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Phage-host interaction prediction plays a crucial role in the development
of phage therapy, particularly in combating antimicrobial resistance (AMR).
Current in silico models often suffer from limited generalizability and low
interpretability. To address these gaps, we introduce MoEPH (Mixture-of-Experts
for Phage-Host prediction), a novel framework that integrates transformer-based
protein embeddings (ProtBERT and ProT5) with domain-specific statistical
descriptors. Our model dynamically combines features using a gated fusion
mechanism, ensuring robust and adaptive prediction. We evaluate MoEPH on
three publicly available phage-host interaction databases: Dataset 1 (101 host
strains, 129 phages), Dataset 2 (38 host strains, 176 phages), and Dataset 3
(combined). Experimental results demonstrate that MoEPH outperforms existing
methods, achieving an accuracy of 99.6% on balanced datasets and a 31%
improvement on highly imbalanced data. The model provides a transparent,
dynamic and knowledge-driven fusion solution for phage-host prediction,
contributing to more effective phage therapy recommendations. Future work
will focus on incorporating structural protein features and exploring alternative
neural backbones for further enhancement.

KEYWORDS

trustworthy phage-host prediction, interpretable, robustness, transformer-based
protein embeddings, mixture of experts (MoE)

1 Introduction

Antimicrobial resistance (AMR) has emerged as a global health crisis and a “silent
pandemic,” threatening effective infection treatment worldwide. Without intervention,
AMR is projected to cause up to 10 million deaths annually by 2050 (Walsh et al., 2023),
with millions of lives already impacted each year. This dire situation has reignited interest
in alternative therapeutics (Murray et al., 2022). Bacteriophage (phage) therapy—the use of
viruses that specifically infect bacteria—has re-emerged as a promising strategy to combat
drug-resistant infections. Phages can lyse antibiotic-resistant bacteria with high specificity,
offering a potential lifeline where antibiotics fail. In this context, developing accurate
phage—host identification methods is crucial to actualize phage therapy against AMR. Our
work lies at the intersection of phage therapy and artificial intelligence, aiming to advance
trustworthy medical AI to address this challenge. Moreover, increasing biological data
resources facilitate this goal; for instance, we leverage a large phage–host interaction dataset
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from BGI-Shenzhen,1 which provides extensive phage genomic and
host information to support model training and evaluation.

Existing in silico phage–host prediction methods, however, face
significant limitations that hinder clinical utility. Early approaches
rely on genomic sequence similarity or alignment-based heuristics,
such as BLAST hits or CRISPR-spacer matches. Alignment-free
statistical methods [e.g., WIsH (Galiez et al., 2017) and RaFAH
(Coutinho et al., 2021)] predict hosts based on k-mer composition
or protein content, but often fail on distantly related phages and
have limited accuracy. Later methods introduced machine learning
on genomic features: for example, logistic matrix factorization
models (Leite et al., 2018) and network-based frameworks like
VirHostMatcher-Net (Wang et al., 2020) integrated multiple
genomic similarity measures to improve predictions. These
offered moderate performance gains yet still struggle with
generalizability and robustness, especially for novel phages or
under-represented hosts. Deep learning has also been applied—
notably PredPHI (Li et al., 2020), a CNN-based tool utilizing
phage and host protein features—achieving higher accuracy than
classical approaches. However, such deep models act as black boxes
with limited interpretability, and their improvements in accuracy
remain modest. Even knowledge-integrated approaches encounter
challenges: a recent knowledge graph model KGVHI (Pan et al.,
2024) combines multiple data types (genomic, proteomic, and
host metadata) to predict microbe–host pairs and shows excellent
performance on benchmark datasets, yet it requires comprehensive
prior knowledge and is not specialized for bacteriophage therapy
scenarios. In summary, existing methods tend to overfit to training
data and imbalanced distributions, often over-predicting dominant
hosts while missing rare interactions. They lack the adaptability to
generalize to new phage or host species and provide little biological
insight into predictions. Such opacity and instability undermine
user trust, which is critical for AI deployment in healthcare. Thus,
improvements in generalization, robustness, and explainability
are essential before phage–host prediction models can be used
confidently in clinical practice.

Meanwhile, large pre-trained models have brought
transformative advances to bioinformatics. In the protein biology
domain, protein language models (pLMs) like ProtBERT and
ProT5 (Elnaggar et al., 2021) leverage Transformer architectures to
learn rich protein sequence representations. These models capture
structural motifs and achieve state-of-the-art performance in
diverse biological tasks. Treating protein sequences as a “language
of life,” such models offer superior feature learning for tasks
like phage–host prediction. Similarly, in biomedical NLP, large
domain-specific language models [e.g., PubMedBERT (Gu et al.,
2021)] have demonstrated that pre-training on in-domain data
yields powerful representations for downstream tasks. However,
current pLM-based phage–host prediction approaches are often
used only as static feature extractors, lacking dynamic adaptation
or integration of domain knowledge. Recent studies have begun to
endow language models with biological knowledge or multi-modal
data (Chen et al., 2024), but a cohesive framework that combines

1 CNSA accession number: CNP0006217, available at https://db.cngb.org/

search/project/CNP0006217/.

pre-trained embeddings with adaptive, knowledge-driven fusion
for phage–host prediction remains absent.

To address these gaps, we propose MoEPH, a Mixture-
of-Experts framework designed to improve both performance
and transparency for trustworthy phage–host prediction. MoEPH
employs multiple expert subnetworks specializing in different
feature modalities, with a gating network dynamically selecting
experts for each input (Shazeer et al., 2017). This architecture
enables adaptive, context-specific learning, effectively capturing
both genomic composition signals and high-level protein patterns.
By synergistically integrating pre-trained protein embeddings
with interpretable statistical features, MoEPH achieves not only
superior predictive performance but also enhanced explainability.
Specifically, our model maintains robust accuracy even on highly
imbalanced and novel data, mitigating the overfitting to dominant
hosts that plagues prior methods. It also provides interpretability
through per-sample expert weight analysis, offering biological
insight into which features drive a given prediction. These
qualities align with key pillars of trustworthy AI—reliability,
explainability, and adaptability (Aljohani et al., 2025)—making
MoEPH particularly suitable for sensitive applications like phage
therapy recommendation. In summary, our main contributions
are an innovative multi-expert fusion strategy tailored for phage–
host prediction, a comprehensive evaluation demonstrating state-
of-the-art performance across multiple datasets, and an analysis
showing improved generalization and interpretability compared to
existing models.

In summary, our main contributions are:

• Trusted phage-host prediction framework: We develop
MoEPH, combining pre-trained embeddings with dynamic
expert selection to enhance robustness and interpretability in
clinical AI applications targeting AMR.

• Enhanced robustness on imbalanced data: MoEPH achieves
stable performance even under highly imbalanced conditions,
avoiding overfitting and reliably predicting under-represented
bacteria.

