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The increasing prevalence of antimicrobial resistance (AMR) has led to the 

gradual decline in the effectiveness of existing antibiotics, posing a significant 

threat to global health. Many phytochemicals have antimicrobial activity, but 

few have been developed for clinical use. Berberine, an alkaloid found in various 

medicinal plants, has been recognized as a promising strategy to combat AMR 

due to its notable antimicrobial activity and role in reversing resistance. Here, we 

present a systematic, comprehensive and objective overview of the antimicrobial 

activity, mechanism of action, and limitations of berberine. Additionally, we 

discuss the antimicrobial efficacy of berberine extracts and nanoformulations. 

Berberine demonstrates broad-spectrum antimicrobial activity by inhibiting 

FtsZ, disrupting cell membranes and cell walls, and interfering with DNA and 

RNA synthesis. However, due to its low bioavailability and lack of systematic 

in vivo validation, the efficacy of berberine as a standalone treatment for 

bacterial infections requires further investigation. Nevertheless, it can serve 

as an antibiotic adjuvant to enhance the efficacy of conventional antibiotics 

and reverse AMR. Moreover, the excellent antimicrobial effects exhibited by 

berberine extracts and nanoformulations may overcome these limitations, 

representing potential future applications of berberine. In conclusion, berberine 

has great potential as an antimicrobial agent and antibiotic adjuvant in 

combating AMR, but systematic and comprehensive in vivo and clinical trials 

are still needed to evaluate the therapeutic efficacy of berberine and optimize 

its use. 
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GRAPHICAL ABSTRACT 

Antibacterial mechanisms of berberine in vitro and in vivo and its future applications. 

1 Introduction 

In recent decades, the rise of antimicrobial resistance (AMR) 
has elevated bacterial infections to one of the most pressing global 
public health threats (Larkin, 2023). Pathogenic microorganisms 
have developed various resistance mechanisms through continuous 
adaptation and evolution, such as the production of inactivating 
enzymes, reduced membrane permeability, and antibiotic eux 
pumps, which have reduced the available options and clinical 
eÿcacy of antibiotics, leading to alarming increases in mortality 
(Guedes et al., 2024). In 2021, approximately 4.71 million deaths 
globally were associated with AMR, with 1.14 million directly 
attributed to AMR. Projections suggest that by 2050, AMR could 
result in 8.22 million related deaths annually, including 1.91 
million directly caused by resistant infections (Kariuki, 2024). This 
alarming trend is fueled by the overuse and misuse of antibiotics in 

healthcare and agriculture, a lack of new antimicrobial agents, and 
inadequate infection control strategies (Hays et al., 2022; Caioni 
et al., 2024; Lewnard et al., 2024). Importantly, the declining cost-
eectiveness of developing new antibiotics, combined with the lack 
of direct inhibitory eects of resistance mechanism inhibitors on 
bacterial cells, has resulted in a severe imbalance between the urgent 
need for antibiotics and the current pace of their development 
(Seukep et al., 2020; Cook and Wright, 2022). Therefore, there is 
an urgent need to develop broad-spectrum antibiotics that not only 
exhibit direct bactericidal activity but also eectively counter AMR. 

Today, pharmacologically active plants continue to serve as the 
primary pharmacopeia in many developing countries, with their 
clinical eÿcacy proven through centuries of traditional medicine 
(Porras et al., 2021). Regrettably, between 1981 and 2019, 50% 
of the 162 antimicrobials approved by the U.S. Food and Drug 
Administration were derived from microbial natural products and 
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FIGURE 1 

General overview of the antibacterial activity of berberine. (A) Antibacterial mechanism of berberine. (B) Mode of action of berberine alone or in 
combination in vivo. 

their derivatives, rather than from plant sources (Porras et al., 
2021). However, many excellent recent reviews describe the great 
potential of plant natural products such as phenolic derivatives, 
terpenoids, and alkaloids as antimicrobial agents (Newman and 
Cragg, 2020; Herman and Herman, 2023; Lu et al., 2024). Among 
them, berberine is considered one of the most promising candidates 
for antimicrobial drug development. Found in medicinal plants 
such as Hydrastis canadensis, Berberis aristata, Coptis rhizome, 
Coptis japonica, and Phellodendron amurense, berberine has a long 
history of therapeutic use worldwide (Gasmi et al., 2024). It exhibits 
broad-spectrum antiviral and antifungal activity both in vitro and 
in vivo and has been shown to act as an antibiotic adjuvant, 
reversing fungal and bacterial resistance (Warowicka et al., 2020; 
Zhou H. et al., 2023; Ding et al., 2024). In addition, berberine 
exhibits a range of other pharmacological eects, including 
anti-tumor, anti-inflammatory, antimicrobial, and cardiovascular 
protective properties (Patel, 2021). These attributes enhance its 
economic viability and clinical application. More importantly, 
berberine’s low cost, availability, and accessibility oer a practical 
and feasible strategy for managing antibiotic resistance, particularly 

in developing countries. Against this backdrop, we provide a 
comprehensive and systematic review of berberine’s antimicrobial 
activity and mechanisms, as well as its limitations, with a 
focus on its eects on a range of pathogenic bacteria over 
the past two decades (Figure 1). Furthermore, we describe the 
antimicrobial properties of berberine-containing natural extracts 
and nanoformulations, exploring potential pathways for its future 
clinical applications. By addressing the global challenge of bacterial 
infections, this review aims to provide a theoretical foundation for 
the further development of berberine and oer practical solutions 
for managing global AMR. 

2 Literature search strategy 

A comprehensive literature search was conducted in three 
major databases: PubMed, Google Scholar, and Web of Science. 
The search was restricted to English-language publications from 
2000 to 2025. Keywords used included “Berberine,” “Bacteria,” 
“Antibacterial activity,” “Antibacterial mechanism,” “In vivo,” 
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“In vitro,” “Nanoparticles,” “Extracts,” and various combinations 
of these keywords. The initial search results were imported into 
EndNote software for reference management and removal of 
duplicates. Titles, abstracts, and full texts of the retrieved articles 
were carefully screened for relevance. Studies were included if they 
investigated the antibacterial eects and mechanisms of berberine, 
its nanoformulations, or natural extracts, either in vitro or in vivo, 
and provided the source of berberine whenever available. Studies 
not involving bacterial pathogens, relevant infection models, or 
those unrelated to berberine-based interventions were excluded 
from the analysis. 

