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Harnessing beneficial bacteria to 
remediate antibiotic-polluted 
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Antibiotic contamination in agricultural soils, primarily from manure application 
and wastewater irrigation, has emerged as a critical threat to food security, 
environmental health, and public safety due to the proliferation and persistence 
of antibiotic-resistant genes. This review examines the diverse sources and 
ecological impacts of antibiotics in soil, including their alteration of microbial 
community structures, promotion of horizontal gene transfer, and subsequent risks 
to plant and human health. It further evaluates how soil properties, such as pH, 
organic matter content, and texture, influence the bioavailability of antibiotics and 
modulate their degradation dynamics. Emphasis is placed on the bioremediation 
potential of beneficial bacteria, detailing key mechanisms such as enzymatic 
biodegradation, biosorption, biofilm formation, and the formation of synergistic 
microbial consortia capable of utilizing antibiotics as nutrient sources. In addition, 
the manuscript critically discusses the regulatory, technological, and scalability 
challenges inherent to deploying microbial bioremediation strategies, including 
integrating gene editing and systems biology approaches under a One Health 
framework. By synthesizing molecular insights with environmental and policy 
considerations, this review provides a comprehensive assessment of current 
bioremediation strategies and outlines future directions to mitigate the ecological 
and health risks associated with antibiotic pollution in agricultural ecosystems.
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Introduction

The discovery of penicillin marked the beginning of modern medicine (Hutchings et al., 
2019), which has led to antibiotics being used as a basic method of treating diseases in people 
and animals for decades (Xie et al., 2018). The expansion of large-scale animal production 
systems has raised the demand for veterinary antibiotics, which are used not only to treat 
infections but also to prevent disease and promote growth. Many veterinary antibiotics are 
supplied in animal feed at subtherapeutic levels to promote growth (Gonzalez Ronquillo and 
Angeles Hernandez, 2017; Caneschi et al., 2023). However, many antibiotics are excreted intact 
or as active metabolites because they are not entirely absorbed (Tiedje et al., 2023). Antibiotic 
use in farm animals creates an environment that promotes the formation of antibiotic-resistant 
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bacteria (ARBs), which spread through manure and the 
surrounding ecosystem.

Agricultural soil is crucial to preserving food security and 
ecological balance. It is a critical resource for crop production, 
influencing crop yield, quality, and environmental health. The United 
Nations Sustainable Development Goals (SDGs) emphasize the need 
for sustainable agricultural practices in ensuring food security, 
especially considering the world’s growing population and the 
increasing constraints of climate change. Among the many challenges 
confronting agricultural systems, antibiotic contamination poses a 
significant threat to soil health and food safety, raising concerns about 
the emergence of antibiotic-resistance genes (ARGs) in agricultural 
ecosystems. The SDGs, particularly goal 2, seek to eliminate hunger, 
ensure food security, and promote sustainable agriculture by 2030. 
This goal acknowledges that sustainable agriculture is critical to 
ensuring food security and promoting nutrition. However, the 
presence of antibiotics in agricultural soils, commonly caused by 
manure application and the use of wastewater for irrigation, affects 
this goal. The widespread use of antibiotics in livestock farming has 
resulted in the accumulation of these substances in the environment, 
which can harm soil microbiota and disrupt essential soil functions 
like nutrient cycling and organic matter decomposition (Udikovic-
Kolic et  al., 2014; Christou et  al., 2017; Checcucci et  al., 2020). 
Beneficial microbes that have developed resistance can spread through 
the food chain to humans through the consumption of affected crops 
(Pepper et al., 2018; Lima et al., 2020; Fatoba et al., 2021). Studies have 
demonstrated manure to be a hotspot for spreading ARGs, promoting 
horizontal gene transfer among soil bacteria (Deng et al., 2024; Wang 
S. et al., 2024). Antibiotics in soil alter microbial community structure 
and functional capabilities, potentially reducing soil fertility and 
increasing vulnerability to pests and diseases (Yang et al., 2016; Cycon 
et al., 2019). The persistence of these antibiotics in the soil is affected 
by environmental factors such as soil type, pH, and organic matter 
content, thereby affecting their bioavailability and degradation (Li 
et al., 2022; Liu et al., 2022b; Cui et al., 2023). Antibiotic resistance 
spreading through the food chain is a major public health concern, as 
infections caused by resistant bacteria are often more challenging to 
treat, resulting in increased morbidity and mortality (Han et al., 2022; 
Elder et  al., 2023). Hence, there is a critical need for integrated 
methods to address antibiotic usage in agriculture, promote 
sustainable farming techniques, and protect soil health to secure food 
for future generations.

One of the sustainable solutions to combat this issue is the use of 
beneficial microbes. Beneficial microbes offer an environmentally 
friendly and sustainable solution for detoxifying antibiotics in 
agricultural soil. The effect of the increased concentrations of these 
antibiotics on soil microbial abundance, diversity, and communities, 
as well as microbial functions and processes in the soil, can 
be ameliorated by microbial bioremediation. In relation to antibiotic 
stress, beneficial microbes have been reported to improve soil health 
and alleviate plant stress through various mechanisms, such as 
siderophore production, biotransformation, biosorption, and 
biodegradation. Many soil contaminants, including antibiotics, 
pesticides, heavy metals, oil spillage, etc., have been biodegraded using 
beneficial microbes. For instance, the bacterium Cupriavidus 
metallidurans strain MSR33 has demonstrated significant potential in 
remediating mercury-contaminated soils, showing the ability to 
tolerate heavy metals and positively influence the nitrogen cycle in the 

soil ecosystem (Bravo et al., 2020). In another study by Xu J. et al. 
(2021), engineered strains were developed to enhance the degradation 
of p-nitrophenol through specific enzymatic pathways, which are 
crucial for breaking down complex organic molecules. Therefore, 
beneficial bacteria can be  used to mitigate the effects of these 
contaminants. In addition to their bioremediation properties, they 
help improve soil and plant health, promoting plant growth and 
improving food security (Olanrewaju et al., 2017, 2024a).

Since the increased accumulation of antibiotics on agricultural 
soil is fast becoming a cause for serious concern because of their 
detrimental effect on soil microbiome and their role in increasing 
antibiotic resistance, it is of paramount interest to find a way to 
alleviate these impacts using an eco-friendly and sustainable approach. 
Keeping this in mind, this review attempts to present an 
environmentally sustainable approach to mitigating the effects of these 
antibiotics on agricultural soil, soil microbial community, and, 
ultimately, plant health.

Sources and ecological impacts of 
antibiotics on agricultural soil

Sources of antibiotics in soil

Anthropogenic activities are the primary sources of antibiotics in 
the soil. Human activities have been the primary cause of major 
disasters such as climate change, flooding, loss of agricultural soil, etc., 
affecting the environment. Antibiotics are meant to address various 
medical concerns in humans and animals. However, some antibiotics 
find their way into agricultural soils in their active forms, which is a 
serious cause for concern. We look at the sources of antibiotics in 
agricultural soil. Antibiotics in agricultural settings have complex and 
significant ecological effects across several environmental 
compartments, including soil and water (Table 1). Antibiotics used 
extensively in crop and animal production have generated questions 
about their environmental persistence and possible disturbance of the 
ecological equilibrium.

The sources of antibiotics in the agricultural field are multifaceted 
and involve various practices that contribute to the presence of these 
compounds in the environment (Table 1). Antibiotics in agriculture 
primarily stem from their application in crop management through 
direct application, manure application (Muhammad et  al., 2020; 
Khmaissa et al., 2024), and wastewater irrigation (Li T. et al., 2024; 
Phan et  al., 2024), which raises significant concerns regarding 
antibiotic resistance and environmental health.

One of the primary sources of antibiotics in agriculture is the use 
of these compounds in livestock. Antibiotics are administered to 
animals for therapeutic purposes, growth promotion, and disease 
prevention. Reports indicate that agricultural antibiotic use accounts 
for a substantial portion of total antibiotic production, with estimates 
suggesting that it may represent up to half of all antibiotics produced 
in the United States (Looft et al., 2012). This extensive use creates a 
reservoir of ARB and ARGs in animal waste, potentially contaminating 
soil and water systems (Williams-Nguyen et al., 2016; Zhao et al., 
2023). Manure application from livestock operations to fields is a 
direct pathway for introducing these antibiotics and their associated 
resistance traits into agricultural ecosystems (Udikovic-Kolic et al., 
2014; He et al., 2020).
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In addition to livestock, the use of antibiotics in crop 
production is another significant source. Some antibiotics, such 
as oxytetracycline and streptomycin, are applied to control 
bacterial diseases in plants, the uptake of these antibiotics by 
crops can lead to their accumulation in edible plant tissues, 
raising concerns about food safety and potential health risks to 
consumers (Yin et al., 2023).

Furthermore, applying treated wastewater for irrigation, which 
often contains residual antibiotics, introduces additional sources of 
these compounds into agricultural soils (Sorinolu et  al., 2021) 
(Table 1). The presence of antibiotics in irrigation water can stem from 
municipal wastewater treatment plants that discharge effluents 
containing various pharmaceuticals, including antibiotics, into water 
bodies used for agricultural purposes (Khan et  al., 2020; Gworek 
et al., 2021).

