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Akkermansia muciniphila
regulates the gut
microenvironment and alleviate
periodontal inflammmation in
mice with periodontitis
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Litong Mu?, Qinghui He?!, Tianxiang Huang?, Guowei Wang?,
Yanan Li?, Sijing Xie'* and Xuna Tang'*

!Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology,
Nanjing University, Nanjing, China, 2School of Food Science and Pharmaceutical Engineering, Nanjing
Normal University, Nanjing, China

Objective: Akkermansia muciniphila (A. muciniphila) is an emerging gut
commensal known for its roles in host metabolism and immune modulation.
While its involvement in metabolic and inflammatory disorders is well
characterized, its potential association with oral diseases such as periodontitis
remains poorly understood. This study aimed to explore whether modulation of
the gut microbiota via fecal microbiota transplantation (FMT) from periodontally
healthy donors could influence the abundance of A. muciniphila and contribute
to the alleviation of periodontitis.

Methods: Fecal samples were collected from human donors, including
periodontally healthy individuals (H group, n = 16), untreated patients with
severe periodontitis (P group, n = 12), and the same patients at two weeks
(P2W) and three months (P3M) after periodontal therapy. Quantitative PCR was
used to assess A. muciniphila abundance in these human samples. A germ-free
mouse model of periodontitis was then established, and the mice received FMT
using samples from human donor groups (P-PBS, P-H, and P-P). Gut microbiota
composition, periodontal inflammation, gut barrier proteins (MUC2, ZO-1), and
inflammatory cytokines (IL-6, TNF-a) were evaluated in the mice.

Results: Compared to groups H, P2W, and P3M, the abundance of A. muciniphila
in the gut was significantly lower in patients with severe periodontitis, but it
was increased after periodontal therapy. In mice, FMT from healthy donors (P-H
group) significantly enriched A. muciniphila, improved expression of gut barrier
proteins, reduced inflammatory cytokine levels, and alleviated periodontal
inflammation compared to other groups.

Conclusion: These findings suggest a previously underrecognized link between
gut microbial composition particularly A. muciniphila and periodontal health.
Targeting the gut microbiota via FMT may represent a novel strategy for
modulating systemic and oral inflammation and supporting the prevention or
adjunctive treatment of periodontitis.
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1 Introduction

According to the Global Burden of Disease Study (GBD) 2021
(GBD 2021 Oral Disorders Collaborators, 2025), the number of
individuals affected by severe periodontitis has increased by 91.5%
worldwide, highlighting its significant impact on global public health.
The age-standardized global prevalence has reached approximately
12,500 cases per 100,000 population, underscoring the urgent need for
effective prevention and treatment strategies. An expanding body of
evidence suggests that periodontitis may influence systemic health
through the oral-gut axis (Kunath et al., 2024), contributing to
conditions such as inflammatory bowel disease (IBD), diabetes
mellitus, and Alzheimer’s disease. Oral microbiota can reach the gut
either hematogenously or via the gastrointestinal tract, leading to
dysbiosis through ectopic colonization, reduced alpha diversity, and
disruption of the intestinal barrier, ultimately promoting intestinal
inflammation (Elghannam et al, 2024). Patients with severe
periodontitis harbor large quantities of pathogenic bacteria such as
Porphyromonas gingivalis and Actinomyces species (Sulaiman et al.,
2024). Compared with healthy controls, individuals with severe
periodontitis exhibit increased abundance of Bacteroidetes and
Firmicutes in their fecal samples, while Lactobacillus is the only genus
found in higher abundance in healthy individuals. Periodontal
treatment significantly reduces the abundance of periodontal
pathogens and Bacteroides, restoring microbiota composition to levels
comparable to healthy controls (Baima et al., 2024). These findings
suggest that periodontitis can affect gut microbial composition via
salivary transmission. However, the reciprocal relationship—how gut
microbiota may induce or modulate periodontitis—remains
largely unexplored.