3 Antibacterial activities of berberine 

3.1 Antibacterial properties of berberine 
against pathogenic bacteria in vitro 

Berberine exhibits broad-spectrum antimicrobial activity 
(Table 1) and demonstrates moderate eÿcacy against various 
pathogens, including World Health Organization priority 
pathogens such as Acinetobacter baumannii, Pseudomonas 
aeruginosa, Enterococcus faecalis, and Staphylococcus aureus. 
It also inhibits the growth and proliferation of Prevotella 
bryantii, Bacteroides fragilis, Acetoanaerobium sticklandii, and 
Porphyromonas gingivalis (Lakes et al., 2020; Okuda et al., 2023). 
Meanwhile, berberine inhibits spore growth of C. diÿcile and 
Bacillus cereus, thereby reducing the potential harm caused by 
spore germination (Wang et al., 2016). Moreover, antimicrobial 
eects of berberine are dose- and time-dependent; for instance, in 
Escherichia coli and methicillin-resistant S. aureus (MRSA), their 
survival rates gradually decrease with increasing concentrations of 
berberine or extended incubation times (Li et al., 2018c; Zhou F. F. 
et al., 2023). Unlike bacteriostatic agents such as chloramphenicol 
and clindamycin, berberine exerts bactericidal activity against 
various pathogens, including MRSA, Staphylococcus epidermidis, 
C. diÿcile, and Salmonella typhimurium, though the eective 
concentrations are substantially higher than their minimum 
inhibitory concentrations (MICs) (Wang et al., 2009b; Zhang et al., 
2013; Peng et al., 2015; Wulta´ nska et al., 2020). For example, the 
minimum bactericidal concentration for MRSA is 2,560 µg/mL, 
which is 25 times its MIC (Qiu and Xu, 2024). However, the MIC 
range of berberine against bacteria varies widely, from 0.78 µg/mL 
against Streptococcus agalactiae to as high as 100,000 µg/mL 
against Helicobacter pylori (Huang et al., 2015; Peng et al., 2015). 
Even for the same pathogen, this variability can be significant. 
For example, Li et al. (2018a) reported the MIC of berberine 
against H. pylori to be 25,000–100,000 µg/mL, while Huang et al. 
(2015) reported it to be 50 µg/mL. These discrepancies may be 
attributed to dierences in their antimicrobial susceptibility testing 
methods (Columbia blood agar with agar dilution vs. Brucella 
broth with broth dilution). The antifungal activity of berberine is 
also influenced by the culture medium (Ding et al., 2024). Indeed, 
prolonged exposure to berberine led to increased energy demands 
in E. coli, and the amino acid maintenance strategy shifted from 
transport to synthesis (Budeyri Gokgoz et al., 2017). Therefore, it 
can be inferred that berberine’s antimicrobial activity is susceptible 

to the influence of nutritional substrates, which is also related to its 
antimicrobial mechanisms. 

Another notable characteristic of berberine is the low likelihood 
of pathogens developing resistance to it. Studies have shown that 
after 200 generations of exposure to berberine, the MIC of E. coli 
remained unchanged, while the MICs of neomycin and cefotaxime 
increased more than 10-fold (Jin et al., 2010). As an amphipathic 
cation, berberine is a natural substrate for bacterial eux pumps, 
which are among the most critical mechanisms of resistance 
(Seukep et al., 2020). This property renders existing resistance 
mechanisms less likely to aect berberine’s activity. Consequently, 
berberine can act as an antibiotic adjuvant, competitively binding 
to eux pumps and reducing drug eux, thereby enhancing 
the antimicrobial activity of other antibiotics. However, it is 
important to note that berberine’s eects on eux pumps vary 
across species. Recent studies found that low concentrations 
of berberine promoted the growth and resistance of Klebsiella 
pneumoniae by upregulating the expression of the eux pump 
KmrA, while higher concentrations inhibited its growth (Li Y. 
et al., 2021). Similarly, overexpression of the eux pump HmrM 
in Haemophilus influenzae resulted in an elevated MIC for 
berberine (Xu et al., 2003). In contrast, in P. aeruginosa, berberine 
reduced AMR by inhibiting the MexXY-OprM eux pump (Su 
and Wang, 2018). This complex interaction is consistent with 
the varying antimicrobial activities of berberine against dierent 
strains. Additionally, low doses of berberine have been reported to 
have mitohormesis, oering protective benefits to neuroprotective 
cells (Zhu et al., 2020). Indeed, low concentration of berberine also 
promotes the growth of C. diÿcile biofilms, as well as Enterobacter 
cloacae and A. baumannii (Wulta´ nska et al., 2020; Li Y. et al., 2021). 
Therefore, although berberine exhibits significant antimicrobial 
activity, the potential toxicity at low doses and the impact of drug 
eux pumps on its eÿcacy should still be considered. 

3.2 Toxicity-modulating effects of 
berberine 

Virulence factors such as adhesion, biofilms, toxins, and 
quorum-sensing molecules not only help pathogenic bacteria 
evade host immune surveillance to promote colonization, but also 
synergistically invade host cells to cause damage (Lu et al., 2024). 
Berberine has been reported to directly inhibit the production of 
enterotoxin in certain Vibrio cholerae and E. coli for the treatment 
of bacterial diarrhea (Fu et al., 2010). In Aeromonas hydrophila, 
berberine similarly inhibits endotoxin and hemolysin secretion in 
a dose-dependent manner, reducing its hemolytic activity (Xue 
et al., 2015). Recent studies have also shown that berberine can 
inhibit the activities of pyocyanin and urease, thereby reducing 
the virulence and colonization of P. aeruginosa and H. pylori (Li 
et al., 2018a; Zhao et al., 2022). Our study also demonstrated 
that that subinhibitory concentrations of berberine reduce the 
production of C. diÿcile toxins TcdA and TcdB by inhibiting 
toxin synthesis genes, thereby decreasing its cellular invasiveness 
(Yang et al., 2025). In addition to directly inhibiting toxin 
production, berberine also exhibits significant anti-adhesion and 
anti-invasion properties. Berberine was found to inhibit adhesion 
and migration of HEp-2 cells induced by Chlamydia pneumoniae 
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TABLE 1 Minimum inhibitory concentrations (MICs) of berberine against bacterial species. 

