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HoloMoA: a holography and deep 
learning tool for the identification 
of antimicrobial mechanisms of 
action and the detection of novel 
MoA
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We propose an innovative technology to classify the Mechanism of Action (MoA) 
of antimicrobials and predict their novelty, called HoloMoA. Our rapid, robust, 
affordable and versatile tool is based on the combination of time-lapse Digital 
Inline Holographic Microscopy (DIHM) and Deep Learning (DL). In combination with 
hologram reconstruction. DIHM enables a label-free, time-resolved visualization 
of bacterial cell morphology and quantitative phase map to reveal phenotypic 
responses to antimicrobials, while DL techniques are powerful tools to extract 
discriminative features from image sequences and classify them. We assessed the 
performance of HoloMoA on Escherichia coli ATCC 25922 treated for up to 2 
hours with 22 antibiotics representing 5 conventional functional classes (i.e. Cell 
Wall synthesis inhibitors, Cell Membrane synthesis inhibitors, Protein synthesis 
inhibitors, DNA and RNA synthesis inhibitors). First, using reconstructed phase 
images as input to a Convolutional Recurrent Neural Network (CRNN), we detected 
the MoA of known antibiotics with 95% accuracy. Secondly, we showed how our 
CRNN model combined with a Siamese Neural Network architecture can be used 
for the novelty assessment of the MoA of candidate antibiotics. We successfully 
evaluated our novelty detector on a test set containing three unseen molecules — 
two belonging to the conventional functional classes and one molecule from an 
additional class (Folate synthesis inhibitors, herein represented by trimethoprim-
sulfamethoxazole). We demonstrated that the DIHM and DL combination provides 
a promising tool for determining the MoA of antimicrobial candidates using a 
large image database for known antimicrobials.
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Introduction

Antimicrobial resistance (AMR) was responsible for approximately 1.14 million directly 
attributable deaths in 2021 and was associated with approximately 4.7 million deaths the same 
year (GBD 2021 Antimicrobial Resistance Collaborators, 2024). The World Health 
Organization (WHO) ranked AMR as one of the top global public health threats and pointed 
out the lack of candidates in the antibiotics pipeline and limited access to conventional 
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antibiotics, especially in LMICs (World Health Organization, 2024a, 
2023). The WHO bacterial priority pathogens list ranks 15 families of 
antibiotic-resistant pathogens into three priority-level groups  – 
critical, high and medium (World Health Organization, 2024b, 2017). 
The increasing number of Gram-negative pathogens resistant to last-
resort antibiotics on this list underlines the need for novel 
antimicrobials. Novel antimicrobials should ideally not induce cross-
resistance, and/or belong to a new chemical class, have new target(s) 
and new mechanisms of action (MoA)(World Health Organization, 
2024a). Based on these criteria, WHO recently reported that, among 
the 13 new antibiotics that were approved since July 2017, only 3 
belonged to classes with unknown resistance mechanisms. The current 
R&D pipeline, although innovative, is considered insufficient to 
combat AMR (World Health Organization, 2024a).

The mechanisms of action underlying existing antibiotic activities 
include inhibition of DNA replication, RNA synthesis, protein 
synthesis, cell wall synthesis, membrane functions, and the production 
of molecules such as folate or ATP (Kapoor et al., 2017). Regarding 
new antimicrobial agents, one of the bottlenecks following phenotypic 
screenings is identifying the MoA. There is no single universal 
standard to characterize MoA and its determination can be complex 
and time-consuming. Complete characterization often involves a 
combination of several technologies (Schäfer and Wenzel, 2020), 
making it expensive and resource heavy. A fast, robust, inexpensive 
and versatile tool, capable of detecting MoA novelty or even the main 
target of antimicrobial candidates would be very useful to ease the 
process of antibiotic MoA determination and accelerate the 
antimicrobial discovery pipeline.

Traditional methods for early-stage MoA classification are labor-
intensive and costly. For example, macromolecular synthesis assays 
(MMS) are an ensemble of 5 assays which involve the incorporation 
of radiolabeled precursors into macromolecules of the different 
biosynthesis pathways – peptidoglycan (cell wall), DNA (replication), 
RNA (transcription), proteins (translation), fatty acids – to identify 
which pathway(s) is(are) inhibited (Cotsonas King and Wu, 2009). 
These assays suffer from low resolution, low accuracy, low throughput 
and show limitations for the identification of novel MoA (Nonejuie 
et al., 2013). There is a need for alternative assay/s that would be less 
expensive, safer (i.e., not requiring radiolabeled precursors), capable 
of processing not only antibiotics but also complex therapeutic 
solutions such as drug combinations, and capable of detecting 
novel MoA.

Recent methods use phenotypic assays that could be applied to 
library screening campaigns (Da Cunha et  al., 2021), including 
dynamic metabolome profiling using time-of-flight mass spectrometry 
(Zampieri et al., 2018), transcriptomic (O’Rourke et al., 2020) and 
proteomic (Bandow et al., 2003) profiling. Optical methods and in 
particular imaging methods based on various microscopies are also 
available, and the accessibility of instrumentation and protocols as 
well as access to single bacterial cell resolution contributes to a gain in 
speed and cost (Nonejuie et al., 2013; Zoffmann et al., 2019; Martin 
et al., 2020; Ouyang et al., 2022; Zahir et al., 2019). MoA determination 
is based on morphological changes induced by different functional 
classes of antibiotics on a sensitive strain of a targeted bacterial species 
(Cushnie et  al., 2016; Cylke et  al., 2022). Among these methods, 
bacterial cytological profiling (BCP) is based on fluorescence labeling 
of DNA and cell wall followed by morphological analysis of each label 
after a specific period of incubation, either using an “optical 

sectioning” microscope and z-stack deconvolution (Nonejuie et al., 
2013) or standard fluorescence images (Martin et al., 2020). A more 
recent implementation of label-based fluorescence imaging used 
non-cytotoxic labels to exploit the dynamic aspect of morphological 
changes and increase the resolution and accuracy of classification 
(Ouyang et  al., 2022). Salgado et  al. recently reviewed BCP 
implementations for various bacterial species and listed advantages 
and limitations of the technology (Salgado et al., 2025).

Label-free microscopy represents a further step forward in 
terms of simplification, cost reduction, safety and ecological 
considerations. No label means that live bacterial cells can 
be  monitored during incubation with the antimicrobial agent, 
with the guarantee that nothing but the antimicrobial agent will 
modify the behavior of the cell. Phase contrast microscopy, for 
example, has been proposed for high-throughput, time-resolved, 
label-free screening of bacterial morphology to reveal phenotypic 
responses to antibiotics (Zahir et al., 2019). In the present work, 
we  propose to evaluate an alternative label-free, robust and 
versatile technology for classifying the MoA of an antibacterial 
and detecting its novelty. The proposed technology, named 
HoloMoA, combines time-lapse digital inline holographic 
microscopy (DIHM) and deep learning (DL) analyses. DIHM is 
the simplest implementation of digital holographic microscopy 
(Popescu, 2011); it enables the revealing of absorption and phase 
modulations that light undergoes when probing the quasi-
transparent bacteria. At 100 × magnification, the phase image of 
a bacterium translates to “thickness × refractive index” 
heterogeneity within the bacterial cell, without any fixation or 
staining. Based on the acquisition of out-of-focus images (i.e., 
holograms), DIHM does not rely on precise focusing mechanics 
(contrary to conventional microscopies) but rather on robust 
digital re-focalization. Here, we  adapted and evolved an 
experimental approach, including devices and prototype, that had 
been set up during a previous diagnostic DIHM study, to perform 
antibiotic susceptibility testing of clinical E. coli isolates (Degoût-
Charmette et al., 2025; Douet and Josso, 2017; Mahé et al., 2022).