In addition to direct application, manure application, and 
wastewater irrigation as major sources of antibiotics in agricultural 
farms, other not-so-common/reported sources include biosolids, 
sludge, compost, and pharmaceutical waste application (Table 1).

Ecological impacts of antibiotics on 
agricultural soil

The environmental persistence of antibiotics is a critical factor that 
exacerbates their impact. Studies have shown that antibiotics can 
remain in agricultural soils for extended periods, mainly when 
introduced through manure or sludge (Ghirardini et al., 2020; Buta 
et  al., 2021) (Figure 1). This persistence facilitates the continuous 
selection of antibiotic-resistant bacteria and contributes to the spread 
of ARGs within the soil microbiome (Kaviani Rad et al., 2022). The 
interaction between antibiotics and soil contaminants, such as heavy 
metals and organic fertilizers, further complicates the dynamics of 
antibiotic resistance in agricultural settings (Topp et  al., 2018). 
Moreover, the role of agricultural practices in disseminating antibiotic 
resistance cannot be overstated. The misuse and overconsumption of 
antibiotics in agriculture have exerted selective pressures on microbial 
communities, driving the evolution of resistance (Sanderson et al., 
2018). The presence of high levels of antibiotic resistance in both 
urban and rural soils highlights the widespread nature of this issue, 

TABLE 1  Sources of antibiotics in agricultural farms.

Source Antibiotic origin Pathway into soil Comments References

Direct crop 

application

Agricultural use (e.g., 

streptomycin, 

oxytetracycline) on fruit 

trees

Spray residues landing on soil 

or uptake by roots.

High impact in treated orchards, minimal globally 

(few countries, few antibiotics). Regulatory: tightly 

controlled (EPA registrations) in use countries.

Taylor and Reeder (2020), 

Verhaegen et al. (2023), and 

Batuman et al. (2024)

Livestock manure 

and slurry

Veterinary uses 

(therapeutic, 

prophylactic, growth 

promotion)

Spreading of animal manure 

or lagoon effluent on fields.

Largest source by volume. Livestock manure often 

contains heavy residues. Drives soil ARGs. 

Regulations focus mainly on pathogens/metals, not 

drugs.

Cycon et al. (2019), Zalewska 

et al. (2021), Frey et al. (2022), 

and Matamoros et al. (2022)

Wastewater 

irrigation

Municipal wastewater Application of treated or 

untreated effluent to crops/

fields.

Significant in arid regions (Middle East, Africa, 

South Asia). Antibiotics (e.g., erythromycin, 

tetracycline) detected in irrigated soils. Few 

guidelines for pharmaceuticals.

Gatica and Cytryn (2013), 

Bougnom et al. (2020), Leiva 

et al. (2021), and Mohy et al. 

(2023)

Biosolids/sludge 

application

Sewage treatment plants Land-spreading of treated 

sewage sludge or biosolid 

fertilizers.

Moderate source, antibiotic levels much lower than 

manure. Provides chronic exposure and metal 

co-selection. Regulated for pathogens/heavy 

metals (not specific to antibiotics).

Cycon et al. (2019), Lu et al. 

(2021), and Qin et al. (2022)

Aquaculture 

runoff/leaching

Fish farming antibiotics Discharge or leakage of pond 

effluent into fields or 

waterways.

Important near intensive aquaculture. Pond 

sediments accumulate drugs. Can contaminate 

irrigation water. Regulatory controls vary, heavy 

use in Asia.

Kraemer et al. (2019), Dong et al. 

(2021), Thiang et al. (2021), Shi 

et al. (2022), and Yi et al. (2025)

Airborne 

deposition (dust)

Feedlot dust (CAFOs), 

emissions from pharma 

plants

Wind transport and fallout of 

contaminated dust/aerosols 

onto soil

Emerging concern. Feedlot dust carries antibiotics 

and ARGs. They can spread contamination 

meters–kilometers downwind and there are no 

direct regulation.

McEachran et al. (2015) and 

Gwenzi et al. (2022)

Pharma 

manufacturing 

waste

Antibiotic factories waste Discharge of untreated or 

partially treated industrial 

effluent to land/river.

Potentially highest local concentrations. 

Documented “superbug” hotspots downriver of 

plants. Historically unregulated in LMICs, new 

limits emerging. Can sterilize local soils.

Laxminarayan and Chaudhury 

(2016) and Kraemer et al. (2019)

Composted 

wastes

Manure/sludge-derived 

composts

Application of compost to 

fields.

If composting is incomplete, residual antibiotics 

remain. Compost use in agriculture can thus 

introduce drugs similar to manure. Proper high-

temp composting reduces load but does not 

eliminate all classes.

Zhang M. et al. (2019), 

Ezugworie et al. (2021), and 

Qian et al. (2022)
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indicating that agricultural practices significantly contribute to 
environmental resistance (Osbiston et  al., 2021). The connection 
between antibiotic use in agriculture and the emergence of resistant 
strains of bacteria directly threatens public health, as these pathogens 
can be transmitted to humans through the food chain (Iwu et al., 2020; 
Samreen et al., 2021) (Figure 1). The implications of antibiotic use in 
agriculture extend beyond the immediate agricultural environment. 
ARGs are transmitted from agricultural settings to human populations 
through various pathways, including consuming contaminated food 
products, direct animal contact, and environmental exposure. The 
interconnectedness of agricultural practices and human health 
underscores the need for comprehensive strategies to mitigate the 
risks associated with antibiotic resistance. This includes implementing 
better antibiotic stewardship practices, reducing unnecessary 
antibiotic use in livestock, and enhancing the monitoring of antibiotic 
residues in agricultural products (Topp et al., 2018).

The occurrence of antibiotics in soil and water systems has been 
reported in various studies (Bilal et al., 2020; Kovalakova et al., 2020; 
Lyu et  al., 2020; Snow et  al., 2020; Jia et  al., 2023), with studies 
indicating that these compounds can persist and accumulate, posing 
risks to non-target organisms and disrupting essential ecological 

processes (Du and Liu, 2012; Danner et  al., 2019) (Table  2). For 
instance, it is reported that the limited understanding of the 
ecotoxicological relevance of antibiotics, particularly in agricultural 
organic fertilizers and plant-based products, can lead to unintended 
exposure to various organisms (Du and Liu, 2012). Introducing 
antibiotics into the environment can significantly impact microbial 
communities, which are critical in nutrient cycling and decomposition 
of organic matter. In their study, Danner et al. (2019), emphasized that 
non-target organisms, integral to ecological processes, are inevitably 
exposed to antibiotics when these substances enter surface waters. 
This exposure can lead to shifts in microbial community structure, 
resulting in decreased biodiversity and altered ecosystem functions. 
The disruption of microbial communities can hinder nutrient cycling 
processes, such as nitrification and denitrification, which are vital for 
maintaining soil fertility and water quality (Ding and He, 2010; Cycon 
et al., 2019). In addition, the presence of antibiotics in agricultural 
settings has been linked to the emergence and proliferation of ARB 
and ARGs. The use of antibiotics in livestock farming creates selective 
pressure that fosters the development of resistance among microbial 
populations. The environmental pollution caused by antibiotic 
residues is particularly concerning, as it can spread resistant strains 

FIGURE 1

The plant microbiome’s role in antibiotic resistance gene (ARG) transmission through the food chain. The upper section illustrates the soil environment 
containing ARG-carrying bacteria subjected to selection pressure from antibiotics introduced via manure application and wastewater irrigation. 
Horizontal gene transfer mechanisms (conjugation, transformation, and transduction) facilitate ARG spread in soil. The lower section details plant 
compartments, including rhizosphere (root zone), plastisphere (leaf surface), capisphere (fruit surface), and endosphere (plant interior) that harbor 
ARG-carrying bacteria. Directional arrows demonstrate how bacteria migrate from soil to plant surfaces and eventually into endospheric 
compartments.
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into the food chain and water supply, posing a significant public health 
risk (Kraemer et al., 2019; Wu et al., 2022). The impact of antibiotic 
pollution extends beyond microbial communities to include aquatic 
and terrestrial organisms. Studies have shown that exposure to 
sub-lethal concentrations of antibiotics can induce physiological and 
behavioral changes in various species. Such findings underscore the 
need for comprehensive assessments of the ecological risks associated 
with antibiotic use in agriculture. In addition to direct effects on 
organisms, antibiotics can interact with other environmental 
pollutants, leading to synergistic or antagonistic effects that complicate 
risk assessments. The study by Kraemer et al. (2019) highlights the 
potential for antibiotic pollution to influence human health through 
environmental pathways, emphasizing the importance of 
understanding the interactions between antibiotics and other 
contaminants. The cumulative effects of multiple antibiotics in the 
environment can lead to increased toxicity, further exacerbating the 
ecological impacts.