Fecal microbiota transplantation (FMT), the process of
transferring gut microbiota from healthy donors to recipients, has
emerged as a promising strategy for modulating dysbiotic
microbiomes in various diseases (Wu et al., 2023). Originally
developed for treating recurrent Clostridioides difficile infection, FMT
has since demonstrated potential therapeutic benefits in metabolic
disorders, inflammatory bowel diseases, and even neuroimmune
conditions by restoring gut microbial diversity and host immune
balance (Hanssen et al., 2021). Given the bidirectional interaction
between the oral cavity and gut, recent studies have begun to explore
the influence of gut microbiota on oral inflammatory diseases,
including periodontitis. However, whether FMT from periodontally
healthy donors could reshape gut microbial profiles and alleviate
periodontal inflammation remains unclear, and the reciprocal
relationship—how gut microbiota may induce or modulate
periodontitis—remains largely unexplored. Notably, colitis has been
reported to exacerbate periodontal inflammation (Xu et al., 2025).
Mendelian randomization studies (Song J. et al., 2023) have identified
16 gut bacterial taxa associated with periodontitis and tooth loss,
including five species within the Lactobacillaceae family linked to
increased periodontal disease risk.

Akkermansia muciniphila is a Gram-negative, anaerobic
bacterium of the phylum Verrucomicrobia, named for its ability to
degrade mucin and primarily colonize the intestinal mucus layer (Guo
et al., 2017). It plays a pivotal role in maintaining intestinal barrier
function, modulating immune responses, and regulating metabolic
homeostasis (Ioannou et al., 2025). Through mucin degradation,
A. muciniphila produces short-chain fatty acids (SCFAs), which serve
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as an energy source for intestinal epithelial cells and help regulate gut
permeability (Chelakkot et al., 2018). Moreover, A. muciniphila has
been shown to suppress inflammatory responses, improve insulin
sensitivity, and exhibit therapeutic potential in metabolic disorders
such as obesity and type 2 diabetes (Yan et al., 2021). Emerging
evidence suggests that A. muciniphila may also influence the onset and
progression of periodontitis through several mechanisms (Anderson
etal.,, 2024). It can inhibit the growth of oral pathogens like P. gingivalis
and Fusobacterium nucleatum (Mulhall et al., 2022; Huck et al., 2020;
Song B. et al., 2023; Hu et al., 2025), thereby contributing to the
maintenance of oral microbial homeostasis. Metabolites produced by
A. muciniphila, particularly SCFAs, may suppress the proliferation of
periodontopathogens by modulating local pH and nutrient availability
(Elzinga et al., 2024). Additionally, A. muciniphila may influence
periodontal inflammation by promoting regulatory T cell
differentiation and attenuating excessive immune responses (Ansaldo
etal,, 2019). These immunomodulatory effects could help limit tissue
damage in periodontal disease. Furthermore, its ability to enhance
epithelial barrier function may offer protection against microbial
invasion and dissemination (Zhang et al., 2019). Clinical evidence
indicates that A. muciniphila abundance is significantly reduced in the
oral cavity of periodontitis patients, suggesting a protective role in
periodontal health.

In this study, we established a murine model of periodontitis to
assess changes in the abundance of A. muciniphila in the gut.
We further investigated how FMT from different sources influences
gut microbial composition and the progression of periodontitis. Our
aim is to elucidate the role of gut microbiota in the oral-gut axis and
to highlight the potential of A. muciniphila as an adjunctive
therapeutic agent in the management of periodontitis.

2 Materials and methods

2.1 Human fecal sample collection and
processing

The sample size for human participants was determined based on
previous studies (Bao et al., 2022) evaluating gut microbial changes
associated with periodontitis. Assuming a moderate effect size
(Cohen’s d = 0.8), a significance level (a) of 0.05, and power of 0.8, a
minimum of 12 individuals per group was estimated to detect
statistically significant differences in microbiota composition.
Therefore, fecal samples were collected from 16 periodontally healthy
individuals and 12 patients with severe periodontitis at the Affiliated
Stomatological Hospital of Nanjing University School of Medicine,
with approval from the Ethics Committee of the Nanjing University
School of Medicine (NJSH-2022NL-43). The diagnosis of periodontitis
with severe periodontitis was based on the 2017 World Workshop
classification system (Papapanou et al., 2018). All patients included in
this study were classified as having Stage IIT or IV periodontitis,
generalized extent, with PD >6 mm and radiographic bone loss (RBL)
extending to the middle or apical third of the root. Diagnosis and
classification were confirmed by a calibrated periodontist. The
inclusion and exclusion criteria for volunteers is provided in the
Supplementary material. All human participants provided written
informed consent prior to sample collection. Noted, twelve patients
diagnosed with severe periodontitis were enrolled and sampled at
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three time points: prior to treatment (P group), two weeks after
non-surgical periodontal therapy (P2W group), and three months
post-treatment (P3M group). All patients received standard
non-surgical periodontal therapy, including supragingival and
subgingival scaling and root planning performed by a certified
periodontist. No systemic antibiotics were prescribed during
treatment. Fresh fecal samples were collected using sterile collection
kits. Approximately 3-5 g of the middle portion of the stool was
placed into sterile tubes, mixed with 20% sterile glycerol, rapidly
frozen in liquid nitrogen, and stored at —80 °C until further use. A
portion of each sample was used for quantitative PCR. Another
portion was thawed on ice and processed for fecal microbiota
transplantation. Briefly, 200 mg of feces was diluted in 2 mL sterile
PBS, vortexed for 5 min, filtered, and centrifuged at 600 x g for 5 min
to remove insoluble material.

