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Defective viral genomes (DVGs) are fragments derived from defective interfering 
particles (DIPs) that form during viral replication. They play important roles by 
interfering with complete virus replication and regulating host immune responses. 
Advances in high-throughput sequencing (HTS) and bioinformatic technology have 
significantly improved the ability to identify DIPs and DVGs. Their heterogeneity and 
dynamic formation mechanisms have been analyzed using long-read sequencing 
technologies. Both DIPs and DVGs inhibit wild-type viral proliferation by competing 
for viral replication resources and activating innate immune pathways such as those 
of retinoic acid-inducible gene 1 and mitochondrial antiviral signaling protein. 
This might influence infection outcomes by regulating inflammatory cytokine 
storms. The clinical application of DIPs and DVGs in their natural attenuated 
virus forms has been investigated in terms of novel vaccine design and antiviral 
therapy. This report systematically reviews cutting-edge detection techniques, 
molecular mechanisms, and translational medicine advances of DIPs and DVGs 
and provides a theoretical basis for developing broad-spectrum antiviral strategies 
based on DIPs.
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1 Introduction

Infectious diseases pose a substantial global threat to human health and wellbeing (Kirtane 
et al., 2021), with each outbreak or pandemic having significant implications for public health 
systems and societal stability (Murphy, 2022). The diagnosis and management of viral 
infections warrant significant attention because they are primary causative agents of infectious 
diseases (Gebreyes et al., 2014). The severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) Coronavirus 2019 (COVID-19) global pandemic lasted for almost 3 years, and 
resulted in >760 million confirmed infections and 6.9 million deaths (Yuan et al., 2023). The 
actual figures are believed to be  significantly higher. Other viruses such as influenza 
(Taubenberger and Kash, 2010), Ebola (Jacob et al., 2020), dengue (Martina et al., 2009), and 
hepatitis B viruses (Yuen, 2018), continue to pose significant threats to human health. 
Developing effective vaccines and therapeutic agents is considered the most promising strategy 
for controlling infectious diseases (McArthur, 2019). However, the inherent biological 
characteristics of viruses pose significant challenges that complicate efforts to combat viral 
infections (Horvath and Barrangou, 2010), emphasizing the need for more effective treatments.

Numerous defective virus particles with biological activity identified in animal viruses 
during 1970 led to the concept of defective interfering particles (DIPs) (Huang and Baltimore, 
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1970). These particles are typically viral structural proteins that 
contain a segment of a viral genome and can replicate in the presence 
of a helper virus. They specifically inhibit the intracellular replication 
of unimpaired, homologous viruses. Defective viral genomes (DVGs) 
are truncated versions of their parent genomes that arise from an 
abnormal cycle of viral genomic replication (Brennan and Sun, 2024). 
Standard viruses (Genoyer and López, 2019) have complete genomes, 
which enables them to independently undergo an entire replication 
cycle unlike DIPs. Helper viruses (Manzoni and López, 2018) facilitate 
the replication and other functions of DIPs. The functions of DIPs 
include reducing virulence in  vivo (Barrett and Dimmock, 1984; 
Rabinowitz and Huprikar, 1979), inducing robust interferon (IFN) 
expression during infection in  vitro (Fuller and Marcus, 1980; 
Johnston, 1981), and promoting enhanced viral persistence in vivo 
(Baczko et al., 1986) and in vitro (De and Nayak, 1980; Kawai et al., 
1975; Roux and Waldvogel, 1981; Schmaljohn and Blair, 1977; 
Sekellick and Marcus, 1978) (Figure 1). Despite potent functionality, 
DIPs and their associated DVGs were initially considered as artifacts 
of viral replication in  vitro that were unrelated to natural viral 
infections, owing to technological limitations that prevented their 
identification in vivo (Viola et al., 1978). Thus, investigation into DIPs 
was constrained by such limitations and gradually stagnated 
for decades.

However, recent scientific and technological advancements, 
particularly the advent of second-generation sequencing technologies, 
have led to the discovery of DVGs among many viral families (Pathak 
and Nagy, 2009; López, 2014; Rezelj et al., 2018). Concurrently, DVGs 
derived from RNA viruses modulate immune responses to viral 
infections, indicating their potentially crucial role in determining 
infection outcomes (Genoyer and López, 2019). This review examines 
the research technologies, mechanisms of action, and clinical 
applications of DIPs and their associated DVGs, to elucidate their roles 
in viral infection and facilitate their eventual clinical applications.

The infection process begins when a cell is infected by the 
standard virus, which then disseminates to adjacent cells. In the 
presence of the standard virus, DIPs undergo conditional replication, 
thereby disrupting the replication cycle of the standard virus and 
promoting the accumulation of DIPs while effectively reducing the 
viral titer of the standard virus.