Effect of antibiotics on ARGs, ARBs, 
soil microbiome, and plant health

When animal-administered antibiotics find their way into the soil 
through manure application, they place greater pressure on ARG 
selection because of their prolonged stay in the soil. Although they are 
in small doses, the impact of the duration of exposure on ARG and 
the microbiome is more adverse than their impact on animals because 
the duration of exposure in animals is short. Studies have been 
conducted to show the effects of antibiotic exposure to ARGs in soil, 
for example, a study by Zhu et al. (2013), investigates the prevalence 
of ARGs in soils associated with large-scale Chinese swine farms. 
Using a high-throughput quantitative PCR, the study reported 149 
unique ARGs, many significantly enriched compared to control soils, 
with fold increases reaching as high as 28,000. Similarly, studies have 
shown that using antibiotics in livestock creates selective pressures 
that favor the proliferation of resistant bacteria, leading to increased 
ARG abundance in fecal matter (Storteboom et  al., 2010). The 
continuous application of antibiotics in agriculture selects resistant 
strains and facilitates horizontal gene transfer among microbial 
communities, amplifying the spread of resistance traits (Gromala 
et al., 2021; Larsson and Flach, 2022).

Manure is often nutrient-rich and serves as a reservoir for various 
antibiotics, which can significantly influence the soil microbiome. 
Studies have shown that introducing manure into soil can increase the 
abundance of ARGs, as these genes can be  transferred among 
microbial populations through horizontal gene transfer mechanisms. 
For instance, the study by Zhu et al. (2019) demonstrated that the 
trophic transfer of ARGs occurs within soil detritus food chains, 
indicating that organisms feeding on manure can acquire these 
resistance genes, amplifying their presence in the soil microbiome. 
Furthermore, Negreanu et al. (2012) noted that while the application 
of manure with high levels of ARBs initially increases resistance in the 
soil microbiome, this resistance often returns to baseline levels within 
six months, suggesting a dynamic equilibrium influenced by 
environmental factors and microbial interactions. The persistence and 
spread of ARGs in soil are influenced by various factors, including the 
type of manure applied and the microbial community structure. 
Hilaire et  al. (2022) found that subsurface manure injection can 

reduce the surface transport of ARGs but may create localized 
hotspots of resistance within the soil. This phenomenon underscores 
the complexity of manure application practices and their varying 
impacts on soil health. Additionally, Xu H. et al. (2021) highlighted 
the role of soil bacteria as carriers for plasmids that harbor ARGs, 
facilitating their transmission to plant endophytic bacteria, which can 
further propagate resistance within plant microbiomes. This 
interaction between soil and plant microbiomes is crucial, as it can 
lead to the establishment of resistant strains in crops, posing potential 
risks to food safety and human health.

The soil microbiome itself is significantly affected by manure 
application, which can alter microbial diversity and community 
composition. Banerjee and Heijden emphasized that urban soil 
microbiomes often contain higher levels of ARGs and genes associated 
with human pathogens, likely due to anthropogenic influences such 
as manure application (Banerjee and van der Heijden, 2023). The 
introduction of manure can enhance microbial diversity, as reported 
in the study by Sun et  al. (2021), which reported that manure 
application introduced specific resistance genes to surface soils, 
thereby reshaping the microbial landscape. This alteration in microbial 
communities can have cascading effects on soil health, nutrient 
cycling, and plant interactions, ultimately influencing agricultural 
productivity. The impact of manure-derived ARGs on plant health is 
a critical area of concern. Research indicates that ARBs in the soil can 
affect plant growth and health, potentially leading to reduced crop 
yields. Muurinen et al. (2017) reported that while manure application 
does not permanently alter the resistance profile of soils, the cyclic 
changes in the resistome can affect plant health over time. Similarly, 
Jauregi et  al. (2021) also reported that the mobility of antibiotic 
resistance from manure to soil and vegetable microbiomes is a 
significant risk factor, as it can lead to the contamination of food crops 
with resistant pathogens. This highlights the need for careful 
management of manure application to mitigate risks associated with 
antibiotic resistance in agricultural systems. Environmental factors 
and management practices further complicate the dynamics of ARGs 
and ARBs in manure-amended soils. For example, Wang E. et  al. 
(2024) noted that long-term manure application can change bacterial 
communities in the rhizosphere, which may influence plants’ uptake 
of contaminants such as heavy metals and pathogens. This interaction 
between soil microbiomes and plant health is critical, as it can 
determine the overall resilience of agricultural systems to stressors 
such as disease and nutrient deficiencies. Additionally, heavy metals 
in manure can exacerbate the risks associated with antibiotic 
resistance, as these metals can co-select for resistant strains.

Besides manure application, antibiotics can be introduced into 
agricultural soil through irrigation. About 70% of freshwater globally 
is being used for irrigation, meaning that water demand will increase 
in the near future (Sharma et al., 2020). This has made wastewater 
irrigation a valuable resource for water shortage, especially in 
developing countries, and this may be more common in the near 
future (Tian et  al., 2021). Although wastewater irrigation offers 
positive advantages as it contains nutrients important for soil fertility 
and plant health, it also contains pollutants (Kodesova et al., 2024), 
including heavy metals (Ahmed et al., 2023; Ugulu et al., 2024) and 
antibiotics (Mehanni et  al., 2023; Mohy et  al., 2023), which are 
environmental risks. Antibiotics in wastewater can increase the 
dominance of ARBs through selective pressures and horizontal gene 
transfers (Guo et  al., 2017). Therefore, this poses a health risk to 
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humans as these strains can be acquired through the food chain. As a 
matter of concern, reported exposure to ARBs through the food chain 
from agricultural soils irrigated (Rahman et  al., 2021; Geng 
et al., 2022).

Potential risks of antibiotics in 
agricultural soil to food security and 
human health

The soil consists of diverse microbial communities, and bacteria 
have been reported to be the most abundant (Olanrewaju et al., 2017). 
Bacteria carrying ARGs are also present in the soil. However, the 
introduction of antibiotics through manure application and 

wastewater irrigation systems, albeit in small concentrations, for a 
prolonged period, exerts selective pressure on the soil microbiome 
(Banerjee and van der Heijden, 2023). In response, as a survival 
mechanism, the soil microbial community develops resistance to these 
antibiotics to protect itself. This increases the presence of ARBs and 
ARGs in the soil microbiome. In addition, the manure and wastewater 
can carry ARBs and ARGs, which are directly transferred to 
agricultural soil (Mohy et al., 2023; Zhang Y. et al., 2023). Hence, 
although beneficial to plant growth, these activities are key to 
disseminating ARBs and ARGs in agricultural soil. However, studies 
of the potential spread of antibiotic resistance in the environment have 
mostly focused on the evolution of antibiotic resistomes in soil and 
wastewater, with little attention paid to the subsequent spread of 
antibiotic resistance via plant microbiomes. Many studies have 

TABLE 2  Effects of antibiotics on soil microflora.

Antibiotics Environment Methods used Reported effects References

Cephapirin benzathine and 

Pirlimycin HCl

Common-garden field plots 

amended with manure from 

antibiotic-treated vs. untreated 

cattle

16S and ITS sequencing, 

microbial growth/Carbon 

use efficiency (CUE)

Increased respiration, decreased microbial CUE, 

and shift toward fungal dominance

Wepking et al. (2019)

Cephapirin benzathine and 

Pirlimycin HCl

Field plots with repeated 

manure from antibiotic-

treated cattle

16S and ITS sequencing and 

function assays, ARG 

profiling

Legacy shifts in microbial community and 

physiology persisted after cessation.

Shawver et al. (2021)

Cephapirin and Pirlimycin Lab microcosms with manure 

from antibiotic-treated cattle 

under moisture regimes

Respiration, 16S community 

profiles, moisture × 

antibiotic interaction tests

Cephapirin increased respiration while pirlimycin 

decreased respiration, there was also shift in 

community composition which correlated with 

moisture.

Shawver et al. (2024)

Cephalosporins Manure-exposed vs. reference 

grasslands

Soil respiration and growth, 

ARG quantification

Increased mass-specific respiration (~2.1×). Wepking et al. (2017)

Chlortetracycline, 

Tetracycline, and 

Oxytetracycline

Lab microcosms and 

agricultural soils

PLFA, β-glucosidase, urease, 

phosphomonoesterase 

activities

Effects varied with soil organic matter. CTC 

strongest inhibitory effects, antibiotic × soil 

interactions

Santás-Miguel et al. 

(2021)

Tetracycline Pot experiment 16S and ITS sequencing Concentration-dependent shifts, fungal diversity 

increased at intermediate dose.

Rhizosphere-specific responses were evident.

Zheng et al. (2020)

Oxytetracycline Soil and hydroponic lettuce 

systems

Plant traits, qPCR of tetA 

and tetX, culture-based 

isolates

OTC encouraged ARGs.

Vertical migration of ARGs to plant tissues 

detected.

Danilova et al. (2023)

Chlortetracycline, 

Sulfamethazine, Tylosin, 

Pirlimycin, and Cephapirin

Small-scale composting of 

beef and dairy manures

LC–MS quantification No negative impact on composting efficacy by 

antibiotics.

There was near-complete removal of 

sulfamethazine and pirlimycin, poor tylosin 

removal

Ray et al. (2017)

Pirlimycin and Cephapirin Field plots amended with raw 

manure or compost during 

vegetable cultivation

Culturable fecal coliforms, 

resistance phenotyping

Resistant coliforms recoverable post-application, 

persistence varied by class of antibiotics.

