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Colorectal Cancer (CRC), a common malignancy, often arises from 
adenomatous precursors. In the adenoma-carcinoma progression of CRC, 
Fusobacterium nucleatum (Fn) plays an important driving role. Therefore, the 
discovery of new drugs targeting Fn-induced disease progression is crucial for 
the prevention and treatment of CRC. Berberine (BBR), which has a relatively 
broad spectrum of antitumor activity, has received increasing attention in recent 
years. In this study, we summarize BBR’s regulatory effects on the different 
stages of intestinal adenoma-carcinoma transformation induced by Fn and its 
anti-tumor mechanisms in the occurrence and development of CRC for the 
first time. Firstly, BBR can prevent the migration and intestinal colonization 
of Fn and regulate Fn-induced microbiota imbalance. Secondly, in the pre-
cancerous lesion stage, BBR can attenuates Fn-mediated inflammation, inhibit 
abnormal crypt foci, and reverse adenoma progression. In addition, BBR can 
suppresses established CRC by inhibiting cell proliferation, invasion, metastasis, 
immune escape and drug resistance. For the classic pathogenic model of 
Fn-mediated CRC, the therapeutic effect of BBR is dynamic and comprehensive 
from pathogenic factors to pathological products. Among them, E-cadherin, 
Wnt/β-catenin, JAK/STAT and MAPK/ERK signaling pathways may be key to 
BBR’s prevention of Fn-induced CRC. 

KEYWORDS 
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1 Introduction 

Colorectal Cancer (CRC) ranks among the top three malignancies worldwide in terms 
of both incidence and mortality, representing a major disease that severely threatens 
human health (Bray et al., 2024). Epidemiological data indicate that approximately 154,000 
new CRC cases and 53,000 deaths are projected to occur in the United States in 2025 
(Siegel et al., 2025). CRC has a hidden onset and atypical early symptoms, and most 
patients are diagnosed in the middle and late stages. Therefore, prevention of the etiology 
of CRC, as well as early screening and intervention of the disease, are of great significance 
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in prolonging patient survival and improving quality of life. Studies 
have shown that 60%-70% of CRC is derived from adenomas, a 
recognized precancerous lesion that typically takes 5-10 years to 
develop (Shaukat et al., 2021; Simon, 2016). 

With further research, the influence of chronic inflammation 
and intestinal microbiota on the adenoma-carcinoma progression 
of CRC has gradually been recognized (Sepich-Poore et al., 2021). 
Inflammation is a high-risk factor for CRC, while dysbiosis of 
the intestinal microbiota is closely related to the recurrence of 
inflammation (Tlaskalova-Hogenova et al., 2004). In fact, there are 
thousands of microorganisms colonized in the human intestine, 
maintaining normal physiological functions and resisting the 
invasion of pathogens (Tremaroli and Bäckhed, 2012). However, 
the ecological imbalance of bacteria, fungi, and even viruses in the 
intestine will disrupt the delicate balance between them and their 
host, leading to immune system damage and disease occurrence 
(Gibiino et al., 2017). 

Compared with healthy individuals, the intestinal microbiota 
in the intestinal lumen and mucosa of CRC patients undergoes 
changes. The reduction of beneficial bacteria and the increase 
of opportunistic pathogens may promote the transformation 
of benign adenomas into malignant adenocarcinomas (Wang 
et al., 2012; Zhang et al., 2018). Among them, Fusobacterium 
nucleatum (Fn) is an opportunistic anaerobic symbiotic bacterium 
in the human oral cavity, which is relatively rare in healthy 
intestines (Warren et al., 2013). However, enriched Fn has been 
detected in the tissues or rectal swabs of CRC patients, and 
the accumulation of Fn is associated with the development of 
adenoma-carcinoma progression (Proença et al., 2018; Flanagan 
et al., 2014). The colonization of Fn in the intestine can lead 
to defects in the epithelial barrier (disruption of tight junctions 
and cell-to-cell contacts, loss of epithelial polarity and mucus 
layer) and local dysplasia (Grivennikov et al., 2012), thereby 
promoting the occurrence of CRC in the body (Yu et al., 2015). 
Therefore, the discovery of new drugs targeting Fn-induced 
disease progression is crucial for the prevention and treatment 
of CRC. 

The treatment of CRC mainly includes surgical treatment, 
radiotherapy, chemotherapy, immunotherapy, etc (Argiles et al., 
2020). However, due to adverse reactions, drug resistance, and high 
recurrence rates (Argiles et al., 2020), an increasing number of 
people are turning to natural products and their derivatives, hoping 
to use their multi-target mechanisms and complex pharmacological 
activities to benefit patients. Berberine (BBR), a quaternary 
ammonium isoquinoline alkaloid, has received attention for its 
relatively broad spectrum of antitumor activity. Studies have shown 
that BBR has inhibitory effects on various tumors including CRC 
(Figure 1) (Wang Y. et al., 2020; Rauf et al., 2021). BBR not 
only delays the progression of CRC but also has a therapeutic 
effect on the intestinal adenoma-carcinoma process induced 
by Fn. 