Due to the abundance and high complexity of bacterial time-
lapse images, their processing as well as the identification of the 
antimicrobial MoA were integrated within an automated pipeline. 
Increasingly sophisticated statistical methods have been developed 
to perform such classification. Recent breakthroughs in Machine 
Learning (ML) and Deep Learning (DL) showed great potential due 
to their ability to handle large image datasets and extract fine 
phenotypic information, sometimes not visible to the human eye, 
to predict a biological outcome of interest. Researchers have 
proposed a variety of approaches for the automated analysis of high 
content images to predict the MoA of drugs (Krentzel et al., 2023). 
Basic pipelines rely on extraction of morphological features (such 
as cell area, mean intensity, roughness…) from the images. This 
requires prior knowledge from the analyst and the use of image 
analysis software. The features can be  combined to perform 
dimensionality reduction and distance-based clustering to detect 
MoA groups. Nonejuie et al. applied Principal Component Analysis 
on 14 features derived from ImageJ software followed by Euclidean 
distance clustering to highlight 5 MoA groups (Nonejuie et  al., 
2013). Martin et al. similarly computed 14 morphological features 
then applied MANOVA and single-linkage clustering to assess the 
novelty of the MoA of a drug candidate compared to 37 known 
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antibiotics (Martin et al., 2020). Meanwhile, Ouyang et al. (2022) 
used features extracted from Fiji software (Schindelin et al., 2012) 
and set up a rule-based algorithm to assign antibiotics into 5 MoA 
classes. A limitation of the aforementioned basic pipelines is the 
need for prior expertise to compute the features, the presence of 
uninformative features susceptible to bring noise, and the inability 
to capture non-linear dependencies among the features. To address 
the latter aspect, some researchers applied a supervised ML 
classifier on top of pre-computed features to predict the MoA class 
of a drug. Zoffman et al. trained a Random Forest (RF) on over 100 
features to classify 20 antibiotics among 6 MoA classes (Zoffmann 
et al., 2019). Likewise, Zahir et al. (2019) employed Soft Independent 
Modeling of Class Analogy (SIMCA) to predict 4 morphological 
groups while Simm et  al. (2018) computed 842 features with 
CellProfiler (Carpenter et  al., 2006) and trained different ML 
models (Bayesian Matrix Factorization, Random Forest, Deep 
Neural Network) to predict bioactivity of new compounds.

To overcome the drawback of depending on pre-computed 
features, end-to-end DL methods have been developed. They have 
shown great promise due to their ability to extract autonomously a 
huge number of discriminative features from unstructured data such 
as images and combine them to perform classification. 2-dimensional 
Convolutional Neural Networks (CNN2D) have been the most 
successful architecture to classify images (LeCun et al., 2015). CNN2D 
contain convolutional layers which learn automatically and 
adaptatively spatial features of the data at different scales, in a robust 
manner. CNN2D and their extensions have shown good performance 
for MoA prediction based on eukaryotic cell data. For instance, 
Kensert et al. (2019) used deep CNN2D pretrained on large, generic 
image datasets and fine-tuned them on a dataset of breast cancer cells 
exposed to 38 chemical compounds corresponding to 12 MoA and 
achieved high classification performance. Furthermore, Godinez et al. 
(2017) developed a multiscale CNN (M-CNN) that can analyze an 
image at 7 different resolutions in parallel and achieved cell 
morphology classification performance superior to existing deep 
CNN2D models. These methods are efficient to classify known MoAs 
but are either not designed to detect novel MoAs or deploy only a 
basic extension of their algorithm to address this question. A common 
approach is to measure distances in the feature space with respect to 
known classes. Still, the feature space may lack generalization to 
unknown data, especially if it is complex and high-dimensional 
(Chalapathy and Chawla, 2019). More specific approaches can be used 
to address novelty detection, such as One Class Support Vector 
Machines (Schölkopf et al., 2001), Auto-Encoders (Hasan et al., 2016) 
or Siamese Neural Networks (Zhou et al., 2021), but to our knowledge, 
they have not been used for drug screening yet.

In the present work, we propose a fully automated DL pipeline 
using CNN architecture for MoA classification, taking dynamic 
holographic data of E. coli exposed to bactericidal and bacteriostatic 
antibiotics as input. Moreover, our pipeline can be adapted for MoA 
novelty assessment of a drug candidate (i.e., novelty detector). 
We believe that this approach could be adapted to determine the MoA 
of antimicrobials against other pathogens. Our approaches introduce 
two main original aspects compared to state-of-the-art. First, 
we  included a longitudinal component in our DL architecture as 
we tracked the structural and morphological changes of the bacteria 
over time. To consider this temporal dimension, we developed two 
extensions of the standard CNN architecture: 3-dimensional CNN 

(CNN3D) (Mahé et al., 2022) and Recurrent CNN (RCNN) (Barros 
et al., 2021). Second, we used specific DL architecture to provide a 
robust, quantitative assessment of the novelty of an antibiotic 
MoA. Specifically, we integrated CNN3D and RCNN into Siamese 
Neural networks (SNN), resulting in sCNN3D and sCRNN, trained 
to predict whether two antibiotics share the same MoA.

Results

Study design

We used E. coli ATCC 25922 which is recommended by the 
Clinical and Laboratory Standards Institute (CLSI) as a quality control 
strain for antimicrobial susceptibility tests (Clinical and Laboratory 
Standards Institute, 2024b). The holographic image dataset was built 
with 22 antibiotics split across 11 chemical subclasses and five 
functional classes constituting 5 “conventional” MoA: inhibition of 
DNA replication, inhibition of RNA synthesis, inhibition of protein 
synthesis, inhibition of cell wall biosynthesis, inhibition of membrane 
functions. Trimethoprim-sulfamethoxazole is a combination of folate 
synthesis inhibitors which was used herein to mimic an antibiotic 
candidate featuring a “novel” MoA to test the novelty detector; it 
represents a 6th MoA class. The minimum inhibitory concentrations 
(MIC) obtained for all these molecules are listed in 
Supplementary Table S1. We  generated the DIHM image dataset 
before testing the MoA classification tool and novelty detector. A 
single concentration of each compound was used to construct the final 
image dataset. This concentration was set at 1 × MIC, except for 
kanamycin, tobramycin, tetracycline and lymecycline, which started 
showing an effect at 2 × MIC, and trimethoprim-sulfamethoxazole at 
8 × MIC (see Discussion). An untreated E. coli control was 
systematically tested for each new bacterial culture. Bacterial cultures 
and antibiotic exposures took place in Mueller Hinton broth (MHB), 
except for colistin which required Cation-Adjusted MHB (CAMHB). 
Each experiment was performed twice, independently. Molecules as 
well as their corresponding class, tested concentration and medium 
used are listed in Table 1. Each step of the protocol is described in 
detail in the Materials and Methods section.