2.2 Mice and study design

Eight-week-old male C57BL/6] mice were approved by the
Animal Welfare and Ethics Review Committee of Jiangsu Aniphebio
Co., Ltd. (JSAB24021M).

This study consisted of two parts:

2.2.1 Study 1: alteration of gut microbial structure
in healthy and periodontitis mice

To investigate the gut microbial changes associated with
periodontitis, a mouse model was established using ligature
placement. Sixteen mice were randomly assigned to two groups:
healthy control group (H, n = 8) and periodontitis group (P, n = 8). In
the periodontitis group, bilateral ligatures were placed around the
maxillary first molars. After two weeks, the periodontitis model was
successfully established, and fecal samples were collected for
microbial analysis.

2.2.2 Study 2: FMT in periodontitis mice

To assess the impact of gut microbiota modulation on periodontal
inflammation, 24 periodontitis mice were divided equally into three
treatment groups (n = 8/group): a P-PBS group receiving phosphate-
buffered saline (PBS), a P-H group receiving fecal microbiota
transplants (FMT) from periodontally healthy human donors, and a
P-P group receiving FMT from patients with severe periodontitis.
Before transplantation, all mice underwent a two-week native gut
microbiota depletion protocol using a broad-spectrum antibiotic
cocktail (ampicillin 1 mg/mL, vancomycin 0.5 mg/mL, neomycin
1 mg/mL, metronidazole 1 mg/mL) administered in their drinking
water (Tan et al., 2022). FMT was subsequently performed via oral
gavage, with each mouse receiving 200 mg of fecal suspension per
administration, 2-3 times weekly over two consecutive weeks, as
outlined in Figures 1A, 2A.

2.3 16S rRNA gene sequencing analysis

Genomic DNA was extracted from mouse fecal samples using the
CTAB method (Nobleryder, China). According to the manufacturer’s
instructions, the V4 region of the 16S rRNA gene was amplified using
a PCR kit (New England Biolabs, United States), with primers 515F
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(5"-GTGCCAGCMGCCGCGGTAA-3") and 806R
(5'-GGACTACHVGGGTWTCTAAT-3"). After PCR amplification,
the products were detected by agarose gel electrophoresis and then
purified using a Universal DNA Purification Kit (Tiangen, China).
Gene libraries were constructed using a library kit (E7370L, Illumina,
United States) and sequenced on a Novaseq 6000 PE250 platform.
Raw sequencing data were processed using QIIME2 (2022.2). The
DADAZ2 plugin was used for quality filtering, denoising, chimera
removal, and feature table construction. Amplicon sequence variants
(ASVs) were taxonomically classified by comparing representative
sequences against the SILVA 138 database. Microbial community
diversity was assessed using alpha diversity indices (Shannon, Chaol)
and beta diversity (Bray—Curtis dissimilarity). Principal coordinate
analysis (PCoA) was performed to visualize inter-group differences.
Linear discriminant analysis Effect Size (LEfSe) was used to identify
differentially abundant taxa among experimental groups.

2.4 Micro-CT analysis

The maxillary bone specimens of mice were fixed in 4%
paraformaldehyde for 24 h, trimmed, and excess tissue was removed.
The specimens were then washed three times with PBS, and scanned
using Micro-CT (Viva CT40, SCANO). The scanning parameters were
set to a resolution of 10 pm, voltage of 70 kV, and current of 114 mA.

2.5 Detection of Akkermansia muciniphila
in fecal samples

Bacterial DNA was extracted from human and mouse fecal
samples using the TTANamp Stool DNA Kit (Tiangen Biotech, China).
Fluorescent quantitative PCR was then performed to detect the
relative expression of A. muciniphila in the fecal microbiota. The
relative gene expression was calculated using the 272" method. The
primer sequences for species-level detection were as follows: 27F,
5-AGAGTTTGATCCTGGCTCAG-3"; 1492R, 5'-TACGGCTACCT
TGTTACGACTT-3; A. muciniphila ¥, 5-CAGCACGTGAAG
GTGGGGAC-3; R, 5-CCTTGCGGTTGGCTTCAGAT-3'.