2 Technical support

Current identification and characterization of defective virus 
genome sequences primarily depend on high throughput sequencing 
(HTS; also known as next-generation sequencing, NGS) technologies 

FIGURE 1

Scheme of standard viruses and DIPs cycling dynamics.
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and bioinformatic analyses. This report elaborates on the application 
of these methods to the study of DVGs.

2.1 Application of HTS technologies in viral 
genome sequencing

High throughput sequencing can simultaneously analyze vast 
numbers of DNA or RNA molecules within a very brief timeframe. 
This technology has been extensively applied to genomics, 
transcriptomics, and epigenetics, including the critical task of 
determining viral genome sequences (Slatko et  al., 2018; Sharma 
et al., 2018).

Plaque assays in susceptible cell cultures are widely used to detect 
and quantify most viral species. However, conventional plaque assays 
cannot reliably quantify DVGs, as they do not complete replication 
cycles (Muñoz-Sánchez et al., 2024; Marx, 2023). The isolation and 
quantitation of DVGs using biochemical techniques have posed 
significant challenges. Consequently, the primary approaches to DVGs 
have shifted towards sequencing technologies and bioinformatics 
methodologies (Hwang et al., 2018).

Compared with conventional sequencing techniques, HTS 
simultaneously analyses a vast number of DNA or RNA fragments. 
This facilitates the rapid detection of DVGs in samples (Trebbien et al., 
2018; Sheng et  al., 2018) and significantly enhances sequencing 
efficiency. Comprehensive sequencing of the entire genome at multiple 
locations can be achieved in a single run through HTS, which also 
provides improved depth and exact mapping of DVG sites. The 
components of DVG have been analyzed in detail because of HTS 
technology. Advances in HTS technology have facilitated 
breakthroughs in elucidating the production (Alnaji et al., 2021; Pelz 
et al., 2021) and composition (Muñoz-Sánchez et al., 2024) of DVGs, 
which has significantly enhanced understanding of the various types 
of DVGs (Genoyer and López, 2019). Previous investigations into 
DVGs were frequently small-scale or constrained to specific viral 
species due to the prohibitively high cost of sequencing. The advent of 
HTS technology has significantly lowered these costs, facilitating a 

transition in DVG research from isolated case studies to 
comprehensive, large-scale explorations. It is noteworthy that in some 
reports, viral samples were amplified in vitro prior to HTS, leading to 
alterations in the population of defective viral genomes and 
consequently affecting sequencing results (Li et al., 2024). Although 
certain challenges remain, the advancement of HTS permits extensive 
sequencing analyses of diverse viral types and deeper investigations 
into the variability of DVGs.

2.2 Application of bioinformatics tools in 
identifying DVGs

2.2.1 Strategies and algorithms used to identify 
DVGs

A popular strategy for DVG identification using HTS involves 
read alignment to a reference viral genome, followed by the 
localization of base-pair and relative index positions. Several 
bioinformatics tools have recently been developed in response to this 
need (Table  1). An early program called Paparazzi, was initially 
designed to exclude rather than to identify DVGs in samples for viral 
genome reconstruction (Vodovar et al., 2011). The first algorithm 
specifically designed for DVG identification in HTS data was 
ViReMa-a. Along with DI-tector, it remains the most widely used 
algorithm for DVG detection (Routh and Johnson, 2014; Beauclair 
et al., 2018).

The machine learning (ML)-based, metasearch tool DVG-finder 
aimed to specifically and accurately identify DVGs in RNA-sequencing 
data (Olmo-Uceda et al., 2022). However, several algorithms, such as 
ViReMa-a and DI-tector, introduce bioinformatic artifacts during 
identification that could potentially lead to false positives or false 
negatives that reduce sensitivity (Bosma et al., 2019). By integrating 
ViReMa-a and DI-tector, DVG-finder has standardized terminology 
and incorporates additional descriptive variables into a unified 
workflow. This approach leverages ML to minimize false positives and 
provides an HTML report with graphical outputs, while preserving 
the distinct data generated by ViReMa-a and DI-tector.

TABLE 1 A comparison of legacy pipeline and next-generation pipeline.

Aspect Legacy pipeline Next-generation pipeline

Data source Short-read sequencing [e.g., Illumina MiSeq (Wagner et al., 

2025)]

Long-read sequencing [e.g., Nanopore (Ndekezi et al., 2025], PacBio [Jia 

et al., 2024)], hybrid sequencing

Detection method Alignment-based detection [e.g., BWA (Bian et al., 2025), 

GATK (Wang et al., 2024)], simple deletions detection

Machine learning [e.g., DVGfinder (Olmo-Uceda et al., 2022)], structural 

variant calling [e.g., Sniffles (Sedlazeck et al., 2018)]

Tool dependency Traditional aligners [e.g., Bowtie2 (Zhou et al., 2024), BWA], 

custom Perl or Python scripts

Specialized DVG tools [e.g., ViReMa (Sotcheff et al., 2023), DI-tector 

(Beauclair et al., 2018), DVGfinder]