Phase image dataset generation

Figure  1 represents the overall analysis pipeline for the phase 
image database generation. In short, after an in-broth preculture 
aimed at bringing bacteria into a metabolically active state and 
allowing some replication, bacterial cells were immobilized via an 
electrostatic capture and placed in the medium and antibiotics (or no 
antibiotics in the case of untreated controls) in a transparent glass 
chamber suitable for time-lapse DIHM (Figure  1A; 
Supplementary Figure S1). Holograms were acquired every 3 min for 
2 h (Figure 1B). Holograms are out-of-focus intensity images featuring 
interference patterns coding for phase information about the 
individual diffracting bacteria. Phase images were retrieved following 
a reconstruction of the acquired holograms, involving an optical-wave 
propagation algorithm (in the complex plane) based on the theory of 
diffraction of light. Each hologram was reconstructed to obtain 
in-focus phase images of each field of view and time-point (Figure 1C; 
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Supplementary Figure S2). We localized the individual bacteria in 
each field of view and generated dynamic patches (simply referred to 
as “patches” in the rest of the manuscript), each one being a series of 
temporal images of a single bacterium (Figure 1D).

After having applied this pipeline to the molecules listed in 
Table  1, we  obtained a dataset of single bacterial patches. These 
patches were preprocessed to remove the ones corresponding to a 
bacterium fully or partially detached from the coverslip (e.g., when a 

TABLE 1  List of antibiotics, corresponding MoA, medium and concentration (as a factor of the MIC) used during incubations.

MoA (Functional 
class)

Sub_MoA Chemical class Chemical 
Subclass

Molecule Concentration and 
medium

Cell wall synthesis

Bind to penicillin 

binding proteins and 

impair cell wall 

synthesis and integrity

β-lactam

Penicillin

Amoxicillin

Ampicillin

Piperacillin

Mecillinam

1 × MIC-MHB

1 × MIC-MHB

1 × MIC-MHB

1 × MIC-MHB

Carbapenem
Imipenem

Meropenema

1 × MIC-MHB

1 × MIC-MHB

Cephalosporin
Cefazolin

Ceftazidime

1 × MIC-MHB

1 × MIC-MHB

Inhibit MurA
Organic Phosphonic 

Acid
– Fosfomycin 1 × MIC-MHB

DNA synthesis
Inhibit DNA gyrase / 

topoisomerase IV
Quinolone Fluoroquinolone

Ciprofloxacina

Levofloxacina

Moxifloxacin

1 × MIC-MHB

1 × MIC-MHB

1 × MIC-MHB

RNA synthesis Inhibit RNA synthesis Ansamycin Rifamycin
Rifampicin

Rifapentin

1 × MIC-MHB

1 × MIC-MHB

Protein synthesis

Bind to 30S rRNA and 

inhibit protein synthesis

Aminoglycoside –
Kanamycin

Tobramycin

2 × MIC-MHB

2 × MIC-MHB

Tetracycline –
Tetracycline

Lymecycline

2 × MIC-MHB

2 × MIC-MHB

Bind to 50S rRNA and 

inhibit protein synthesis
Amphenicol –

Chloramphenicol

Thiamphenicol

1 × MIC-MHB

1 × MIC-MHB

Inhibit isoleucyl tRNA 

synthetase
Pseudomonic acid – Mupirocin 1 × MIC-MHB

Cell membrane Targets LPS Polypeptide Polymyxin Colistin 1 × MIC-CAMHB

Folate synthesis 

inhibition

Inhibit dihydrofolate 

reductase and 

dihydropteroate 

synthase

Anisole-Sulfonamide –
Trimethoprim-

Sulfamethoxazoleb
8 × MIC-MHB

aFor these molecules, the MIC-MHB may have been over-estimated (See Supplementary Table S1). bTrimethoprim-Sulfamethoxazole were used as a mixture in the proportions 1:19 (Clinical 
and Laboratory Standards Institute, 2024b).

FIGURE 1

Pipeline for phase image database generation. (A) Time-lapse DIHM acquisition for up to 4 conditions (e.g., untreated and treated with 1 molecule at 3 
different concentrations). (B) Recorded time-lapse holograms for one field of view. (C) Reconstructed time-lapse phase maps for the same field of 
view. (D) Dynamic phase map patches resulting from time frame registration and segmentation of bacteria. Microscope objective created with 
BioRender.com.
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bacterium grew as long filaments), or to incomplete twin image 
artifact removal during the hologram reconstruction (see Materials 
and Methods), resulting in unusable images. The preprocessed final 
dataset was composed of 1818 single bacteria patches, each of them 
being constituted of 40 timeframes of 256 × 256 pixels vignettes. The 
patches split across the 5 conventional MoA classes, the novel MoA 
class, and the “untreated” bacteria class. The training and validation 
sets for the classification and novelty detection models contained 
patches from antibiotics of the conventional classes (except for 2 
withheld molecules) and the untreated class. The novelty detection test 
set consisted of patches from the novel class and the 2 withheld 
conventional-class molecules (Figure 2), in order to provide both 
positive and negative controls. Examples of patches for each studied 
molecule are available in the supplementary material 
(Supplementary Figure S3). Some of the observed phenotypes over 2 h 
incubation are illustrated in Figure 3. Visually, the division phenotype 
of untreated bacteria (Figure  3A) can be  distinguished from the 
absence of division in treated bacteria (Figures 3B–F). Among the 
treated bacteria, more specific phenotypes emerge depending on the 
class of drug. Molecules of the cell wall class induce strong 
morphological changes such as elongation, filamentation, swelling, 
bulging and/or lysis (i.e., beta-lactams), depending on the specific 
molecule and drug concentration (Supplementary Figure S3). These 
morphological changes correlated often with an increase of the phase 
(i.e., redder colors on the phase images, Figure 3B). Molecules of the 
DNA class tended to induce an elongation phenotype and increased 
phase (Figure 3C). Molecules of RNA, cell membrane and protein 

classes caused similar phenotypes, characterized by a fast freeze of the 
bacterial morphology; the phase evolution is not easily interpretable 
by eye for these 3 classes (Figures 3D–F).

MoA classification

We implemented DL classification models to predict the MoA 
associated with each patch among the 5 conventional classes and the 
untreated class. We considered 2 main models, described in Figure 4: 
CNN3D and CRNN. In CNN3D (Figure 4A), the time dimension was 
analyzed in the same manner as the X and Y space dimensions, using 
3D convolutional layers, though with different kernel sizes between 
time and space. 3D convolutional layers were alternated with pooling 
layers; classification was achieved through final fully connected dense 
layers. In CRNN (Figure 4B), the time dimension was treated with a 
dedicated recurrent layer (Long-Short Term Memory – LSTM, or 
Gated Recurrent Units - GRU). This layer was incorporated on top of 
the time-distributed 2D convolutional and pooling layers, followed by 
the addition of fully connected layers.

We used a fast genetic optimization algorithm to optimize the 
value of hyperparameters such as number of layers, number of units 
in each layer or kernel sizes (Deb et al., 2002). We computed the final 
performance of CNN3D and CRNN models using 10-fold stratified 
cross-validation. We focused on accuracy (i.e., overall percentage of 
correct predictions) and F1 score (i.e., the harmonic mean of 
precision and recall, used to study performance in the case of 

FIGURE 2

Number of single-bacterium dynamic patches per antibiotic (post preprocessing and cleaning) belonging to the 5 “conventional” MoA classes of this 
study (i.e., DNA, RNA, Protein, Cell Wall, Membrane) and to the “novel” MoA class (i.e., Folate synthesis inhibitor), as well as to the “untreated” control 
class.
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unbalanced classes). The best model for patch classification was 
CNN3D, for which we obtained an accuracy of 78%, versus 73% for 
CRNN, and a F1 score of 77% for CNN3D, versus 70% for 
CRNN. Both models’ confusion matrix and classification report are 
shown in Figure 5 and Supplementary Figure S4, respectively. The 
best performance was achieved for the cell wall class, with F1-scores 
of 85%, probably because these molecules induce very specific 
filamentation or bulging phenotypes (Figure  3A). The main 
misclassifications were observed between RNA and protein classes, 
for which the size and shape of the bacteria seemed frozen 
(Figures 3D,F).