2.6 Detection of colonic tissue-related
proteins and inflammatory cytokine levels

Total RNA was extracted from mouse colon tissue using the
TRIzol method. cDNA was synthesized using a reverse transcription
kit (Novozyme, China). Fluorescent quantitative PCR was performed
with cDNA as the template to detect the relative expression levels of
inflammatory cytokines such as TNF-a, IL-10, tight junction proteins
like CLAUDIN15, JAM3, and MUC2 mucin in colon tissue. The
relative gene expression levels of RNA were calculated using the 2744¢T
method. The primer sequences for species-level detection were
as following:

GADPHE, 5-GGTTGTCTCCTGCGACTTCA-3"; R, 5-TGGTCC
AGGGTTTCTTACTCC-3; TNF-aF, 5-GGCGTGTTCATCCGT
TCTC-3%R, 5-CTTCAGCGTCTCGTGTGTTTCT-3; IL-6F, 5'-CGC
CCCACACAGACAGCCAC-3% R, 5-AGCTTCGTCAGCAGGCT
GGC-3; OCCLUDINE 5-TGGCGGATATACAGACCCAA-3’; R,
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FIGURE 1
Gut microbiota distribution in healthy and periodontitis mice. (A) Experimental design flowchart (experimental grouping and procedures are detailed in
the materials and methods section). (B) Differences in the expression levels of Akkermansia muciniphila in fecal samples from healthy individuals (H),
patients with severe periodontitis (P), and patients two weeks (P2W) and three months (P3M) post-treatment. Data are presented as mean + SD.
Statistical significance was determined by one-way ANOVA. *p < 0.05, **p < 0.01, ***p < 0.001, and ns: not significant. (C) Differences in the
abundance of A. muciniphila between healthy (HC) and periodontitis mice (PC) as analyzed by 16S rRNA sequencing. (D) Differences in the expression
levels of A. muciniphila in the gut of HC and PC. (E) Alpha diversity index statistics, including Chaol and Shannon indices, reflecting species richness.
(F) p-diversity index statistical analysis based on PCoA. (G) Top 20 genera bar chart at the genus classification level. (H) LEfSe analysis cladogram.
(1) Phylogenetic tree heatmap.
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FIGURE 2 (Continued)

treatments, as analyzed by 16S rRNA sequencing. Data are presented as mean + SD. Statistical significance was determined by one-way ANOVA.
*p < 0.05, **p < 0.01, ***p < 0.001, and ns: not significant. (C) Differences in A. muciniphila expression levels in the gut. (D) Alpha diversity index
statistics, including Chaol and Shannon indices. (E) p-diversity index statistical analysis based on PCoA. (F) Relative distribution of genera bar chart
(top 20 species by relative abundance). (G) phylogenetic heatmap. (H) LEfSe analysis cladogram. (1) Fasting blood glucose levels.

5-CGATCGTGGCAATAAACACC-3"; JAM3E 5-GAGACTCAGC
CCTTTATCGC-3; R, 5-CCTTCGGCACTCTACAGACA-3; CLA
UDINI5E 5-CTGCTAACCTGAAAGGGCA-3; R, 5-GGGAC
TGCTGGAATGAGACC-3; ZO-1F, 5-GCCGCTAAGAGCACA
GCAA-3; R, 5-GCCCTCCTTTTAACACATCAGA-3"; MUCZE
5-TGCCCACCTCCTCAAAGAC-3; R, 5-GTAGTTTCCGTTGG
AACAGTGAA-3'.

2.7 Histological and immunohistochemical
analysis

Hematoxylin and eosin (HE) staining was used to evaluate
gingival and alveolar bone inflammation, as well as colonic crypt
morphology. Immunohistochemical staining was conducted to detect
IL-1p in periodontal tissue and ZO-1 and MUC?2 in colonic tissue,
using antibodies from Affinity Biosciences (USA) and Servicebio
(China), respectively. Positive staining areas were quantified using
Image] software.

2.8 Statistical methods

All data are presented as the mean + standard deviation. Statistical
analysis was performed using GraphPad Prism 10.0. For comparisons
between two groups, a t-test was used. For more than three groups,
one-way ANOVA with Bonferroni post-hoc tests was applied.
Correlation analysis was conducted using Pearson’s correlation
algorithm. p-values are considered significant as follows: *p < 0.05,
**p < 0.01, **p < 0.001, and ns: not significant.