Organism Identifier MIC (µg/mL) References 

A. baumannii ATCC 19606 1,024 Li Y. et al., 2021 

Drug resistant (n = 4) 256–1,024 Li Y. et al., 2021 

CI (n = 5) > 256 Ahmadi et al., 2022 

A. hydrophila — 125 Xue et al., 2015 

A. pleuropneumoniae — 312.5 Kang et al., 2015 

B. proteus ATCC 13315 256 Wen et al., 2016 

B. subtilis As.1.398 200 Jin et al., 2010 

C. acnes CI (n = 20) 5–25 Slobodníková et al., 2004 

C. diÿcile RT012 1,024 Wultańska et al., 2020 

ATCC 9689 256 Wultańska et al., 2020 

CI (n = 9) 256–900 Wultańska et al., 2020 

C. perfringens — ≈243.86 Yao et al., 2018 

C. violaceum ATCC 12472 2,500 Aswathanarayan and Vittal, 2018 

CV026 2,500 Aswathanarayan and Vittal, 2018 

E. coli DH10B 110/270 Li et al., 2018b,c 

KAM32 32 Xu et al., 2003 

ATCC 31343 2,000 Jin et al., 2010 

ATCC 25922 2,000 Jin et al., 2010 

STEC/EPEC (N = 5) ≈1.96 ± 0.11 Bandyopadhyay et al., 2013 

ETEC (N = 5) ≈1.80 ± 0.05 Bandyopadhyay et al., 2013 

E. faecalis ATCC 19 433 512 Gong et al., 2020 

E. typhosa ATCC 14028 512 Wen et al., 2016 

H. alvei CI (n = 1) 100 Pang et al., 2022 

H. pylori NCTC 11637 50 Li et al., 2018a 

Drug resistant (n = 4) 25,000–100,000 Huang et al., 2015 

K. pneumoniae CI (n = 9) 2,000 Magesh et al., 2013 

Drug resistant (n = 20) 512–> 512 Zhou et al., 2016 

L. monocytogenes CMCC 54004 8,129 Liu et al., 2015 

M. abscessus — 250 Tseng et al., 2020 

M. aurum ATCC 23366 62.5 Wijaya et al., 2022 

M. avium ATCC 25291 31.25 Wijaya et al., 2022 

M. luteus ATCC 4698 512 Wen et al., 2016 

M. kansasii ATCC 12478 31.25 Wijaya et al., 2022 

M. smegmatis ATCC 607 62.5 Wijaya et al., 2022 

M. tuberculosis ATCC 9431 125 Wijaya et al., 2022 

N. gonorrhoeae FA19 2.5 Rouquette-Loughlin et al., 2003 

NTM — 128–512 Puk and Guz, 2022 

N. meningitidis NMB 80 Rouquette-Loughlin et al., 2003 

P. aeruginosa PA01 1,250 Aswathanarayan and Vittal, 2018 

PA01-JP2 156 Aswathanarayan and Vittal, 2018 

As1.50 200 Jin et al., 2010 

ATCC 27853 ≥ 128 Liu et al., 2024 

(Continued) 
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TABLE 1 (Continued) 

Organism Identifier MIC (µg/mL) References 

CICC 10351 128 Yuan et al., 2016 

CI (n = 60) 125–250 Aghayan et al., 2017 

P. vulgaris CICC 22929 256 Yuan et al., 2016 

As1.491 1,000 Jin et al., 2010 

Salmonella CI (n = 10) > 625–1,250 Cui et al., 2024 

Drug resistant (n = 1) 3,125 Shi et al., 2018 

S. agalactiae CVCC 1886 0.78 Peng et al., 2015 

S. aureus ATCC 25923 (MSSA) 125 Mohtar et al., 2009 

NCTC 8325 (MSSA) 256 Zhang et al., 2022 

ATCC 35931 (MRSA) > 250 Mohtar et al., 2009 

N315 (MRSA) 256 Zhang et al., 2022 

USA300 (MRSA) 256 Zhang et al., 2022 

S. aureus ATCC 33591 (MRSA) 128 Chu et al., 2016 

XN108/Mu50 > 512 Zhang et al., 2022 

CI (MRSA, n = 43) 32–128 Yu et al., 2005; Liang et al., 2014 

CI (n = 60) 12–512 Tocci et al., 2013; Tan et al., 2019 

S. boydii ATCC 8700 35 Joshi et al., 2011 

S. capitis ATCC 35661 16 Wojtyczka et al., 2014 

S. dysenteriae LMP 0208U 100 Joshi et al., 2011 

S. enteritidis — 500 Iwasa et al., 1998; Yao et al., 2018 

S. epidermidis ATCC 12228 32 Wojtyczka et al., 2014 

ATCC 35983 128 Wang et al., 2009b 

CI 256 Wang et al., 2009b 

CI (n = 14) 25–> 500 Slobodníková et al., 2004 

S. flexneri MTCC 1457 40 Joshi et al., 2011 

SF301 640 Fu et al., 2010 

S. galinarium ATCC 700401 128 Wojtyczka et al., 2014 

S. haemolyticus ATCC 29970 256 Wojtyczka et al., 2014 

S. hominis ATCC 27844 64 Wojtyczka et al., 2014 

S. intermedius ATCC 29663 64 Wojtyczka et al., 2014 

S. lentus ATCC 700403 64 Wojtyczka et al., 2014 

S. lugdunensis ATCC 49576 64 Wojtyczka et al., 2014 

S. mutans ATCC 25175 1,024 Dziedzic et al., 2015 

S. oralis ATCC 9811 1,024 Dziedzic et al., 2015 

S. pneumoniae DP1004 11 Tocci et al., 2013 

ATCC 49619 256 Yuan et al., 2016 

S. pyogenes MGAS 5005 80 Du et al., 2020 

CICC 10464 > 256 Yuan et al., 2016 

S. sanguinis ATCC 10556 512 Dziedzic et al., 2015 

S. saprophyticus ATTC 15303 512 Wojtyczka et al., 2014 

S. sciuri ATCC 29060 128 Wojtyczka et al., 2014 

S. simulans ATCC 27851 128 Wojtyczka et al., 2014 

S. sonnei MTCC 2957 50 Joshi et al., 2011 

S. typhi CI 6 Wu et al., 2005 

(Continued) 
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TABLE 1 (Continued) 

Organism Identifier MIC (µg/mL) References 

S. typhimurium CI 76 Liu et al., 2024 

SL1344 2,048 Liu et al., 2015 

CMCC 50115 900 Xu et al., 2021 

As1.1174 2,000 Jin et al., 2010 

S. warneri ATCC 49454 512 Wojtyczka et al., 2014 

S. xylosus ATCC 700404 128 Wojtyczka et al., 2014 

Y. pestis — 2,500 Zhang et al., 2009 

A. baumannii, Acinetobacter baumannii; A. hydrophila, Aeromonas hydrophila; B. proteus, Bacillus proteus; A. pleuropneumoniae, Actinobacillus pleuropneumoniae; B. subtilis, Bacillus subtilis; 
C. acnes, Cutibacterium acnes; C. diÿcile, Clostridioides diÿcile; C. perfringens, Clostridium perfringens; C. violaceum, Chromobacterium violaceum; E. coli, Escherichia coli; E. faecalis, 
Enterococcus faecalis; E. typhosa, Eberthella typhosa; H. alvei, Hafnia alvei; H. pylori, Helicobacter pylori; K. pneumoniae, Klebsiella pneumoniae; L. monocytogenes, Listeria monocytogenes; 
M. abscessus, Mycobacterium abscessus; M. aurum, Mycolicibacterium aurum; M. avium, Mycobacterium avium; M. luteus, Micrococcus luteus; M. kansasii, Mycobacterium kansasii; 
M. smegmatis, Mycolicibacterium smegmatis; M. tuberculosis, Mycobacterium tuberculosis; N. gonorrhoeae, Neisseria gonorrhoeae; NTM, non-tuberculous mycobacteria; N. meningitidis, 
Neisseria meningitidis; P. aeruginosa, Pseudomonas aeruginosa; P. vulgaris, Proteus vulgaris; S. agalactiae; Streptococcus agalactiae; S, aureus, Staphylococcus aureus; S. boydii, Shigella boydii; 
S. capitis, Staphylococcus capitis; S. dysenteriae, Shigella dysenteriae; S. enteritidis, Salmonella enteritidis; S. epidermidis, Staphylococcus epidermidis; S. flexneri, Shigella flexneri; S. galinarium, 
Staphylococcus galinarium; S. haemolyticus, Staphylococcus haemolyticus; S. hominis, Staphylococcus hominis; S. intermedius, Staphylococcus intermedius; S. lentus, Staphylococcus lentus; 
S. lugdunensis, Staphylococcus lugdunensis; S. mutans, Streptococcus mutans; S. oralis, Streptococcus oralis; S. pneumoniae, Streptococcus pneumoniae; S. pyogenes, Streptococcus pyogenes; 
S. sanguinis, Streptococcus sanguinis; S. saprophyticus, Staphylococcus saprophyticus; S. sciuri, Staphylococcus sciuri; S simulans, Staphylococcus simulans; S. sonnei, Shigella sonnei; S. typhi, 
Salmonella typhi; S. typhimurium, Salmonella typhimurium; S.warneri, Staphylococcus warneri; S. xylosus, Staphylococcus xylosus; Y. pestis, Yersinia pestis; CI, clinical isolates. 