Compute architecture Single-node or basic high performance computing Distributed computing

Sensitivity Low (alignment-dependent, misses complex DVGs) High (hybrid assembly and alignment, detects chimeric or rearranged DVGs)

False positive control Manual filtering [e.g., IGV inspection (Robinson et al., 2023)] Automated filters (ML models, statistical significance)

Standardization Lab-specific, no consensus Standardized workflows [e.g., ViReflow (Moshiri et al., 2022)]

Reproducibility Low High

Virus compatibility Primarily RNA viruses Both DNA and RNA viruses

Representative tools Custom scripts, early ViReMa ViReMa, DVGfinder, DI-tector, iVar (Castellano et al., 2021)
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2.2.2 Operation mode and performance analysis 
of DVG-finder

The computational algorithms ViReMa-a and DI-tector are 
integrated into DVG-finder to detect DVGs in samples. Detected 
DVGs are processed through the distinct operating modes of meta-
search, consensus, and filtering. All identified DVG data are shown in 
meta-search mode, whereas only DVGs detected by both algorithms 
are revealed in consensus mode. The filtering mode shows DVG data 
that meet or surpass a user-specified true-positive probability 
threshold. Using synthetic samples derived from SARS-CoV-2 and 
TuMV genomes, an evaluation of DVG-finder modes revealed that the 
meta-search mode was more sensitive than the ViReMa-a algorithm, 
whereas all modes were more accurate and F1 scores were better than 
the DI-tector algorithm (Olmo-Uceda et al., 2022).

Overall, DVG-finder incorporates the two most prevalent DVG 
detection algorithms and enhances their performance by ML, thus 
facilitating more efficient and precise identification and analysis 
of DVGs.

3 Primary types and generation 
mechanisms of DVGs

Research into DVGs has been hampered the absence of technology 
that could identify and distinguish DIPs from parental viruses 
(Manzoni and López, 2018). High throughput technologies have 
facilitated comprehensive studies, enabling the detection of various 
types of DVGs in most RNA virus families (Brennan and Sun, 2024). 
Deletion, copy-back (cb), and snap-back (sb) are primary types of 
DVGs (Vignuzzi and López, 2019). All three types can execute a full 
replication cycle with the help of parental viruses (Genoyer and López, 
2019). The characteristics of these DVGs and how they are generated 
are described below.

3.1 Characteristics and generation of 
deletion DVGs

Deletion DVGs are prevalent in positive-strand RNA viruses 
such as alphaviruses, flaviviruses, picornaviruses, and coronaviruses 
(Li and Aaskov, 2014; Poirier et al., 2015; Liao et al., 2014; McLaren 
and Holland, 1974). The key characteristics are large internal 
deletions in critical genomic sequences, and preserved promoter 
sequences and cis-acting elements that play essential roles in 
replication and packaging (Li and Aaskov, 2014; Duhaut and 
Dimmock, 2000). Internal segments of the viral genome are missing 
from deletion DVGs. The DVGs are thought to be generated during 
viral genome replication as RNA dependent RNA polymerase (RdRp) 
pauses upon encountering secondary structures or lesion sites, then 
detaches from the template strand and reinitiates synthesis at new 
positions on the same or another template strand, producing 
daughter strands without internal regions. The production of deletion 
DVGs is considered to result from a replication-associated 
mechanism, during which RdRp transfers from a donor, to an 
acceptor template, while maintaining its connection to the nascent 
strand (Perrault and Semler, 1979).

3.2 Characteristics and generation process 
of copy-back DVGs

Non-segmented negative-strand RNA viruses such as 
paramyxovirus, respiratory syncytial virus, and filovirus frequently 
harbor cbDVGs that contain structurally rearranged genomes that 
have reverse complementation at the 5′ and 3′ ends; this configuration 
theoretically produces a long stem-loop structure (Perrault and 
Leavitt, 1978; Re et  al., 1983; Kolakofsky, 1976). The mechanism 
underlying the generation of cbDVGs remain obscure. A leading 
hypothesis proposes that cbDVGs form during viral genome 
replication through a process in which the RdRp disengages from the 
parental template strand, reattaches to the daughter strand, uses it as 
a template, and extends synthesis from the 5′ end. The RdRp of 
negative-sense RNA viruses lacks proofreading activity, facilitating 
template switching. Additionally, high multiplicity of infection (MOI) 
or rapid replication increases RdRp error rates, thereby promoting the 
generation of cbDVGs (Lazzarini et al., 1981; Perrault, 1981).

3.3 Characteristics and generation process 
of snap-back DVGs

The characteristics and production process of sbDVGs are 
analogous to those of cbDVGs, with the distinction that their 
complementary double-stranded regions encompass almost the entire 
genome, and contain only one non-complementary nucleotide 
(Nichol et al., 1984).