• Interpretability via expert weight visualization: The gating
network output offers interpretable insights into model
decisions, supporting clinician trust and biological discovery.

• Generalization across datasets and novel pairs: Extensive
evaluation shows that MoEPH generalizes well to external
datasets and unseen phage-host pairs, maintaining reliability
as scientific knowledge evolves.

2 Definition and materials

In pursuit of trustworthy AI, this chapter details the
feature design and data preparation that form the foundation
for MoEPH, with a particular emphasis on explainability
and robustness. Specifically, we integrate knowledge-driven
statistical descriptors with context-rich transformer-based protein
embeddings to balance interpretability and predictive performance.
Fundamental features such as amino acid composition (AAC),
atomic composition (AC), and molecular weight (MW) provide
human-understandable sequence characteristics that complement
the deep sequence representations from pretrained models

Frontiers in Microbiology 02 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1634705
https://db.cngb.org/search/project/CNP0006217/
https://db.cngb.org/search/project/CNP0006217/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Chen et al. 10.3389/fmicb.2025.1634705

(e.g., ProtBERT, ProT5). By unifying these two classes of features
within a Mixture-of-Experts (MoE) framework, our model can
more effectively capture protein complexity in an adaptive manner.
The synergy between interpretable statistical features and advanced
LLM-derived embeddings thus serves as the basis for a more
explainable and resilient predictive system. In this section, we
describe the designed statistical features and the datasets utilized,
which together underpin the trustworthy modeling approach of
MoEPH.

2.1 Definition of statistical features

We incorporate three interpretable, domain-knowledge-driven
statistical descriptors to complement deep embeddings:

(1) Amino acid composition (AAC): Measures the frequency
of each amino acid Ai in sequence S:

AACi = ni

L
, i = 1, . . . , M,

where ni is the count of Ai and L is the sequence length. AAC
provides coarse but robust information for classification tasks.

(2) Atomic composition (AC): Represents the proportion of
each element Ej (e.g., C, H, N, O, S) in a protein:

ACj =
aj∑E

k=1 ak
, j = 1, . . . , E,

where aj is the number of atoms of Ej in S. AC captures the protein’s
fundamental chemical makeup.

(3) Molecular weight (MW): Summarizes compositional
information into a physicochemical metric:

MW(S) =
M∑

i=1

ni · M(Ai),

where M(Ai) denotes the molecular weight of amino acid Ai. MW
can discriminate proteins based on mass profiles.

These statistical features enhance model explainability
by providing intuitive biochemical insights into
protein sequences.

2.2 Transformer-based LLMs protein
representations

We leverage ProtBERT and ProT5, two pre-trained protein
LLMs, to generate context-rich sequence embeddings.

(1) ProtBERT: ProtBERT is a BERT-based protein language
model that employs a bidirectional Transformer encoder with a
masked language modeling (MLM) objective [20]. During pre-
training, a subset M = {m1, . . . , mK} of positions in the
input sequence S is randomly masked, and the model learns to
predict the masked residues using context. The MLM loss is
defined as:

LMLM(θ) = −
∑

m∈M

log P(sm | S\m; θ) , (1)

where S\m denotes S with the residue at position
m replaced by a mask token. ProtBERT stacks
multiple Transformer layers to iteratively refine the
sequence representation:

H(l) = TransformerLayer
(
H(l−1)), l = 1, 2, . . . , L , (2)

with H(0) being the input token embeddings. By leveraging
contextual cues, ProtBERT learns both local motifs and long-range
dependencies, yielding robust sequence features for downstream
tasks.

(2) ProT5: ProT5 is a T5-based encoder–decoder model
that frames protein modeling tasks in a sequence-to-sequence
format. It can be pre-trained to reconstruct corrupted sequences,
predict functional or structural annotations, or even generate
novel protein sequences. Given an input sequence S and
a target sequence Y = {y1, . . . , yT}, ProT5 models the
conditional probability:

P(Y | S; θ) =
T∏

t=1
P(yt | y<t , S; θ) . (3)

It learns by minimizing the negative log-likelihood:

LT5(θ) = −
T∑

t=1
log P(yt | y<t , S; θ) . (4)

The encoder first produces a hidden representation:

Henc = Encoder(S) . (5)

The decoder then uses Henc (together with previously generated
tokens y<t) to predict the next token yt :

Hdec,t = Decoder
(
Henc, y<t

)
, t = 1, 2, . . . , T . (6)

Through this process, ProT5 captures rich long-range
dependencies and excels in generative and multi-task settings.
Training on diverse objectives endows ProT5 with a broad
latent space of protein sequences, complementing ProtBERT’s
embeddings.

2.3 Dataset of the immersion experiment

The datasets originate from a BGI research project titled
Research on Artificial Phage Model Construction Based on Deep
Generative Adversarial Network Learning (see text footnote 1),
providing a reliable empirical foundation for our prediction tasks.
This study is part of an ongoing initiative at BGI-Shenzhen to
explore phage-host prediction under real-world data constraints.
The equipment is based on the NVIDIA A100 cloud platform.
To evaluate the model under multi-source conditions, we utilize
two distinct datasets and a third integrated dataset. To evaluate
the model under multi-source conditions, we utilize two distinct
datasets and a third integrated dataset.

To provide a clearer picture of the dataset composition, we
include a heatmap of the host-phage interaction matrix (Figure 1)
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FIGURE 1

Host-phage matching matrix.

in the data description. This figure offers an overview of which
phages infect which host strains in Dataset 1, highlighting the data’s
structure before any modeling.
Dataset 1: This dataset includes 101 host bacterial strains and
129 phages, collected under well-defined conditions, ensuring clear
information on species composition and environmental context.
Dataset 2: This dataset comprises 38 host strains and 176 phages.
Compared to Dataset 1, its sampling conditions (e.g., environment
and strain selection) differ, yielding distinct phage–host interaction
patterns.
Dataset 3: Dataset 3 combines Dataset 1 and Dataset 2 to enable
performance assessment under more diverse conditions, providing
a robust test of the model’s adaptability to heterogeneous data
sources in real-world settings.
(1) Immersion experiment and labeling strategy: The phage–host
interactions were measured via immersion experiments, where
phages were exposed to host cultures and infection outcomes
recorded in a host–phage matrix (Figure 1). We binarized these
outcomes by labeling interactions with infection values above 1.5
as 1 (significant infection) and below 1.5 as 0 (no significant
infection), ensuring a clear separation between positive and
negative samples.
(2) Sequence information and feature extraction: For each host and
phage, we obtained the protein amino acid sequence and extracted
features including traditional descriptors (AAC, AC, MW) and
LLM-based embeddings (ProtBERT, ProT5), yielding a rich feature
set for learning.