In this review, we summarize the sequential effects of BBR 
on the Fn-induced intestinal adenoma-carcinoma cascade from 
a dynamic perspective and its regulatory mechanism in the 
occurrence of CRC for the first time. This study is expected to 
provide preclinical evidence for the use of BBR in the prevention 
and treatment of CRC, and the development of related new drugs 
will further reduce the incidence and mortality of CRC. 

2 Intestinal adenoma-carcinoma 
transformation induced by Fn 

The formation of CRC is not a sudden event, but a process 
that goes through normal mucosa, mucosal epithelial hyperplasia, 
adenomatous polyps, gradually increasing adenomatous polyps, 
colorectal cancer (Figure 2) (Lucas et al., 2017). In this process, 
Fn plays an important role. In fact, the causal relationship 
between microorganisms and tumors is not uncommon, such as 
Helicobacter pylori and gastric cancer, human papillomavirus and 
cervical cancer, hepatitis B virus and liver cancer. In the early stage 
of the intestinal adenoma-carcinoma cascade, Fn can be detected to 
accumulate in adenomas (Kostic et al., 2013). Furthermore, Fn can 
increase the count of Aberrant Crypt Foci (ACF), adenomas and 
adenocarcinomas, and promote the occurrence and progression of 
intestinal tumors (Kostic et al., 2013). Studies have shown that more 
than 40% of CRC patients can detect the same Fn in their intestines 
and oral cavities (Komiya et al., 2019). Fn can stably adhere and 
invade endothelial cells, epithelial cells and tumor stem cells (CSCs) 
through multiple pathways, causing intestinal and systemic spread 
(Han et al., 2004). This migration process involves the participation 
of actin, microtubules, pathways, protein synthesis, and energy 
metabolism (Han et al., 2000). 

With the accumulation of Fn, the balance of intestinal 
microbiota is disrupted, triggering innate immune responses 
and activating signaling pathways such as janus kinase/signal 
transducer and activator of transcription (JAK/STAT), mitogen-
activated protein kinase/extracellular signal-regulated kinase 
(MAPK/ERK), and nuclear factor kappa-B (NF-κB). At the same 
time, it induces the secretion of interleukin-8 (IL-8), IL-21, IL-22, 
IL-24, IL-31 and CD40 (Kostic et al., 2013; Yu et al., 2015; Han 
et al., 2000; Cavallucci et al., 2022). Stem cells infected by Fn can 
be selectively recruited to the submucosal layer and migrate to the 
mucosal layer, increasing the susceptibility of intestinal tumors by 
activating the classical Wnt/β-catenin/TGIF signaling pathways 
(Lin et al., 2020). Further research has shown that Fn-derived 
formates can also increase the CSCs and self-renewal ability of CRC 
by triggering AhR signaling and Th17 cell expansion (Ternes et al., 
2022).Therefore, effectively inhibiting the immune response caused 
by Fn and reversing epithelial dysplasia in the pre-cancerous stage 
are potential research directions in the field of CRC prevention 
and treatment. 

Pharmacological studies have shown that BBR can exert anti-
Fn effects while preventing and treating CRC through diverse 
mechanisms or pathways. 

3 Stage 1: delaying the Fn 

3.1 BBR inhibits the migration of Fn 

Fn naturally resides in the oral and other mucosal areas of both 
humans and animals, and plays an essential role in the formation 
of dental biofilm (Brennan and Garrett, 2019). Fn is considered 
both a common commensal bacterium and an opportunistic 
pathogen, and has been associated with various oral diseases such 
as acute appendicitis, amniotic fluid infections, liver abscesses, and 
osteomyelitis (Brennan and Garrett, 2019). Targeted sequencing 
results have shown that Fn in the gut originates from the oral 
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FIGURE 1 

Diagram of anti-tumor effect of Berberine. Berberine, a naturally occurring alkaloid with diverse biological activities, has demonstrated remarkable 
potential in anti-tumor research. This compound effectively suppresses the initiation and progression of various malignancies through complex and 
interconnected molecular mechanisms and signaling pathways. Its multifaceted actions precisely target multiple critical pathways, such as inhibiting 
abnormal tumor cell proliferation, migration, and invasion; promoting tumor cell apoptosis and autophagic cell death; and arresting aberrant cell 
cycle progression. This orchestrated multi-target synergy establishes berberine as a promising translational candidate in contemporary anti-tumor 
drug discovery. 

cavity, and adheres to intestinal tissue early in the development 
of CRC (Komiya et al., 2019). In the APCMin/+ mouse model, 
oral administration of Fn can accelerate CRC occurrence in the 
absence of intestinal inflammation (Kostic et al., 2013). In addition 
to the primary oral-digestive tract pathway (Kostic et al., 2013), the 
enrichment of Fn in CRC tissue may also be targeted to cancer 
colonies via a bloodborne pathway, such as transient bacteremia 
caused by dental surgery or periodontitis (Bullman et al., 2017; Yang 
and Shamsuddin, 1996). Studies have confirmed that intravenous 
injection of Fn can target mouse tumor tissue in a Fap2-dependent 
manner (Abed et al., 2016). BBR has a strong inhibitory effect on 
Fn (Fukamachi et al., 2015). On one hand, BBR can directly kill 
Fn in the oral cavity, intercepting bacteria at the upstream end of 
the digestive tract to prevent migration to the intestine (Xie et al., 
2012). On the other hand, because BBR is difficult to absorb after 
oral administration, it mainly stays in the intestine and interacts 
with the microbiota (Feng et al., 2018) to combat Fn located in the 
mucus layer and intestinal crypts (McCoy et al., 2013). 