infection, thereby reducing the invasive power of HEp-2 cells 
(Zhang et al., 2011). In bacterial infections, berberine (20 µg/mL) 
reduced Salmonella Typhimurium adhesion and invasion of colon 
cells by 54.86% and 55.37%, respectively (Aswathanarayan and 
Vittal, 2018). Moreover, berberine could attenuate the adhesion 
and intracellular invasion of MRSA on epithelial cells and reduce 
its induced apoptosis in a dose-dependent manner (Yu et al., 
2005; Xiong et al., 2014). Importantly, at concentrations eective 
against bacterial virulence, berberine does not exhibit toxicity 
to red blood cells, thymocytes, or splenocytes (Laudadio et al., 
2019; Jhanji et al., 2021). Additionally, berberine downregulates 
the synthesis of staphyloxanthin by inhibiting the expression 
of the S. aureus Fni gene. Staphyloxanthin stabilizes the cell 
membrane by reducing membrane fluidity, enhancing its resistance 
to both host defenses and antibiotics (Qiu and Xu, 2024). 
N-acetyltransferase, associated with AMR in bacteria, promotes 
bacterial tolerance to aminoglycoside antibiotics. Berberine down-
regulated N-acetyltransferase protein and gene expression in 
S. aureus, H. pylori, and Salmonella typhi in a dose-dependent 
manner (Wu et al., 2005; Wang et al., 2008; Chang et al., 2011). 

Biofilms are critical virulence factors for many pathogenic 
microorganisms. Bacteria commonly adhere to host tissues such 
as carious teeth or the lungs of cystic fibrosis patients, or the 
surfaces of medical devices including artificial joints, heart valves, 
and urinary catheters, by forming biofilms. These structured 
microbial communities enhance antibiotic resistance, facilitate 
immune evasion, promote chronic infections, and can lead to 
secondary infections (Bouhrour et al., 2024). As shown in Table 2, 
berberine at concentrations ranging from 50 to 500 µg/mL 
significantly inhibited biofilm formation by clinically relevant 
pathogens, including S. aureus, S. epidermidis, P. aeruginosa, and 
K. pneumoniae, with inhibition rates exceeding 50% across all 
strains. In S. aureus, berberine not only inhibits biofilm formation 
in a dose-dependent manner but also interferes with the late-
stage dispersal phase of biofilm development, thereby preventing 
the establishment of persistent bacterial colonies and reducing 
the risk of recurrent infections (Chu et al., 2016; Zhang et al., 

2022). More importantly, studies have shown that a berberine-
loaded liposomal hydrogel can eectively disrupt S. aureus biofilms 
and reduce biofilm biomass in infected mouse wounds, thereby 
promoting wound healing (Li S. et al., 2023). Another study 
demonstrated that when used as a root canal irrigant, berberine 
reduced bacterial counts by up to 99% in a multi-species dentin 
biofilm model containing Fusobacterium nucleatum, E. faecalis, and 
Prevotella intermedia (Xie et al., 2012). Wang et al. (2009a) also 
reported that berberin significantly inhibited the initial adhesion 
of S. epidermidis to titanium alloy disks (a common orthopedic 
implant material) within just 2 h, thereby preventing biofilm 
formation. Moreover, in biofilms formed by clinical isolates of 
P. aeruginosa, berberine significantly enhanced the antibacterial 
activity of tobramycin, reducing bacterial tolerance to the antibiotic 
by 10- to 1,000-fold (Mangiaterra et al., 2021). Shi et al. (2018) also 
found that berberine, when combined with ciprofloxacin, exerts 
a synergistic eect against biofilms formed by multidrug-resistant 
Salmonella strains by inhibiting the expression of the quorum-
sensing system. Indeed, berberine disrupts biofilm formation and 
prevents dispersal of biofilm cells by downregulating related 
genes, inhibiting extracellular genomic DNA release and expression 
of polysaccharide intercellular adhesins, and interacting with 
quorum-sensing receptors (Guo et al., 2015; Zhou H. et al., 
2023). Therefore, berberine shows significant potential in inhibiting 
bacterial biofilm formation and enhancing antibiotic sensitivity, 
oering a promising adjunctive strategy for the prevention and 
treatment of biofilm-associated infections. 

3.3 Therapeutic efficacy of berberine in 
treating bacterial infections in vivo 

Although the antibacterial activity of berberine has been 
well-characterized in vitro, limited in vivo studies have not 
fully elucidated its therapeutic potential. Table 3 provides a 
detailed summary of in vivo studies on berberine. Briefly, 
berberine exhibited a strong therapeutic eect on inflammatory 
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TABLE 2 Inhibitory activity of berberine on biofilms. 

Organism Identifier Concentration 
(µg/mL) 

Inhibition rate (%) References 

C. diÿcile ATCC 9689 128 0 Wultańska et al., 2020 

CI (n = 9) 128 0 Wultańska et al., 2020 

E. faecalis CI (n = 1) 100 > 80% Chen et al., 2016 

H. alvei CI (n = 1) 50 40 Pang et al., 2022 

K. pneumoniae CI (n = 7) 62.5 75 Magesh et al., 2013 

M. abscessus – 250 > 70 Tseng et al., 2020 

P. aeruginosa PA01 128 > 85 Liu et al., 2024 

P. aeruginosa PA01 625 71.70 Aswathanarayan and Vittal, 2018 

Salmonella Drug resistant (n = 1) 1,562 61.4 Shi et al., 2018 

S. aureus ATCC 33593 64 36% Seo et al., 2024 

ATCC 43300 1,024 71.80 Xia et al., 2022 

ATCC 33591 64 > 50 Chu et al., 2016 

ATCC 25923 500 > 50 Safai et al., 2022 

CI (MRSA) 512 95.65 Xia et al., 2022 

CI (n = 18) 128 > 60 Tan et al., 2019 

CI (n = 10) > 1,024–1,024 100 Guo et al., 2015 

S. epidermidis ATCC 35984 60 100 Wang et al., 2009a 

ATCC 12228 60 100 Wang et al., 2009a 

SE 243 60 100 Wang et al., 2009a 

S. mutans ATCC 700610 64 > 70 Zhou H. et al., 2023 

S. typhimurium CI (n = 1) 19 31.20 Aswathanarayan and Vittal, 2018 

S. typhimurium CMCC 50115 56.25 66.29 Xu et al., 2021 

responses induced by bacterial infections in vivo, whereas its 
direct antibacterial activity is comparatively weaker. For example, 
in P. aeruginosa infections, berberine reduces the bacterial 
burden in infected mice, but more noteworthy is its potent 
anti-inflammatory activity (Liu et al., 2024). Previous studies 
have also reported that berberine significantly reduces osteoclast 
recruitment and bone resorption, demonstrating a therapeutic 
eect on lipopolysaccharide-induced osteolysis (Zhou et al., 
2012). Indeed, berberine can attenuate inflammatory responses, 
coagulation activation, and organ dysfunction caused by bacterial 
infections through multiple mechanisms, including inhibition of 
the caspase-11 pathway and inhibition of COX-2 overexpression 
(Feng et al., 2012; Yuan et al., 2021). These aspects have 
been comprehensively reviewed by Izadparast et al. (2022), 
and the reader is referred to their work for more detailed 
information (DOI: 10.1080/ 15384101.2022.2100682). However, 
the antibacterial activity of berberine in vivo is relatively weaker 
compared to its in vitro eÿcacy. The probable reason for this 
is the low oral utilization and intestinal absorption of berberine 
and its very rapid blood clearance (Singh et al., 2021). After oral 
administration of 40 mg/kg berberine to mice, only trace amounts 
of berberine were detected in the plasma (Zuo et al., 2006). In 
human subjects, plasma berberine concentrations ranged from 
1.23 to 2.10 ng/mL at 24 h after a 500 mg oral dose (Solnier 
et al., 2023). Although no side eects or adverse events were 
reported, such low plasma levels may prevent berberine from 