Wind et al. (2018)

Ciprofloxacin, 

Enrofloxacin, and 

Sulfamethoxazole

Raw wastewater-irrigated 

urban farms

LC–MS for residues, 

shotgun metagenomics

Increased ARG richness and abundance. 

Increased shifts in functions and phyla.

ARGs associated with higher ciprofloxacin, 

enrofloxacin, SMX concentrations

Bougnom et al. (2020)

Cephapirin, Pirlimycin, 

Chlortetracycline, 

Sulfamethazine, and tylosin

Resistomes in manures/

composts, implications for 

amended soils

Shotgun metagenomics, 

resistome risk metrics

Composting reduced total ARGs.

There was a dominant effect of composting over 

antibiotic timing

Keenum et al. (2021)
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investigated the potential dissemination of antibiotic resistance in the 
environment (including agricultural soil and wastewater) using qPCR, 
genomics, metatranscriptomics, and metagenomics (D'angelo, 2023; 
Ferreira et al., 2023; Kim et al., 2023; de Farias et al., 2024; Molale-Tom 
et al., 2024; Olanrewaju et al., 2024b,c). This indicates the urgent need 
for proper waste disposal and recycling for sustainable agriculture 
(Chen et al., 2019).

Soil microbiomes enter the plant endosphere through the root 
surface. The plant consists of the endosphere and the ectosphere. The 
endosphere is inside the plant tissues, while the ectosphere is further 
categorized into the plastisphere (leaf surface), the capisphere (fruit 
surface), and the rhizosphere (root surface). The most affected plant 
compartments in the agricultural fields are the rhizosphere, 
plastisphere, and capisphere, depending on irrigation and manure 
application. The microbiome in soil finds its way to the rhizosphere, 
and when the microbiome is abundant in ARBs, these also make their 
way to the rhizosphere. Likewise, ARBs in irrigation wastewater are 
attached to the plastisphere and capisphere, the plant’s above-ground 
parts. Irrigation affects above-ground and below-ground plant 
compartments, while manure application affects the below-ground 
part because it is applied directly to the soil. The entry of the microbial 
community from the ectosphere into the endosphere provides a 
transfer route for ARBs and ARGs from manure and wastewater to the 
soil and the plants (Scaccia et al., 2021). This has been reported in 
many studies, for example, according to the study by Xu H. et al. 
(2021), soil bacteria can transfer plasmids harboring ARGs to plant 
endophytic bacteria, especially those belonging to the phylum 
Proteobacteria, which contains a variety of plant and human 
pathogens. This transfer risks human health and agricultural output 
by making these pathogens more antibiotic-resistant and virulent. 
These transfers have significant ramifications, indicating that soil 
management techniques may unintentionally contribute to the spread 
of antibiotic resistance in agricultural systems. In addition, the 
composition of the soil microbiome plays a crucial role in determining 
the health of plants (Banerjee and van der Heijden, 2023). The initial 
soil microbiome was reported on plant health (Wei et al., 2019), with 
shifts in microbial communities occurring due to root exudates that 
alter the microbial landscape. Therefore, the soil microbiome’s initial 
state can influence the types of bacteria that colonize the plant 
endosphere, including those that may carry ARGs.

Upon entering plants, these ARBs and ARGs can further find 
their way into humans through consumption. Although the direct 
transfer of ARBs and ARGs from plants to humans has not been 
fully substantiated, this possibility is very high, especially in leafy 
vegetable crops such as spinach, lettuce, etc., which are often 
consumed uncooked or partially cooked. Even when washed, the 
endosphere remains unaffected. Hence, antibiotic-resistant 
endosphere bacteria in the vegetables can be  problematic when 
ingested by humans. Apart from causing issues, they can also 
transfer ARGs to the human gut microbiome through horizontal 
gene transfer (HGT) via plasmids and mobile genetic elements 
(MGE) (Rossi et al., 2014; Mafiz et al., 2021). This is a big cause for 
alarm from one health perspective because studies have shown that 
consumption of these vegetables is a possible route of ARGs from 
the soil microbiome to humans (Zhang Y. J. et al., 2019; Mafiz et al., 
2021; Rahman et al., 2021). In addition, apart from taking up ARBs, 
plants can also take up antibiotics directly from the soil amended 
with manure or irrigated with wastewater (Azanu et al., 2016; Gu 

et  al., 2021; Tadic et  al., 2021), which may also exert selection 
pressure on the plant endosphere microbiome and increase the 
possibility of the development of a more resistant microbiome, 
which can be transferred to humans upon consumption. Due to its 
findings in many studies, the class I integron gene (intI1) and genes 
encoding transposases are common in harvested vegetables (Freitag 
et al., 2018; Urra et al., 2019; Zhang Y. J. et al., 2019; Yuan et al., 
2022), indicating the possibility of HGT in the phyllosphere. The 
phyllosphere and rhizosphere may be key areas for HGT in plant and 
soil habitats because of the high possibility that cells cluster, forming 
biofilms in the phyllosphere, and bacterial metabolic rates and the 
mobility of bacteria and MGEs are high in rhizospheres (Chen et al., 
2019). Using a functional metagenomic screen of soil-inhabiting 
bacteria, a significant nucleotide identity (>99%) was observed 
between resistance cassettes in multidrug-resistant bacteria from soil 
and those in human pathogens from clinical environments, 
indicating the occurrence of HGT between these microorganisms 
(Forsberg et al., 2012). In the screen, two class 1 integrase genes 
(intI1) from the soil bacteria and clinical pathogens were adjacent to 
the ARGs, facilitating a shared mechanism of HGT between these 
two bacterial groups. Class 1 integrons, containing the gene intI1, 
play an essential role in integrating multiple ARGs on the same 
genetic locus, generating multidrug resistance in bacterial genomes. 
The integrons have been observed as prevalent carriers of multiple 
ARGs in natural and anthropogenically influenced environments 
(Guo et al., 2017). Based on a study with archived soils, manure 
applications substantially increased the abundance of soil intI1 (Urra 
et al., 2019).

The interplay between soil microbiomes, agricultural practices, 
and human health reveals a critical need to rethink soil and plant 
management approaches. Harnessing beneficial microbes presents a 
viable, environmentally sustainable solution to counteract the spread 
of antibiotic resistance while improving plant productivity. The 
subsequent discussion focuses on the promising role of these microbes 
in fostering agricultural sustainability.

One-health synthesis: linking residues, 
resistance, and mitigation

Antibiotic residues from manure and wastewater often persist in 
soils at sub-inhibitory levels that both select for resistant bacteria and 
elevate horizontal gene transfer, including conjugative plasmid 
transfer across environmental microbiomes. Laboratory work shows 
that sub-MIC exposures to aminoglycosides, carbapenems, 
fluoroquinolones, and cephalosporins increase conjugation 
frequencies, mechanistically supporting resistance exchange at 
environmental concentrations below MICs. Related studies report 
fluoroquinolone-driven, dose-dependent increases in RP4 plasmid 
transfer from E. coli to P. aeruginosa at sub-MICs, highlighting a 
realistic pathway for ARG dissemination under low-level exposures 
(Ding et al., 2022). Beyond antibiotics, heavy metals common in agri-
food systems (Cu, Zn, Hg, Cd) act as co-selectors that stabilize and 
enrich ARG-bearing elements even when antibiotic concentrations 
are low, reinforcing persistence across soil-crop-animal-human 
interfaces (Shun-Mei et al., 2018). Field evidence from raw-wastewater-
irrigated agriculture shows soils with elevated transferable ARGs, 
including ESBLs, and community functional shifts, documenting an 
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environmental conduit consistent with the mechanistic data 
(Bougnom et al., 2020).

Actionable implications follow directly. First, benchmark effluents 
and manures against predicted no-effect concentrations (PNEC) for 
resistance selection thresholds, which are typically lower than 
ecotoxicity PNECs; compound-specific PNEC resistance values have 
been proposed to guide emission limits (Bengtsson-Palme and 
Larsson, 2016). Where antibiotic-specific data are lacking, a default 
target of 0.05 μg L−1 has been recommended for antibiotics to 
minimize selection pressure (Vestel et  al., 2022). Second, treated 
manures in multi-omics field trials show composting reduces total 
ARGs and resistome risk relative to raw manure, although marker-
specific exceptions warrant reporting treatment stage and verifying 
with sentinel ARGs (Keenum et al., 2021). Together, source control 
(including co-selectors), evidence-based waste handling, and targeted 
surveillance at high-risk nodes operationalize a one health response 
that links mechanistic insight to practical mitigation in agricultural 
landscapes (Bougnom et al., 2020).

Bioavailability of antibiotics and 
bioremediation efficacy: exploring the 
link

The behavior and fate of antibiotics in the environment are not 
only determined by their physicochemical properties, which include 
volatility, lipophilicity, water solubility, and sorption capacity, but also 
determined by various environmental factors, including the different 
soil properties such as pH, ionic strength, organic matter content, and 
cation exchange capacity, and the ecological climatic conditions 
(Figure 2). As a result of these factors, antibiotics can remain in the 
environment for a short or extended period. Understanding these 
interactions is essential in assessing the environmental impact of 
antibiotic residues, particularly in agricultural settings.