In a second step, we studied the model performance at sample and 
antibiotic levels by aggregating individual patch predictions. Indeed, 
in a real-life application, the technology would be applied to assess the 
MoA from a sample or a collection of samples using the same 
antibiotic. Hence, to predict the MoA from one sample, we performed 
majority voting among all its patch predictions. To predict the MoA 
of one antibiotic, majority voting was applied to all patch predictions 
from all replicates associated to the considered antibiotic. This process 
resulted in a prediction of the correct MoA for 90% of the samples and 
86% of the antibiotics for the CNN3D model, while the MoA of 95% 
of the samples and antibiotics were correctly predicted for the CRNN 
model (Table 2). Full classification results per sample and antibiotic 
are displayed for both models in Supplementary Table S2. Overall, 
model performance was greatly enhanced compared to patch-level, 
which highlights the discriminative power of our pipeline at the slide 

and sample levels despite inherent experimental and biological 
variability at single cell level.

The lone misclassification of CRNN is observed for piperacillin 
which was classified as DNA while belonging to the cell wall class. 
CNN3D confused 3 molecules  – moxifloxacin, piperacillin, 
ceftazidime – with the untreated class. As shown in Figure 2, only a 
small number of patches represented these molecules in the dataset, 
because their important filamentation phenotype resulted in the 
detachment of many bacteria from the coverslip, which made the 
hologram reconstruction and segmentation too challenging. This led 
us to include patches with rather weak filamentation effects, 
resembling bacteria from the DNA samples or about to divide (i.e., 
similar to the untreated bacteria). This made it more difficult for the 
model to learn how to classify them.

Interestingly, CRNN showed better performance at the macro 
level while being less accurate at the patch level, compared to 
CNN3D. This comparison at the macro level should not be considered 
as very significant: sample-level and antibiotic-level accuracy 
(resulting from an aggregation of patch-level predictions) are not 
robust metrics, given the limited number of antibiotics (i.e., 22) and 
samples available. Thus, two molecules (out of three) are misclassified 
by CNN3D because the number of correctly classified patches equals 
the number of patches that are confused with the untreated class. A 
slight improvement of the model, for example by adding more patches 
for these 2 molecules in the dataset would result in equally good 
macro level accuracy (i.e., ~95%) for both CNN3D and CRNN models.

FIGURE 3

Examples of dynamic phase patches and phenotypes observed over 120 min of incubation without and with antibiotic treatments. (A) Division 
(untreated control). (B) Elongation and bulging with strong phase increase. (C) Elongation and global phase increase. (D–F) Frozen morphology and 
possibly evolving phase change. While images were acquired for 120 min every 3 min, here we show one image every 15 min. The phase scale (i.e., the 
colorbar) ranges from 0 to 0.5.
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MoA novelty-detection

This work demonstrated the ability of our technology to 
discriminate known MoA classes using a standard supervised 
classification scheme. Still, the most needed application for drug 
discovery is the capacity to predict the novelty of the MoA of an 
antibiotic candidate compared to a set of known MoA classes. Thus, 
we  proposed a novelty detection framework based on a Siamese 
Neural Network (SNN). This model was composed of 2 CNN3D 
(sCNN3D) or 2 CRNN (sCRNN) with shared weights, trained in 
parallel and combined with a differencing layer to predict whether 2 
patches correspond to similar (y = 0) or different (y = 1) MoA classes 
(Figure 6). During the inference phase, patches from an unknown 
antibiotic candidate can be compared to the ones from known classes 
using the trained network. If the candidate exhibits a novel MoA, the 
network will predict most pairs as different. Our novelty assessment 
framework is illustrated in Supplementary Figure S5.

We designed an experiment to explore the potential of this 
approach. We  defined as “known” dataset the patches from the 5 
conventional MoA classes (except imipenem and tetracycline), and 
the untreated class. We  considered as “unknown” imipenem and 
tetracycline, as well as trimethoprim-sulfamethoxazole (“trim-sulf ”) 
which belongs to the class of folate biosynthesis inhibitors. Given that 

trim-sulf MoA class is different from the conventional MoAs in our 
training dataset, we expected trim-sulf to be predicted as having a 
novel MoA by our pipeline, while imipenem and tetracycline were 
expected to be predicted as having a known MoA. We trained our 
SNN on 70% of the patches from the known dataset. We kept 10% of 
patches in a validation set to compute the intrinsic SNN performance. 
The remaining 20% were included in a test set, along with patches 
from the unknown candidates that would be used in the inference 
phase to compute the novelty scores. We  generated all pairwise 
combinations of patches from the training and validation sets to train 
and evaluate the SNN. We obtained 850,860 training pairs and 10,440 
validation pairs.

We trained both sCNN3D and sCRNN models to compare their 
performances. Global performances were similar, but we decided to 
keep sCRNN for the rest of the experiment as it offered better 
generalization for the small classes and its training time was twice as 
fast compared to CNN3D. sCRNN achieved an accuracy of 86% and 
an F1-score of 76%. Full performance metrics and confusion matrix 
are shown in Supplementary Figure S6. The model showed good 
performance at detecting pairs of patches with different MoAs, as the 
recall for the class y = 0 was 92%. On the other hand, the model 
frequently misclassified pairs with same MoA, as the recall for the 
class y = 1 was 51%. This result is understandable given the high 

FIGURE 4

Compared CNN architectures for dynamic patch MoA prediction. (A) 3-dimensional Convolutional Neural Network (CNN3D); (B) Convolutional 
Recurrent Neural Network (CRNN).
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biological and experimental variability we  observed at the 
bacteria level.

Then, during the inference phase, we compared all patches from 
the test set to the ones in the known set. We  aggregated sCRNN 
predictions for each known class and unknown candidates to compute 
novelty scores, shown in Supplementary Figure S7. The novelty scores 
range between 0 and 1, 0 meaning that the test candidate exhibits a 
MoA very similar to the training class, 1 meaning that it is very 
different. We defined a novelty threshold for each known class that 
corresponds to the novelty score of the class when comparing its 
training and test data. The novelty threshold is expected to assume a 

mid-to-low value, depending on the intrinsic variability of the class 
and the ability of the model to generalize it. If the novelty scores of an 
unknown candidate are superior, with a significant confidence margin, 
to the novelty thresholds of all known classes, the unknown class can 
be considered as novel. We observed that our experiment validated 
the proposed framework (Figure  7): trim-sulf MoA (i.e., folate 
synthesis inhibitor) was predicted as novel since it was assigned 
novelty scores significantly higher than the corresponding novelty 
thresholds for all other MoAs. On the other hand, the two withheld 
molecules from the conventional classes, imipenem and tetracycline, 
exhibited small novelty scores with respect to their corresponding 
classes only, i.e., cell wall and protein, respectively.

Discussion

Herein we have developed a fast, safe and label-free technology to 
classify antibiotic MoA among 5 functional classes and detect the 
MoA novelty of an additional antibiotic class using E. coli ATCC 
25922. This technology combines DIHM and DL. It has proved 
promising for the identification of antibiotics with known MoA (i.e., 
whose MoA is in the database) and for detecting the MoA novelty of 
new antimicrobial candidates. Importantly, it considers the effect of 
time on antibiotic action (time-lapse data acquisition). In a context 
where the determination of a drug MoA remains difficult but 
important to facilitate preclinical progression, the proposed 
technology would be more advantageous than the classically used 
MMS technique.