In summary, these curated multi-source datasets and
comprehensive feature sets provide a solid foundation
to assess the model’s generalization and robustness.
Their diversity underscores the importance of MoEPH’s
dynamic fusion mechanism for reliable predictions across
heterogeneous conditions.

3 Proposed framework: MoEPH

In this section, we present the architecture of the proposed
Mixture-of-Experts model for Phage Host prediction (MoEPH).
The MoEPH framework is designed to leverage transformer-based
protein representations and an ensemble of expert sub-models
to address the complex task of phage-host prediction. Mixture-
of-Experts (MoE) architectures have also been used in recent
large language models to achieve greater scalability by dividing
the model’s knowledge among specialized sub-networks; we adopt
a similar principle here to effectively handle the heterogeneity
of phage-host data. By decomposing the prediction task among
multiple expert networks and using an adaptive gating mechanism
to fuse their outputs, MoEPH can capture diverse patterns in the
data. This design enhances the model’s robustness and flexibility, as
each expert can specialize in certain features or sub-distributions
of the input, while the gating network dynamically selects and
combines expert contributions appropriate for each phage query. In
what follows, we detail the overall model framework, the structure
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FIGURE 2

Flowchart of MoEPH. This figure illustrates the model’s main components, including statistical feature extraction (A1), two Transformer-based LLM
feature extraction modules (A2, A3), the MoE layer (B) for adaptive expert weighting, feature concatenation (C), and the final prediction model (D).

of the Mixture-of-Experts layer, and the training and inference
procedures.

3.1 MoEPH model framework

The MoEPH model proposed in this study is designed to
integrate multi-source features both statistical descriptors and deep
sequence embeddings extracted by large language models (LLMs)
and to adaptively weight these features through a Mixture-of-
Experts (MoE) mechanism. By doing so, the model produces more
robust and expressive representations for subsequent classification
tasks. Figure 2 provides an overview of the framework.

In A1 (Statistical feature extraction), we derive fundamental
statistical descriptors such as amino acid composition (AAC),
atomic composition (AC), and molecular weight (MW) from each
protein sequence, denoted as Xstats ∈ R

N×26 in the example

illustration. These features reflect basic physicochemical properties
of the protein and serve as an initial numeric reference for
subsequent integration.

Concurrently, in A2 and A3 (LLM feature extraction), we
employ two pre-trained protein language models: ProtBERT and
ProT5 to capture deep semantic representations of the sequences,
resulting in XProtBERT ∈ R

N×1024 and XProT5 ∈ R
N×1024. These

high-dimensional embeddings encode contextual, local structural,
and functional information within the sequences, thereby enriching
the predictive power for phage-host interaction tasks.

Next, these three kinds of features are fed into B: the MoE layer,
which consists of a Router and two expert modules (Expert 1 and
Expert 2). A gating network processes the statistical features Xstats
to generate weights α, dictating how XProtBERT and XProT5 should
be combined. This adaptive weighting ensures that the model can
dynamically select the most discriminative or best-matched expert
features for each sample under varying data distributions and
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Input:
Training sets: Xtrain_ProtBERT ∈ R

Ntrain×1024,
Xtrain_ProT5 ∈ R

Ntrain×1024, Xtrain_stats ∈ R
Ntrain×26;

Test sets: Xtest_ProtBERT ∈ R
Ntest×1024,

Xtest_ProT5 ∈ R
Ntest×1024, Xtest_stats ∈ R

Ntest×26

Output: Xtrain_combined,Xtest_combined
Step 1: Initialize MoE layer
MOEGating(input_dim = 2048,stats_dim =
26,hidden_dim = 64):
1. Input: XProtBERT ∈ R

N×1024, XProT5 ∈ R
N×1024,

Xstats ∈ R
N×26

2. Compute gating weights from Xstats: First layer
(hidden):

H = ReLU(XstatsW1 + b1), W1 ∈ R
26×64,H ∈ R

N×64

Second layer (output):

G = HW2 + b2, W2 ∈ R
64×2,G ∈ R

N×2

Apply softmax to get gating weights:

α = Softmax(G) ∈ R
N×2

3. Fusing experts: Stack the two experts along a
new dimension:

Xexperts = stack(XProtBERT,XProT5,dim = 1) ∈ R
N×2×1024

Reshape or broadcast α to match experts
dimension:

αexpanded = α.unsqueeze(2) ∈ R
N×2×1

Apply the gating weights to each expert
channel:

Xweighted = Xexperts � αexpanded ∈ R
N×2×1024

Sum over the expert dimension:

Xfused =
2∑

e=1
Xweighted[:,e, :] ∈ R

N×1024

Step 2: Compute fused features for training and
test sets

Xtrain_fused ← moe_layer(Xtrain_ProtBERT,Xtrain_ProT5,

Xtrain_stats)

Xtest_fused ← moe_layer(Xtest_ProtBERT,Xtest_ProT5,
Xtest_stats)

Step 3: Append stats features

Xtrain_combined ← [Xtrain_fused,Xtrain_stats] ∈ R
Ntrain×2100

Xtest_combined ← [Xtest_fused,Xtest_stats] ∈ R
Ntest×2100

return Xtrain_combined,Xtest_combined

Algorithm 1. Mixture-of-Experts (MoE) layer feature fusion in MoEPH.

feature patterns. In addition, the resulting weighting coefficients
can provide interpretability regarding the relative importance of
each LLM for different types of samples.

As depicted in C (Concatenate of features), the fused
features obtained from the MoE layer are concatenated with the
statistical features, producing Xcombined ∈ R

N×1050 (illustrative
dimensionality). This consolidated vector representation fully
integrates both the “protein statistical attributes” and the “LLM-
based deep features.”

Finally, D (Model) processes Xcombined using a customizable
prediction network (e.g., a CNN, MLP, or RNN) to output the
phage-host interaction results. In this study, we employ a CNN
classifier to systematically examine how the fused features improve
performance (e.g., accuracy, F1-score, AUC) under a fixed network
structure.

In summary, MoEPH incorporates statistical features
from traditional analyses and advanced embeddings from
ProtBERT/ProT5, then uses an adaptive MoE layer to effectively
and interpretably combine multi-source information. This
integrated solution provides a robust yet flexible approach to
phage-host interaction prediction.

3.2 MoE layer of the MoEPH model

In protein-related prediction tasks, relying solely on a single
pre-trained model (e.g., ProtBERT or ProT5) often fails to fully
capture the diverse sequence patterns and structural information
inherent in biological data. To address this limitation, we introduce
a Mixture-of-Experts (MoE) mechanism into our model. By
combining multiple pre-trained experts and adaptively assigning
their importance based on sample-specific statistical attributes,
the MoE layer flexibly merges various feature advantages, thereby
enhancing predictive performance and overall generalization
(Shazeer et al., 2017; Pearce and Zhang, 2021). The entire fusion
procedure is summarized in Algorithm 1.