3 Results

3.1 The abundance of Akkermansia
muciniphila in the gut microbiota was
higher in healthy mice compared to
periodontitis-induced mice

We analyzed the expression levels of Akkermansia muciniphila in
fecal samples from healthy individuals and periodontitis patients at
different treatment phases. QPCR analysis (Figure 1B) showed that
A. muciniphila levels were significantly reduced in untreated patients
with periodontitis compared to healthy individuals. Although no
statistically significant differences were observed among the
periodontitis groups, a gradual increasing trend was noted after
periodontal therapy (P2W and P3M), indicating a potential recovery
trajectory. To eliminate the confounding effects of individual lifestyles
and dietary habits, I established a periodontitis mouse model and
analyzed differences in gut luminal contents between healthy mice and
periodontitis mice.16S rRNA sequencing of fecal samples (Figure 1A)
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showed that A. muciniphila abundance was significantly higher in HC
mice compared to PC mice (Figures 1C,D). Although a-diversity did
not differ significantly (Figure 1E), B-diversity was notably altered, as
shown by PCoA based on unweighted UniFrac distances (Figure 1F),
indicating distinct microbial communities between groups. At the genus
level (Figure 1G), PC mice exhibited increased Duncaniella and
Treponema-D and decreased Akkermansia and Muribaculum.
Treponema-D, a known oral pathogen, was elevated in the gut of PC
mice, suggesting possible microbial translocation. Additionally, PC mice
showed higher Bacteroidota and lower Firmicutes and Verrucomicrobiota
levels. Cladogram (Figure 1H) and phylogenetic analysis (Figure 11)
confirmed enrichment of A. muciniphila, Lactobacillus, and Eubacterium
in HC mice. Together, these results suggest that periodontitis is
associated with reduced A. muciniphila and gut dysbiosis.

3.2 Periodontitis induces alveolar bone loss
and alters intestinal barrier function in
mice

Micro-CT 3D reconstructions (Figure 3A) confirmed the successful
establishment of a periodontitis model in mice. Compared to HC, PC
exhibited significantly increased distances from the cementoenamel
junction to the alveolar bone crest, indicating alveolar bone resorption
(Figure 3B), which negatively correlated with A. muciniphila abundance
(Figure 3C). H&E staining revealed reduced alveolar bone height, rete
peg proliferation of junctional epithelium, widening of the periodontal
ligament space, and dense inflammatory infiltrates (Figure 3D).
Immunohistochemical staining showed markedly higher IL-1§
expression in the PC group (Figures 3D,E), reflecting local periodontal
inflammation. Beyond oral inflammation, intestinal alterations were
also observed. In colonic H&E sections, crypt depth was greater in HC,
suggesting faster epithelial turnover, while shallow crypts in PC may
indicate impaired barrier function, epithelial injury, and reduced
regenerative capacity (Figures 35G). MUC2, a mucin secreted by goblet
cells, was significantly decreased in PC (Figures 3EH), implying
degradation of the mucus layer and increased vulnerability to microbial
invasion. A. muciniphila, which utilizes MUC2 as its sole nutrient
source, was reduced in the PC, and its abundance positively correlated
with MUC2 expression (Figure 3I). ZO-1, a key tight junction protein,
showed reduced positive staining in PC (Figures 3EJ), though mRNA
and protein levels did not differ significantly (Figure 3L), suggesting
potential but subclinical barrier impairment. Similarly, no significant
differences were observed in other junction proteins such as JAM3,
CLAUDIN15, and OCCLUDIN (Figure 3L), indicating that epithelial
integrity may not rely on a single molecule. Elevated IL-6 and TNF-a
levels in the PC (Figure 3K) further indicated systemic inflammatory
responses. Collectively, these findings suggest that periodontitis
disrupts both oral and gut microenvironments, increasing intestinal
susceptibility to inflammation and infection, thereby supporting the
existence of a bidirectional oral-gut axis.
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FIGURE 3 (Continued)

representing the degree of alveolar bone resorption. (C) Correlation analysis between A. muciniphila levels and the CEJ-ABC distance. (D) HE and IL-1p
staining sections of maxillary bone tissue (scale bars: 50 pm and 25 um, respectively). (E) Percentage of IL-1p positive expression. (F) HE, MUC2, and
Z0-1 staining sections of colonic tissue. (G) Colonic crypt depth. (H) Percentage of MUC2 positive expression in the colon. (I) Correlation analysis
between A. muciniphila levels and MUC2 expression in the colon. (J) Percentage of ZO-1 positive expression in the colon. (K) mRNA expression levels
of IL-6 and TNF-a. (L) mRNA expression levels of ZO-1, JAM3, CLAUDIN15, OCCLUDIN, and MUC2. Data are presented as mean + SD. Statistical
significance was determined by t-test. *p < 0.05, **p < 0.01, ***p < 0.001, and ns: not significant.