Time-lapse DIHM reveals early 
morphological and phase changes during 
antibiotic treatment

Time lapse image acquisition allows a focus on rapid 
antimicrobial effects on the morphology and phase of single 
bacterial cells, enabling users to elucidate the antimicrobial MoA in 
less than 2 h. Changes of bacterial area or mean-phase-intensity can 
be seen as early as 30 min, notably for the DNA synthesis inhibitors 
(Supplementary Figures S3, S8, S9). Bacterial morphological 
changes following antimicrobial treatment (Cylke et al., 2022) have 
already been observed in phase contrast (Zahir et  al., 2019), 
electron (Cushnie et al., 2016) and fluorescence (Nonejuie et al., 
2013; Salgado et  al., 2025) microscopies. The resolution and 
contrast obtained with the simple and cost-effective DIHM 
configuration combined with appropriate hologram reconstruction 
is similar to the more expensive and bulkier optical sectioning 
microscopy involved for instance in the original BCP technology 
(Nonejuie et al., 2013). Both techniques show changes in the shape 
of the cells. The information retrieved specifically by holographic 
microscopy is quantitative phase and its 2D heterogeneity within 
the bacterium area, while fluorescence images reveal stain-specific 
parts of the bacterium, typically its cell membrane and DNA. We can 
hypothesize that DL models base their classification on both 
morphology and phase information (Supplementary Figure S10). It 
is interesting to note similarities between phase nodes observed 
with DIHM and DNA staining observed via fluorescence 

FIGURE 5

Confusion matrix associated to the Deep-learning-based 
classification for the untreated class and for 5 conventional MoA 
classes: Cell Wall synthesis inhibitors, Cell Membrane function 
inhibitors, Protein synthesis inhibitors, DNA synthesis inhibitors and 
RNA synthesis inhibitors. (A) Patch-level classification (CNN3D 
model) (B) Patch-level classification (CRNN model).

TABLE 2  Classification accuracy at patch, sample and antibiotic levels for 
different Deep Learning models.

Accuracy (%)

CNN3D CRNN

Patch-level 78 73

Sample-level 90 95

Antibiotic-level 86 95
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microscopy, as illustrated in Supplementary Figure S11. When 
compared to phase contrast microscopy, DIHM enables the 
visualization of high phase nodes before the actual outer 
morphology changes, for instance in the beta-lactam-induced 
bulging phenotype as illustrated in Supplementary Figure S12. 
Moreover, DIHM does not require precision focusing mechanics as 
holograms are deliberately acquired out of focus; it is also 
insensitive to autofluorescence of the sample unlike 
fluorescence microscopies.

The imaging technology could be  coupled with microfluidic 
approaches for parallelizing many more conditions, for automated 
handling of antibiotic dilutions and delivery to the incubation 
chambers, and to start imaging from t0 of contact of the bacteria with 
the tested molecules (to avoid the currently blind first 15 min). 
Moreover, the electrostatic capture of the bacteria aiming at their 
immobilization on the glass substrate to facilitate time-lapse imaging 
could be replaced by a physical constraint in capillaries on specific 
microfluidic devices such as a “mother machines” (Allard et al., 2022), 
which would prevent bacteria from moving out of the plane when 
growing or filamenting; this would help to increase the number of 
usable reconstructed phase images. In addition, DIHM system can 
be cost-effectively duplicated (See the list of elements in the Materials 
and Methods section and Supplementary Figure S1, with motorized 
stages and the objective as the more costly items) and would be easily 
adapted to high throughput screening systems, in upright or inverted 
configurations. Moreover, the required quantity of the tested molecule 
is minimal (i.e., 25 μL of solution during the treatment phase), which 

is of importance at the early drug development steps, when available 
quantities of compounds can be limited.

DL model performance

Our final DL model detected the MoA of known antibiotics with 
high performance (i.e., 95% macro level accuracy). Our fully 
automated analysis pipeline treats single-cell images containing both 
phase and time information (i.e., 256 pix × 256 pix × 40 time-points 
per single-cell). The information potential of such high 
dimensionality data would require more examples to be maximized. 
The risk with a too-small dataset is the lack of generalization. Indeed, 
the weak signals are more likely to be ignored due to the lack of 
examples. It also constrains the models to be carefully tuned to avoid 
overfitting. In the classification work presented herein, the 
performance is limited for the Cell Membrane class represented only 
by colistin, as well as for some molecules of the Cell Wall class (i.e., 
piperacillin and ceftazidime) that are represented by a low number 
of bacterial cells compared to the other molecules. For these two 
beta-lactams, the poor classification performance is worsened by the 
fact that the patches passing the data curation criteria are typically 
the ones showing small filamentation phenotype (by opposition to 
very long filamentation), therefore resembling the division 
phenotype of the untreated class — indeed, filamentous cells 
detaching partially or fully from the substrate over the course of the 
incubation are eliminated during the automated cleaning of the 

FIGURE 6

Siamese Convolutional Recurrent Neural Network (sCRNN) architecture for dynamic patches MoA similarity prediction. We call y the network 
prediction.
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image dataset. Moreover, the significant cell-to-cell variability 
cannot be fully avoided, and AI tools may be even more sensitive to 
it when dealing with time-lapse data. Increasing the size and 
representativity of the image dataset would improve the 
classification performance.

The highest misclassification rate at single bacterium level was 
observed between RNA and protein synthesis inhibitors (Figure 5), 
both showing almost no morphological changes after treatment 
(Figure 3; Supplementary Figure S3). This may be explained by the 
fact that protein synthesis, downstream of RNA synthesis, could 

FIGURE 7

Novelty scores for different test antibiotics with respect to known classes. If all scores are superior to novelty thresholds, the test antibiotic is detected 
as novel. (A) Test antibiotic: imipenem (B) Test antibiotic: tetracycline (C) Test antibiotic: trim-sulf.

https://doi.org/10.3389/fmicb.2025.1640252
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Sedaghat et al.� 10.3389/fmicb.2025.1640252

Frontiers in Microbiology 11 frontiersin.org

be blocked as a side effect of RNA synthesis inhibition, which could 
lead to closely related holographic phenotypes. It is possible the risk 
of misclassification rate could be reduced by using different antibiotic 
concentrations or treatment times. Indeed, previous MMS assays 
testing several antibiotics have shown that these parameters have an 
impact on the detection of on-target effects, but also of secondary 
effects or off-target effects (Cunningham et al., 2013). Nevertheless, 
we were able to discriminate both of these MoAs at the molecule level 
(Tables 2; Supplementary Table S2). Visual inspection of examples of 
patches (Supplementary Figure S3) suggests that subtle differences 
between molecules from the same class can be distinguished. This is 
visible in the cell wall class where, for instance, imipenem and 
meropenem (i.e., carbapenems) generated swelling of the bacteria 
while ceftazidime (i.e., a cephalosporin) induced filamentation 
(Supplementary Figure S3), even though both are beta-lactams. This 
may be explained by the different penicillin binding proteins targeted 
by each beta-lactam, as reviewed previously (Cylke et  al., 2022). 
These observations show the power of holographic microscopy and 
suggest that the proposed automated method to detect MoA novelty 
could also be used to detect even more subtle differences between 
antimicrobial candidates.