3.3 MoE layer structure and gating
mechanism

In our Mixture-of-Experts (MoE) layer, a gating network
dynamically computes sample-specific weights to fuse the outputs
of two expert models (ProtBERT and ProT5). Formally, for each
sample i, let XProtBERT,i ∈ R

d and XProT5,i ∈ R
d denote the

pre-trained feature vectors from ProtBERT and ProT5 (with d =
1024 in our implementation). Each sample also has an associated
statistical feature vector Xstats,i ∈ R

s (with s = 26 descriptors
such as physicochemical properties and sequence composition).
The gating function g(·) is realized as a two-layer feed-forward
network that transforms the statistical features into a pair of
importance weights (αi,1, αi,2) for the two experts. Concretely,
the gating network first applies a fully-connected layer to Xstats,i
(shared across samples) to produce a hidden representation, then
a second fully-connected layer produces two logit scores which are
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Input:

Pretrained feature matrices:
XProtBERT ∈ R

N×d, XProT5 ∈ R
N×d;

Statistical feature matrix:
Xstats ∈ R

N×s

Output:
Xfused ∈ R

N×d: fused feature matrix
Xcombined ∈ R

N×(d+s):

Step 1: Compute gating weights (sample-specific)
H ← ReLU(XstatsW1 + b1) // H ∈ R

N×64

G ← HW2 + b2 // G ∈ R
N×2

α ← softmax(G) // α ∈ R
N×2, each row αi,∗ sums to 1

Step 2: Fuse expert outputs using gating weights
for i = 1 to N do

Xfused,i ← αi,1 XProtBERT,i + αi,2 XProT5,i
// Xfused,i ∈ R

d

end

Xfused ← [Xfused,1; Xfused,2; . . . ;Xfused,N ]
// Xfused ∈ R

N×d

Step 3: Concatenate fused features with original
stats
Xcombined ← [Xfused, Xstats ] // Xcombined ∈ R

N×(d+s)

return Xfused and Xcombined

Algorithm 2. Pseudocode of MoE gating and expert fusion.

normalized by a softmax activation:

H = ReLU
(
XstatsW1 + b1

)
, H ∈ R

N×64, (7)

G = HW2 + b2 , G ∈ R
N×2, (8)

α = softmax(G) , α ∈ R
N×2, (9)

where W1 ∈ R
s×64, b1 ∈ R

64, W2 ∈ R
64×2, b2 ∈ R

2 are
trainable parameters. The ReLU activation in Equation 7 introduces
nonlinearity into the gating function, and the softmax in Equation 9
ensures each sample’s two gating coefficients (αi,1, αi,2) form a
probability distribution (i.e., αi,1, αi,2 ≥ 0 and αi,1 + αi,2 = 1
for each i). Importantly, this gating is dynamic and sample-specific:
for each sample i, the statistical attribute vector Xstats,i yields its
own gating weights αi,1 and αi,2. This design allows the model to
adaptively decide how much to rely on each expert’s features based
on the characteristics of that sample (rather than using fixed static
fusion weights).

Using the gating weights αi,1 and αi,2, the MoE layer modulates
and fuses the expert outputs for each sample. Let αi = [αi,1, αi,2]
be the weight vector for sample i. We obtain the fused feature for
sample i by an element-wise weighted sum of the two expert feature
vectors:

Xfused,i = αi,1 XProtBERT,i + αi,2 XProT5,i , Xfused,i ∈ R
d .
(10)

In other words, the ProtBERT embedding is scaled by αi,1 and
the ProT5 embedding by αi,2, and then they are added together to
produce a single fused representation for sample i. Stacking these
results for all N samples yields the fused feature matrix:

Xfused = α1 � XProtBERT + alpha2 � XProT5 ∈ R
N×d , (11)

where α:,1, α:,2 ∈ R
N×1 denote the two columns of α (broadcasted

across the d-dimensional feature vectors), and � denotes element-
wise (Hadamard) product. Through Equations 10–11, the gating
weights effectively modulate the contribution of each expert: if
αi,1�αi,2 for a given sample, the fused representation Xfused,i will be
dominated by ProtBERT’s features, whereas if αi,2 is larger, ProT5’s
features are emphasized. This adaptive fusion flexibly leverages the
strengths of both experts, allowing the model to favor the expert
that is more informative for each particular sample’s attributes.

After obtaining the fused LLM-based features Xfused, we
integrate them with the original statistical features. Specifically, we
concatenate each sample’s fused vector with its statistical descriptor
vector to form the final combined feature:

Xcombined = [ Xfused , Xstats ] ∈ R
N×(d+s) . (12)

In our implementation d = 1024 and s = 26, so
Xcombined ∈ R

N×1050. This concatenation preserves the original
handcrafted features alongside the fused deep features, ensuring
that downstream classifiers receive a comprehensive feature set.
The entire gated fusion procedure is summarized in Algorithm 2
.

3.4 Model training and prediction

After extracting and preprocessing the features, we employ a
convolutional neural network (CNN) as the classification backbone
for phage-host interaction prediction, integrating the MoE module
for feature fusion throughout the training process. While we
fix this CNN architecture for consistency, our main objective is
to demonstrate how the proposed MoEPH framework leverages
multi-source embeddings to boost predictive performance, the
advantage would extend similarly to other model architectures.
The overall training and evaluation pipeline is summarized in
Algorithm 3.

3.4.1 Network architecture
Let X ∈ R

N×d be the combined feature matrix obtained via the
MoE fusion layer, where N is the number of samples and d is the
dimensionality of the fused features (including both Transformer-
based protein embeddings and statistical descriptors). Each sample
xi ∈ R

d is reshaped into a (d, 1) array, which is then fed into a series
of 1D-CNN layers. Specifically, these layers consist of:

• One-dimensional convolutional layers (e.g., kernel_size
= 3, varying channel widths), each followed by a nonlinear
activation function (ReLU), batch normalization, and max-
pooling;

• Global pooling operation to reduce the final convolution
outputs to a fixed-size feature vector;

• Fully connected (FC) layers that project the pooled feature
vector into logits for the binary classification task (interaction
vs. non-interaction).

Additional regularization elements (e.g., dropout) may be
introduced in the FC layers to mitigate overfitting.
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Input:

Training Sets:
Xtrain_ProtBERT,Xtrain_ProT5,

Xtrain_stats,ytrain
Test Sets:
Xtest_ProtBERT,Xtest_ProT5,

Xtest_stats,ytest
Output: Trained CNN model & performance metrics

Step 1: MoE fusion to obtain features
Use the MoE layer to generate Xcombined by fusing
ProtBERT, ProT5, and the statistical features.

Step 2: Reshape and construct CNN
1. Reshape:

Xcnn ← Reshape(Xcombined,(N,d,1)).