4 Functions and mechanisms of DVGs

The DVGs can impede parental virus replication, induce 
interferon production, stimulate immune responses, and extend the 
duration of viral infection. These mechanisms are discussed below.

4.1 Inhibition of viral replication

Both DVGs and DIPs can directly interfere with the replication of 
standard viruses. Because the genome sequence in DIPs is shorter than 
that of standard viral genomes, they are smaller than intact virus 
particles (Li and Aaskov, 2014; Von Magnus, 1954; Calain and Roux, 
1988; Treuhaft and Beem, 1982; Girgis et al., 2022; Huang et al., 1966). 
The shorter sequences of deletion DVGs and cbDVGs is thought to 
allow for stronger replication dynamics of the DIP genome (Huang and 
Baltimore, 1970). Two trailer promoter sequences characterize cbDVGs. 
The trailer promoter sequence in negative-strand RNA viruses is 
responsible for cbDVG formation and is more conducive to genome 
replication than the conventional leader promoter, thus granting 
cbDVGs a replication edge. In addition, DVGs in some species of viral 
DIPs enhance polymerase binding to nuclear proteins through 
mutations in promoter sequences, further augmenting their replication 
efficiency (Calain and Roux, 1995; Kolakofsky, 1979; Rao and Huang, 
1982). Consequently, the DIP genome exploits the replication 
machinery that restricts access to proteins essential for standard virus 
replication, which results in a lower yield of the standard virus (Lazzarini 
et al., 1981; Perrault, 1981; Portner and Kingsbury, 1971; Giachetti and 
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Holland, 1989). By competing for essential structural proteins necessary 
for packaging, DVGs can restrict the synthesis of standard viruses 
(Brennan and Sun, 2024). In conclusion, DVGs harboring cis-acting 
elements essential for genome replication and virion packaging can 
disrupt standard virus replication by competing for scarce polymerases, 
critical viral proteins, and other cellular resources in co-infected cells.

Elevated DVG levels can also decrease the synthesis of functional 
template mRNAs available for viral replication, thereby indirectly 
reducing the intracellular accumulation of viral proteins. The 
phenomenon occurs because deletion DVGs do not have essential 
coding regions for specific mRNAs, and duplication-derived DVGs 
cannot encode functional mRNAs (Brennan and Sun, 2024). 
Concurrently, accumulated DVGs in cells can stimulate PRRs, 
triggering a signaling cascade that enhances the expression of IFN and 
IFN-stimulated genes. As a result, the replication of standard viruses or 
the formation of standard virus particles is suppressed. For example, 
cells containing abundant DVGs, especially cbDVGs, can recognize and 
trigger signaling by mitochondrial antiviral signaling protein (MAVS) 
through RIG-I-like receptors. This leads to upregulated IFN types I and 
III signaling pathways and disrupted standard virus formation (Brennan 
and Sun, 2024; Genoyer and López, 2019; Manzoni and López, 2018).

4.2 Activation of innate immunity

Deletion DVGs, cbDVGs, and sbDVGs all elicit robust IFN 
responses. Specifically, cbDVGs activate the RIG-I-like receptor (RLR) 
pathway, which leads to the induction of pro-inflammatory cytokines 
such as interleukin (IL)-6, tumor necrosis factor-alpha (TNF-α), and 
IL-1β, thus promoting responses to IFN types I and III (Johnston, 
1981; Tapia et al., 2013; Sun et al., 2015; Marcus and Gaccione, 1989; 
Strähle et  al., 2007). This is attributed to the fact that unlike the 
standard viral genome, the specific 5′ end diphosphorylated or 
triphosphorylated blunt-ended double-stranded RNA structure of 
cbDVGs can theoretically form RIG-I ligands to bind with RLR. The 
innate immune response stimulated by cbDVGs boosts antigen 
presentation and concurrently drives dendritic cell maturation.

Deletion DVGs derived from DIPs associated with influenza, 
dengue, and Sindbis viruses induce the IFN response (Fuller and 
Marcus, 1980; Lin et al., 2022; Pelz et al., 2023). Deletion DVGs in 
poliovirus induce a powerful IFN response (Xiao et al., 2021). The 
abundance of DVGs and the magnitude of the IFN response 
significantly and positively correlated during the COVID pandemic 
(Zhou et al., 2023). Deletion DVGs produce PRRs such as RLRs that 
are activated during the replication of DVG or their double-stranded 
RNA intermediates, thus initiating the IFN pathway and resulting in 
the expression of IFN-stimulated genes (ISGs) and IFN generation. 
Meanwhile, recent studies reveal that some coronavirus DVGs encode 
cryptic proteins capable of suppressing RIG-I signaling—challenging 
existing paradigms of DVG-host interactions (Hsu et  al., 2025). 
However, the specific sequences or secondary structures within deletion 
DVGs that could be recognized by RLRs have not been identified.