3.2 BBR prevents the intestinal colonization 
of Fn 

The adhesion and colonization of bacteria are prerequisites 
for their functional activity. Upon reaching the intestine, Fn 

secretes adhesin FadA with starch-like properties. FadA is divided 
into intact pre-FadA and secreted mature FadA (mFadA), with 
pre-FadA located in the inner membrane and mFadA secreted 
outside the bacteria (Xu et al., 2007). As adenomas progress 
to adenocarcinomas, the expression levels of FadA in tissues 
gradually increase (Rubinstein et al., 2013). By binding to E-
Cadherin on intestinal epithelial cells, FadA can mediate further 
attachment and invasion of Fn into the host (Han et al., 2005). 
About 70% of primary CRC specimens show predominantly 
membranous expression of E-Cadherin (Palaghia et al., 2016). 
Downregulation of E-cadherin expression significantly inhibits 
Fn attachment and invasion of HCT116 cells (Rubinstein et al., 
2013). In addition, the adhesin Fap2 on the surface of Fn can 
recognize Gal-Gal-NAc overexpressed in CRC and CEACAM1 
in the carcinoembryonic antigen family, thereby targeting the 
intestine (Abed et al., 2016; Coppenhagen-Glazer et al., 2015). 
BBR can effectively block bacterial adhesion to the intestine 
(Sun et al., 1988), maintain intestinal villus integrity and normal 
intestinal epithelial cell structure (Izadparast et al., 2022). At 
the same time, BBR can increase the expression of intestinal 
tight junction proteins (ZO-1 and occludin), downregulate the 
NF-κB and myosin light chain kinase pathways to maintain 
epithelial structure, and prevent bacterial penetration of the 
intestinal mucosal barrier (Deng et al., 2022; Gu et al., 
2011). 
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FIGURE 2 

The evolution of colorectal adenoma-carcinoma progression. Under the long-term synergistic effects of both intrinsic and extrinsic pathogenic 
factors, the normal colonic mucosal epithelium initially undergoes atypical hyperplasia, characterized by abnormally accelerated proliferation rates,  
architectural disorganization, and loss of cellular polarity. With progressive injury accumulation, the mucosal epithelium evolves into precancerous 
lesions such as tubular adenomas, villous adenomas, or tubulovillous adenomas. During the adenomatous stage, accumulating genetic mutations 
drive progression from low-grade to high-grade intraepithelial neoplasia, marked by significantly enhanced cytological atypia and emerging invasive 
potential. Upon breaching the basement membrane and infiltrating the submucosa and deeper tissues—concomitant with acquired capabilities for 
vascular and lymphatic invasion—the adenomatous lesion ultimately completes its malignant transformation into colonic adenocarcinoma. 

3.3 BBR regulates the intestinal microbiota 
imbalance caused by Fn 

The changes in the gut microbiota are associated with the 
earliest stages of tumor development (Sanapareddy et al., 2012). 
As normal colorectal tissue progresses to adenomas and CRC, 
the balance of the gut microbiota is disrupted, with an increase 
in opportunistic pathogens and a decrease in butyrate-producing 
bacteria (Chen et al., 2013). Meanwhile, the proportion of Fn 
gradually increases in colorectal adenoma-carcinoma transition, 
playing a promoting role (Yu et al., 2015). The gut colonization of 
Fn can significantly alter the microbial structure of the intestinal 
lumen by increasing tenericutes and verrucomicrobia (Yu et al., 
2015). BBR can reverse the imbalance of gut microbiota caused 
by Fn colonization, reduce opportunistic pathogens such as 
tenericutes and verrucomicrobia (Yu et al., 2015), and increase the 
relative abundance of beneficial gut microbiota (Xie et al., 2011). In 
addition, obesity is an important risk factor for CRC (Mana et al., 
2021). For high-fat diet mice, BBR may reduce the degradation 
of dietary polysaccharides and calorie intake by regulating the 
intestinal microbiota, thereby activating the expression of related 
genes for Fasting-induced adipocyte factor and mitochondrial 
energy metabolism in visceral adipose tissue, which helps to play 
an anti-obesity role (Xie et al., 2011). 

In summary, BBR effectively impedes the migration 
and colonization of Fn within the intestine and suppresses 

Fn-induced dysbiosis through its multi-layered synergistic 
actions: interception at the source, intestinal clearance, barrier 
reinforcement, and microbiota modulation. Consequently, BBR 
exerts a crucial preventive intervention during the early stages of 
CRC development (Figure 3). 