2. Define the 1D-CNN architecture (e.g.,
Conv→ReLU→BatchNorm→MaxPool, repeated multiple
times, then global pooling, and FC layers).

Step 3: Joint training of MoE & CNN
for epoch = 1 to EPOCHS do

Xbatch_combined ←
MoE(Xbatch_ProtBERT,Xbatch_ProT5,Xbatch_stats)
Xbatch_cnn ← Reshape(Xbatch_combined,(B,d,1))
pred ← cnn_model(Xbatch_cnn) // Forward pass
loss ← CrossEntropyLoss(pred,ybatch)
Update MoE & CNN parameters by
backpropagation:

∇ ← ∂ loss
∂(MoE params, CNN params)

Optimizer.step(∇)

end

Step 4: Evaluation

1. Obtain Xtest_combined via MoE, reshape to (Ntest,d,1).
2. Predict:

predtest ← cnn_model(Xtest_cnn)

3. Compute performance metrics (Accuracy, F1,
AUC-ROC, AUPR, etc.).

return Trained CNN model and performance metrics

Algorithm 3. Model training and evaluation (CNN with MoE fusion).

3.4.2 Loss function
We adopt the cross-entropy loss for binary classification:

Li = −
[

yi log(p̂i) + (1 − yi) log
(
1 − p̂i

)]
, (13)

where yi ∈ {0, 1} is the true label for sample i, and p̂i is the
predicted probability that sample i is positive (i.e., displays phage-
host interaction). Concretely, let zi,0 and zi,1 be the logits for the

negative and positive classes, respectively, so that

p̂i = exp(zi,1)
exp(zi,0) + exp(zi,1)

. (14)

Averaging over the entire training set of size N yields

L(θ) = − 1
N

N∑
i=1

[
yi log(p̂i) + (1 − yi) log

(
1 − p̂i

)]
. (15)

Minimizing L(θ) with respect to the model parameters θ steers the
CNN toward more accurate probability estimates.

3.4.3 Training procedure
We initialize the CNN parameters θ randomly and adopt the

Adam optimizer with a selected learning rate (e.g., 1 × 10−3).
Training proceeds in mini-batches over a fixed number of epochs.
For each mini-batch:

1. We obtain the fused features Xbatch_combined via the MoE layer.
2. Reshape them to (B, d, 1) for the 1D-CNN, where B is the

mini-batch size.
3. Perform a forward pass through the CNN to compute logits and

subsequently derive predicted probabilities.
4. Compute the cross-entropy loss using the predicted probabilities

and the ground truth labels.
5. Backpropagate to compute gradients ∇θ L(θ) and update all

relevant parameters (MoE and CNN) in one unified step.

This joint optimization ensures that the CNN learns discriminative
features while the MoE layer continues to refine the expert-
selection gating.

3.4.4 Prediction
After convergence, we apply the trained model to the test set.

Specifically, the MoE layer fuses the expert embeddings for each
test sample, the fused feature vectors are reshaped for the CNN,
and the final probabilities p̂j are obtained via a Softmax layer. We
use a threshold of 0.5 to determine the predicted class:

ŷj =
{

1, if p̂j ≥ 0.5,

0, otherwise.
(16)

Standard classification metrics (accuracy, F1-score, AUC-ROC,
AUPR, etc.) are then computed to evaluate predictive performance.

4 Experimental results

4.1 Data description and sampling
strategies

This study evaluates the proposed model on three datasets
(Dataset1, Dataset2, and a merged Dataset3 which combines the
former two). Dataset 1 contains phage–host pairs collected under
relatively consistent experimental conditions (with well-defined
species compositions and environmental factors), whereas Dataset
2 comes from a more complex ecological background, yielding
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greater heterogeneity in phage–host interaction patterns. By
merging these two sources into Dataset 3, we impose more
stringent demands on the model’s adaptability to heterogeneous,
multi-source inputs. This strategy was chosen to preserve each
dataset’s unique characteristics and to assess whether the model
generalizes across different sources. Had we merged the datasets
from the beginning, any source-specific patterns or performance
differences would be hidden. By first testing on each dataset
individually, we can demonstrate MoEPH’s robust performance
under each condition, and then confirm its adaptability on the
merged Dataset 3.

To further challenge the model’s robustness, each dataset
is examined under three class imbalance settings: the original
imbalanced distribution (Raw), an Over-sampling variant, and an
Under-sampling variant. In Over-sampling, instances from the
minority class are replicated to balance the number of positive
and negative samples (e.g., if Npos and Nneg denote the counts of
positive and negative samples with Npos < Nneg , additional positive
instances are randomly duplicated until N ′pos ≈ Nneg). In Under-
sampling, the opposite approach is applied: majority-class instances
are randomly removed until N′neg ≈ Npos, thereby equalizing
class counts. These three sampling methods simulate varying
degrees of class imbalance encountered in real-world scenarios,
enabling a comprehensive evaluation of the model’s robustness
across different data distributions.

4.1.1 Sampling methods overview
To validate our model’s performance under different

class distributions and assess its generalization capability, we
applied three sampling strategies to each dataset (as illustrated
in Figure 3):

• Raw (imbalanced data): Directly using the original dataset
while preserving its natural ratio of positive and negative
samples, without any additional sampling.

• Over-sampling: Replicating instances from the minority class
to balance the number of positive and negative samples. For

instance, if Npos and Nneg denote the number of positive and
negative samples respectively and Npos < Nneg , then over-
sampling randomly duplicates some positive samples until
N′

pos ≈ Nneg .
• Under-sampling: The opposite approach, which randomly

removes part of the majority class to match the minority class
size. If Npos < Nneg , we randomly eliminate some negative
samples so that N′

neg ≈ Npos.

These three sampling methods simulate varying degrees of
class imbalance encountered in real-world scenarios, offering a
more comprehensive evaluation of the model’s adaptability and
generalization performance across different data distributions.

4.1.1.1 Min-max normalization
In addition to resampling, we apply a uniform preprocessing to

all features. Min-Max Normalization: To alleviate discrepancies in
feature value ranges, each feature is rescaled to [0, 1] via:

x′ = x − min(x)
max(x) − min(x)

, (17)

where x is an original feature value and x′ is its normalized
counterpart. This normalization expedites model convergence
and enhances stability, especially when combining features
of different scales. Finally, to assess the Generality and
Applicability of our approach, we design experiments from
multiple perspectives:

• Class distribution impact: We compare model performance
on naturally imbalanced data (Raw) versus balanced data
(Over-sampled or Under-sampled) to gauge robustness to
uneven class distributions.

• Multi-source backgrounds: By evaluating the algorithms
on Dataset1, Dataset2, and the combined Dataset 3, we
examine generalization under different biological settings and
mixed conditions. This tests how well the model adapts to
multi-source data variability, highlighting its robustness in a
heterogeneous scenario.