Focus on the novelty detection feature

One of the main steps forward of HoloMoA compared to the 
state-of-the-art lies in the proposal, for the first time to our knowledge, 
of an automated DL-based pipeline for MoA novelty detection, which 
could ease the detection of new valuable antimicrobial candidates. 
We  evaluated our novelty detector on a test set containing three 
unseen molecules (i.e., absent from the training dataset): imipenem 
and tetracycline belonging to the conventional functional classes 
(represented by other molecules in the training set) and serving as 
negative controls regarding novelty detection, and trimethoprim-
sulfamethoxazole representing a totally unseen class and serving as 
positive control regarding novelty detection. Our novelty detector 
successfully identified the conventional MoAs of imipenem and 
tetracycline while detecting the “novelty” of trimethoprim-
sulfamethoxazole. Our approach for MoA-novelty detection requires 
relatively high computing resources for siamese neural network 
training and inference. This is due to the large combinatory arising 
from the building of pairs to feed the network, associated with the 
high intrinsic dimensionality of our data. This computing cost 
prevents us from further optimizing the hyper-parameters of the 
networks. Some solutions can be explored to mitigate this computing 
cost, such as applying class-specific subsampling rates or applying a 
time–space subsampling of patches themselves. Otherwise, lighter DL 
architectures could be explored for novelty detection such as the use 
of convolutional auto-encoders (Hasan et  al., 2016); they would 
reconstruct data from novel antibiotic candidates with a higher loss 
than the data from known antibiotics on which the auto-encoder 
would have been trained. Moreover, we observed that the MoA class 
with the lowest statistics (i.e., cell membrane) gets the highest novelty 
threshold (Figures  2, 7), due to the lack of generalization of the 
siamese network. We  expect that increasing the size and 
representativity of the image dataset will improve the reliability of our 
AI tools.

The use of a temporal dimension

We made the choice in our experimental design to include a 
longitudinal dimension in the data to capture dynamic patterns over 
time. Though our approach raises challenges, such as the high 
computational cost of the model training and the need of large 
number of examples to leverage the high complexity of the data, 
we verified that the inclusion of 40 time points offers better MoA 
classification performance compared to using fewer time points, or 
only an end point. Indeed, we reoptimized and retrained classification 
models using 5 time points (every 30 min) and one end point (after 
1 h) and the accuracy decreased by 8 and 23%, respectively, at the 
patch level (Supplementary Figures S13, S14). Performance was also 
worse at the sample and antibiotic levels (Supplementary Table S4) 
when decreasing the number of time points. Hence, time dimension 
can be an asset for MoA characterization studies if treated with an 
appropriate algorithm, though the number of time points should 
be selected carefully to balance complexity and accuracy.

Choice of concentration

Originally, it was intended to use 1 × MIC concentration of 
antibiotics to allow comparison with broth microdilution 
antimicrobial susceptibility testing. However, this was not possible in 
all cases in the 2 h-long HoloMoA format. We  based our choice 
primarily on visual inspection of the time-lapse images, identifying 
the concentration at which the phenotypic response clearly diverged 
from the untreated samples. To increase throughput and reduce bias, 
it would be desirable to automate this step in the future. For example, 
one could compute novelty scores for each concentration of an 
antibiotic with respect to an untreated class and select the lowest 
concentration displaying a significant score. As an illustration, 
we applied the novelty detector (see description in 2.4) to trim-sulf 
used at 0, 1, 2, 4 and 8 × MIC (Supplementary Figure S15). 
We observed that all concentrations below 8 × MIC were assigned a 
novelty score with respect to the untreated class similar to the novelty 
threshold of this class, whereas the 8 × MIC sample got a 0.99 novelty 
score. This result validates the choice of 8 × MIC as the selected 
concentration for our trim-sulf experiment.

Interpretability

One limitation of our study lies in the interpretability of the 
deep learning models used for classification and novelty detection. 
For example, our models showed good ability to differentiate cell 
membrane class from RNA and protein classes, while they present 
similar visible phenotype (ie freezing of the bacteria), but it 
remains difficult to determine which specific features the models 
relied on for such discrimination. The internal decision-making 
process of our models is difficult to interpret due to their intrinsic 
architecture, involving a large number of parameters and 
hierarchical feature representations. Although interpretability 
techniques such as saliency maps can offer insights for models such 
as CNN2D, their extension to CNN3D or recurrent networks 
remains less straightforward, computationally intensive and is an 
active area of research. Future work may focus on integrating 
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explainability methods tailored to these architectures to better 
understand the biological or morphological features that 
differentiate the classes.

Summary on improvements and 
perspective

Among technological improvements foreseen, we will explore 
improved immobilization (in the plane) and increased throughput to 
increase the statistics of image data feeding the AI. We will also test 
the simplification of the image analysis pipeline, optimizing the 
number of time-points, full-field images rather than single-bacteria 
patches, and even go much further and not reconstruct at all the 
holograms (i.e., use them as is). While bacterial synchronization is not 
trivial, reinforcing the bacterial preculture step with successive 
in-broth cultures (Cutler and Evans, 1966) could reduce the cell-to-
cell heterogeneity. Regarding the biological model, the next step would 
be to increase the number of molecules in the dataset to reinforce the 
demonstration by feeding the tool with more phenotype examples, 
more variability, more off or dual-target cases, etc. The novelty 
detector should also be  tested on novel antimicrobial candidate 
molecules. In the longer term, the technology could be implemented 
for other pathogens including the ESKAPE pathogens, but also fungi 
and parasites. Finally, vibrational spectroscopy such as Raman 
spectroscopy is an appealing label-free modality to use in combination 
with DIHM. Indeed, Raman micro-spectroscopy would provide the 
complex chemical fingerprint of the treated bacteria (Athamneh et al., 
2014), which would complement the morphological and phase 
information rendered by the DIHM modality and help 
MoA prediction.

To conclude, thanks to a combination of DIHM and DL methods, 
HoloMoA demonstrated promising performance for antimicrobial 
MoA classification and novelty detection, which remain important but 
challenging requirements during antimicrobial discovery and 
development. We believe that this tool can support antimicrobial drug 
developers and, thus, contribute to improving the antimicrobial 
pipeline and tackle the ongoing AMR pandemic.

Materials and methods

Strains, media, and antibiotics

E. coli ATCC 25922 was purchased from LGC. Antibiotic powders 
were dissolved in the appropriate solvent according to manufacturers’ 
instructions and the resulting stocks were aliquoted and stored at 
−20°C for a maximum of 6 months. Each aliquot was used only once. 
MIC were determined following CLSI procedures for broth 
microdilution antimicrobial susceptibility testing (Clinical and 
Laboratory Standards Institute, 2024a). Both MHB (70,192, Sigma) 
and CAMHB (212,322, BD) were used: MIC values obtained in 
CAMHB were compared to the CLSI performance standards (Clinical 
and Laboratory Standards Institute, 2024b) to validate the antibiotic 
stock solutions. MIC values obtained in MHB were used to design 
experiments for holographic microscopy analyses, except for colistin 
which was handled in CAMHB only. The antibiotic MICs are listed in 
Supplementary Table S1.