4 Stage 2: delaying the Fn-induced 
intestinal adenoma-carcinoma 
transformation 

4.1 BBR slows down intestinal inflammation 

Under normal circumstances, the microbiota in the gut 
is separated from the epithelial tissue by a dense layer of 
mucus. The presence of this mucus layer allows the body to 
tolerate foreign antigens, thereby limiting inflammatory reactions. 
However, with the invasion of Fn into the gut mucus layer, the 
biofilm it forms can promote chronic mucosal inflammation (Dejea 
et al., 2014). Studies have found that in the ApcMin/+ mouse 
model of intestinal adenomas exposed to Fn, tumor-infiltrating 
immune cells are selectively recruited to create a pro-inflammatory 
microenvironment and CRC progression (Kostic et al., 2013). Fn 
colonization can stimulate the secretion of immune cell cytokines 
such as IL-21, IL-22, IL-23, IL-31, and CD40L (Yu et al., 2015). 
The elevation of these cytokines can regulate intestinal barrier 
function through multiple pathways and promote cell proliferation 
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FIGURE 3 

The mechanism underlying Berberine action in stage 1. Berberine can directly kill Fusobacterium nucleatum (Fn) in the oral cavity, prevent Fn from 
migrating and colonizing in the intestine, and regulate the reduction of beneficial bacteria and the proliferation of pathogenic bacteria caused by Fn. 

and migration, which are closely associated with inflammation-
related CRC occurrence (Wang and Fang, 2023). In addition, 
Fn in the gut may activate the JAK/STAT and MAPK/ERK 
pathways, inhibit anti-tumor immunity, and play an important 
role in CRC progression (Fang and Richardson, 2005; Yu et al., 
2009). Experiments have found that BBR can reverse the increased 
secretion of immune cell cytokines mediated by Fn (Yu et al., 
2015). At the same time, BBR treatment significantly reduced the 
expression of p-signal transducer and activator of transcription 
3 (p-STAT3), p-STAT5, and p-ERK1/2 in mice, blocking the 
activation of the JAK/STAT and MAPK/ERK pathways induced by 
Fn (Yu et al., 2015). 

4.2 BBR inhibits aberrant crypt foci 

ACF is a cluster of aberrant glandular structures within the 
colonic mucosa that forms prior to the development of colon 
polyps. ACF is considered one of the smallest and earliest 
histopathological phenomena observable under a microscope 
during the process of CRC formation and is increasingly recognized 
as an early indicator of carcinogenesis (Roncucci et al., 2000). The 
colonization of Fn in the intestine can promote the formation of 
ACF, which affects the progression of CRC (Wang and Fang, 2023). 
Studies have shown that following inoculation with Fn during 
the neonatal period, ApcMin/+ mice exhibit enhanced expression 
of IL-17A, an increase in the number of intestinal ACF, and 
subsequent acceleration of CRC development (Brennan et al., 2021; 
Yu et al., 2015). Additionally, the bacterial biofilm formed by Fn 
covers the surface of the colon and promotes proliferation of crypt 

epithelial cells by activating STAT3 (Dejea et al., 2014). Fn can 
upregulate the Wnt/β-catenin signaling pathway by binding to E-
cadherin, leading to overexpression of oncogenes (Rubinstein et al., 
2019). Overactivation of the Wnt/β-catenin signaling pathway can 
disrupt the balance between cell proliferation and differentiation, 
maintain stem cell-like phenotypes in colonic crypt cells, and cause 
malignant transformation (MacLeod, 2013). BBR can reduce the 
formation of colonic ACF by inhibiting Cyclooxygenase-2 (COX-
2) activity (Fukutake et al., 1998). Moreover, BBR can inactivate 
Wnt/β-catenin protein signaling and decrease the number of ACF, 
thus reducing the incidence of CRC (Wu et al., 2012). 

4.3 BBR reverses adenoma-carcinoma 
progression 

Inflammation is a driving factor in the development of 
colorectal adenoma (Yan et al., 2022; Huang et al., 2019). 
Compared to normal intestinal mucosa, Fn is more abundant 
in adenoma tissue, and its species abundance is significantly 
positively correlated with local inflammation (McCoy et al., 
2013). The increased number of Fn leads to elevated expression 
levels of cytokines IL-6, IL-10, IL-12, IL-17, and tumor necrosis 
factor-α (TNF-α), and the presence of mucosal inflammation 
may contribute to adenoma progression (McCoy et al., 2013). 
In addition, diet is one of the most important environmental 
factors in the progression from colorectal adenoma to CRC (Chen 
et al., 2013). Researchers have found that an inflammatory diet 
rich in red and processed meats, refined grains, and sugars is 
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associated with an increased risk of Fn-positive CRC (Mehta 
et al., 2017). BBR can delay the recurrence and transformation 
of colorectal adenomas into cancer (Yan et al., 2022; Chen 
Y. X. et al., 2020). By inhibiting the Wnt/β-catenin protein 
signaling pathway, BBR can significantly reduce intestinal polyp 
growth in ApcMin/+ mice and patients with familial adenomatous 
polyposis, while also inhibiting the expression of cyclin D1 in polyp 
samples (Zhang et al., 2013). Additionally, BBR can effectively 
inhibit the expression of pro-inflammatory cytokines, delay the 
increase in serum lipopolysaccharide-binding protein, monocyte 
chemoattractant protein-1, and leptin levels in high-fat-fed rats, 
and correct the decrease in adiponectin levels after adjusting for 

body fat, thereby reducing food intake to prevent obesity (Zhang 
et al., 2012). 