4.3 Association with viral persistence

Although DVGs and DIPs interfere with the generation of standard 
viruses, the quantity of these generated viruses conversely influences 

DVGs and DIPs. Standard virus infection of a single cell results in 
neighboring cells becoming infected. As the amount of standard viruses 
increase in a single cell, DVGs/DIPs are synthesized de novo. Thereafter, 
DIPs replicate dependently on standard viruses and hinder their 
replication (as described in section 2.2). This leads to DIP accumulation 
and decreased standard virus titers. A reduction in the titer of standard 
viruses within a cell population ultimately causes a significant decrease 
in the amount of cells simultaneously infected by standard viruses and 
DIPs. As DIPs require standard viruses for replication and packaging, 
cells infected exclusively by DIPs cannot propagate, which causes a 
decline in DIP titers. In contrast, cells infected with standard viruses 
can only produce standard virus particles, which increases titers. When 
the titer of standard viruses increases, DVGs and DIPs will recommence 
generation, initiating a new cycle. This is referred to as the DIP and 
standard virus asynchronous cycle or the Von Magnus effect (Huang 
and Baltimore, 1970) that renders persistent and cyclical viral infection.

In addition, the composition of viral genome species is 
heterogenous. Some cells are enriched with DVGs, whereas others are 
enriched in canonical viral genomes. Mitochondrial antiviral signaling 
proteins are activated by cells with abundant DVGs, resulting in the 
production of IFN and other proinflammatory cytokines, such as TNF, 
which has dual functions during infection, contingent upon engaged 
signaling pathways. Specifically, TNF acts as a proinflammatory and 
pro-apoptotic agent when signaling through the TNFR1 pathway, but 
functions as a pro-survival factor via the TNFR2 pathway. Activating 
the TNFR1 pathway promotes the apoptosis of cells enriched with 
canonical viral genomes. Conversely, the TNFR2 pathway, along with 
downstream signaling molecules such as TNF receptor-associated 
factor 1 (TRAF1), prolongs the survival of cells with elevated DVG 
levels, which extends persistent infections (Xu et  al., 2017). 
Collectively, DVGs can facilitate the persistent infection of viruses.

Overall, the inhibition of standard virus replication is closely 
associated with the role of IFNs. Furthermore, the establishment of 
persistent infections is related to the replication of standard viruses 
and the production of IFN and other cytokines (Figure 2). Therefore, 
the interference of standard virus replication with DVGs and DIPs, 
the induction of IFN generation, immune response activation, and 
prolonged infection cycles are not mutually independent processes, 
but they notably correlate.

5 Progress in clinical applications of 
DVGs

Because of their capacity to disrupt normal viral replication and 
trigger production, DVGs are considered attractive options for antiviral 
treatments (Genoyer and López, 2019; Stegmann et al., 2022). Live 
attenuated vaccines frequently contain DIPs, theoretically supporting 
the notion that DVGs could substitute for conventional vaccine 
adjuvants. In addition to these two primary areas, DVGs might play 
special roles in enhancing clinical management (Felt et al., 2021) and 
in developing anti-tumor medications (Lu et al., 2021; Yang et al., 2019).

5.1 Antiviral medication therapy

After host viral infection, DIPs are naturally generated and impact 
infection through mechanisms such as interfering with viral 
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replication and stimulating immune responses (Rezelj et al., 2018; 
Dimmock and Easton, 2014; Dimmock et  al., 1986; Ziegler and 
Botten, 2020). Consequently, DIPs are promising antiviral therapeutic 
agents (Dimmock and Easton, 2014; Doyle and Holland, 1973; 
Chambers and Webster, 1991; Nelson and Perelson, 1995). 
Furthermore, various therapeutic interfering particles (TIPs) have 
been created (Metzger et al., 2011; Weinberger et al., 2003) that has 
encouraged the application of DVGs to clinical settings. In fact, DIPs 
and TIPs based on RNA viruses such as SARS-CoV-2, flavivirus, and 
Influenza A Virus (IAV), have advanced to the animal experimental 
stage [a systematic review of IAV DIPs has been published (Wu et al., 
2022)]. They typically offer benefits including low susceptibility to 
drug resistance and broad-spectrum antiviral activity, which support 
further investigation and the creation of novel antiviral medications 
(Table 2).

Most synthetic DIPs and TIPs are deletion-type, meaning that 
their genomes lack nucleotide sequences and require parental virus 
support for dispersal. A small proportion of these are cb types that are 
usually found in paramyxoviruses (see Section 2.1.2). Recent studies 
have identified a new class of DIPs (Kupke et al., 2019). In contrast to 
the traditional deletion types, these DIPs have point mutations in 
their genomes.

