number of enterovirus pathogens detected in six regions of Heilongjiang Province. (C) represents the detected quantities of different enteroviruses and 
different subtypes of CVA16 in Heilongjiang Province; (D) represents the detected quantities of different subtypes of CVA16 in Jixi City.
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3.5 Recombination analysis

The evolutionary trees of CVA16 5′-UTR, P1, P2, and P3 
regions were constructed. The P1 region phylogenetic tree showed 
that all CVA16 B1c strains clustered together with CVA16 
prototype strains (Figure  5B), which was consistent with the 
CVA16 serotyped results. However, phylogenetic trees based on 
the 5′-UTR, P2, and P3 regions showed different results. The 
CVA16 B1c strains clustered with CVA4 in the 5′-UTR region, and 
with EV-A71  in the P2 region (Figures  5A,C). The P3 region 
showed close similarity with EV-A71, CVA3, CVA12, CVA2, 
CVA6, and CVA10 (Figure  5D). Through RDP4 and Simplot 
analysis, it was found that the possible recombinant donors in the 
5′-UTR region and the non-coding region were mainly CVA4 and 
EV-A71 (Figure 6 and Supplementary Figure S2). The similarity 
between different regions showed that the P1 region had the 
highest similarity with the CVA16 prototype strain. It has the 
highest similarity with EV-A71  in regions P2 and P3. The 
similarity with CVA4 was the highest in the 5’-UTR region 
(Supplementary Table S4).

4 Discussion

In this study, four characteristic loci were found in VP1 sequences 
of Jixi CVA16 B1c strains and strains of other clades: P3S, V25A, 
I235V, and T240A. Similarly, specific mutations at these sites were also 
found in the study of CVA16 B1c in Beijing and Guangdong (Hu et al., 
2021; Liang et al., 2024; Zeng et al., 2025; Zhou et al., 2020). The VP1 
region contains the major antigenic sites and most serotype-specific 
neutralization sites, and the substitution of amino acids may affect the 
function of proteins (Mateu, 1995). According to the prediction results 
of PROVEAN, P3S, V25A, I235V, and T240A are all neutral 
mutations. This may not cause a change in protein function, but it may 
also have an impact when it occurs simultaneously with the 
substitution of other regions. However, these mutations only exist in 
CVA16 B1c, and the same amino acid mutations have not been found 
in other genotypes of CVA16. At present, the impact of amino acid 
changes in B1c of CVA16 on the structure remains blank, and the 
biological significance reflected by such amino acid changes should 
be further evaluated. Whether these amino acid changes are related to 
virus antigenicity and pathogenicity needs further studies.

FIGURE 2

Phylogenetic tree of CVA16 strains from Jixi (Heilongjiang Province, China).
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In the evolutionary analysis, the average nucleotide substitution 
rate of CVA16 B1c was estimated to be 5.14 × 10−3 substitution/site/
year. Other studies on the evolutionary analysis of CVA16 have shown 
that the evolutionary rate of CVA16 is 3.36–6.66 × 10−3 substitution/
site/year (Han et  al., 2020; Zhao et  al., 2016). It can be  seen that 
CVA16 B1c does not show significant differences in terms of external 
evolutionary pressure. The analysis of global CVA16 B1c transmission 

suggested that Chinese B1c strains may have been imported from 
India. This conclusion is supported by a high Bayesian factor values. 
In this study, 15 CVA16 B1c strains were detected in the Heilongjiang 
Province of China, indicating a small outbreak. Apart from this study, 
no large-scale prevalence of B1c strains has been found in China, 
whereas long-term circulation of B1c strains have been reported in 
both India and Malaysia (Ganorkar et al., 2017; Chen et al., 2013; 

FIGURE 3

Evolutionary analyses of CVA16 B1c strains. (A) Maximum Clade Credibility tree built using the Markov chain Monte Carlo method for the global VP1 
coding region. Branches are colored according to the country of isolation. (B) Bayesian skyline plot based on VP1 sequences of CVA16 B1c strains 
reflects the effective population size in 2004–2022. (C) Histograms based on Markov jumps and rewards in different countries.

FIGURE 4

Analysis of the spatio-temporal dynamic propagation of CVA16 B1c strains. Only migration pathways with Bayesian factor (BF) values > 3 are shown. 
BF > 100 indicates extremely strong support, 10 < BF ≤ 100 indicates strong support, and 3 < BF ≤ 10 indicates moderate support.
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Chan et  al., 2012). All CVA16 B1c strains in China were closely 
related to Indian strains, which further suggests the potential import 
risk of endemic strains in China and neighboring countries. 