Collectively, BBR establishes a triple defensive strategy 
comprising the suppression of the pro-inflammatory 
microenvironment, blockade of early neoplastic marker 
(ACF) formation, and delay of adenoma progression. 
This strategy effectively disrupts the Fn-driven intestinal 
inflammatory cascade and oncogenic signaling pathways 
(notably the JAK/STAT, MAPK/ERK, and Wnt/β-catenin 
pathways), thereby providing potent intervention at the 
critical stage of the colorectal adenoma-carcinoma transition 
(Figure 4). 

FIGURE 4 

The mechanism underlying Berberine action in stage 2. Berberine alleviates intestinal inflammation, inhibits aberrant crypt foci and reverses adenoma 
progression through multiple pathways, such as reducing the secretion of immune cytokines, blocking the JAK/STAT, MAPK/ERK and Wnt/β-catenin 
signaling pathways induced by Fn. 
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FIGURE 5 

The 3D spatial mechanistic network underlying Berberine’s suppression of Fusobacterium nucleatum (Fn)-induced colorectal 
adenoma-to-carcinoma transformation. Against the established Fn-mediated pathogenic model of Colorectal Cancer (CRC), Berberine exerts a 
comprehensive therapeutic effect spanning from pathogenic initiation to pathological manifestations: It prevents the oral-gut translocation and 
colonization of Fn and modulates Fn-induced gut dysbiosis. During the precancerous stage, BBR alleviates Fn-driven intestinal inflammation, 
suppresses aberrant crypt foci, and reverses adenoma progression. Furthermore, BBR impedes the malignant progression of CRC by inhibiting 
cancer cell proliferation, invasion, metastasis, immune evasion, and drug resistance. 

5 Stage 3: delaying the Fn-associated 
CRC progression 

5.1 BBR inhibits the proliferation and cell 
cycle progression of CRC cells 

In CRC, Fn infection can activate the toll-like receptor 
4 (TLR4)/myeloid differentiation factor 88 (MyD88)/NF-κB 
signaling pathway, upregulate IL-17F, IL-21, IL-22 and macrophage 
inflammatory protein-3 alpha (MIP-3a) to promote tumor cell 
proliferation (Figure 5) (Yang et al., 2017). FadA secreted by Fn not 
only facilitates adhesion and movement but also acts as a virulence 
factor (Han et al., 2005). FadA regulates E-cadherin and activates 
the Wnt/β-catenin signaling pathway, leading to overexpression of 
Wnt genes, transcription factors, c-Myc oncogenes, inflammatory 
genes, and CCND1, which stimulate CRC cell growth (Han, 2015; 
Rubinstein et al., 2013). In addition, in recent years, membrane-
associated protein (Annexin-A1) (Guo et al., 2013), a widely 
distributed calcium-dependent phospholipid-binding protein, has 
been found to act as a regulator of Wnt/β-catenin and a key 
growth stimulator of CRC (Rubinstein et al., 2019). Fn selectively 
stimulates the growth of CRC cells by activating Annexin-A1 
(Guo et al., 2013). BBR effectively inhibits the proliferation of 
CRC cells in a concentration-dependent manner (Wu et al., 2012). 
By inhibiting the expression of β-catenin protein and blocking 
the Wnt/β-catenin signaling pathway, BBR downregulates the 
expression of cell cycle protein Cyclin D1, resulting in the arrest 
of CRC cells in the G1 phase (Wu et al., 2012). Meanwhile, BBR 

also arrests CRC cells in the G2/M phase by inhibiting Cyclin B and 
Cyclin-dependent kinase 1 (Cai et al., 2014). 

5.2 BBR inhibits the invasion and metastasis 
of CRC cells 

Phenotypic plasticity serves as the basis for local invasion and 
distant metastasis of CRC. With the accumulation and invasion of 
Fn in the intestine, vimentin is upregulated while the expression 
of E-cadherin is reduced (Chen Y. et al., 2020), leading to 
increased motility of CRC cells (Bullman et al., 2017). Fn triggers 
Epithelial-Mesenchymal Transition (EMT) in colonic epithelial 
cells by activating the IL-6/STAT3 signaling pathway, as well as the 
appearance of high CD44-expressing cells with CSC characteristics, 
thereby acquiring higher migration and invasion ability (Wang 
Q. et al., 2020; Zeuner et al., 2014). During EMT, E-cadherin 
is lost, and during Mesenchymal-Epithelial Transition (MET), 
disseminated tumor cells will re-express E-cadherin, allowing for 
adhesion and homing to target organs (Ruan et al., 2017). BBR 
can reduce vimentin and upregulate the expression of cytokeratin 
to inhibit cell proliferation and migration in CRC (Gong et al., 
2020). In addition, BBR may further increase E-cadherin expression 
by downregulating miR-429 to avoid loss of epithelial cell polarity 
during EMT (Liu et al., 2016). Recent studies have confirmed 
that BBR can significantly downregulate the expression of CRC 
metastasis-related proteins E-cadherin, β-catenin, and cyclin D1 
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during MET, playing a positive role in preventing CRC cells from 
metastasizing to the lung and liver (Ni et al., 2022). 