Preparation of the bacteria for holographic microscopy analyses was 
carried out as follows. Bacteria from glycerol stocks were thawed and 
sub-cultured on Columbia agar with 5% sheep blood (COS) (43,041, 
bioMérieux) and incubated overnight at 37°C. The obtained plate was 
kept at 4°C for a maximum of 3 weeks. Before any further experiment, 
a single isolated colony was streaked on a new COS plate and 
incubated overnight at 37°C. The next day, 10 mL MHB or CAMHB 
were inoculated with isolated colonies to the 0.5 Mc Farland Standard 
(McF) (Densimat, bioMérieux) and incubated at 37°C, with shaking 
at 250 rpm for 2 h. Post liquid preculture, 2 × 1 mL were centrifuged 
for 5 min at 2000 x g at room temperature. After removal of the 
supernatant, pellets were resuspended in 1 mL of 20 mM phosphate 
buffer (Phosphate buffer 20 mM; NaCl 50 mM; pH 7.2) and 
centrifuged for 5 min at 2000 x g at room temperature. Pellets were 
resuspended and pooled in 1 mL phosphate buffer. Turbidity was 
adjusted to 0.5 McF with phosphate buffer. 120 μL of the suspension 
were deposited on a 170 μm thick aminosilane-coated glass coverslip 
(1,666,121, Schott Nexterion) and allowed to sediment for 15 min at 
room temperature to allow electrostatic capture of the individual 
bacterial cells on the coverslip. The coverslip was washed 3 times with 
the phosphate buffer and once with MHB either with or without 
antibiotic, while taking care the surface never dried. The coverslip was 
held with the capture side facing down and placed in a 25 μL 
incubation chamber, so that the captured bacteria remained in contact 
with the medium +/− antibiotic (Supplementary Figure S1B). The 
chamber was sealed with 10 × 10 × 0.25 mm3 of Gene Frame adhesive 
(AB0576, ThermoFisher Scientific) fixed on a standard glass 
microscope slide. The number of captured bacteria over the 
10 × 10 mm2 surface area was approximately 1 × 105 cfu, meaning an 
inoculum of ~ 106 cfu/mL during incubation with the antibiotics in 
the 25 μL chamber; this inoculum is comparable to the one used 
during standard MIC measurement by broth micro-dilution (Clinical 
and Laboratory Standards Institute, 2024a). Up to four chambers and 
incubation conditions were prepared from the same culture and 
analyzed simultaneously.

Time-lapse holographic microscopy was carried out as previously 
described (Degoût-Charmette et  al., 2025), with selected 
modifications. We used a purpose-built prototype of a digital inline 
holographic microscope (Supplementary Figure S1A). The light 
source was a fiber-coupled (M35L01 fiber, Thorlabs), high-power LED 
emitting in the blue wavelength (FCS-0455-000, Mightex). A 45° 
protected aluminum turning mirror (CCM1-G01, Thorlabs) enabled 
direction of the light vertically inside the simplified upright 
microscope. Light probed the sample held in a 4-slide holder 
(MLS203P10, Thorlabs); a XY motorized translation stage (NRT100 
and MTS25/M-Z8, Thorlabs) enabled horizontal displacement of the 
samples. A coverslip-corrected 100X objective with a numerical 
aperture of 0.95 (PLFLN100X, Olympus) collected the transmitted 
and forward-scattered light; it was mounted on a Z motorized stage to 
adjust focus (MTS25/M-Z8, Thorlabs). The collected light was filtered 
by a bandpass filter centered at 450 nm with 10 nm full width at half 
maximum (FBH450-10, Thorlabs). An achromatic lens with 150 mm 
focal length (LA1433, Thorlabs) acted as tube lens and focused the 
collected light on a back-illuminated CMOS camera featuring 
3,088 × 2076 pixels and 2.4 μm pixel size (UI-3884LE-M-GL, IDS). 
The effective magnification was ~86X. The entire holographic 
microscope fitted within a standard microbiology incubator set to 
37°C. Time-lapse holographic imaging was performed for 2 h in an 
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automated manner via a purpose-made Labview interface, at a rate of 
one hologram every 3 min and 8 fields of view per sample. For each 
field of view and time-point (tp), the routine consisted of acquiring 
one hologram when the sample was defocused by Δz = 20 ± 2 μm 
(Supplementary Figure S1C), and one background image when the 
sample was defocused by Δz = 200 μm. Each field of view represented 
85 × 57 μm2 region of the coverslip and enabled the monitoring of ~10 
captured bacteria. Calibration of the coverslip tilt caused a 15 min 
delay between the acquisition of the first image of the kinetics and the 
first contact of the bacteria with the antibiotic. In what follows, t = 0 
refers to the start of the imaging.

Hologram reconstruction

The hologram reconstruction algorithm (purpose-built, in 
Matlab) was mainly performed as before (Degoût-Charmette et al., 
2025). In short, as a preliminary step, each acquired hologram was 
divided by its corresponding background to normalize and correct for 
invariant patterns linked to parasitic objects on the light path (i.e., 
typically dust on optical elements). Second, the reconstruction of the 
phase shift image (corresponding to the object-plane) from each 
hologram (corresponding to the image-plane) involved 2 main steps 
schematized in Supplementary Figure S2: digital re-focalization and 
twin-image removal. As illustrated in Supplementary Figure S2A, the 
propagation algorithm based on Rayleigh Sommerfeld diffraction 
theory (Goodman, 2005) enabled reconstructing a digital z-stack from 
each hologram; the refocused phase map corresponding to the object-
plane was retrieved from the z-stack according to a maximum contrast 
criterium for almost pure phase objects (i.e., low absorbers) (Dubois 
et  al., 2006). The twin-image artifact is intrinsic to the inline 
configuration of DIHM and disturbs the background of the 
reconstructed phase map and its subsequent analysis. We implemented 
a twin-image removal algorithm inspired by the Gerchberg-Saxton 
algorithm (Gerchberg, 1972) and its numerous variations, in 
particular Latychevskaia and Fink (2009). As illustrated in 
Supplementary Figure S2B, the algorithm consists in a series of 
alternating back and forward propagations between the hologram-
plane and the object-plane, while imposing constraints on the 
propagating field in each of the two planes. In the hologram-plane, the 
squared modulus of the propagated field must be equal to the recorded 
hologram; in the object-plane, absorption must be positive while the 
phase shift is forced to 0 when it is lower than a certain adaptive 
threshold. Iteration after iteration, the reconstructed phase is updated 
and converges toward its exact value (corresponding to a 
null threshold).

Dynamic patch generation

Following the reconstruction of the phase shift maps for each field 
of view and time-point, individual bacteria were localized via an 
image binarization to obtain dynamic patches (256 pix × 256 pix × 40 
tp) centered on each individual bacterium. Given the strong 
movements and morphological changes of bacteria (i.e., while 
dividing or under certain antibiotic treatments), we performed the 
single-bacteria localization and patch generation on the average image 
of the 40 time-points. Before entering the machine learning pipeline, 

a rule-based preprocessing was applied to filter and clean the dynamic 
patches (simply referred to as “patches” in the rest of the section). The 
rules were derived from experts’ knowledge and exploratory statistics.

First, patches failing the quality checks were removed. Three 
criteria were applied to establish the quality of the images. Phase signal 
ranged between 0 and 0.5. Patches starting with pure background 
images were removed as they were due to segmentation issues. An 
image was considered as background if it fulfilled one of the following 
criteria: (i) the maximum phase was below a threshold of 0.3, (ii) the 
maximum phase was found in the edge of the image and the mean 
phase was below 0.02, where the edge corresponds to a band of 10 
pixels width. Patches with background images at the end of the series 
were removed. This would correspond to a loss of the bacterium 
(typically a detachment from the glass coverslip). There was one 
exception: it could correspond to the lysis of the bacteria, and in that 
case, we kept the patch because lysis is an actual signature of the MoA 
of the antimicrobial. In case of lysis, a small amount of bacteria 
material remains (“footprint” of the bacteria), therefore we considered 
as lysis a series of background images at the end of the series with a 
mean intensity above 0.08. Patches with too many empty images were 
removed. Empty images were due to incorrect holographic 
reconstruction. These could be  corrected with interpolation, as 
described in the next paragraph. However, we decided to limit the 
correction applied to the images, to preserve the original biological 
signal. Then, we removed patches that fulfilled at least one of these 
criteria: (i) the patches contained more than 10 empty images in total, 
(ii) the first image was empty, (iii) more than 2 images at the end of 
the series were empty.