Effect of soil parameters on antibiotic 
bioavailability in soil

Soil pH plays a pivotal role in determining the adsorption and 
desorption of antibiotics. Studies have shown that the adsorption 
capacity of antibiotics such as ciprofloxacin and trimethoprim varies 
with soil pH, indicating that lower pH levels can enhance the mobility 
of these compounds in the soil environment (Rodríguez-López et al., 
2024). The ionic state of antibiotics, influenced by pH, affects their 
solubility and interaction with soil particles. For instance, acidic 
conditions can increase the solubility of certain antibiotics, thereby 
enhancing their bioavailability (Pauletto and De Liguoro, 2024). 
Conversely, higher pH levels can increase adsorption onto soil 
particles (Yuan et  al., 2024), reducing their bioavailability and 
potential ecological impact.

Organic matter content is another critical factor affecting 
antibiotic bioavailability. The presence of organic matter causes the 
formation of complexes between organic molecules and antibiotic 
compounds. This interaction leads to a decrease in the mobility of 
antibiotics, thus reducing their bioavailability to soil microorganisms 
and plants (Li H. et al., 2024). For example, biochar, a form of carbon-
rich organic matter, has been shown to significantly reduce the 

bioavailability of antibiotics in soil by adsorbing these compounds and 
preventing their uptake by plants (Pan et al., 2023). The effectiveness 
of biochar in mitigating antibiotic pollution is attributed to its large 
surface area and the presence of functional groups that facilitate 
adsorption (Haider et al., 2024; Jia et al., 2024).

Soil texture, which refers to the size distribution of soil particles, 
also influences antibiotic bioavailability. Soils with a high clay content 
typically exhibit greater antibiotic adsorption capacities than sandy 
soils. This is due to the clay particles’ larger surface area and higher 
cation exchange capacity, which can bind antibiotics more effectively 
(Jorge et al., 2024). For instance, studies have demonstrated that clay 
minerals can significantly influence the retention of antibiotics like 
tetracycline in soil, affecting their bioavailability and persistence (Li 
S. Y. et al., 2023). The interaction between antibiotics and soil minerals 
is complex and can be influenced by factors such as ionic strength and 
competing ions in the soil solution (Xiao et al., 2023).

Other contaminants, such as heavy metals, can also impact the 
bioavailability of antibiotics in soil. Heavy metals can compete with 
antibiotics for adsorption sites on soil particles, potentially altering the 
adsorption dynamics of antibiotics (Nkoh et al., 2024). Additionally, 
the co-occurrence of heavy metals and antibiotics can lead to 
synergistic effects that enhance the persistence of both contaminants 
in the soil environment (Zha et al., 2023). For example, the adsorption 
of antibiotics can be influenced by heavy metals, which may either 
enhance or inhibit the mobility of antibiotics depending on the 
specific interactions involved (Shu et al., 2025).

Microbial communities in the soil are also affected by the 
bioavailability of antibiotics. Continuous exposure to antibiotic 
residues can lead to shifts in microbial community composition, 
which may affect the degradation and transformation of these 
compounds (Qiu et  al., 2023). The physicochemical properties of 
antibiotics, such as their hydrophobicity and molecular structure, play 
a crucial role in determining their bioavailability and the ability of soil 
microorganisms to degrade them (Nkoh et al., 2024). For instance, 
antibiotics with higher hydrophobicity tend to adsorb more strongly 
to soil particles, thereby reducing their bioavailability for microbial 
degradation (Deng et al., 2024).

Moreover, the dynamics of antibiotic bioavailability in soil are 
influenced by environmental factors such as moisture content and 
temperature. Increased soil moisture can enhance the mobility of 
antibiotics by facilitating their transport through soil pores, while 
higher temperatures may accelerate the degradation processes (Yang 
et al., 2024). These environmental conditions can significantly alter the 
bioavailability of antibiotics, impacting their ecological risks and 
potential for contaminating groundwater and surface water (Luo 
et al., 2024).

Linking bioavailability to bioremediation

Bioavailability refers to the extent to which an antibiotic present 
in soil can be utilized or broken down during bioremediation. When 
antibiotics are readily accessible, bacteria can degrade them efficiently, 
thereby contributing to the remediation of soil environments. 
However, the process may be impeded if they are difficult to access, 
such as when adhered to soil particles. The increased availability of 
antibiotics facilitates a more rapid degradation by bacteria, thereby 
enhancing the efficacy of bioremediation processes. For instance, 
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water-soluble antibiotics present a more accessible option for bacterial 
utilization and degradation. However, if these antibiotics are firmly 
adhered to the soil matrix, the accessibility for bacteria diminishes, 
thereby impeding the remediation process. Research indicates that soil 
can diminish antibiotic efficacy, resulting in a reduced availability for 
bacterial interaction.

Bioavailability denotes the degree to which an antibiotic present 
in soil can be absorbed or engaged with living organisms, especially 
bacteria. This factor is essential for the process of bioremediation. 
Bioremediation refers to how microorganisms, particularly bacteria, 

facilitate the degradation or transformation of environmental 
pollutants, including antibiotics, into less harmful substances. 
Antibiotics manifest in multiple forms in the soil environment, 
whether dissolved in the soil water, adsorbed onto soil particles, or 
complexed with organic matter. Each of these states significantly 
influences their bioavailability for bacterial degradation processes.

Antibiotics’ bioavailability is a crucial factor influencing 
bioremediation efficiency, as bacteria need access to the antibiotics to 
commence the degradation process. When an antibiotic exhibits high 
bioavailability, indicating its ready accessibility within the soil 

FIGURE 2

The central soil matrix contains representative antibiotics from different classes (tetracyclines, fluoroquinolones, sulfonamides, macrolides, and beta-
lactams). Surrounding this matrix are six key influencing factors: (1) Soil pH—modulating antibiotic mobility through ionization state changes, with 
acidic conditions increasing mobility and basic conditions promoting sorption for ionizable antibiotics, (2) Organic matter—decreasing bioavailability 
through complex formation with antibiotics, (3) Soil texture—demonstrating how increasing clay content enhances antibiotic sorption through greater 
surface area and cation exchange capacity, (4) Environmental factors—showing how higher temperature and moisture can increase both mobility and 
degradation rates, (5) Co-occurring heavy metals—competing for sorption sites and potentially either increasing or decreasing antibiotic bioavailability, 
and (6) Microbial activity—contributing to biodegradation processes that reduce antibiotic persistence.
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solution, bacteria can degrade it effectively, thereby improving the 
cleanup rates. On the other hand, if it is firmly adsorbed or bound, its 
bioavailability diminishes, which may impede or restrict degradation 
processes as fewer bacteria can engage with it.

In addition, antibiotics’ bioavailability directly impacts the rate 
and efficiency of bioremediation processes. The enhanced 
bioavailability promotes a more rapid degradation process, allowing 
bacteria to absorb and metabolize the antibiotic efficiently. For 
example, antibiotics soluble in water, such as sulfonamides, exhibit 
greater bioavailability and are consequently more readily degraded by 
bacterial action. In contrast, less soluble antibiotics like tetracyclines 
tend to adhere to soil particles, affecting their degradation dynamics, 
hence, the degradation rate of antibiotics in soil is contingent upon 
their bioavailability (Cycon et  al., 2019). Specifically, adsorbed 
antibiotics exhibit reduced accessibility for microbial degradation, 
which may subsequently diminish the efficiency of bioremediation 
efforts (Hong et al., 2020).

Furthermore, low bioavailability, frequently attributed to robust 
adsorption to soil constituents, can significantly impede 
bioremediation efforts by restricting bacterial accessibility. This 
observation holds significant importance for antibiotics characterized 
by elevated partitioning coefficients, exemplified by tetracyclines, 
which tend to associate with soil preferentially. This affinity contributes 
to their extended persistence and hinders degradation, as discussed 
by Cycon et  al. (2019). Nevertheless, certain bacterial species can 
surmount low bioavailability by synthesizing biosurfactants or 
enzymes that promote desorption, thereby augmenting degradation 
rates. This indicates that the composition and activity of microbial 
communities play a pivotal role in influencing the effects of 
bioavailability on bioremediation processes. An intriguing aspect is 
that low bioavailability may play a role in disseminating ARGs (Li 
Q. et al., 2024). For example, residual antibiotics in soil, attributed to 
their low bioavailability, increase the level of soil ARGs by favoring the 
proliferation of resistant bacterial populations (Chen et  al., 2017; 
Liang et al., 2017), thereby presenting significant ecological risks. The 
interplay of hindering degradation and the potential dissemination of 
resistance introduces significant complexities to bioremediation 
strategies, necessitating meticulous management practices.