FIGURE 3

Data preprocessing pipeline for imbalanced datasets: under sampling, oversampling, and raw data.
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FIGURE 4

Heatmap of features in algorithms on different datasets. (a) Statistical-D1. (b) Statistical-D2. (c) Statistical-D3. (d) MoEPH(ProtBERT)-D1. (e)
MoEPH(ProtBERT)-D2. (f) MoEPH(ProtBERT)-D3. (g) MoEPH(ProT5)-D1. (h) MoEPH(ProT5)-D2. (i) MoEPH(ProT5)-D3. (j) MoEPH(fused)-D1.
(k) MoEPH(fused)-D2. (l) MoEPH(fused)-D3.

• Feature visualization: Although the heatmaps (e.g., Figure 4)
primarily reflect the distribution of final fused features rather
than changes before sampling, contrasting the feature patterns

generated by different datasets and algorithms still offers
useful insights into what aspects the model focuses on and how
those relate to potential biological interpretations.
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4.2 Performance evaluation metrics

In this study, we adopt several widely recognized metrics
to evaluate the predictive capability of our model under class-
imbalanced conditions (Fawcett, 2006; Davis and Goadrich, 2006;
Saito and Rehmsmeier, 2015; Huang and Ling, 2005). Below, we
provide their mathematical definitions and briefly discuss their
relevance in the context of phage–host interaction prediction.

ACC = TP + TN
TP + FP + TN + FN

(18)

The proportion of all predictions that are correct.

Prec = TP
TP + FP

(19)

The proportion of predicted positive cases that are truly positive.

Spec = TN
TN + FP

(20)

The proportion of actual negative cases correctly identified (true
negative rate).

F1 = 2 × Precision × Recall
Precision + Recall

(21)

The harmonic mean of precision and recall.

AUC =
∫ 1

0
TPR(f ) df (22)

The area under the ROC curve (TPR vs. FPR), summarizing
performance across all thresholds.

AUPR =
∫ 1

0
Precision(r) dr (23)

The area under the precision–recall curve, reflecting the precision–
recall trade-off.

4.3 Feature representation analysis

Figure 4 provides a comparative visualization of the final
feature representations produced by different methods across the
three datasets. Each vertical column corresponds to a specific
feature channel, and the color intensity indicates the magnitude
of the feature values (with darker shades representing higher
values and lighter shades indicating lower values). These heatmaps
are derived from features output by our MoEPH model after
the expert fusion layer, just before classification, under various
configurations: using only statistical features, using ProtBERT
embeddings, using ProT5 embeddings, and using the fused
MoE approach (ProtBERT+ProT5). Compared to the traditional
statistical baseline, the MoEPH-based models display more distinct
block and stripe patterns, indicating that MoEPH captures finer-
grained, context-dependent sequence features than conventional
methods. Each subfigure corresponds to one method on one
dataset (Figures 4a–l), allowing side-by-side comparison of how
feature distributions vary by method and data complexity. The key
observations are as follows:

4.3.1 Statistical method vs. MoEPH-based
features

Compared to the “Statistical Method” (see Figures 4a–c), the
MoEPH variants (ProtBERT only, ProT5 only, and the fused
approach) typically yield more distinct vertical stripes or block
patterns in their heatmaps, with sharper gradients across various
feature columns. Because the Statistical Method relies on basic
statistical measurements, its derived feature vectors often exhibit
relatively homogeneous distribution patterns. By contrast, the
MoEPH approaches, having leveraged large pre-trained models,
are better able to capture fine-grained, context-dependent sequence
representations, leading to more pronounced differences among
samples.

4.3.2 Differences between ProtBERT and ProT5
As shown in Figures 4d–i, using ProtBERT versus ProT5

for feature extraction can produce noticeably different heatmap
patterns in certain feature columns. In some dimensions,
ProtBERT’s response appears more “striped,” whereas ProT5 may
display broader regions of lighter or darker shades. This indicates
that the two pre-trained models have distinct sensitivities or biases
when encoding the same sequence information. Such disparities
become even more pronounced for Dataset 2 and Dataset 3,
suggesting each model exhibits unique strengths in capturing
sequence features under more complex biological conditions.

4.3.3 Performance of the dated fusion [MoEPH
(fused)]

Figures 4j–l present the heatmaps of features obtained by
gating and fusing the ProtBERT and ProT5 experts. These images
reveal that while certain ProtBERT-like or ProT5-like textures
remain, some local regions appear smoothed out or amplified. This
indicates that the gating mechanism is not merely an averaging
step but rather a selective weighting process driven by statistical
features and sequence context, yielding a more diversified feature
distribution in complex data scenarios.

4.3.4 Changes across datasets
A vertical comparison from Dataset 1 through Dataset 3 shows

that as the dataset size and heterogeneity increase, the color
patterns—blocks and stripes—also become more pronounced.
For instance, in Dataset 3, which includes more varied samples,
the color intensity for a given feature column may fluctuate
more widely across different instances, suggesting that the large
pre-trained models have learned broader sequence distinctions.
Conversely, if a method is relatively insensitive to environmental
variation, its heatmaps may exhibit similar patterns across datasets,
implying limited adaptability in its learned feature space.

Overall, these visual observations suggest that MoEPH-based
methods manifest more distinct block structures in their features
and are better equipped than traditional statistical approaches
to capture deeper sequence-level variations—an advantage that
can underpin improved classification results in subsequent
experiments.
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TABLE 1 Performance comparison across three datasets (D1, D2, D3) under three sampling strategies (Raw, Over, Under) with four algorithms
[Statistical, MoEPH (ProtBERT), MoEPH (ProT5), MoEPH (fused)].

Dataset + sampling Metric Statistical (baseline) MoEPH (ProtBERT) MoEPH (ProT5) MoEPH (fused)