achieving eective antibacterial concentrations at infection sites, 
thereby limiting its clinical application. It is noteworthy that 
the cytotoxic threshold of berberine varies significantly across 
dierent cell lines: in L929 mouse fibroblast cells, cell viability 
decreases at concentrations as low as 50 µg/mL, whereas the half-
maximal inhibitory concentrations in human HepG2 liver cells, 
NIH/3T3 fibroblasts, and 293T kidney cells are above 90, 100, and 
80 µg/mL, respectively (Gu et al., 2015; Tong et al., 2021). Although 
in vitro results may not fully reflect in vivo conditions, its safety 
profile in vivo remains insuÿciently characterized, particularly 
due to a lack of systematic evaluation of the eects of long-
term or high-dose administration on major organs and tissues. 
Therefore, further investigation into the toxicological mechanisms 
of berberine in vivo is necessary to comprehensively clarify its 
safety. Nevertheless, as shown in Table 3, berberine exhibits 
significant synergistic eects with antibiotics in vivo, enhancing 
their antibacterial eÿcacy. In two randomized, open-label, non-
inferiority clinical trials, a berberine-containing quadruple therapy 
demonstrated similar eradication rates and symptom improvement 
compared to conventional quadruple therapies for H. pylori 
infection (Zhang et al., 2017, 2020). In addition, berberine can 
alleviate drug-induced diarrhea and intestinal mucosal damage 
by modulating the intestinal microbiota, such as the anticancer 
agents irinotecan and 5-fluorouracil (Chen et al., 2020; Yue 
et al., 2021). Therefore, berberine holds promise as an antibiotic 
adjuvant for clinical antimicrobial therapy, helping to address the 
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TABLE 3 Antibacterial activity of berberine in vivo. 

Species Model Animal Dose Route Outcome References 

A. baumannii Thigh infection Mice (N = 5) BBR+SUL (20 mg+/kg/12 h) i.m. SUL and BBH alone do not exhibit therapeutic eects; however, 
their combination demonstrates bactericidal activity against 
multidrug-resistant A. baumannii (P < 0.05). 

Li Y. et al., 2021 

C. diÿcile – Mice (N = 10) BBR+VAN (100+50 mg/kg/d) OG Berberine alone can improve the survival rate of mice and 

reduce inflammatory infiltration. When combined with 

vancomycin, the eect is enhanced, and it also prevents the 

recurrence of C. diÿcile infection (P < 0.05). 

Lv et al., 2015 

CLP Sepsis Rat (N = 10) BBR (50 mg/kg/d) OG Pre-treatment with berberine before septic infection improves 
the survival rate of rats, reduces plasma endotoxin levels, and 

alleviates hypozincemia in rats. 

He et al., 2019 

E. coli/P. aeruginosa 

/S. aureus 
– Zebrafish BBR+RUT+SABX i.m. The combination therapy containing berberine significantly 

reduced bacterial load more than SABX alone (P < 0.05). 
Jhanji et al., 2021 

E. coli Sepsis Mice BBR+IMI (5 + 20 mg/kg/8 h) i.p. Mice treated with berberine alone exhibited a survival rate of 
50% at 24 h, which decreased to 20% at 48 h. However, 
pre-treatment with berberine followed by combination therapy 

with IMI resulted in complete survival of the mice (P < 0.05). 

Pierpaoli et al., 2021 

E. coli – G. mellonella 

(N = 20) 
BBR (4,096 µg/mL) – Pre-treating E. coli with berberine or administering berberine to 

G. mellonella infected with E. coli significantly improved the 

survival rate of G. mellonella and reduced bacterial load 

(P < 0.05). 

Petronio Petronio et al., 2020 

H. pylori Acute gastritis Mice (N = 6) BXXXD + OME 

(7/28+132.8 mg/kg/d) 
OG BXXXD combined with OME outperformed traditional triple 

therapy in reducing H. pylori colonization, suppressing 

inflammatory responses, and alleviating gastric mucosal 
damage (P < 0.001). 

Ciccaglione et al., 2023; Li 
X. H. et al., 2023 

H. pylori Gastritis Mice (N = 6) CECY (100/200/400 mg/kg/d) OG High-dose CECY significantly inhibits the survival of H. pylori 
in the gastric mucosa, alleviates mucosal congestion and 

damage, reduces epithelial cell loss, and decreases IgG 

expression levels (P < 0.01). 

Wu et al., 2023 

H. pylori Atrophic gastritis Rat (N = 6) BBR (14/28 mg/kg/d) OG Berberine could attenuate the histological damage of the gastric 

mucosa induced by. H. pylori exerted anti-inflammatory 

properties by inhibiting the IRF8-IFN-γ signaling axis 
(P < 0.01). 

Yang et al., 2020 

LPS Endotoxemia Mice /Rabbit 
(N = 10) 

BBR (0.2 g/kg)/BBR (0.06 g/kg) OG Berberine treatment enhanced the survival rate following LPS 

infection and alleviated LPS-induced fever symptoms 
(P < 0.05). 

Chu et al., 2014 

M. tuberculosis Tuberculosis Mice BBR+ISO+RIF 

(5.5 + 0.6 + 0.6 mg) 
OG Berberine alone or in combination with ISO and RIF does not 

aect pulmonary bacterial load; however, it can act as an 

immunomodulator to alleviate lung pathological changes 
(P < 0.05). 

Ozturk et al., 2021 

(Continued) 
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TABLE 3 (Continued) 

Species Model Animal Dose Route Outcome References 

P. aeruginosa Peritonitis model Mice (N = 5) BBR (20 µg/mL) i.p. Berberine treatment significantly reduced the intense 

inflammatory response (IL-6, IL-1β) and liver bacterial load 

induced by P. aeruginosa. 

Liu et al., 2024 

P. aeruginosa lung infection Mice (N = 8) BBR+AZM (3.2+0.8 mg/kg) T.v.i. Berberine alone reduced bacterial load and inflammation in the 

lung tissues of infected mice, but the survival rate was only 1/8. 
In contrast, combination therapy with berberine and AMZ 

increased the survival rate to 7/8 and significantly reduced 

abscesses and hemorrhagic areas (P < 0.05). 