3.3 Fecal microbiota transplantation alters
gut microbiota composition in
periodontitis mice

To further explore the impact of distinct fecal microbiota on the
gut environment of periodontitis mice, 16S rRNA sequencing
revealed significant shifts in gut microbial composition post-FMT,
particularly in the abundance of A. muciniphila (Figures 2B,C).
A. muciniphila levels were markedly higher in the P-H, whereas both
P-P and P-PBS exhibited significantly lower levels, with no difference
between the two, indicating that transplantation of microbiota from
healthy individuals restored A. muciniphila abundance, while
microbiota from periodontitis patients had no such effect. Alpha
diversity (Chaol and Shannon indices) showed no significant
differences across groups (Figure 2D), suggesting comparable
species richness. However, principal coordinate analysis (PCoA)
based on unweighted UniFrac distances demonstrated a clear
separation of microbial profiles among groups (Figure 2E). Notably,
P-H clustered distinctly and separately from P-P and P-PBS,
highlighting the capacity of healthy donor FMT to reshape gut
microbial communities. In contrast, P-P and P-PBS microbiota
compositions were similar, implying that patient-derived transplants
failed to modulate dysbiosis and may even harbor pro-inflammatory
microbial signatures. At the genus level (Figure 2F), P-H displayed
increased abundance of beneficial genera such as Akkermansia,
Lactobacillus, and Eubacterium-F, while pro-inflammatory taxa
including Desulfovibrio and Clostridium were enriched in the P-P
group. Phylogenetic heatmap (Figure 2G) and cladogram
(Figure 2H) analyses confirmed the enrichment of probiotic taxa in
P-H and inflammatory taxa in P-P. Interestingly, fasting blood
glucose levels were significantly lower in the P-H, and moderately
reduced in the P-P compared to P-PBS (Figure 2I), suggesting
systemic metabolic benefits associated with healthy donor
microbiota. Collectively, these findings support the potential of
healthy FMT to re-establish gut microbial homeostasis and offer a
novel adjunctive strategy for managing periodontitis.

3.4 Correlation between bone-related
parameters and Akkermansia muciniphila
expression following fecal microbiota
transplantation in periodontitis mice

To investigate whether different FMT interventions affect the
progression of periodontitis in mice, we performed micro-CT and
immunohistochemical analyses on the maxillary bone of treated mice.
Compared with the P-PBS and P-P, the P-H exhibited attenuated
alveolar bone resorption, as evidenced by a significantly reduced
distance between the cementoenamel junction and alveolar bone crest
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(CEJ-ABC) (Figures 4A,C). Furthermore, bone mineral density
(BMD) was significantly increased, and bone volume fraction (BV/
TV) was markedly elevated in the P-H group (Figures 4A,C). No
significant difference was observed in trabecular separation (Tb. Sp)
among the groups (Figures 4A,C). Correlation analysis revealed that
CEJ-ABC distance, BMD, and BV/TV were associated with the
abundance of A. muciniphila in the gut (Figure 4D). Specifically, BMD
and BV/TV showed a positive correlation with A. muciniphila levels,
whereas CEJ-ABC distance was negatively correlated. In addition, a
heatmap of correlation coefficients (Figure 4B) showed that alveolar
bone resorption was negatively correlated with BV/TV and positively
correlated with trabecular number (Tb. N). Tb. Sp exhibited a negative
correlation with both Tb. Th and Tb. N. Histological analysis using
H&E staining showed more severe inflammatory infiltration and
alveolar bone loss in the P-PBS and P-P groups compared to the P-H
group (Figure 4E). Immunohistochemical staining for IL-1f
demonstrated that the P-H group had a significantly lower positive
expression rate of this pro-inflammatory cytokine than the P-PBS and
P-P groups, with no significant difference observed between the latter
two groups (Figures 4E,F).