D1 - Raw ACC 0.966 0.968 0.975 0.969

F1 0.81 0.81 0.852 0.827

AUPR 0.837 0.89 0.878 0.887

AUC 0.969 0.975 0.977 0.972

Sens 0.8 0.743 0.804 0.801

Spec 0.982 0.99 0.992 0.986

Prec 0.821 0.891 0.906 0.854

D1 - Over ACC 0.98 0.98 0.984 0.978

F1 0.98 0.98 0.984 0.978

AUPR 0.994 0.987 0.997 0.993

AUC 0.996 0.994 0.998 0.996

Sens 0.999 0.998 0.999 0.992

Spec 0.961 0.962 0.969 0.965

Prec 0.963 0.963 0.97 0.965

D1 - Under ACC 0.917 0.964 0.901 0.891

F1 0.919 0.791 0.905 0.899

AUPR 0.948 0.828 0.939 0.926

AUC 0.956 0.966 0.952 0.946

Sens 0.937 0.761 0.939 0.957

Spec 0.896 0.984 0.863 0.825

Prec 0.901 0.824 0.874 0.847

D2 - Raw ACC 0.988 0.988 0.985 0.985

F1 0.768 0.749 0.725 0.674

AUPR 0.707 0.686 0.654 0.684

AUC 0.875 0.872 0.903 0.864

Sens 0.716 0.642 0.679 0.541

Spec 0.996 0.998 0.994 0.998

Prec 0.83 0.897 0.779 0.894

D2 - Over ACC 0.997 0.996 0.996 0.996

F1 0.997 0.996 0.999 0.996

AUPR 0.999 0.999 1 0.998

AUC 0.999 0.999 0.999 0.999

Sens 1 1 1 1

Spec 0.994 0.991 0.993 0.992

Prec 0.994 0.991 0.993 0.992

D2 - Under ACC 0.53 0.84 0.845 0.845

F1 0.44 0.826 0.832 0.829

AUPR 0.577 0.732 0.814 0.859

AUC 0.526 0.824 0.85 0.899

Sens 0.393 0.809 0.819 0.798

Spec 0.65 0.868 0.868 0.887

Prec 0.5 0.844 0.846 0.862

(Continued)
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TABLE 1 (Continued)

Dataset + sampling Metric Statistical (baseline) MoEPH (ProtBERT) MoEPH (ProT5) MoEPH (fused)

D3 - Raw ACC 0.95 0.954 0.947 0.96

F1 0.663 0.648 0.628 0.7

AUPR 0.575 0.62 0.581 0.724

AUC 0.895 0.904 0.902 0.9

Sens 0.657 0.566 0.6 0.623

Spec 0.974 0.985 0.975 0.988

Prec 0.67 0.757 0.658 0.8

D3 - Over ACC 0.969 0.961 0.977 0.966

F1 0.97 0.962 0.977 0.967

AUPR 0.985 0.976 0.988 0.986

AUC 0.991 0.986 0.993 0.991

Sens 0.993 0.983 0.996 0.992

Spec 0.946 0.94 0.958 0.941

Prec 0.948 0.9415 0.96 0.943

D3 - Under ACC 0.790 0.793 0.782 0.74

F1 0.796 0.793 0.789 0.745

AUPR 0.853 0.831 0.855 0.85

AUC 0.857 0.851 0.85 0.833

Sens 0.818 0.798 0.818 0.759

Spec 0.763 0.788 0.745 0.722

Prec 0.775 0.789 0.762 0.73

The bold-underlined entries in each row indicate the highest value(s).

4.4 Performance comparison of and
analysis

We conducted an in-depth evaluation involving 36 different
experimental settings, spanning three datasets, four algorithms,
and three data sampling strategies. As shown in Table 1, the
MoEPH series—whether incorporating ProtBERT, ProT5, or
both—achieved high performance in most scenarios, covering 239
out of 252 metrics (i.e., 94.9%). Its maximum accuracy reached
99.6%, significantly surpassing the current state-of-the-art methods
(see Table 2). Moreover, in more complex datasets, the accuracy
(ACC) was improved by as much as 31%, rising from 0.535 to
0.845 (Figure 5). In some over-sampled scenarios, certain cross-
validation folds with very few positive instances yielded a Sensitivity
of 1.0. We note that this perfect recall is due to the extremely low
number of positives in those folds, reflecting class imbalance.

Figure 6 illustrates the comparison between our proposed
MoEPH variants (ProtBERT, ProT5, and fused) and the Statistical
approach, as well as PredPHI (Li et al., 2020), under the
Dataset 2 (Under-sampling) scenario. The metrics presented
include Accuracy (ACC), Sensitivity (Sens), and Specificity (Spec).
We observe that MoEPH (ProtBERT) and MoEPH (ProT5) attain
ACC values of 0.84 and 0.845, respectively, outperforming both the
Statistical method (0.53) and PredPHI (0.78) by a notable margin.
They also exhibit superior Sensitivity, indicating that even under

TABLE 2 Comparison of best accuracy among state-of-the-art methods
in phage–host interaction prediction.

Algorithm Best accuracy (%)

MoEPH (Ours) 99.6%

PredPHI (Li et al., 2020) 81%

Host Phinder (Villarroel et al., 2016) 81%

VirHost Matcher (Ahlgren et al., 2017) 64%

WIsH (Galiez et al., 2017) 63%

LMFH VH (Liu et al., 2018) 63.17%

ILMF VH (Liu et al., 2019) 63.66%

Leite et al. (2018) 95.7%

severe under-sampling, the model can still capture a larger portion
of positive samples, thus reducing the rate of missed detections.
Furthermore, to comprehensively evaluate performance within the
same CNN classification architecture, we expand our discussion
to include additional metrics, analyzing the results from three key
perspectives: varying protein representation algorithms, different
sampling strategies, and multiple datasets.
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FIGURE 5

Radar chart of metrics in dataset 2 (under sample).

4.4.1 Comparison across different algorithms
4.4.1.1 Single-expert vs. fusion
• MoEPH (ProtBERT) vs. MoEPH (ProT5). Each model shows

its strengths under different conditions. For instance, in D1-
Raw and D1-Over, MoEPH(ProT5) outperforms MoEPH
(ProtBERT) in multiple metrics (ACC, F1, Spec, Prec).
Conversely, under D1-Under, MoEPH (ProtBERT) achieves
higher ACC = 0.964, AUC = 0.966, and Spec = 0.984. This
discrepancy indicates that the two pretrained models diverge
in their focus on protein sequences, likely attributable to
differences in training corpora and model architectures.

• MoEPH (fused). In many scenarios (e.g., D3-Raw), the
gating-fusion approach can integrate the merits of both
experts and emerge as the best or near-best across multiple
metrics (ACC = 0.96, F1 = 0.70, AUPR = 0.724, Prec = 0.80).
Nevertheless, there are instances (e.g., D1-Raw) where it
slightly lags behind a single expert in some metrics, yet
still maintains robust overall performance and often remains
on par with or superior to baseline methods. Consequently,
gating fusion tends to excel in more complex or highly
imbalanced data distributions, whereas a single expert may
suffice in simpler scenarios or under near-optimal sampling
conditions (e.g., over-sampling).

4.4.1.2 Surprising strength of the statistical baseline
Although the learned embedding features generally produce

superior results, the traditional statistical feature baseline exhibited
some surprisingly competitive performances in specific cases.

In many comparisons the statistical approach does not achieve
the highest scores—highlighting its limited capacity to capture
deep semantic cues—yet under certain dataset and sampling
configurations it ties or even outperforms the more complex
models on some metrics. For example, in D2-Raw, the statistical
method attains leading or tied performance with ACC = 0.988 (tied
with ProtBERT), F1 = 0.768, AUPR = 0.707, and Sens = 0.716.
Likewise, in D1-Under, it achieves the highest F1 = 0.919,
AUPR = 0.948, Sens = 0.937, and Prec = 0.901, while MoEPH
(ProtBERT) leads in ACC, AUC, and Spec. This “split across
metrics” illustrates that, though the statistical method lacks the
contextual awareness derived from large-scale pre-training, its
more streamlined features can adapt well to particular data
distributions or under-sampling schemes, thereby yielding notably
effective positive-class recognition in certain cases.