Bioremediation efficacy of beneficial 
bacteria

Antibiotics have been used extensively in agricultural techniques, 
which has led to the accumulation of these compounds in soil, 
resulting in significant environmental problems. The existence of these 
antibiotics is a cause for great concern since it has the potential to 
result in the development and dissemination of bacteria that are 
resistant to antibiotics, which poses substantial dangers to the health 
of both humans and animals (Guo, 2021). At the same time, there has 
been a growing interest in employing beneficial bacteria for 
bioremediation to degrade these compounds. This is a practical 
approach that has attracted a lot of attention. Their roles and 
limitations for bioremediation must be  better understood for 
effective utilization.

Bacterial bioremediation represents a highly effective, cost-
efficient, and environmentally sustainable approach for removing 
antibiotic contamination from soil environments, utilizing the 

metabolic capabilities of specific microorganisms to degrade persistent 
pharmaceutical compounds (Mokrani et al., 2024). The three distinct 
mechanisms used by beneficial bacteria in bioremediation processes 
are bioaugmentation, which involves introducing specialized 
microbial strains or consortia with enhanced biodegradative 
capacities, biostimulation, which enhances indigenous microbial 
activity through nutrient supplementation, and bioattenuation, which 
relies on natural biological transformation processes. Research has 
demonstrated remarkable success with specific bacterial strains, such 
as Burkholderia cepacia immobilized on sugarcane bagasse, which 
effectively degrade tetracycline antibiotics under optimal conditions, 
including temperatures of 28–43 °C, slightly acidic pH levels (4.5–6.5), 
and inoculation doses of 15% (Hong et al., 2020). The significance of 
this approach extends beyond simple contaminant removal, as 
tetracycline antibiotics, for example, exhibit the highest soil 
partitioning coefficients among pharmaceutical compounds (Chen 
et  al., 2024), leading to prolonged environmental persistence and 
serious ecological threats, including alteration of microbial 
community structures, enhancement of ARG abundance, and 
bioaccumulation in soil organisms. Furthermore, bacterial 
bioremediation offers substantial advantages over traditional 
remediation methods such as adsorption and photocatalytic 
degradation, which often prove inadequate due to high costs, 
generation of toxic byproducts, or ecological hazards, making bacterial 
approaches particularly valuable for addressing the growing 
environmental challenge of antibiotic contamination that poses long-
term threats to ecosystem security and public health.

Mechanisms of bioremediation by beneficial 
bacteria

Manure and wastewater-related antibiotic pollution of agricultural 
soils helps ARGs to spread and change microbial ecosystems. By 
producing degrading enzymes, using antibiotics as a nutrient source, 
producing biofilms, acquiring biodegrading genes through HGT, and 
participating in cooperative activities (Figure 3; Table 3), beneficial 
bacteria help reduce this threat.

Enzymatic degradation
Enzymatic degradation is a critical process in the bioremediation of 

antibiotics, where bacteria produce specific enzymes to break down 
these compounds, making them inert. Bacterial enzymes can break 
down antibiotic molecules, rendering them inert (Figure 3). The unique 
genetic composition of the bacterial species involved impacts the 
efficacy of these enzymes, thereby exposing a complicated relationship 
between microbial genetics and bioremediation capacity (Elarabi et al., 
2023). This method is essential for reducing antibiotic residues in the 
environment and preventing the spread of antibiotic resistance. For 
β-lactam antibiotics, such as penicillins, β-lactamases hydrolyze the 
β-lactam ring, inactivating the antibiotic, with over 890 known variants, 
including extended-spectrum β-lactamases and carbapenemases (Bush, 
2010). Tetracyclines are degraded by enzymes like those encoded by the 
tetX gene, which are flavoenzymes that inactivate them through 
oxidation, as shown with environmental isolates in the study by 
Gasparrini et al. (2020). Aminoglycosides, like kanamycin, are modified 
by the enzymes acetyltransferases, adenyltransferases, and 
phosphotransferases, altering their structure to reduce efficacy, with a 
specific example being a periplasmic dehydrogenase complex that 
initiates kanamycin deglycosylation (Chen et  al., 2023). Another 
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example is Arthrobacter nicotianae, which breaks down tetracyclines 
(Zhang et al., 2021). General enzymes like oxidoreductases, laccases, 
and hydrolases are also explored for their role in degrading a broad 
range of antibiotics, though their specific contributions are less defined 
(Karigar and Rao, 2011; Bhandari et al., 2021). Understanding these 
enzymatic mechanisms is crucial for developing effective bioremediation 
strategies, allowing the selection of appropriate microorganisms or 
enzymes based on the type of antibiotic and environmental conditions, 
enhancing cleanup efforts, and reducing environmental impact.

Using antibiotics as a nutrient source
Bacteria can harness antibiotics and various pollutants as nutrient 

sources, specifically for carbon and energy, which facilitates the 
degradation of these compounds and mitigates their environmental 
consequences. This process entails the presence of bacteria that harbor 
specific enzymes or metabolic pathways capable of degrading antibiotic 
molecules, thereby utilizing the resultant degradation products for their 
growth and proliferation. For example, Pseudomonas fluorescens has 

been documented to utilize oxytetracycline as its exclusive carbon 
source, fully mineralizing it into carbon dioxide and water (Egorov 
et al., 2018). Comparably, Pseudomonas putida can degrade penicillin-G 
through hydrolysis, forming penicilloic acid and phenylacetic acid. This 
microbe subsequently employs phenylacetic acid as a carbon source 
(Al-Ahmad et al., 1999). This mechanism is similarly relevant to a 
range of pollutants, including petroleum hydrocarbons, where bacteria 
like Pseudomonas putida employ these compounds as carbon sources 
for their growth, illustrating a well-documented bioremediation 
strategy (Cui et al., 2020). The application of this nutrient presents 
significant benefits for bioremediation, as it leverages the natural 
metabolic processes of bacteria to restore contaminated environments, 
particularly those impacted by antibiotic-laden wastewater or soil. By 
meticulously selecting or engineering bacterial strains that exhibit 
distinct degradation pathways, it is possible to formulate bioremediation 
strategies specifically designed to target particular pollutants. For 
example, studies have effectively isolated bacterial strains capable of 
degrading sulfonamides, fluoroquinolones, and other antibiotics, using 

FIGURE 3

(1) Biodegradation—depicting the enzymatic breakdown of antibiotic molecules into metabolites and ultimately into CO₂ and H₂O through key 
enzymatic pathways including hydrolases (β-lactamases, amidases), oxidoreductases (monooxygenases, dioxygenases), transferases (acetyl-, phospho-
transferases), and lyases (decarboxylases, dehalogenases). (2) Biosorption—showing antibiotic adsorption onto bacterial cell surfaces through multiple 
binding mechanisms, including ion exchange, complexation, physical adsorption, and microprecipitation, facilitated by functional groups (-COOH, 
-OH, -NH₂, -SH, PO₄3−) on bacterial cell walls. (3) Stress alleviation & co-metabolism—illustrating how bacterial products like siderophores, 
exopolysaccharides, and ACC deaminase mitigate plant stress from antibiotic exposure. At the same time, microbial consortia demonstrate metabolic 
network synergies that enhance overall degradation capacity.

https://doi.org/10.3389/fmicb.2025.1635233
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Olanrewaju and Bezuidenhout� 10.3389/fmicb.2025.1635233

Frontiers in Microbiology 12 frontiersin.org

these compounds as carbon sources, which enhances remediation 
efforts (Fu et  al., 2022; Wang et  al., 2023; Zhang M. et  al., 2023; 
Rodrigues et al., 2025; Zhu et al., 2025) (Table 3).

Nevertheless, one must consider the significant challenges, 
including the specificity exhibited by various bacterial strains 
toward certain antibiotics and the potential to spread ARGs. It is 
essential to recognize that not all antibiotics function as suitable 
carbon sources. The effectiveness of this application depends on 
the distinct chemical composition of the antibiotic involved, 

alongside the specific bacterial strain under investigation. 
Moreover, bacteria that possess resistance mechanisms, such as 
the production of beta-lactamases, can transfer resistance genes 
to other microorganisms in their surroundings, thus posing 
considerable threats to ecological systems (Markley and 
Wencewicz, 2018). Ongoing research endeavors are concentrated 
on enhancing this methodology, exploring the domain of genetic 
engineering to augment degradation efficiency while considering 
the possible risks associated with resistance.

TABLE 3  Some studies on bacterial bioremediation of antibiotics.

Antibiotics Bacterial strain Isolation 
source

Reported 
performance

Mechanism/key 
enzymes

Mode of 
action

References

Sulfamethoxazole 

(SMX)

Microbacterium sp. 

BR1

Membrane 

bioreactor/lab 

culture

~60% mineralization of 

0.1–25 μg/L SMX to CO₂ 

within 24 h; rapid removal 

within 2 h

SadA/SadB FMNH₂-

monooxygenases; SadC 

FMN reductase

Biodegradation Ricken et al. (2017) 

and Lopez Gordillo 

et al. (2024)

Pseudomonas 

silesiensis F6a

Activated sludge 

(WWTP)

12 products across 4 

pathways under aerobic 

conditions

Oxidative and 

conjugation steps 

mapped by LC–MS

Biotransformation Liu et al. (2022a)

Sulfamethazine 

(SMZ)

Microbacterium sp. 

