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In this mini review we examine how soil extracellular enzymes play a key role in 
nutrient cycling, but stress that their activity alone does not fully represent ecosystem 
processes. We emphasize the need for more contextual environmental data—such 
as pH, temperature, moisture and nutrient availability—for accurate interpretation 
of the significance of enzyme activity in carbon and nutrient (N, P) cycling in soil 
ecosystems. The importance of enzymes within the soil microbiome determines 
its inherent capacity to support crop growth and often reflects soil quality and 
soil health, which are in turn governed by multiple different soil properties. Soil 
enzymes (e.g., phosphatase, glucosidases, glycosaminidases) activity have been 
used as key soil health bio indicators for monitoring soil nutrient transformations in 
overgeneralized statements. Although soil enzymes constitute important attributes 
that are closely linked to the dynamics of soil nutrient transformation and make 
nutrients available to plants, we suggest a multi-factor assessment for soil health 
measurement. We  propose that this can give a pulse reading of soil nutrient 
health at crucial times of soil, land use, and crop management practices but that 
care is required to incorporate temporal soil and land use properties for correct 
interpretation.
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1 Introduction

Across developed countries with intensive agriculture, the majority of soils are dominated 
by varying proportions of grassland or arable systems, and the remainder are interspersed with 
peatland and forestry land cover. In all these scenarios, soil is a heterogeneous, porous, living, 
natural and dynamic system, which is crucial to maintaining the entire ecosystem. An 
increasing global population has led to the need for enhanced crop production through 
intensive farming in order to produce enough to ensure food security. In doing so, soils and 
ecosystems have become stressed known as negative plant–soil feedback (PSF) and, ultimately, 
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develop soil sickness or fatigue (Mariotte et al., 2018). This has also led 
to the increased production of greenhouse gasses which are 
contributing to the climate crisis (Molotoks et al., 2021; Rosenzweig 
et al., 2020). In order to tackle these problems, further understanding 
of the complexities of soil health has become a major concern (Nolan 
et al., 2021).

Soil enzymes serve as promising indicators of soil quality due to 
their close link to soil biological activity, ease of measurement, and 
quick response to changes in soil management practices (Dick et al., 
1996). Extracellular enzymes in soil are produced from microorganisms 
including bacteria and fungi that decompose organic matter to release 
useable nutrients. Measurement of soil enzyme activities has been 
carried out since early in the 20th century, becoming more advanced 
and topical by the 1990s (German et al., 2011). Due to the increased 
interest and research in the area, optimization of the procedures has 
been widely reported. However, there is disagreement around attempts 
to standardize both the methods used within different research groups, 
as well as establishing accepted criteria for the interpretation of the 
results (DeForest, 2009; German et al., 2011; Margenot and Wade, 
2023). Optimization of the methods of soil enzyme analysis has been 
reviewed in detail by several groups and therefore will not be further 
considered in this mini-review (DeForest, 2009; German et al., 2011; 
Baah et al., 2025). Although, a standardized method is considered 
highly important for the correct interpretation of soil enzyme activities, 
it has still not been adopted by all research groups.

2 Review question

Arguably less clear from the literature is how enzyme activities can 
and should be correctly reported, which has led to overgeneralization 
and misinterpretation of the data as standard in much of the published 
literature (Margenot and Wade, 2023; Mori et al., 2023). A letter to the 
editor of “Agrosystems, Geoscience and Environment” by Margenot 
and Wade (2023), for example, helpfully outlines the most common 
errors in the interpretation of soil enzyme activities by critical review 
of a published work which associated multiple soil properties 
including crop yield with soil enzyme activity (Sainju et al., 2022). 
However, this mini-review outlines how the narrative of soil enzyme 
activity data can be improved upon by the inclusion of additional data 
to generate a more robust assessment of soil health. Therefore, it is 
proposed that careful assessment of methods should be considered for 
all published reports of soil enzymatic activities and a minimum 
requirement of methodological detail suggested and agreed upon, 
similar to the MIQE guidelines which outlines the minimum 
information required for publication of qPCR data (Bustin et  al., 
2009). This will also benefit researchers in publication of data where 
high impact journals such as “Geoderma” have specified restrictions 
for papers reporting on soil enzyme activities (see Guide for Authors).