3.5 Altered expression of intestinal tight
junction proteins and inflammatory
cytokines in periodontitis mice following
fecal microbiota transplantation

To investigate whether FMT can improve intestinal barrier
function and reduce inflammation in periodontitis mice, we further
analyzed the colonic expression of tight junction proteins,
inflammatory cytokines (IL-6, TNF-a), and MUC2 after different
treatment conditions. Immunohistochemical analysis (Figure 5A)
revealed no significant differences in colonic crypt depth among the
groups (Figure 5B); however, expression levels of MUC2 and ZO-1
were significantly altered (Figures 5C,D). Specifically, mice receiving
FMT from healthy donors (P-H group) exhibited significantly higher
colonic expression of MUC2 and ZO-1 compared to the P-PBS and
P-P groups. Quantitative PCR analysis further demonstrated that,
relative to the P-PBS and P-P groups, the P-H group had significantly
reduced colonic expression of pro-inflammatory cytokines IL-6 and
TNEF-a (Figure 5E), along with increased expression of tight junction-
related genes including CLAUDIN15, JAM3, and ZO-1 (Figure 5F).
In addition, the abundance of A. muciniphila in the gut was positively
correlated with MUC2 and ZO-1 protein expression (Figure 5G).
Collectively, these findings suggest that FMT from healthy individuals
may enhance intestinal barrier integrity and suppress inflammatory
responses in periodontitis mice, providing evidence for the potential
therapeutic role of healthy donor-derived fecal microbiota in the
management of periodontitis.
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FIGURE 4

Changes in maxillary bone-related parameters in periodontitis mice following gavage with PBS, fecal microbiota from healthy individuals, or from
severe periodontitis patients. (A) Micro-CT three-dimensional reconstruction images of the maxillary bone in periodontitis mice following different
gavage treatments. (B) Heatmap showing correlation analysis between the relative abundance of A. muciniphila (%) and various bone-related
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***p < 0.001, and ns: not significant.

parameters. (C) Quantitative comparison of maxillary bone parameters, including the distance between the cementoenamel junction and CEJ-ABC,
BMD, BV/TV, and Tb. Sp. (D) Correlation analysis between A. muciniphila (%) and CEJ-ABC, BMD, BV/TV, and Tb. Sp. (E) Representative histological
sections of the maxillary bone stained with hematoxylin-eosin (HE) and IL-1f immunohistochemistry. (F) Quantification of IL-1f positive expression
rate. Data are presented as mean + standard deviation (SD). Statistical significance was determined using one-way ANOVA. *p < 0.05, **p < 0.01,

4 Discussion

Periodontitis, while primarily recognized as an oral disease, is
increasingly associated with a variety of systemic conditions.
Periodontal pathogens such as Porphyromonas gingivalis and their
virulence factors including gingipains and lipopolysaccharides (LPS)
are capable of activating systemic inflammatory pathways, leading to
chronic low-grade inflammation in multiple organs such as blood
vessels and the liver. Moreover, these pathogens can enter the
bloodstream, causing bacteremia and potentially reaching the brain
to impair cognitive functions (Gasmi Benahmed et al., 2022). Studies
(Kozarov et al., 2005) have isolated periodontal pathogens including
Aggregatibacter actinomycetemcomitans and P gingivalis from
atherosclerotic plaques, suggesting that distant colonization
exacerbates infection and may contribute to organ dysfunction.
Diabetic individuals are more susceptible to periodontitis, and
hyperglycemia impairs periodontal tissue repair. P. gingivalis has been
shown to directly degrade insulin receptors through its gingipains,
promoting insulin resistance (Liu et al., 2024). In colitis mouse
models, P, gingivalis aggravates intestinal inflammation by suppressing
the gut microbiota-derived linoleic acid (LA) metabolic pathway and
disrupting the Th17/Treg cell balance in a microbiota-dependent
manner (Jia et al., 2024). A cross-sectional and longitudinal cohort
study (Chen et al., 2023) reported higher blood pressure in patients
with periodontitis compared to controls, and several oral species,
including Veillonella, were found to be enriched in the gut of
hypertensive patients. Additionally, oral microbiota transplantation
from periodontitis patients into DSS-induced colitis mice increased
anxiety-like behavior, indicating a direct effect of the oral-gut
microbiome axis on host behavior (Qian et al., 2023). Recent research
increasingly focuses on the bidirectional relationship of the oral-gut
axis. Periodontitis has been shown to alter gut microbiota composition,
particularly affecting the abundance of A. muciniphila, a species
thought to influence the progression of periodontitis and thus may
represent a novel target for adjunctive therapies.