C448

SMZ-exposed 

agricultural soil

Soil microcosms: ≤5.5% 

mineralization without 

manure vs. 5.6–19.5% with 

manure in about 1 month

sadA-encoded 

antibiotrophy, inducible 

catabolism

Biodegradation 

(antibiotrophy)

Billet et al. (2021) 

and Paris et al. 

(2023)

Sulfamethoxazole 

(SMX)

Ochrobactrum sp. 

SMX-PM1-SA1

Environmental 

isolates

45.2% of 5 mg/L in 288 h

ND Biodegradation Mulla et al. (2018)
Labrys sp. SMX-W1-

SC11

62.2% of 5 mg/L in 288 h

Gordonia sp. SMX-

W2-SCD14

51.4% of 5 mg/L in 288 h

Tetracycline (TC)

Stenotrophomonas 

maltophilia DT1

River sediment 89% of 50 mg/L at 30 °C, 

pH 9

Deamination, 

denitromethylation, 

decarbonylation
Biotransformation

Leng et al. (2016)

Klebsiella sp. SQY5 Municipal sludge Up to 89.66% removal at 

80 mg/L

Deamination Shao et al. (2018) 

and Shao et al. 

(2019)

Oxytetracycline 

(OTC)

Lysinibacillus sp. 

strain 3 + I

Poultry manure About 85% OTC removal in 

7 days

ND Biodegradation Sudha et al. (2022)

Ciprofloxacin (CIP) Paraclostridium sp. 

strain S2

Sulfate-reducing 

sludge/enrichment

Specific biotransformation 

rate 1,975.7 ± 109.1 μg g−1 

CDW h−1 at 20 mg/L

Cytochrome P450, 

dehydrogenases; EPS/

adhesion implicated

Biosorption and 

biotransformation

Fang et al. (2021), 

Xu et al. (2024), 

and Zhou et al. 

(2024)

Erythromycin A 

(ERY)

Paracoccus versutus 

W7

Sewage sludge 58.5% of 50 mg/L in 72 h at 

35 °C, pH 7; complete 

removal from fermentation 

residue (100–300 mg/L) in 

36–60 h

Erythromycin esterase 

EreA

Biodegradation

Ren et al. (2023)

Tylosin (TYL) Klebsiella oxytoca 

TYL-T1

WWTP 

wastewater

Efficient TYL degradation 

with lactone ring cleavage; 

quantitative removal 

reported (time-course)

Oxidoreductases; ester 

bond hydrolysis

Zhang T. et al. 

(2022)

Chloramphenicol 

(CAP)

Klebsiella sp. YB1 Activated sludge 

(Cd co-stress)

22.4% of 10 mg/L in 48 h Proposed 

dechlorination steps 

under metal stress

Tan et al. (2023)
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Biofilm production
Biofilms, complex communities of microorganisms, play a 

significant role in bioremediation by degrading a wide range of 
environmental contaminants, such as petroleum hydrocarbons and 
heavy metals, due to their resilience to harsh conditions like toxic 
chemicals, desiccation, and UV radiation, as supported by studies like 
Ian W. Sutherland’s work on biofilm exopolysaccharides (Sutherland, 
2001). Their extracellular matrix contains functional groups that bind 
and immobilize hydrophobic compounds, facilitating degradation, as 
shown in the study by Mangwani et al. (2016), making them suitable 
for cleaning up contaminated sites, as noted by Das and Dash (2014). 
Natural attenuation, where indigenous microbes degrade contaminants 
without intervention, can be slow, especially in newly contaminated 
sites (Sara, 2003), but can be accelerated through biostimulation, adding 
nutrients like nitrogen or carbon, and bioaugmentation, introducing 
specific degradative microorganisms (Tyagi et al., 2011; Sonawane et al., 
2022). Additionally, changes in biofilm physiology and morphology can 
detect contaminants, such as heavy metals, microplastics, and other 
pollutants in water (Syed et  al., 2021; Luo et  al., 2022), serving as 
indicators, offering a promising approach for bioremediation with 
ongoing research focused on optimizing these processes.

Consortia mechanisms
Microbial consortia, defined as cooperative assemblies of 

microorganisms, play a crucial role in bioremediation by 
collaboratively degrading environmental pollutants that individual 
strains may struggle to address (Cieplik et al., 2019) (Figure 4). Their 
effectiveness is attributed to their ability to participate in diverse 
metabolic processes, which enables them to adjust to complex 
combinations of pollutants and varying environmental circumstances, 
as evidenced by studies showing enhanced degradation rates in areas 
impacted by oil contamination (Valentine et al., 2010). For instance, 
naturally occurring bacterial consortia, exemplified by Alcanivorax 
borkumensis, have been instrumental in the bioremediation efforts 
following the Deepwater Horizon oil spill in 2010, resulting in a 
notable decrease in the environmental repercussions of crude oil. The 
collaborative endeavors evident within these consortia manifest in 
diverse manners, enhancing their potential for bioremediation. Some 
microorganisms are recognized for their ability to synthesize 
biosurfactants, such as rhamnolipids, which emulsify hydrophobic 
pollutants like oil, thus improving their bioavailability for degradation 
by other constituents of the microbial community (Zeng et al., 2018). 
Sequential degradation serves as a crucial mechanism within microbial 
ecology, where an initial microorganism commences the breakdown 
of a pollutant, thereby enabling a subsequent organism to complete the 
degradation process. An illustrative example can be  found in the 
bioremediation of polychlorinated biphenyls, where anaerobic bacteria 
first engage in dechlorinating these compounds, after which aerobic 
bacteria mineralize the resulting intermediates (Lin et al., 2024). This 
collaborative methodology enables a more comprehensive dissection 
of complex pollutants, surpassing the efficacy of singular strains.

Engineered microbial consortia are presently being developed to 
target pollutants precisely, thus offering tailored bioremediation 
solutions. For example, studies have demonstrated that a consortium 
of Pseudomonas putida and Acinetobacter sp. achieved enhanced 
phenol degradation rates compared to either strain alone, highlighting 
the benefits of combining complementary metabolic pathways (Xu 
et al., 2024). These methodologies present considerable promise for 

addressing emerging contaminants, such as pharmaceuticals and 
pesticides, especially in cases where natural consortia may 
demonstrate insufficient activity. Despite these advantages, challenges 
remain in applying microbial consortia for bioremediation efforts. It 
is essential to ensure the stability of a consortium when faced with 
fluctuating environmental conditions, as competition among its 
members or changes in the environment can greatly compromise 
cooperative interactions (Bernal and Llamas, 2012). Moreover, it is 
imperative to contemplate the possibility of propagating antibiotic 
resistance genes or other unfavorable traits within the consortium, 
which could result in ecological consequences (Piazza et al., 2019). 
Such challenges necessitate careful supervision and strategic 
administration to ensure effectiveness and safety. In considering the 
trajectory of future advancements, it is evident that the domains of 
synthetic biology and genomics are poised to revolutionize the 
approaches utilized in the design and optimization of microbial 
consortia. Researchers can develop more efficient and manageable 
bioremediation strategies by engineering microbes to exhibit specific 
degradation pathways or enhance their cooperative behaviors through 
genetic modifications (Singh et al., 2011). The engineering of synthetic 
consortia is designed to degrade a broader spectrum of pollutants, 
thus offering scalable methodologies for environmental remediation.

Molecular methods versus established 
bioremediation technologies

Targeted molecular tools such as CRISPR-Cas systems delivered 
by bacteriophages or conjugative plasmids can selectively remove 
ARGs or be used to control ARG-carrying hosts (e.g., plasmid curing 
or sequence-specific killing), offering precision with minimal 
collateral damage to non-targets when delivery succeeds. Proof-of-
concept studies show >99.9% elimination of targeted resistant E. coli 
in vivo using conjugative CRISPR-Cas9 in the gut microbiota (Neil 
et al., 2021), phage-delivered CRISPR that degrades plasmid-borne 
ARGs without killing hosts (Tao et al., 2022), CRISPR systems (e.g., 
VADER) that degrade ARGs in wastewater matrices (Li X. et  al., 
2023), and engineered anti-biofilm phages that outperform wild-type 
phages in vitro and reduce intestinal E. coli in animals (Gencay et al., 
2024). However, soil deployment remains nascent: reviews emphasize 
delivery barriers in complex matrices, risks of escape mutants/
off-target effects, and biosafety/regulatory uncertainties, arguing that 
near-term use is likeliest in contained nodes (e.g., digesters, WWTPs) 
rather than open soils (Mayorga-Ramos et al., 2023).

By contrast, established feasible treatments are field-ready but 
less specific. Manure composting often reduces ARG loads and 
resistome risk relative to stockpiling, though marker-specific 
rebounds can occur; performance depends on temperature profiles 
and process control (Keenum et al., 2021; Sun et al., 2024; Wang 
G. et al., 2024). Biochar amendments can sorb antibiotics, shift 
microbial communities, and lower ARG abundances in soil-crop 
systems, but long-term persistence and trade-offs remain under 
study (Choi et al., 2024; Li H. et al., 2024). Advanced oxidation 
processes (AOPs) such as ozonation, UV/H₂O₂, and photocatalysis 
efficiently remove antibiotics in water (Cuerda-Correa et al., 2020; 
Zhang Y. et al., 2022; Pastor-Lopez et al., 2024) and, in some cases, 
reduce ARB/ARGs, making them suitable upstream of land 
application; however, limitations include energy cost and 
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by-product control, and they are not directly applicable in soils. 
Overall, gene-editing tools are promising and precise but currently 
best suited to contained treatment applications; composting/
biochar/AOPs remain deployable at scale for agricultural settings, 
with method choice governed by matrix (manure, soil, wastewater), 
cost, and risk targets (Mayorga-Ramos et al., 2023).