Li et al., 2017 

Salmonella Intraperitoneal Mice (N = 8) BBR+COL+EDTA 

(80+8+10 mg/kg) 
i.p. The use of berberine alone slightly reduced the bacterial load in 

the liver and spleen of infected mice, whereas the triple therapy 

significantly decreased the bacterial load and restored the 

in vivo susceptibility to COL (P < 0.05). 

Cui et al., 2024 

S. aureus Arthritis Mice (N = 10) BBR (50/100/200 mg/kg) OG Berberine significantly alleviates joint swelling and 

inflammatory responses caused by S. aureus (P < 0.05). 
Asila et al., 2022 

S. typhimurium – C. elegans BBR (38 µg/mL) – Berberine dose-dependently reduced the paralysis rate in 

C. elegans, with a 65.38% reduction in paralysis (P < 0.05). 
Aswathanarayan and Vittal, 
2018 

S. typhimurium – Mice (N = 10) BBR (40 mg/kg) OG The survival rate of infected mice reached 90% after berberine 

treatment, compared to 50% in the untreated group (P < 0.05). 
Chu et al., 2014 

S. typhimurium – Mice (N = 10) CR (250 mg/kg) OG CR can prevent weight loss and inflammatory responses caused 

by S. typhimurium infection, as well as reduce bacterial load 

(P < 0.05). 

Chang et al., 2014 

i.p., intraperitoneal injection; i.m., intramuscular injection; TA; topically applied, OG; oral gavage; T.v.i., tail vein injection; CLP, cecal ligation and puncture; BBR, berberine; COL, colistin; RUT, rutin; SABX, standard antibiotics; IMI, imipenem; AZM, azithromycin; 
OME, Omeprazole; BXXXD, BanXiaXieXin decoction (Pinellia ternate, Radix scutellariae, Dried ginger, Ginseng, Roasted licorice, Coptis chinensis, Jujubes); CECY, chloroform extracts of Corydalis yanhusuo; LPS, lipopolysaccharide; CR, Coptidis rhizome; SUL, sulbactam; 
ISO, isoniazid; RIF, rifampicin; VAN, vancomycin; C. elegans, Caenorhabditis elegans; G. mellonella, Galleria mellonella. 
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growing threat of AMR. Notably. antibiotics can negatively impact 
the gut microbiota, thereby reducing berberine’s bioavailability 
(Feng et al., 2015). Further studies on synergistic administration 
regimens of berberine and antibiotics are still needed in the future. 
Given berberine’s high tolerance and high LD50 (oral: 329 mg/kg, 
injection: 23 mg/kg) (Gasmi et al., 2024), along with its low 
propensity to induce resistance, increasing the berberine dose in 
combination therapy while reducing the antibiotic dose could be 
considered as a strategy to mitigate the occurrence of AMR. 

Overall, berberine exhibits dose- and time-dependent 
antimicrobial eects against clinically relevant pathogens, with 
its anti-inflammatory properties, low potential for resistance, and 
ability to mitigate drug side eects highlighting its potential as both 
an antimicrobial agent and antibiotic adjuvant. However, its low 
bioavailability, potential cytotoxicity, and lack of comprehensive 
in vivo evaluation hinder its clinical application. Future research 
should focus on addressing these challenges, particularly through 
systematic in vivo studies. Additionally, standardized evaluation 
methods are needed to resolve the MIC discrepancies observed 
in current studies, with the approach proposed by Alharthi et al. 
(2021) providing a solution (DOI: 10.1016/j.bmc.2021.116527). 

4 Antibacterial mechanisms of 
berberine 

4.1 Berberine inhibits bacterial division by 
targeting the FtsZ protein 

Filamentous temperature-sensitive mutant Z (FtsZ) is a 
key organizer of bacterial cell division. During the division 
process, FtsZ associates with membrane-associated proteins 
and assembles into protofilaments through GTP-dependent 
polymerization, forming a Z-ring that ensures the correct 
localization of other division proteins such as FtsA and ZipA 
(Cameron and Margolin, 2024). Berberine can target FtsZ 
to inhibit bacterial growth. In E. coli, berberine significantly 
reduces Z-ring formation, and silencing the FtsZ gene enhances 
bacterial sensitivity to berberine, reducing its MIC by 2-
fold. Conversely, overexpression of FtsZ increases resistance to 
berberine (Boberek et al., 2010). Consistently, another study 
demonstrated that berberine treatment severely disrupts E. coli 
cell division, resulting in significantly elongated cells (Budeyri 
Gokgoz et al., 2017). Berberine spontaneously binds to the 
GTP-binding pocket of FtsZ in a dose-dependent manner 
and a 1:1 ratio, inhibiting FtsZ monomer interactions and 
disrupting the formation of FtsZ protofilaments. This results 
in the mislocalization and spatial disorganization of the Z-ring, 
thereby hindering cell division (Domadia et al., 2008). Notably, 
FtsZ is highly conserved and widely present across various 
bacterial species. In B. anthracis, MRSA, and E. faecium, berberine 
also exhibits significant inhibitory eects on the GTPase and 
polymerization activities of FtsZ (Park et al., 2014; Sun et al., 
2014). Through virtual screening and computational methods, 
recent studies have revealed that berberine can form stable 
complexes with the FtsZ of Mycobacterium tuberculosis and 
Salmonella typhi, demonstrating high binding aÿnity (Akinpelu 

et al., 2022; Naz et al., 2022). This may explain the broad-
spectrum antibacterial activity and dose-dependent inhibitory 
eects exhibited by berberine. 

4.2 Berberine targets bacterial cell 
membranes and walls to disrupt cell 
structure 

The cell membranes and cell walls are primary targets for 
existing antibiotics. For instance, β-lactam antibiotics prevent 
the cross-linking of peptidoglycan in the bacterial cell wall. 
Peptide antibiotics interfere with cell membrane synthesis by 
inhibiting lipid integration into the cell membrane (Baran et al., 
2023). Berberine, however, binds to cell membranes and cell 
walls by a mechanism of action dierent from the above, 
thereby inhibiting bacterial growth. Due to the lack of extensive 
hydrogen bonding, berberine, in its positively charged form, can 
intercalate into lipid bilayers and penetrate the cell interior. 
Nevertheless, it also disrupts the phospholipid bilayer (Sokolov 
et al., 2023). Upon exposure to berberine, bacteria such as 
P. aeruginosa, S. agalactiae, and A. pleuropneumoniae exhibit 
features of membrane lysis and cell wall damage, including 
cytoplasmic shrinkage and leakage of cell contents (Kang et al., 
2015; Peng et al., 2015; Liu et al., 2024). Recent studies have 
shown that berberine increases membrane permeability in MRSA 
in a dose-dependent manner and directly adheres to the bacterial 
cell wall, disrupting its structure and leading to cell lysis (Zhou 
F. F. et al., 2023). Similar alterations in cell surface structure 
were observed in E. coli, accompanied by the release of Ca2+ 