5.3 BBR inhibits the immune escape and 
drug resistance of CRC cells 

Fn can create an immunosuppressive microenvironment in 
tumors by selectively recruiting Myeloid-Derived Suppressor 
Cells (MDSCs), Tumor-Associated Neutrophils (TANs), Tumor-
Associated Macrophages (TAMs) (Kostic et al., 2013), promoting 
immune escape and angiogenesis in CRC (Mantovani et al., 2011). 
High abundance of Fn has been found in metastatic CRC patients 
who are unresponsive to immunotherapy (Jiang et al., 2023). The 
Fap2 protein of Fn can interact with T-cell immune receptor 
with Ig and ITIM domain on tumor-infiltrating lymphocytes, 
inhibiting Natural Killer (NK) cell toxicity and T cell-mediated 
anti-CRC immune response, potentially affecting the efficacy of 
CRC immunotherapy (Gur et al., 2015). Additionally, Fn and its 
metabolite, succinic acid, can inhibit anti-tumor responses, causing 
CRC to develop resistance to immunotherapy and chemotherapy 
by avoiding apoptosis (Jiang et al., 2023; Lu et al., 2019). BBR 
enhances CRC’s resistance to chemotherapy by downregulating 
anti-NF-κB (Yu et al., 2014) and may also inhibit CRC cells’ 
resistance to targeted drugs (Su et al., 2015). BBR induces CRC 
cell apoptosis in a concentration-dependent manner by promoting 
the activation of pro-apoptotic genes such as nonsteroidal anti-
inflammatory drug-activated gene-1, activating transcription factor 
3, c-inhibitor of apoptosis proteins 1 (IAP1), c-IAP2, surviving, and 
B-cell lymphoma-extra large (Bcl-xL) (Yu et al., 2014; Piyanuch
et al., 2007; Wu et al., 2012).

During the advanced stages of CRC development, BBR 
directly targets tumor cells. Through multiple mechanisms— 
including blocking oncogenic pathways to inhibit proliferation 
(core pathway: Wnt/β-catenin), reversing the EMT phenotype 
to suppress metastasis, and overcoming immune evasion 
and drug resistance to promote apoptosis—BBR effectively 
curbs Fn-driven tumor malignant progression, metastasis, and 
therapeutic resistance. 

6 Innovation points 

6.1 The therapeutic efficacy of BBR is 
dynamic and involves the entire process 

Compared to traditional anti-CRC drugs, the therapeutic 
efficacy of BBR has continuity. Targeting the classic pathogenesis 
model of colorectal adenoma-carcinoma transformation mediated 
by Fn, BBR can dynamically intervene in the entire process from 
a time dimension. From preventing the migration and settlement 
of Fn from the oral cavity to the intestine, to regulating the 
imbalance of intestinal flora and inflammation caused by Fn, and 
then inhibiting the progression of adenomas and adenocarcinomas 
promoted by Fn, BBR not only coincides with the drug circulation 
path and bacterial migration path, but also covers multiple stages of 
CRC from prevention to treatment. In the prevention stage, drugs 
for chemoprevention of colorectal adenomas include Nonsteroidal 

Anti-Inflammatory Drugs (NSAIDs), statins, metformin and folic 
acid, but ideal drugs are still to be discovered due to adverse 
reactions and uncertain efficacy (Veettil et al., 2019; Renelus et al., 
2021; Soltani et al., 2019). 

NSAIDs reduce CRC risk by inhibiting COX and suppressing 
prostaglandin-mediated inflammation (Ganduri et al., 2022; Sikavi 
et al., 2024). However, their use is cautioned in patients with 
a history of gastrointestinal ulcers or cardiovascular disease due 
to associated risks of gastrointestinal bleeding, nephrotoxicity, 
and cardiovascular events. Statins, inhibitors of HMG-CoA 
reductase, exhibit an association with reduced CRC incidence 
(Han et al., 2023). Nevertheless, their efficacy is lipid-lowering 
dependent and may be accompanied by adverse effects including 
myopathy, hepatic injury, and dysglycemia. Metformin, a first-
line antidiabetic agent, has been suggested by multiple studies 
to potentially reduce CRC incidence, with this association 
potentially stronger in populations with metabolic dysregulation. 
Metformin administration may cause gastrointestinal disturbances 
and vitamin B12 deficiency (Hevroni et al., 2020; Higurashi et al., 
2016; Lee et al., 2021). 

In the treatment stage, traditional chemotherapy, 
immunotherapy, and targeted therapy require new drugs or 
treatment methods as supplements due to serious side effects 
or drug resistance that cannot be avoided. Compared to 
these agents, BBR exhibits a unique advantage characterized 
by a comprehensive pharmacological profile targeting the 
entire cascade of CRC development, integrating metabolic, 
immunological, and microbiota regulatory functions (Wang 
X. et al., 2024). Furthermore, as a natural product widely used
for several centuries, BBR has high safety and can be used in
combination with different drugs to maximize efficacy and reduce
toxicity reactions (Chen Y. X. et al., 2020; Xiong et al., 2022).
Although higher-level clinical evidence is still warranted to support
its translation, BBR holds distinct value as a foundational agent
for synergistic traditional medicine approaches and as a long-term
prophylactic for high-risk populations. For instance, BBR can
protect the intestinal mucosa in NSAID users, a mechanism linked
to the upregulation of PGP9.5, GFAP, and GDNF expression
facilitating repair of the enteric nervous system (Chao et al.,
2020). When used alone or in combination with simvastatin for
hyperlipidemia, BBR reduces the incidence of adverse reactions
such as elevated transaminases and myalgia (Zhang et al., 2019).