3 Enzyme activity as an indicator of 
soil health

It is suggested here that one such interpretation of soil enzyme 
activity as an indicator of “soil health” be reassessed. Soil health is 
considered to be the ability of the soil to function and sustain the 
desired ecosystem intended for a specific area in the most economical 

and sustainable way (Bhaduri et al., 2022). Although recognized as an 
important concept in soil science, “soil health” can be  difficult to 
define in terms of measured features without an understanding of the 
specific requirements of a particular environment (Bhaduri et  al., 
2022). In this way it cannot be assumed that the same levels of soil 
enzymatic activity can be  beneficial to the sustainability of all 
ecosystems. While it is generally assumed that the biological properties 
of soil—such as enzymatic activities—are earlier indicators of soil 
degradation than chemical or physical parameters (Dick et al., 1996), 
and because enzymes appear particularly sensitive to many land use 
changes, their use as bioindicators of soil quality and health has been 
proposed. However, enzyme activity should be reviewed primarily as 
a dynamic, short-term indicator of biochemical processes that 
contribute to, but not fully define, the longer term and more stable 
condition of soil health. The generality of the elusive term “soil health” 
encompassing so many different factors make it inappropriate to 
estimate using one measurable outcome (Lehmann et  al., 2020; 
Bhaduri et al., 2022; Margenot and Wade, 2023; Mori et al., 2023). 
Here, we  highlight the relationship between extracellular enzyme 
activity of soil and numerous biotic and abiotic factors as shown in 
Figure 1, to suggest what data should accompany soil enzyme activity 
measurements to report on more specific concerns.

4 Enzyme activity in relation to 
nutrient cycling

The most commonly investigated extracellular soil enzymes are 
β-1,4-Glucosidase, acid and alkaline phosphatase, β-1,4-N-acetyl-
glucosaminidase and L-leucine aminopeptidase each relating to 
aspects of the carbon, phosphorus, and nitrogen nutrient cycles, 
respectively. However, when interpreting soil enzymatic activity alone 
and what it represents, it is heavily disputed how useful each individual 
enzyme activity can be in predicting the activity of the whole nutrient 
cycle (Margenot and Wade, 2023).

An understanding of the role of each enzyme in the context of the 
whole nutrient cycle is imperative to researchers to limit the 
overgeneralization and misinterpretation of results (Margenot and 
Wade, 2023). Often reported as an indicator of the whole carbon cycle, 
β-1,4-Glucosidase, primarily produced by fungi, is responsible for 
hydrolysis of the β-1,4-glycosidic bonds in cellulose and other related 
polysaccharides into various glycoconjugates which need to be further 
mineralized before they can be used by microbes (Zang et al., 2018). 
Recognizing β-1,4-Glucosidase activity as a single step in a large cycle 
gives merit to the requirement for additional supporting data to 
strengthen research findings.

Other enzymes central to carbon cycling are Phenoloxidase (PO) 
and peroxidases (PPO), playing a crucial role in degrading recalcitrant 
(poly) phenolic compounds in soil organic matter (SOM) (Freeman 
et  al., 2001). These phenolics, derived from both natural and 
anthropogenic sources (Balasundram et al., 2006; Michalowicz and 
Duda, 2007), can inhibit hydrolytic enzyme activity, thereby slowing 
SOM decomposition and mineralization (Figure 2). Unlike hydrolytic 
enzymes, PO and PPO activities have been rarely explored (Floch et al., 
2007), despite their important function in overcoming phenolic 
inhibition by oxidatively breaking down these compounds, thus 
facilitating microbial access to carbon substrates (Freeman et al., 2001). 
However, excessive accumulation of phenolic compounds may still 
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suppress enzyme activity via mechanisms such as pH reduction, metal 
chelation, and covalent bonding with amino acids, limiting nutrient 
availability (Min et al., 2015). Additionally, phenolics interact with 
physical stabilization processes, such as adsorption and aggregation, 
further restricting microbial metabolism (Bol et al., 2009; Kiem and 
Kogel-Knabner, 2002). By moderating the availability and 
decomposition of organic matter, PO and PPO indirectly influence soil 
carbon retention. Their activity plays a dual role—both enabling SOM 
turnover and, when phenolic concentrations are high, contributing to 
long-term carbon sequestration in soils (Freeman et al., 2004).

Environmental factors that highly influence the experimental 
measurement of extracellular enzyme activity including temperature, 
pH and moisture content should accompany any reporting of enzyme 
activity data (Yang et al., 2023). These authors propose that additional 
measurements of the carbon, nitrogen and phosphorus content in the 
soils, as a minimum, could aid in description of the activity of cycles 
in a soil sample. Acquiring these data in longitudinal studies would 
make it more valuable. Other, less commonly reported data, which 
could add value to such research could be measurement of gasses 
released from soils including carbon dioxide and methane relating to 
the carbon cycle.