and K+ ions (Jin et al., 2010). Indeed, berberine can directly 
bind to cell wall components, such as lipopolysaccharides and 
peptidoglycans, disrupting normal cell wall physiological processes 
(Li et al., 2018c). Notably, in fungi, berberine also damages 
the cell membrane by inhibiting enzymes and downregulating 
genes involved in ergosterol synthesis (Ding et al., 2024). 
However, bacteria like E. coli upregulate genes related to cell 
wall and membrane transport and synthesis after berberine 
exposure (Zhang et al., 2009; Karaosmanoglu et al., 2014). This 
response may represent a stress reaction to membrane and 
wall damage, but also indicates that berberine does not inhibit 
the expression of these genes to disrupt the cell membrane. 
As previously mentioned, berberine is a natural substrate of 
eux pumps, which increase membrane potential by exporting 
protons, thereby attracting positively charged molecules such 
as berberine. Zhao et al. (2023) demonstrated that berberine 
eux via drug eux pumps dissipates membrane potential, 
resulting in increased intracellular accumulation of berberine 
and heightened membrane instability. This may also explain 
the time-dependent antibacterial activity of berberine and its 
eects on the cell membrane. However, due to the eect of 
the eux pump, this can also lead to a decrease in bacterial 
sensitivity to berberine, as has been demonstrated in several 
studies (Xu et al., 2003; Li et al., 2018b). In summary, berberine 
primarily exerts its eects on bacterial cell walls and membranes 
through its physical properties, disrupting the normal structure of 
the cell. 
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4.3 Berberine inhibits the fundamental 
metabolic processes of bacteria 

Berberine has a high aÿnity for DNA and RNA. It causes 
DNA damage by inserting into the DNA structure and forming 
strong interactions through hydrogen bonding, van der Waals 
forces, and electrostatic forces (Budeyri Gokgoz et al., 2017). 
Studies have shown that berberine exerts anticancer activity by 
disrupting cell division and inducing apoptosis through binding 
to histone-DNA complexes (Sokolov et al., 2023). In bacteria, 
berberine not only binds to DNA and RNA, causing damage, but 
also inhibits essential biological processes such as DNA, RNA, 
and protein synthesis. Binding kinetics indicate that berberine 
readily binds to and remains tightly bound to DNA and RNA in 
E. coli, thereby inhibiting DNA replication, RNA transcription, and 
protein synthesis to exert antibacterial activity (Jin et al., 2010). 
Consistently, in A. pleuropneumoniae and S. agalactiae, berberine 
reduced DNA and protein levels in a time-dependent manner, 
probably due to its gradual accumulation within the cell (Kang 
et al., 2015; Peng et al., 2015). In addition, berberine disrupts 
the redox homeostasis of bacteria, generating reactive oxygen 
species (ROS) that attack key cellular components such as DNA, 
membranes, and mitochondria. Avci et al. (2019) reported that 
berberine induced oxidative stress and intracellular accumulation 
of reactive substances in E. coli. Similarly, elevated ROS levels 
were observed in P. aeruginosa and Streptococcus pyogenes after 
treatment with berberine, and co-culture with antioxidants partially 
attenuated their antimicrobial activity (Du et al., 2020; Liu et al., 
2024). In fungi, mitochondrial dysfunction caused by ROS is 
the main antifungal mechanism of berberine (Ding et al., 2024). 
Although berberine has been reported to inhibit intracellular 
ATP production (Liu et al., 2024), its specific eect on bacterial 
mitochondrial function remains unclear and deserves further 
investigation. Nevertheless, ROS production still contributes to the 
antibacterial activity of berberine. However, bacterial DNA damage 
triggers the SOS response (a post-replicative DNA repair system), 
which inhibits bacterial division. In E. coli, berberine inhibits 
bacterial division in wild-type and SOS-negative strains, while 
SOS-negative strains do not respond to SOS-induced inhibition 
of cell division (Boberek et al., 2010). Furthermore, recent studies 
have found that only about 5% of the berberine accumulated 
in S. aureus cells binds to DNA (Zhao et al., 2023). This 
suggests that the primary mechanism of berberine’s inhibition of 
bacterial division involves targeting FtsZ, while its eects on DNA, 
RNA, and proteins predominantly influence bacterial metabolic 
processes. In various bacteria, including E. coli, Yersinia pestis, and 
S. flexneri, significant changes have been observed in metabolic 
pathways such as carbohydrate metabolism, energy production and 
conversion, DNA replication and repair, pyrimidine metabolism, 
RNA degradation, and ribosome function (Zhang et al., 2009; 
Fu et al., 2010; Budeyri Gokgoz et al., 2017). Notably, DNA 
replication, repair, and pyrimidine metabolism are significantly 
upregulated in response to berberine-induced DNA damage. 
Thus, berberine exerts its antibacterial activity synergistically 
by targeting key biomolecules and disrupting essential bacterial 
metabolic processes. 

In conclusion, berberine exhibits antibacterial activity through 
a multifaceted mechanism, including targeting FtsZ, disrupting the 

cell membrane and cell wall, and interacting with DNA, RNA, 
proteins, and bacterial redox homeostasis. This multi-target mode 
of action not only disrupts fundamental bacterial processes but 
also hinders the development of resistance to berberine. However, 
the adverse eects of drug eux pumps significantly limit the 
application of berberine by reducing its intracellular accumulation 
and thus diminishing its antibacterial eÿcacy. Therefore, future 
research aimed at overcoming eux pump-mediated resistance 
holds promise for enhancing the therapeutic potential of berberine. 

5 Future avenues of application for 
berberine 

5.1 Synergistic antibacterial activity and 
mechanisms of berberine-containing 
natural extracts 

Berberine is found in various medicinal plants, including 
Hydrastis canadensis, Berberis aristata, Coptis chinensis, and Coptis 
rhizome (Zhou H. et al., 2023). These plants are distributed globally 
and oer significant advantages such as accessibility and low cost. 
More importantly, the extracts from these plants also exhibit 
direct antimicrobial activity. Supplementary Table 1 (Antibacterial 
activity of berberine (BBR) extracts against bacteria) summarizes 
the antimicrobial activity of berberine extracts. In brief, berberine 
extracts display antimicrobial activity similar to or even superior 
to that of pure berberine, although the results are not universally 
consistent. For instance, in the same study, Hydrastis canadensis 
extract had an MIC of 15 mg/mL against P. aeruginosa, whereas 
the MIC of berberine was > 120 mg/mL, and the reverse was 
observed for S. aureus (Scazzocchio et al., 2001). This dierential 
eect may be related to the mode of interaction between berberine 
and other active ingredients in the extract. Previous studies have 
demonstrated that 5-methoxyhydnocarpin isolated from Berberis 
fremontii can inhibit drug eux pumps, thereby increasing the 
intracellular accumulation of berberine and reducing its MIC 
against S. aureus by 8-fold (Stermitz et al., 2000). Moreover, the 
extracts of Lupinus argenteus and Hydrastis canadensis L. also 
demonstrate synergistic eects with berberine (Morel et al., 2003; 
Ettefagh et al., 2011). Table 4 summarizes other plant compounds 
that exhibit synergistic eects when combined with berberine. 
While no antagonistic eects have been reported with berberine, 
it is plausible that such compounds may exist in plant extracts. 
Notably, antimicrobial activity varies among dierent parts of the 
same plant. For example, the MIC of Berberis microphylla root 
extract against S. aureus is 2–3 times higher than that of its leaf and 
stem extracts (Manosalva et al., 2016). Furthermore, plant extracts 
also exhibit in vivo anti-inflammatory and antimicrobial activities, 
as outlined in Table 3. Recent studies have demonstrated that Coptis 
chinensis extract inhibits the production of pro-inflammatory 
cytokines such as TNF-α, IL-1β, and the NF-κB signaling pathway 
induced by Propionibacterium acnes, showing its potential for 
treating acne-related inflammatory skin conditions (Lee et al., 
2018). In another study, Berberis aristata extract demonstrated 
not only in vitro antibacterial activity against Shigella but also 
exhibited antidiarrheal activity in vivo, with an LD50 > 5,000 mg/kg 
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(Joshi et al., 2011). Given that these plants have been used in 
traditional ethnomedicine for centuries, their extracts possess 
great therapeutic potential in combating antimicrobial infections, 
potentially oering a promising strategy to address the escalating 
global threat of AMR. 