Future research should prioritize randomized controlled trials 
evaluating BBR monotherapy for adenoma prevention and the 
development of precision stratification strategies for its use based 
on Fn infection status. 

6.2 BBR has different spatial levels of action 

Natural medicines and their derivatives often have complex 
mechanisms of action. Previous research on their anti-cancer 
mechanisms has mainly focused on the cellular level, analyzing 
individual targets or pathways, or constructing a component-
target-pathway flat network through network pharmacology to 
predict and reveal the material basis and mechanism of drug 
action (Yuan et al., 2022). In fact, BBR does not simply kill 

Frontiers in Microbiology 08 frontiersin.org 

https://doi.org/10.3389/fmicb.2025.1637272
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


B
i e

t al. 
1
0
.3
3
8
9
/fm

icb
.2
0
2
5
.1
6
3
7
2
7
2

 

TABLE 1 Clinical studies related to BBR in Clinicaltrials.gov. 

NCT
Number

Study Title Conditions Enrollment Primary Outcome
Measures

Phase Study Type Status First Posted

NCT05596214 Combination of Curcumin and Berberine 
Therapy in the Treatment of Post Acute 
Diverticulitis Symptomatic Uncomplicated
Diverticular Disease (SUDD) 

Diverticulitis 40 Percentage of patients 
reaching clinical response 
after initiation of therapy 

Phase 2 Interventional Recruiting 27-Oct-22

NCT05014334 Study on The Efficacy and Safety of 
Berberine-containing Triple Therapy in 
Helicobacter Pylori First-Line Eradication 

Helicobacter Pylori Infection, 
Chronic Gastritis 

300 H pylori  eradication rates Phase 4 Interventional Completed 20-Aug-21

NCT04697186 Helicobacter Pylori Eradication 
WithBerberine Plus Amoxicillin Triple 
Therapy vs. Bismuth-containing Quadruple 
Therapy

Dyspepsia, Chronic Gastritis, 
Gastric Cancer, Helicobacter 
Pylori Infection 

524 Helicobacter pylori 
eradication

Phase 4 Interventional Completed 06-Jan-21

NCT04543643 Endoscopic and Microbiological Assessment 
of the Effect of Carvedilol Combined With 
Berberine on GOV in Cirrhosis 

Cirrhosis Due to Hepatitis B, 
Cirrhosis Due to Hepatitis C, 
Gastroesophageal Varices 

288 The progression Incidence 
of esophageal varices 

Phase 3 Interventional Not yet recruiting 10-Sep-20

NCT03609892 Helicobacter Rescue Therapy With Berberine 
Plus Amoxicillin Quadruple Therapy vs. 
Tetracycline Plus Furazolidone
Quadruple Therapy 

Gastric Ulcer, Chronic 
Gastritis, Gastric Cancer, 
Helicobacter
Pylori Infection, Gastritis 

658 Helicobacter pylori 
eradication

Phase 4 Interventional Completed 01-Aug-18

NCT03420976 Novel Supplement-based Therapy for the 
Treatment of Small Intestinal Bacterial 
Overgrowth

Small Intestinal Bacterial 
Overgrowth

0 Lactulose Breath Test Early Phase 1 Interventional Withdrawn 05-Feb-18

NCT03333265 Primary Chemoprevention of Familial 
Adenomatous Polyposis With Berberine 
Hydrochloride

Colorectal Adenomas 100 The numbers and diameters 
of colorectal adenomas 

Phase 2, Phase 3 Interventional Completed 06-Nov-17

NCT03281096 A Research of Berberine Hydrochloride to 
Prevent Colorectal Adenomas in Patients 
With Previous Colorectal Cancer 

Colorectal Adenomas 1000 The colorectal adenoma 
incidence rate 

Phase 2, Phase 3 Interventional Completed 13-Sep-17

NCT03198572 Efficacy and Safety of Berberine in 
Non-alcoholic Steatohepatitis 

Non-alcoholic Steatohepatitis 120 NAFLD activity score Phase 4 Interventional Unknown status 26-Jun-17

NCT02962245 Efficacy of Treatment With Berberine to 
Maintain Remission in Ulcerative Colitis 

Ulcerative Colitis 0 Annual Recurrence Rate Phase 4 Interventional Withdrawn 11-Nov-16

NCT02633930 Helicobacter Pylori Eradication With 
Berberine Quadruple Therapy vs. 
Clarithromycin Quadruple Therapy 

Gastritis, Peptic Ulcer, 
Dyspepsia 

566 Helicobacter pylori 
eradication 

Phase 4 Interventional Completed 17-Dec-15
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CRC cells, but improves the microenvironment of the body by 
comprehensive regulation from pathogenic factors to pathological 
products (Veettil et al., 2019). This involves different levels of action 
in space, including direct and indirect effects of BBR on pathogenic 
microorganisms Fn, intestinal tissues, as well as other intestinal 
flora and their metabolites, while different groups also interact and 
influence each other (Bilder et al., 2021). Taking into account all 
kinds of influencing factors involved in the entire process of CRC 
development is conducive to transforming the flat space network of 
BBR’s mechanism of action into a three-dimensional space network, 
so as to more comprehensively analyze the potential impact of 
different factors on the final therapeutic effect. 