Therefore, continuous and effective monitoring of HFMD worldwide 
should be  emphasized to prevent the outbreak of CVA16 B1c in 
the future.

FIGURE 5

Phylogenetic trees based on the 5′-UTR, P1, P2, and P3 regions of CVA16 B1c genomes and prototype EV-A strains. (A) 5′-UTR; (B) P1 region; (C) P2 
region; (D) P3 region. Notes: Triangles represent CVA16 B1c sequences. Black square represents the prototype strain.
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FIGURE 6

Bootscanning analysis of the whole CVA16 B1c strain genomes. The nucleotide transition and transversion ratios were set to 2.0, and the analysis was 
based on a 200-nucleotide sliding window with a 20-nucleotide step size.
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The symptoms of HFMD caused by CVA16 are generally mild: 
few severe cases and nervous system-related complications have been 
reported, and most of them were self-limiting (Zhu et al., 2010). 
However, some studies have shown that CVA16 can cause more 
serious complications and clinical symptoms (Wright et al., 1963; 
Wang et al., 2004), especially upon co-infection with EV-A71 (Chang 
et  al., 1999; Cai et  al., 2019). Recombination is one of the main 
mechanisms of enterovirus evolution. It was found in this study that 
CVA16 may have recombined with EV-A71 and CVA4. Other studies 
on CVA16 from Taiwan, Guangdong, central and northeastern 
China have suggested that the 5 ‘-UTR and non-structural protein 
coding regions of CVA16 subgenotypes B1 and B2 may recombine 
with CVA4 and EV-A71, respectively (Cheng et al., 2022; Han et al., 
2014; Zhao et  al., 2011; Lin et  al., 2015). Previous studies have 
confirmed that a large outbreak of HFMD with fatal neurological 
complications in Fuyang City, China, in 2008 was mainly caused by 
the C4 sub-genotype of EV-A71, which had recombined with 
CVA16 in the 3D region (Zhang et al., 2010b). EV recombination 
may affect virulence and pathogenicity of the virus. Therefore, 
further attention should be paid to the recombination of CVA16 and 
EV-A71 strains.

Since the monovalent EV-A71 vaccine was launched in China the 
end of 2015, the detection rate of EV-A71 has decreased significantly. 
However, the lack of cross-protection against other EVs causing 
HFMD led to the detection rates of CVA6, CVA10 and CVA16 
significantly exceeding that of EV-A71 (Zhang et al., 2022; Hong et al., 
2022). At present, there is no specific vaccine for CVA16 to prevent 
HFMD on the market. Studies have indicated that there are EV-related 
multivalent vaccines in the clinical trial stage. These multivalent 
vaccines contain CVA16 and are developed based on the previously 
prevalent B1a and B1b subtypes (Zeng et al., 2025). CVA16 B1c has 
been occasionally detected in some provinces in recent years, such as 
Shanghai (Wang et al., 2018b), Beijing (Hu et al., 2021; Liang et al., 
2024), and Guangdong (Zeng et  al., 2025). Due to the antigenic 
differences among subgenotypes, it is necessary to develop an effective 
multivalent vaccine with cross-protective immune response. In 
addition to vaccines, disease prevention and control also requires 
further strengthening of comprehensive monitoring of EVs. The Asia-
Pacific Network for Enterovirus Surveillance (APNES) was established 
in 2017 to assess the burden of disease through laboratory diagnosis 
and data collection (Chiu et al., 2020). The European Union has also 
established the European non-polio enterovirus network (ENPEN) to 
improve the diagnosis of enteroviruses, monitor enterovirus data and 
prevent the spread of enteroviruses (Harvala et al., 2018). For China, 
merely conducting HFMD monitoring cannot detect all enteroviruses 
in a timely manner. To supplement its limitations, a network of 
encephalitis and meningitis monitoring laboratories was established 
based on sentinel hospitals. At the same time, patients with acute 
flaccid paralysis (AFP) were monitored, and environmental 
surveillance of sewage water was carried out. Strengthen prevention 
and control measures to reduce the risk of epidemic outbreak.

In conclusion, this study is the first detection of CVA16 B1c in 
Heilongjiang province. Combined with the available CVA16 B1c data in 
the GenBank database, the isolated CVA16 B1c in Jixi City was analyzed. 
The global phylogeny and spread of CVA16 B1c were deeply understood 
through the Bayesian method, and recombination analysis was carried 
out. This study enriched the global genetic database of CVA16 B1c and 
provided an epidemiological basis for its further research.
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