Both DIPs and TIPs conventionally co-infect facilitated by the 
parental virus, and they target the same infected cells and tissues. This 
process disrupts replication of the parental virus, with significant 

specificity. Moreover, DIPs possess broad-spectrum activity because 
they compete with other viruses for cell surface receptors, intracellular 
enzymes, nucleotides, and other resources necessary for replication, 
even though they do not mediate heterologous viral interference 
(Huang and Baltimore, 1970). This has been found when DIPs (Li 
et al., 2021) act in the absence of infectious Dengue virus 2 (DENV-2). 
DIPs can cause host cells to create neutralizing antibodies and IFN 
responses, which lowers viral titers, decreases disease severity, and 
shields the host from further viral infections. For instance, IAV DIPs 
(Rand et al., 2021), by activating responses of IFN types I and III, can 
suppress IAV replication, while alleviating SARS-CoV-2 infection.

The emergence of the novel coronavirus during 2019 significantly 
influenced daily living and global productivity. Despite notable 
progress in vaccines (Zasada et  al., 2023; Wang et  al., 2024), and 
therapies (Li et al., 2020; Su et al., 2020; Aanouz et al., 2021), high viral 
mutation rates (Focosi and Maggi, 2021; Ghildiyal et al., 2024; Planas 
et al., 2021; Cao et al., 2022; Garcia-Beltran et al., 2021) and drug 
resistance (Iketani et al., 2023; Duan et al., 2023) still hinder treatment 
effectiveness. Therefore, improving the effects of medications are 
crucial. In this context, antiviral strategies based on DIPs have been 
investigated to treat COVID-19. An antiviral eTIP1 created by 
deleting the coding region of the poliovirus capsid stimulates the 
immune system and initiates the IFN response in mice (Xiao et al., 
2021). The approach also offers decreased drug resistance and 
increased safety features. Furthermore, inflammation, lung edema, 

FIGURE 2

High concentrations of DVGs significantly enhance type I/III interferon signaling by detecting and activating RIG-I-like receptors and MAVS signaling 
pathways. DVGs-rich cells activate the cell survival pathway by up-regulating TNF/TNFR2/TRAF1, and combine with a small amount of standard viral 
genome to maintain a persistent infection state.
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TABLE 2 A Summary of DVGs applications in antiviral therapy from 2019 to 2024.

Name Source Mode of action Advantage Disadvantage

eTIP1 (Xiao et al., 2021) Capsid coding region of 

poliovirus

Triggers interferon response 

to exert broad-spectrum 

anti-infection effects; 

stimulates production of 

neutralizing antibodies to 

provide immune protection

Safety features; low drug 

resistance

Might induce cytokine storm 

(Fajgenbaum and June, 2020; 

Findlay et al., 2015; Yuan et al., 

2021)

Lipid nanoparticles TIPs 

(Chaturvedi et al., 2021; 

Chaturvedi et al., 2022)

Subgenomic RNA of SARS-

CoV-2

Reduce the viral load; Down-

regulate relevant genes to 

inhibit the pro-inflammatory 

immune response; shorten 

the nasal shedding time of 

SARS-CoV-2

A more long-lasting protective 

effect; low drug resistance

It is still unclear whether its 

generation and dissemination are 

spontaneous; it is unable to 

completely block the transmission 

of the virus

DIPs (Lin et al., 2022) Purified DENV-2 Inhibit viral replication; 

Activate the type I interferon 

response; may quickly trigger 

the innate immune response 

of the host

Inhibit the replication of 

Dengue virus, Zika virus, Yellow 

fever virus, Respiratory syncytial 

virus and the Omicron variant 

of SARS-CoV-2

The impact on the risk of antibody-

dependent enhancement remains 

unclear

IAV DIPs (Pelz et al., 2021; 

Rand et al., 2021; Huo et al., 

2020)

IAV Induce an innate immune 

response that signaled 

through janus kinase/signal 

transducer and activator of 

transcription (JAK/STAT); 

increase the production of 

type I and type III interferons

Broad-spectrum antiviral 

activity, completely inhibit the 

replication of SARS-CoV-2; 

rapid action; low drug resistance

There are difficulties in production 

and purification

OP7 (Hein et al., 2021; Kupke 

et al., 2019)

The genomic vRNA of S7 of 

IAV that harbors 37 point 

mutations

Significantly reduce the viral 

titer; stimulate the innate 

immune response

Successfully fight against IAV 

infection

There may be differences in purity, 

activity and other aspects among 

different batches of OP7

DI244 (Bdeir et al., 2019; 

Hein et al., 2021)