7 Conclusion and prospective 

The occurrence and development of CRC is a multi-step 
process caused by genetic and environmental factors, in which 
the intestinal flora, including Fn, is a special environmental risk 
factor. Therefore, how to delay or reverse the “normal mucosa-
precancerous lesion-CRC” trilogy caused by Fn is the key to 
preventing and treating CRC. BBR is a major component of many 
medicinal plants and has long been used in traditional medicine 
as an over-the-counter drug for treating intestinal infections and 
diarrhea (Habtemariam, 2016). Contemporary research confirms 
its therapeutic potential, demonstrating efficacy in ameliorating 
intestinal mucosal injury (Wu et al., 2024), mitigating colitis-
associated CAC (Wang M. et al., 2024), and delaying the 
progression and metastasis of established CRC (Kang et al., 2024). 

At present, some anti-tumor drug development targeting BBR 
is underway (Table 1). The core barriers to the clinical translation 
of BBR for CRC management are reflected in the disconnection 
between mechanistic research and clinical validation, the limited 
hierarchy of clinical evidence, the gap between diagnostic 
capabilities and precision medication implementation, and 
insufficient incentives for regulatory approval and development. 
A pivotal multicenter, double-blind randomized controlled 
trial demonstrated that oral BBR (0.3 g, twice daily) effectively 
and relatively safely reduced the risk of colorectal adenoma 
recurrence (Chen Y. X. et al., 2020). However, this study also 
identified constipation as the most frequent adverse event 
associated with long-term BBR administration, raising significant 
practical concerns regarding adherence and safety for prolonged 
preventive use. 

Critically, the current body of clinical evidence supporting 
BBR for CRC prevention and treatment exhibits notable 
limitations. First, the vast majority of conducted studies are 
single-center trials, typically constrained by limited sample sizes 
and relatively homogeneous patient populations. Second, despite 
the completion of multiple clinical trials, their final results often 
lack timely or complete public disclosure. Furthermore, key 
questions concerning the validation of BBR’s mechanism of 
action in humans, the optimization of dosing regimens, and the 
synergistic or antagonistic effects when combined with existing 
standard therapies remain inadequately explored and lack robust 
supporting data. 

This article reviews the regulatory mechanisms of BBR in 
CRC development, which may exert its effects through delaying 
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Fn (Stage 1), reversing Fn-induced intestinal adenoma-carcinoma 
transition (Stage 2), and remedying Fn-associated CRC (Stage 
3). Experimental evidence and clinical studies have shown that 
BBR can prevent the migration and settlement of Fn in the 
intestine and regulate the dysbiosis caused by Fn. In the pre-
cancerous stage, BBR can slow down intestinal inflammation, 
inhibit the progression of ACF and adenomas. In the tumor stage, 
BBR plays a positive role in CRC proliferation, cycle regulation, 
invasion, metastasis, immune escape, and drug resistance. Among 
them, the E-cadherin, Wnt/β-catenin, JAK/STAT, and MAPK/ERK 
pathways may be key to BBR’s prevention of Fn-induced 
CRC. These signaling pathways do not operate in isolation 
but rather function through intricate crosstalk to collectively 
mediate BBR’s core protective effects against Fn-driven CRC 
progression across all disease stages, establishing a foundational 
pathway network spanning the entire pathological continuum. 
Through this coordinated regulation, BBR exerts sustained efficacy 
at distinct phases of Fn-driven CRC pathogenesis—from early-
phase epithelial barrier impairment and inflammatory activation, 
through intermediate precancerous lesion progression, to late-stage 
tumor malignancy. 

It is worth noting that the human microbiome contains 100 
trillion cells, 10 times the number of human cells, and its unique 
encoded genes are 100 times that of the human genome (Qin et al., 
2010). For a long time, the mammalian gut has co-evolved with a 
diverse microbial ecosystem, to some extent, forming a powerful 
immune system in the host, promoting mutual benefit between the 
host and the microbial community (Janney et al., 2020). 

Since the microbiome plays an important role in human 
health, caution should be exercised when dealing with symbiotic 
bacteria such as Fn, rather than simply seeking to eliminate 
them. The crude disruption of the symbiotic relationship 
of co-evolution may have unexpected consequences. For 
example, Helicobacter pylori can protect against allergies, 
while Fn produces beneficial metabolites (e.g., acetate, 
butyrate) and may support gut homeostasis (Blaser, 1997, 
2010). 

In addition, different states of the body may produce 
different results against the same pathogenic microorganisms. 
For example, microsatellite instability (MSI) status may affect 
differential immune responses to Fn. In CRC with high 
MSI status, Fn presence demonstrates a negative correlation 
with tumor-infiltrating lymphocyte levels, whereas a positive 
correlation is observed in patients with low-MSI CRC (Hamada 
et al., 2018). Therefore, CRC drug development must account 
for the bidirectional complexity of host-pathogen immune 
interactions. Due to its long history of use and treatment 
experience in folk medicine, BBR is currently a hot spot 
in the development of anti-tumor drugs, with good clinical 
potential for a variety of malignant tumors such as CRC. 

However, further evidence is needed to confirm its efficacy 
and safety in preventing precancerous progression or blocking 
early tumorigenesis. 
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