Second, patches were cleaned by imputing some empty or 
background images. (i) Empty images at the end of a series were 
replaced by a copy of the last non-empty image. (ii) Empty or 
background images in the middle of the series were replaced by a 
weighted interpolation of the images before and after them:

	

{ }
{ }

{ }
{ }

− −
= +

− −i a b
b i i a

I I I
b a b a 	

(1)

where Ii is the interpolated pixel values of the empty / background 
image, Ia and Ib the values of the first non-empty / bacteria images 
before and after it, i,a,b the corresponding indices inside the time-
series (Equation 1). Interpolation of background images were only 
performed if only one background image was present between two 
bacteria images, as it could correspond to a rare, temporary, loss of 
track of the bacteria.

Deep-learning-based MoA classification

Two DL-based models were developed for MoA classification. 
CNN3D (Figure 4A) consisted of a set of convolutional layers associated 
with maximum pooling layers, a set of fully connected layers combined 
with dropout layers and finally a classification layer. The convolutional 
kernels were 3-dimensional and compute convolutions along space and 
time dimensions. The kernel size was different between space and time 
dimensions. Convolutional layers activation function was Rectified 
Linear Unit (“ReLU”). We performed maximum pooling factor after 
each convolutional layer, except for the last one, after which 
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we performed a global maximum pooling operation was performed to 
combine features and reduce their dimension. Activation functions of 
fully connected layers were ReLU, except for the classification layer 
which was a fully connected layer with softmax activation and a number 
of units corresponding to the number of MoA classes. CRNN 
(Figure 4B) consisted of a set of convolutional layers and maximum 
pooling layers which were time-distributed, a recurrent layer, a set of 
fully connected layers combined with dropout layers and finally a 
classification layer. Convolutional kernels were 2-dimensional and 
squared, activation functions were ReLU, maximum pooling and global 
maximum pooling were performed after the convolutional layers. The 
2D convolutional networks were time-distributed, meaning that a 
network was applied to each image in the time-series, but shared the 
same kernels. Recurrent layers were either Long-Short Term Memory 
(LSTM) layers or Gated Recurrent Units (GRU) layers. The 
hyperparameters of the recurrent layers were not optimized compared 
to the original tensorflow implementation. Fully connected, dropout and 
classifications layers were defined in the same manner as for CNN3D.

Models were trained with Adam optimizer. The model’s loss was 
categorical cross-entropy. A maximum of 200 epochs was used for 
training, early stopping was applied with a patience of 15 epochs. Early 
stopping criteria was validation accuracy. The batch size was 8. Final 
model performance was assessed using a stratified 10-fold cross 
validation scheme. We optimized the value of various hyperparameters 
for both models: number of convolutional layers, number of kernels, 
kernel sizes, pooling sizes, number of fully connected layers, number 
of units per fully connected layers, recurrent layer type, number of 
units in recurrent layers, dropout rate, learning rate, class weight 
(meaning whether to re-weight inputs by a factor inversely 
proportional to the class size). The full list and the ranges that 
we considered for each model are presented in Supplementary Table S3. 
The last column contains the best value obtained after optimization 
which was picked for the rest of the workflow. The algorithm we chose 
for the optimization was the well-known, fast and elitist multi-
objective genetic algorithm (Deb et al., 2002) “Nondominated Sorting 
Genetic Algorithm II” (NSGA-II) from Optuna library (Akiba et al., 
2019). Optimization was done using 100 trials and using the model’s 
loss as metric. Contrary to the final model evaluation, the performance 
was computed using 1 validation fold to spare time. For the same 
reason, we only used a maximum of 100 epochs with early stopping 
and a patience of 10 epochs, reducing the batch size to 4.

To compute the classifier prediction at sample and antibiotic 
levels, we gathered all predictions, corresponding to all patches, from 
the 10 validation folds. We aggregated them at the desired level, and 
we performed a majority vote. We compared the resulting prediction 
to the true class to compute the model performance metrics at this 
level. If the majority vote resulted in equality between 2 classes, 
including the true class, we considered the prediction as wrong. The 
metric obtained for patches whose class corresponded to the majority 
class was called “patch performance” and could be interpreted as a 
confidence score associated to the sample or antibiotic class prediction.

Deep-learning-based MoA novelty 
detection

Novelty detection was based on a siamese neural network (Figure 6) 
trained on a set of patches from known MoA classes. The siamese network 

consisted of two sub-networks sharing the same weights, a differentiation 
layer and an output layer. The sub-networks were two CNN3D or two 
CRNN, as described in the previous section with the only difference being 
that their final classification layer was removed. Their hyperparameters 
values were the same as the ones obtained after optimization for the 
classification approach. Each sub-network took as input a patch. The 
differentiation layer computed the L1 distance between the outputs of 
both sub-networks. Finally, the siamese output layer was a fully connected 
layer of two neurons with sigmoid activation, computing a prediction, y, 
which should be equal to 1 if the two input patches belong to different 
MoA classes and to 0 if they belong to the same MoA class.

Models were trained with Adam optimizer. The model’s loss was 
binary cross-entropy. A maximum of 10 epochs was used for 
training, early stopping was applied with a patience of 3 epochs. The 
batch size was 4. Model performance was assessed using a stratified 
validation set containing 10% of input data (135 patches). The 
training dataset consisted of 70% of patches from known classes, i.e., 
Cell Membrane, Cell Wall, DNA, Protein, RNA and untreated, 
corresponding to a total of 1,217 patches. As explained above, the 
input of the siamese networks was a pair of patches. To obtain the 
training pairs set, we computed all possible pairs, leading to a total 
of 850,860 pairs (676,565 corresponding to pairs of different MoA, 
i.e., y = 0, and 174,295 corresponding to similar MoA, i.e., y = 1). 
We  got 10,440 validation pairs (8,358 corresponding to pairs of 
different MoA, i.e., y = 1, and 2082 corresponding to similar MoA, 
i.e., y = 0).

The trained siamese network was then used in inference mode for 
novelty detection. We computed all possible pairs between patches from 
the known dataset and the test dataset. The known dataset corresponded 
to the siamese network training and validation datasets, resulting in 1450 
patches. The test dataset corresponded to the unknown MoA candidates 
(imipenem, tetracycline, TrimSulf) and a 20% subset of known classes, 
resulting in a total of 360 patches. Therefore, in total we  inferred 
predictions with the siamese network for 522,000 pairs. These predictions 
were aggregated per pair of MoA classes or antibiotics between the known 
and the test dataset. For each combination, we computed a novelty score, 
corresponding to the mean of predictions according to the formula:

	
=∑ ,

,
A T at

AT a t A T

yS
N N 	

(2)

where yat is the network prediction for a pair of patches from reference 
class A and test class or antibiotic T, NA and NT are the number of patches 
from reference class A and test class or antibiotic T (Equation 2).

To assess whether an unknown antibiotic corresponded to a novel 
MoA, the following rule was applied:

	 AX AAif S S A Xisnovel∀ →

	 (3)

where X is the unknown class or antibiotic and SAA is called the 
novelty threshold of known class A (Equation 3).
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