Pure cloned IAV free from the 

contamination of Standard 

Virus

Interfere with viral 

replication; induce interferon 

production

Broad-spectrum antiviral 

activity; rapid action; low drug 

resistance; more convenient for 

production

The production quality cannot 

be assured

NiV DIPs (Welch et al., 2020) NiV Reduce the viral titer; 

compete with the parental 

viral genome for the viral 

protein pool and some host 

cell factors, thus interfering 

with replication and assembly

Directly reduce the replication 

of NiV in vitro; provide 

immediate protection

The design and production remain 

to be optimized; there is a potential 

risk of drug resistance

CHIKV DVGs (Levi et al., 

2021)

CHIKV Compete with the wild-type 

virus for resources needed for 

replication, thereby inhibiting 

replication; may interfere 

with the synthesis of viral 

structural proteins, thus 

affecting the assembly process

Broad-spectrum antiviral 

activity; Pre-injection can 

inhibit the spread of the virus 

within mosquitoes; has potential 

immune-stimulating ability.

The frequency of its occurrence in 

mosquitoes is minimal; it is difficult 

to separating it from the wild-type 

virus; it is difficult to choose a 

suitable in vivo model to assess its 

effectiveness

Zika virus TIPs (Rezelj et al., 

2021)

Screen for DVG-A after serial 

passage of Zika virus at a high 

MOI, and then package them 

into TIPs

Competing with the wild-

type virus for essential viral 

proteins required for 

replication and packaging, as 

well as relying on an intact 

RNA interference pathway to 

suppress replication

Inhibit viral infection and 

transmission, which may avoid 

the occurrence of complications; 

reduce the transmission of the 

virus within mosquitoes

The effectiveness in different 

situations needs to be further 

demonstrated; long-term use may 

induce immune problems

(Continued)

https://doi.org/10.3389/fmicb.2025.1642520
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Yan et al. 10.3389/fmicb.2025.1642520

Frontiers in Microbiology 08 frontiersin.org

and pulmonary viral loads are decreased in hamsters administered 
with intranasal TIPs (Chaturvedi et al., 2021). At lower dosages, the 
antiviral activity of TIPs resembles that of small-molecule antiviral 
medications and monoclonal antibodies. This represents a significant 
advantage of TIPs in clinical research. Defective viral genomes are 
frequently generated during SARS-CoV-2 infection, and they 
contribute to prolonged viral replication and the induction of 
responses to IFN types I  and III. Overall, these results lay the 
groundwork for the subsequent development of antiviral medications 
and related vaccines against SARS-CoV-2 (Zhou et al., 2023).

Antiviral therapy based on DVGs offers significant advantages 
over conventional treatments as they can specifically spread alongside 
their parent virus, which makes it easier for them to exert a therapeutic 
effect. In addition, this strategy is less likely to cause drug resistance 
and broad-spectrum antiviral action. However, several obstacles 
associated with safety, production, and quality control must 
be overcome before DVGs could be applied to clinical treatment.

5.2 Vaccine adjuvants

In addition to aiding the development of antiviral medications, 
DVGs might be useful as adjuvants that increase the effectiveness of 
vaccines via several mechanisms, such as PRR stimulation (Reijers 
et al., 2022). Defective interfering particles are abundant in current 
live-attenuated vaccines, including those for poliovirus (McLaren and 
Holland, 1974), measles (Bellocq et al., 1990), and influenza (Gould 
et  al., 2017) viruses. They have several benefits, such as safety, 
immunogenicity, and the ability to naturally permeate cells and target 
multiple PRRs. Specifically, they can induce host immune defense 
(Vasou et al., 2017) (Figure 3).

RNA oligonucleotides and 268 nt oligonucleotides derived from 
the DVGs of Sendai virus, are intriguing new immune-inducing 
adjuvants because of their low cost, high stability, favorable sequences, 
and potential for large-scale manufacture (Fisher et  al., 2018; 
Mercado-López et al., 2013). Recent studies demonstrate that defective 
interfering RNAs (DI RNAs) from Sendai virus and influenza virus, 
when employed as vaccine adjuvants, can promote Th1-type immune 
responses, shift IgG subtypes toward IgG2b, and induce Th17-type 
immune responses. Moreover, lipid nanoparticles (LNPs) or 
nanoemulsions (NE) can work in concert with these adjuvants to 
improve immune responses. Critically, in murine models challenged 
with homologous influenza viruses, vaccines adjuvanted with such 
DVG-RNAs significantly reduce weight loss and suppress pulmonary 
viral replication—protective outcomes strongly correlated with 
augmented immune responses (Jangra et al., 2024; Wong et al., 2021).

The live-attenuated recombinant vaccine candidate ML29 
comprising Mopeia and Lassa viruses, is a promising treatment for 
Lassa fever (Hallam et al., 2018). Attenuation is high in animal models 
when DIPs are enriched in ML29. In particular, CBA/J mice, STAT-
1−/− mice, and Hartley guinea pigs had no signs or symptoms, serious 
illness or abnormalities, indicating that vaccines containing DIPs 
could improve safety and immunogenicity and aid the induction of 
wider cross-protection (Johnson et al., 2021).