However, the literature strongly associates enzyme activity as 
responsible for nutrient levels in soil, such as carbon, nitrogen and 
phosphorus, but it must also be understood that the available nutrient 
levels can also strongly influence enzyme production by microbes in 
a negative feedback loop that is referred to as resource allocation 
theory (Figure 1; Yang et al., 2023). However, it must be remembered 
that extracellular enzymes can become bound and stabilized within 
the soil matrix, becoming “abiontic” and therefore no longer associated 
with viable microbial cells (Nannipieri et  al., 2018). Continued 
measurements of multiple factors will build a robust trend over time, 
but care must be taken to measure other factors which may influence 

the soil microbiome and enzyme activity such as changes in soil pH, 
temperature and moisture content (Yang et  al., 2023). Other 
information including land use and management including crop 
cover, tillage, grazing and fertilizer use would also be helpful data to 
include due to the potential effects on soil enzyme activity (Yang 
et al., 2023).

5 Association of enzyme activity to 
microbial populations

The soil microbiome refers to the microorganisms in the soil 
including bacteria, fungi and protists, and somewhat controversially, 
viruses. As the main producers of extracellular enzymes, it is 
reasonable to place importance on the soil microbiome in enzyme 
analysis, but care must be taken not to oversimplify the connection. 
It has been summarized that the confusion around the factors 
effecting the composition of the soil microbiota is due to there being 
no one biotic or abiotic determinant that is consistently the most 
important in all environments (Fierer, 2017). This could equally apply 
to a multitude of environmental concepts including soil extracellular 
enzyme activity.

It has been suggested that the composition of microbial 
communities within soil can be used to predict the retention, release 
and storage of carbon within the soil due to the abundance of genes 
relating to enzyme production (Trivedi et al., 2016). But it should 
be noted that this study was limited to only soils from grain-producing 
regions in Australia (Trivedi et al., 2016). Other soil types, such as 
forest soils, peatlands, or arid soils, may exhibit vastly different 
microbial dynamics and enzyme activity patterns, making it difficult 
to generalize findings across ecosystems (Burns et al., 2013; Lladó 
et  al., 2017). However, it has been disputed that the microbiome 

FIGURE 1

The interrelated network of factors effecting soil biogeochemical properties and processes create a complex and incomplete picture where any one 
unmeasured variable could drastically shift the dynamic.
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cannot accurately predict the rates of biogeochemical processes due 
to the limitations of microbiome research including bias in PCR-based 
analyses, the presence of relic DNA in soils which can account for up 
to 80% of sequenced DNA in soil (Carini et al., 2016), and even the 
ability to appropriately sample soil for microbiome analysis (Fierer, 
2017). Reports have indicated that microbial necromass can constitute 
approximately 50% of the soil organic matter pool, with living biomass 
less than 5%, and only a small proportion of that being active at a time 
(Sokol et al., 2022).

Although it is understood that microbiome research has 
limitations, it still provides valuable insights provided that the DNA 
extraction and sequencing methods used are not particularly suited to 
one type of microorganism (Garg et al., 2024). An alternative method 
using stable isotope probing linked with metagenomics has been able 
to identify active microbial populations through incorporation of 
stable isotopes into newly synthesized nucleic acids (Vyshenska et al., 
2023). However, this technically intensive approach may be  too 
specialized for routine testing.

Again, research over multiple timepoints or changing conditions 
has proved most insightful where in prolonged drought conditions, 
the ratio of copiotrophic to oligotrophic prokaryotes in the soil 
microbiome of forests has continuously changed with a notable 

increase in oligotrophic phyla over time and an increase in organic 
carbon (Jaeger et al., 2024). Although this cannot be directly deemed 
responsible, additional measurements of soil parameters in this study 
has given a strong evidence base for their arguments (Jaeger et al., 
2024). It is inferred a priori that the soil carbon content increase was 
due to the reduction in prokaryotic copiotrophic phyla to primarily 
metabolize it.

However, the cyclic nature of environmental processes would 
reason that upon increased soil carbon content, eventually there will 
be a rise in copiotrophic phyla to equilibrate the ecosystem as is seen 
in areas of forest fire where copiotropic phyla are in increased 
abundance (Adkins et al., 2022). This is where extracellular enzyme 
data could be added to indicate the metabolic processes within the 
soil, providing a clearer, more robust picture.