5.2 Antibacterial activity and physical 
properties of berberine nanoparticles 

Although berberine has potential cytotoxicity and poor 
bioavailability, its combination with nanotechnology can overcome 
these limitations. As summarized in Supplementary Table 2 
(MICs of berberine nanoformulations against bacteria), when 
berberine is combined with nanocarrier systems such as liposomes, 
shellac, and metal ions, it exhibits improved biocompatibility, low 
toxicity, high bioavailability, and enhanced antimicrobial activity. 
Compared to free berberine, lipid-reconstituted nanoparticle-
coated poly (lactic-co-glycolic acid) nanoparticles loaded with 
berberine have a significantly lower MIC of 5 µg/mL against 
Mycobacterium smegmatis, whereas the MIC of free berberine is 
100 µg/mL (Pu et al., 2024). Al-Obaidy et al. (2019) also observed 
that dual-functionalized shellac nanocarriers can enhance the 
local concentration of berberine, thereby improving its biological 
stability and bioavailability. In another study, gold nanoparticles 
were shown to double the antimicrobial activity of berberine against 
S. aureus biofilms. In an infected skin model, berberine-loaded gold 
nanoparticles reduced the survival rate of MRSA to only 2.7%, 
with no observed toxicity in mouse fibroblast cells (Sadeghi et al., 
2024). In addition, the physical and chemical properties of dierent 
nanocarriers significantly influence their performance in drug 
delivery systems and in vivo applications. For example, liposomes 
encapsulating berberine achieve an encapsulation eÿciency of up 
to 69.8% (Pu et al., 2024). In contrast, shellac and metal-organic 
frameworks (MOFs) exhibit lower encapsulation eÿciencies of 
approximately 60% and 35%, respectively. However, under near-
physiological pH conditions, shellac and MOFs demonstrate 
higher drug release rates, reaching up to 80%, whereas liposomes 
release only 57.3% of the encapsulated drug (Al-Obaidy et al., 
2019; Hu et al., 2023; Pu et al., 2024). Furthermore, liposomal 
encapsulation of berberine can improve its bioavailability by 
prolonging its in vivo retention time (Sun et al., 2024). According 
to the findings of Abo El-Enin et al. (2022), the concentration 
of berberine at the target site was 13.2 times higher in the 
liposome-treated group compared to the control group, indicating 
significantly enhanced targeting eÿciency. The shellac-based 
delivery system exhibits strong adhesion to microbial cell walls, 
which further improves targeting and enhances antimicrobial 
activity (Sun et al., 2024). Remarkably, MOFs have demonstrated 
pronounced advantages in targeted delivery. For instance, Wang 
et al. (2017) developed magnetic mesoporous silica nanoparticles 
capable of controlled drug release under an external magnetic 
field. However, the elemental composition and surface charge of 
metallic nanoparticles may increase their toxicity (Sun et al., 2024). 
Despite these promising findings, many types of nanocarriers 
still lack comprehensive in vivo evaluations. Therefore, further 
preclinical and clinical investigations are warranted to substantiate 
their safety and therapeutic eÿcacy. Moreover, drug self-assembled 
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nanoparticles, which do not require carriers, not only retain 
these advantages but also exhibit higher drug-loading capacity. 
For example, self-assembled nanoparticles of berberine and 
flavonoids show enhanced aÿnity for S. aureus, leading to bacterial 
collapse and reduced biofilm formation, while demonstrating 
good biocompatibility in zebrafish toxicity assessments (Li et al., 
2019). Recent studies have also shown that gallic acid and 
berberine nanoparticles, formed through electrostatic interactions, 
π-π stacking, and hydrophobic interactions, exhibit antimicrobial 
and anti-biofilm activities in a S. aureus wound infection model, 
along with potent anti-inflammatory and pro-angiogenic eects 
(Chen et al., 2023). Therefore, utilizing the unique properties of 
nanomaterials can enhance the antimicrobial eÿcacy of berberine 
in vivo, oering an alternative strategy to combat the growing 
threat of AMR. However, the research on self-assembly still has 
problems such as preparation stability, which will be a direction for 
subsequent research. 

In summary, berberine extracts and nanomaterial-based 
formulations oer distinct advantages in antibacterial therapy. 
Berberine extracts have a long history of use in treating 
inflammation and bacterial diarrhea, with promising applications 
in combating bacterial infections. In contrast, berberine 
nanomaterials exhibit enhanced bioavailability and lower toxicity, 
further improving both eÿcacy and biological safety. However, 
comprehensive in vivo studies are still lacking. Moreover, the 
significant antibacterial activity exhibited by berberine derivatives 
provides new avenues for its further development, as systematically 
summarized by Xiao et al. (2018), Jamshaid et al. (2020). 

6 Conclusion and perspective 

To address the growing global threat of AMR, natural bioactive 
compounds oer a promising therapeutic strategy. Compared 
to existing single-target antimicrobial drugs, the natural active 
compound berberine not only exhibits a multi-target mechanism of 
action against bacteria, but also has lower toxicity, fewer side eects, 
and oers beneficial eects by reducing the adverse reactions 
associated with antibiotics. Importantly, not only are berberine-
containing medicinal plants widely distributed and traditionally 
used throughout the world, but the extraction of berberine from 
medicinal plants is also consistent with healthcare economics. 
These factors highlight the significant potential of berberine as an 
antimicrobial agent. However, the clinical application of berberine 
is significantly limited by factors such as potential cytotoxicity, 
low bioavailability, insuÿcient systematic in vivo evaluation of 
its antimicrobial activity, and the impact of drug eux pumps. 
Although combining with nanotechnology may improve the above-
mentioned drawbacks of berberine, systematic in vivo validation is 
lacking. More importantly, there is a lack of systematic research 
and in-depth discussion on the current status of clinical trials and 
the regulatory landscape of berberine in the field of antibacterial 
therapy, which significantly limits its clinical translation for 
infectious diseases. In the current context, the clinical use of 
berberine may be limited to its use as an antibiotic adjuvant against 
AMR bacterial infections or the use of berberine decoction for the 
treatment of mild infections such as skin and mucous membrane 
infections. Future research should focus on optimizing berberine-
based formulations and conducting systematic in vivo and clinical 

studies to thoroughly evaluate its long-term safety, in vivo eÿcacy, 
and clinical applicability, thereby advancing the clinical application 
of berberine. To date, no plant-derived active compound has 
successfully passed clinical trials. Further research on berberine 
may pave the way for the application of plant-derived compounds 
in antimicrobial therapy. Achieving this milestone requires the 
collective eort of researchers, but it remains the ultimate goal for 
pharmacologists and microbiologists. 
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