Although DVGs offer advantages over traditional vaccine 
adjuvants, they might also interfere with vaccine production 
(Zinnecker et al., 2024). For example, they can raise the complexity 
and impurity levels of the production process and impact the stability 
of continuous virus generation. Moreover, suitable materials and 
technological procedures must be developed to prevent DIPs from 
degrading quickly in  vivo and to allow for precise targeting of 
immune cells.

DVGs possess significant potential for application in disease 
diagnosis and prognosis, although current research in this domain 
remains limited in scope. The content of DVGs is linked to the severity 
of the disease (Vasilijevic et al., 2017; Penn et al., 2022), which could 
help anticipate how the condition will progress. According to a study 
on respiratory syncytial virus (RSV) DVGs (Felt et  al., 2021), 
identifying DVGs in hospitalized and non-hospitalized patients can 
help physicians create customized diagnosis and treatment plans, 
making it easier to identify patients who require admission to the 
intensive care unit (ICU). Thus, DVGs have the potential to serve as a 
biomarker for ICU admission.

5.3 Clinical applications: from RNA viruses 
to DNA viruses

It should be noted that although RNA viruses have received the 
majority of attention in DVG research, dsDNA viruses—especially 
herpesviruses—should also be considered. Two types of HSV-1 DVGs 
were identified decades ago. Researchers have been delving deeply into 
the properties and processes of HSV-1 DVGs development in recent 
years, uncovering the sequence-driven and cell-specific mechanisms 
that underlie these formations (Shitrit et al., 2023). This gives us a 
foundation to comprehend their function in viral infection and 
evolution. HSV-1-derived amplicon vectors and non-replicating 
genomic vectors have also demonstrated promise in gene therapy (Le 
Hars et  al., 2025; Ingusci et  al., 2025). Apart from herpesviruses, 
analysis of urine samples from immunosuppressed patients revealed 
the presence of DVGs in both BK and JC polyomaviruses, with 
persistence observed throughout the infection course. This study 

TABLE 2 (Continued)

Name Source Mode of action Advantage Disadvantage

DIPs without infectious 

DENV-2 (Li et al., 2021)

DENV - 2 Inhibit viral replication; 

activate the interferon 

response

Broad-spectrum antiviral 

activity; absence of transmissible 

viral contamination risk

The mechanism of action remains to 

be elucidated; in vivo investigations 

are currently limited

RSV cbDVGs (Felt et al., 

2021)

RSV Interfere with viral 

replication; induce the 

expression of interferons and 

interferon-stimulated genes

Predict the severity of RSV 

infection; guide clinical 

management and improve the 

prognosis

Easily affected by other factors; 

there are limitations in the detection 

technology

DENV-2 is Dengue virus serotype 2, IAV is Influenza A virus, vRNA is viral RNA, S7 is segment 7, NiV is Nipah virus, MOI is multiplicity of infection.
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provides the first confirmation of DVG prevalence in clinical DNA 
virus samples, expanding our understanding of their role in clinical 
virology (Addetia et al., 2021).

6 Conclusion

Since the discovery of DVGs studies have encountered significant 
challenges. Recent technological advancements have enabled the 
detection and sequencing of DVGs in experimental and natural viral 
infections, thus deepening understanding of the mechanisms of their 
production and function, and expanding the diversity of the DVG 
family. Moreover, DVG-based antiviral therapies might offer 
advantages over traditional approaches. They co-transmit with 
standard viruses and have broad-spectrum antiviral activity. 
Furthermore, protective effects mediated by DVGs are rapid, potent, 
and durable, with a lower likelihood of inducing drug resistance. 
However, the application of DVGs to therapeutic settings still faces 
several challenges. The design of effective DIPs is complex, and 
computational methods have difficulty identifying optimal antiviral 
candidates (Pelz et al., 2021). Owing to transmission bottlenecks, TIPs 
cannot be effectively transmitted between hosts (Chaturvedi et al., 
2022), thus requiring more advanced production techniques. Current 
research is limited to experimental animal models, and extending 
these findings to human trials remains a significant challenge because 
of inherent differences in data sources between human and other 
animal models (Li et al., 2024; Chaturvedi et al., 2021). Moreover, 
contamination due to genetic recombination during the preparation 

of DIPs might be a potential concern (Barone et al., 2020). Given the 
widespread incidence of DVGs in live attenuated vaccines, intensifying 
research on these vaccines is imperative to gain new insights into the 
mechanisms of action of DVGs. This review primarily focuses on RNA 
viruses. However, almost all families of viruses harbor DVGs, but 
much remains to be discovered. Therefore, further investigation is 
required to expand the depth of knowledge. We anticipate that DVGs 
will be clinically applied to alleviate and treat various human diseases 
after questions are answered and problems are addressed.
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