What cannot be directly inferred by extracellular enzyme activity 
data is nutrient limitation for two reasons. First being the presence of 
abiontic enzymes in soil which have been stabilized in the soil matrix 
and are no longer associated with viable microbial cells. These 
enzymes can remain catalytically active for extended periods and do 
not necessarily reflect current microbial metabolic demand 
(Nannipieri et al., 2018). Although the exact proportion of abiontic 
to total extracellular enzymes can vary across soil types and 

FIGURE 2

An illustration of the role of phenol oxidase (PO) and peroxidase (PPO) in soil nutrient cycling.
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conditions, however, they represent a non-negligible fraction of 
measured extracellular enzyme activity, especially in older or organic-
rich soils (Allison, 2006; Burns et al., 2013).

Second, microbial responses to nutrient limitation are 
complicated by the co-existence of diverse taxa within the same 
soil microenvironment. Different microbial groups may experience 
distinct nutrient constraints and regulate enzyme production 
accordingly (Rosinger et al., 2019; Fan et al., 2021). When facing 
multiple nutrient limitations, microbes do not necessarily 
prioritize one nutrient over another in a linear fashion. Instead, 
enzyme production is often shaped by stoichiometric demands 
(e.g., C: N: P ratios) and energy optimization strategies (Abay 
et al., 2023) For instance, microbial communities may invest in a 
suite of extracellular enzymes targeting multiple substrates 
simultaneously, reflecting co-limitation or internal regulatory 
trade-offs. Recent global analyses confirm that microbial enzyme 
allocation commonly reflects simultaneous limitations by N and P, 
especially in tropical and temperate soils, supporting the concept 
of ecoenzymatic stoichiometry as a key control of nutrient 
acquisition (Tian et  al., 2023). This complexity challenges the 
assumption that a dominant extracellular enzyme activity signal 
equates to a single limiting nutrient, particularly in systems with 
high spatial heterogeneity or functional redundancy 
among microbes.

6 Is RNAseq a worthwhile approach?

Multiple research groups have suggested that gene expression 
techniques could be used to measure enzyme activity within the soil 
with greater specificity. While meta transcriptomics is promising, 
extracellular enzyme activity is regulated not only by intracellular 
gene expression but also by a range of abiotic factors including soil 
pH, composition, temperature, and moisture, all of which strongly 
influence enzyme stability and turnover (Burns et al., 2013; German 
et al., 2011; Yang et al., 2021; Yang et al., 2023). As a result, gene 
expression levels do not always correlate directly with measured 
enzymatic activity (Nannipieri et  al., 2018). Moreover, high gene 
abundance or expression does not necessarily guarantee enzyme 
production, as it can be influenced by post-transcriptional regulation, 
environmental stress, or energy constraints. Nevertheless, gene 
expression measurements could still provide valuable insight into 
microbial response strategies by indicating how microbes react to 
environmental stimuli, regardless of protein expression. Therefore, 
RNAseq should be seen not as a proxy of enzyme activity but rather 
as a complementary tool that offers upstream information about 
microbial functional potential.

A more effective use of RNAseq in soil studies could be to identify 
the soil conditions which drive changes in microbial gene expression 
particularly those relating to nutrient cycling. Rather than attempting 
to predict the “next step” in the biochemical cycle (Figure  1), 
measurement of the soil properties may be  better used to work 
backword and infer the underlying causes of observed changes. A 
thorough assessment of nutrient availability to the microbes, as well 
as measurement of other environmental factors affecting enzyme 
activity such as pH, temperature and moisture content is required 
alongside RNAseq data to develop a comprehensive understanding of 
soil dynamics.

7 Conclusion

Conclusively, measurement of enzyme activity in soils provides 
only a snapshot of the activity of a specific enzyme at the time of 
sampling, under the conditions in which the measurement was taken. 
However, in combination with other data such as the soil carbon and 
nitrogen content, microbial community analysis along with records of 
land use and management can generate a clearer picture of “soil 
health.” The complex network of soil properties and their interactions 
dynamically shift, and therefore the more measurements that can 
be  made to any one soil sample will aid in describing the soil 
environment. However, it must be noted that one singular measured 
property must not be definitively assigned as solely responsible for any 
individual soil property or used as a sole indicator of soil health due 
to the complexity of soil interactions. Depending on the aspects of 
soils health that researchers aim to investigate, a number of specified 
measurements should be  taken with careful attention to avoid 
interpreting corelation as causation.
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