Regulatory considerations and 
practical challenges on the application 
of beneficial microbes in 
bioremediation

Bacterial bioremediation can help clean antibiotic-polluted farm 
soils, but it has significant regulatory and practical challenges. Tight 
rules on genetically modified organisms (GMOs), different ways to 
manage antibiotics, and ecological uncertainties make deployment 
tricky. Practical challenges like microbial survival, cost-effectiveness, 
and soil variability limit scalability. Hence, we  examine barriers, 
highlighting their impact on microbial solutions and the need for 
integrated strategies to realize the bioremediation potential of 
beneficial bacteria.

Regulatory frameworks for antibiotic use and microbial 
bioremediation vary widely from country to country and region to 
region, creating uneven landscapes for implementation. In the 
European Union (EU), strict regulations, such as Regulation (EU) 
2019/6, have banned antibiotic growth promoters in livestock since 
2006 (Topp et al., 2018; Mdegela et al., 2021; Farrukh et al., 2025). 
However, therapeutic use remains high, with 131 mg/kg of poultry 
biomass treated annually, maintaining ARG hotspots (Checcucci et al., 
2020). In regions like South Asia and parts of Africa, lax oversight 
allows subtherapeutic dosing, with up to 70% of veterinary antibiotics 
excreted unchanged, boosting soil ARG loads by 103 copies/g 
(Muhammad et  al., 2020). This disparity hampers consistent 

bioremediation strategies, as bacterial strains face different antibiotic 
pressures in their immediate environments.

Also, the regulations surrounding genetically modified organisms 
impose additional constraints on using CRISPR-edited bacterial 
strains. The European Union’s Directive 2001/18/EC categorizes 
CRISPR-modified strains as GMOs (Okoli et al., 2022), necessitating 
extensive risk assessments and public approval processes. This affects 
the benefits of this technology. For example, the field trials of 
Pseudomonas with a silenced intI1 gene were postponed, 
notwithstanding the success observed in laboratory settings (Ferreira 
et al., 2023). On the other hand, the USDA’s streamlined process under 
the “SECURE Rule” permits certain gene-edited microbes to bypass 
GMO labeling in the United States, provided that no foreign DNA is 
present. This facilitates pilot tests of Bacillus subtilis that have been 
enhanced with the tetX gene (Kim et al., 2023). In developing nations, 
it is evident that regulatory frameworks frequently exhibit significant 
deficiencies, thereby posing a risk of uncontrolled release and 
subsequent ecological damage. Achieving coherence among these 
policies has the potential to establish a standardized approach to safe 
deployment, however, one must acknowledge the ongoing political 
and economic obstacles.

In addition, the cost of production is a major barrier to widespread 
adoption. Smallholder farmers, common in developing regions, often 
lack access to expensive technologies needed for production. Around 
80% rely on manure without remediation (Muhammad et al., 2020). 
Scaling requires reducing costs, such as optimizing bioreactor yields 
(101⁰ CFU/mL) or using local isolates, but infrastructure gaps remain. 
Soil variability makes scaling even more challenging. For example, 
sadA-expressing Pseudomonas degraded SMX 70% faster in acidic 
loams (pH 5.5, 5% organic matter) than in neutral clays (pH 7, 10% 
organic matter) due to sorption issues (Rodríguez-López et al., 2024). 
Also, in another study, field trials across ten sites showed consortia 
efficacy ranging from 20 to 80% in ARG reduction, linked to specific 
microbial interactions in the soil (Wang S. et  al., 2024). Hence, 

FIGURE 4

Integrated approach to antibiotic bioremediation in agricultural soils.

https://doi.org/10.3389/fmicb.2025.1635233
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Olanrewaju and Bezuidenhout� 10.3389/fmicb.2025.1635233

Frontiers in Microbiology 15 frontiersin.org

tailoring strains to local conditions through omics-guided selection 
could enhance results, but this requires extensive regional data and 
adaptive formulations, which are expensive.

Finally, addressing these challenges needs integrated strategies. 
These strategies can transform lab research into practical applications, 
but coordinated efforts across microbiology, policy, and agriculture 
are crucial.

Conclusion and future 
recommendations

This review has comprehensively examined the challenges of 
antibiotic contamination in agricultural soils and the promising 
potential of beneficial bacteria in bioremediation. By detailing the 
complex sources of antibiotic pollution, the influence of soil 
parameters on antibiotic bioavailability, and the mechanisms by which 
microbial consortia can degrade antibiotics (e.g., enzymatic 
biodegradation, biofilm formation, and cooperative metabolism), the 
manuscript demonstrates how integrating molecular insights with 
practical remediation strategies can address both ecological and public 
health concerns. The discussion underscores that despite the 
encouraging laboratory-scale findings, challenges such as scalability, 
cost-effectiveness, and potential environmental risks associated with 
deploying engineered microbes persist.

The symbiotic association between plants, soil, and beneficial 
microbes has been shown to play a pivotal role in bioremediation 
and plant health improvement. However, a lot of information is still 
missing to make more positive developments from these 
interactions. A good bioremediation strategy involves a well-
designed and targeted approach involving various approaches to 
achieve sustainable bioremediation (Figure 4). For full acceptance 
of beneficial microbes in bioremediation and sustainable 
agriculture, more insight is needed into the comprehensive 
tripartite interactions between plants, microbes, and their 
environment. Knowledge of microbial functions for bioremediation 
purposes is also very critical. Identification of candidate genes 
involved in antibiotics degradation and their characterization are 
necessary to allow for possible manipulation and editing of these 
genes for improved bioremediation potential and plant health 
promotion. Several regulatory mechanisms should also be looked 
into regarding genetically modified organisms for the safety of 
potential bioremediation potentials in the environment, since they 
will be deployed in the field to ascertain their potential fully.

At the center is the core objective of sustainable antibiotic 
bioremediation. Surrounding this are key components: (1) 
Optimized Microbial Consortia—featuring multi-functional 
degrader bacteria engineered for complementary metabolic 
capabilities, (2) Plant-Microbe Partnership Systems—emphasizing 
rhizosphere engineering to enhance plant-microbial synergies in the 
root zone, (3) Bioavailability Optimization Strategies—focusing on 
soil amendment design that considers pH, clay content, organic 
matter, and moisture effects, (4) Monitoring and Assessment—
employing metagenomic surveillance to track antibiotic resistance 
genes and remediation progress, (5) Genetic Engineering Tools—
utilizing CRISPR-based systems for enhanced degradation 
capabilities, and (6) Regulatory and Policy Framework—
implementing a One Health approach aligned with Sustainable 

Development Goals 2 (Zero Hunger), 3 (Good Health and Well-
being), and 15 (Life on Land).

Looking forward, future research should prioritize a few key 
areas. First, experimental approaches must be refined to quantify 
better how specific soil properties (pH, organic matter, texture) 
modulate antibiotic persistence and degradation rates, leveraging 
advanced metagenomic and metabolomic tools. Second, further 
characterization and optimization of microbial consortia, potentially 
through synthetic biology and gene editing, will be  crucial in 
enhancing bioremediation efficacy while ensuring biosafety. Third, 
extensive field trials under diverse agricultural conditions are needed 
to validate laboratory findings and to tailor remediation strategies to 
local contexts. Finally, harmonizing regulatory frameworks 
internationally, supported by comprehensive risk assessments and 
stakeholder engagement, is essential to safely advance the application 
of natural and engineered microbial remediation methods (Figure 4). 
These integrated strategies can significantly contribute to sustainable 
agriculture and environmental protection under a One Health 
framework by bridging molecular-level research with policy and 
field implementation.

To chart a path forward, we propose key unanswered questions 
that can bridge laboratory insights and field realities. These targeted 
research priorities will help focus efforts on linking soil properties, 
microbial dynamics, and stakeholder needs for effective, 
scalable bioremediation.

	 1.	 How do combined soil parameters, i.e., pH, organic matter, and 
texture, interact to modulate in situ degradation rates of 
distinct antibiotic classes?

	 2.	 Which native microbial consortia optimize the co-degradation 
of multi-class antibiotic occurrences under field conditions?

	 3.	 What is the extent of horizontal gene transfer of ARGs during 
bioaugmentation with introduced versus indigenous bacteria?

	 4.	 How does plant–microbe–soil feedback influence the long-
term stability of bioremediation efficacy and crop uptake of 
antibiotic residues?

	 5.	 What socio-economic factors most strongly predict smallholder 
farmer adoption of microbial bioremediation technologies?

	 6.	 Can metagenome-informed predictive models accurately 
forecast bioremediation outcomes across diverse agroecosystems?
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