4.4.2 Comparison across sampling methods
4.4.2.1 Over-sampling

In the D1-Over, D2-Over, and D3-Over scenarios, most
algorithms achieve extremely high Accuracy, AUC, and even
Sensitivity = 1, with differences often only discernible at the third
decimal place. Over-sampling balances the number of positive and
negative classes by substantially amplifying the positive samples,
thus making learning more straightforward for most methods and
providing enough data to correct any prior bias toward the negative
class.
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FIGURE 6

Comparison on metrics in Dataset 2 (under sample) with PredPHI (Li et al., 2020).

4.4.2.2 Under-sampling
Under-sampling also balances class counts but does so

by heavily removing majority-class samples, which reduces
the total amount of available information. For example, in
D2-Under, the Statistical method’s Accuracy of 0.53 and F1
of 0.44 are conspicuously lower than the MoEPH variants
(all exceeding 0.82 in F1). This indicates that large-scale pre-
trained representations can maintain discriminative power
even under extreme data reduction. Meanwhile, because
D1-Under is intrinsically easier to separate, the Statistical
approach outperforms single-model variants in certain metrics
(F1, AUPR, Sens, Prec), yet still exhibits a noticeable gap in
Accuracy. While the statistical model achieves competitive
scores on some datasets, its lack of contextual embedding
and limited generalization restricts its utility in more diverse
prediction settings (Figure 7).

And each cell in Figure 8 shows the percentage of instances
(on the test set) belonging to the actual class (rows: Positive or
Negative) that were predicted as Positive or Negative (columns).
The baseline (a) misses a majority of actual positives (only 40%
recall) and produces many false positives (35%), whereas MoEPH
(fused) (b) correctly identifies the vast majority of positives (80%
recall) while keeping false positives low (12%). This demonstrates
MoEPH’s significantly improved balance between sensitivity and
specificity under extreme class imbalance.

4.4.2.3 Raw
Retaining the natural distribution of the data (Raw) can cause

fluctuations in some metrics. Nonetheless, across D1, D2, and
D3, the MoEPH series generally demonstrates sufficiently strong
performance, suggesting that, under real-world distributions, these
methods’ differences and applicability become more evident.

4.4.3 Comparison across different datasets
4.4.3.1 D1 vs. D2

D1 appears easier to separate; when over-sampling is applied,
nearly all metrics exceed 0.98, reflecting high performance under
any sampling approach. In contrast, D2 can reach near-perfect
scores under over-sampling (Sensitivity = 1), yet experiences a
drastic decline in some algorithms under under-sampling (e.g.,
Statistical with F1 = 0.44 vs. MoEPH (fused) with F1 = 0.829). This
stark contrast indicates that for D2’s more complex distribution,
substantially removing majority-class samples significantly impairs
methods lacking higher-level sequence semantics and contextual
awareness. As shown in Figure 8, the Statistical (Baseline) approach
fails to converge, whereas MoEPH-based algorithms rapidly reduce
loss within the initial epochs. This highlights how pre-trained
models and gating fusion can more effectively capture deep protein-
sequence features, thereby converging to superior solutions with
fewer training iterations.
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FIGURE 7

Confusion matrices on Dataset2 (Under-sampled) for (a) the Statistical baseline and (b) MoEPH (fused).

FIGURE 8

Loss curves for four algorithms.

4.4.3.2 D3
D3 integrates or extends the complexities of the previous

distributions, yielding results that are neither “near perfect” (as in
D2-Over or D1-Over) nor drastically diminished (as in D2-Under).
In D3-Raw, MoEPH (fused) achieves F1 = 0.70, AUPR = 0.724, and
Prec = 0.80, clearly exceeding Statistical (F1 = 0.663, AUPR = 0.575,

Prec = 0.67), while ProtBERT or ProT5 also excel in selected
metrics. This suggests that under broader distributions, large-
scale models’ fine-grained sequence representations can further
uncover subtle differences. Likewise, D3-Over yields nearly optimal
outcomes, minimizing algorithmic discrepancies; in D3-Under,
metrics as a whole decline, yet Statistical remains reasonably
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competitive (ACC = 0.79, F1 = 0.796, AUPR = 0.853). However,
certain MoEPH methods still exhibit minor advantages across
other metrics, though the gap is less extreme than in D2-Under.
Overall, different datasets impose substantial impact on each
algorithm’s performance, yet MoEPH consistently outperforms
baseline approaches in most metrics.

4.5 Clinical innovation

MoEPH holds promising potential to innovate patient care
in the context of antibiotic-resistant infections. By rapidly and
accurately predicting phage–host interactions, MoEPH could assist
clinicians in selecting effective phage therapies tailored to a
patient’s drug-resistant bacterial infection, exemplifying precision
medicine in infectious disease treatment. This approach could be
integrated into the clinical workflow as a decision-support tool,
where its robust and interpretable predictions provide physicians
with high-confidence recommendations for alternative treatments
when antibiotics fail. The model’s emphasis on interpretability
and reliability builds the trust necessary for clinical adoption,
ensuring that healthcare providers can understand and rely on its
suggestions. Ultimately, a trustworthy AI system like MoEPH could
streamline the management of AMR cases—improving treatment
outcomes by offering timely, personalized therapeutic options and
potentially integrating into hospital infection control and antibiotic
stewardship programs.

5 Conclusion

In this work, we presented MoEPH—a mixture-of-experts
model that combines traditional statistical descriptors with deep
protein embeddings (ProtBERT and ProT5) to tackle the phage–
host prediction problem. Experiments on three benchmark
datasets with varied sampling regimes demonstrated that MoEPH
consistently outperforms both conventional statistical classifiers
and single-model LLM baselines. Notably, MoEPH achieved up
to 99.6% accuracy on balanced datasets, and improved accuracy
by as much as 31 percentage points on highly imbalanced
datasets. The model’s adaptive fusion of domain-specific features
with pre-trained embeddings ensures robust generalization, while
its gating mechanism provides transparency by indicating each
expert’s contribution to a given prediction. Looking ahead,
we plan to further enhance MoEPH along several directions.
First, we will incorporate structural protein features (e.g., 3D
conformational information) to complement the sequence-based
embeddings. Second, we aim to explore alternative neural
network architectures as backbones for the expert models, which
may uncover additional performance gains. These enhancements
are expected to broaden MoEPH’s applicability to diverse
biomedical prediction tasks, while ensuring the model remains
a reliable and transparent AI tool for real-world phage–host
identification challenges.
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