Periodontitis perturbs the oral microbiota, leading to dysbiosis
that extends to the gut (Kitamoto et al., 2020). Comparative analyses
have revealed differences in gut microbiota between periodontitis
patients and healthy individuals (Bao et al., 2022). While a healthy gut
is typically dominated by phyla such as Firmicutes and Bacteroidetes,
individuals with periodontitis exhibit decreased a-diversity, a reduced
Firmicutes/Bacteroidetes ratio, and an increase in Proteobacteria and
Verrucomicrobia. Bacteroidetes and Faecalibacterium levels are
elevated in the feces of periodontitis patients, whereas Lactobacillus is
the only enriched genus in healthy individuals. Periodontal treatment
significantly reduces the abundance of pathogenic phyla, aligning
microbial composition with that of healthy individuals (Baima et al.,
2024). Metagenomic and metabolomic analyses (Jia et al., 2024) have
shown that oral P. gingivalis administration increases Bacteroidetes
while decreasing Firmicutes, Verrucomicrobia, and Actinobacteria. In
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our study, consistent with these findings, periodontitis mice
demonstrated elevated Bacteroidetes and reduced Firmicutes and
Verrucomicrobia compared to healthy controls. In healthy adults, fecal
A. muciniphila levels are approximately 10°-10* CFU/g. Our data
showed a significant reduction of A. muciniphila in feces from patients
with severe periodontitis, which gradually recovered following
periodontal therapy. This reduction was also observed in periodontitis
mice, supporting the notion that periodontitis disrupts gut microbial
structure, particularly decreasing A. muciniphila abundance.
Systemically, periodontitis induces inflammation as evidenced by
elevated serum IL-6 and TNF-a levels in periodontitis mice. It also
compromises intestinal barrier function, as shown by decreased
expression of ZO-1 and MUC2—key components of epithelial
integrity and mucin layers, respectively. A. muciniphila metabolizes
mucins to produce monosaccharides, oligosaccharides, and short-
chain fatty acids (SCFAs), which serve as energy sources for both the
host and other commensal bacteria. A. muciniphila, a mucin-
degrading gut symbiont, has garnered attention for its probiotic
potential in modulating oral and gut microbial balance, enhancing
barrier integrity, regulating immune responses, and mitigating
systemic inflammation. In metabolic-inflammatory diseases such as
diabetes and obesity, A. muciniphila abundance inversely correlates
with disease severity (Han et al., 2025). Its beneficial effects are
thought to involve restoration of mucosal thickness, production of
antimicrobial peptides, and reduction of systemic inflammation. Post-
bariatric surgery, A. muciniphila levels rebound in obese individuals,
and its supplementation improves glycemic control even in non-obese
patients with type 2 diabetes (Zhang et al., 2025). A. muciniphila
promotes glucose homeostasis through its secreted protein P9, which
interacts with intercellular adhesion molecule-2 (ICAM-2), and
alleviates metabolic dysregulation (Yan et al., 2021). In agreement with
previous findings, our study showed reduced A. muciniphila levels in
feces of diabetic periodontitis mice. Furthermore, A. muciniphila
abundance negatively correlated with fasting blood glucose levels.
Notably, FMT from healthy donors restored A. muciniphila levels and
significantly lowered blood glucose in periodontitis mice. Even FMT
from periodontitis patients modestly reduced blood glucose compared
to untreated mice, suggesting that enhancing A. muciniphila
abundance may benefit both periodontal and metabolic health,
particularly in diabetic individuals with periodontitis.

Studies have shown that probiotics can promote overall
health through various mechanisms, including modulating the
balance of oral and gut microbiota, enhancing barrier function,
regulating immune responses, and inhibiting carcinogens
(Huang et al., 2025). A. muciniphila has been detected in human
saliva, and its oral administration is considered safe (Depommier
et al, 2019). It modulates immune responses and reduces
inflammation, making it a promising candidate for oral health
interventions. It can inhibit Fusobacterium nucleatum by
suppressing expression of its virulence gene FadA, and reduce
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FIGURE 5

Expression of colonic proteins and inflammatory cytokines in periodontitis mice. (A) Representative histological images of colonic tissue sections (HE,
MUC2, and ZO-1 staining) from periodontitis mice after different fecal microbiota transplantation treatments (10x and 20x magnifications). (B) Crypt
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depth measurement. (C) Quantification of MUC2-positive staining area (%). (D) Quantification of ZO-1-positive staining area (%). (E) mRNA expression
levels of inflammatory cytokines IL-6 and TNF-a. (F) mRNA expression levels of tight junction-related genes ZO-1, JAM3, CLAUDIN15, and MUC2.

(G) Correlation analysis between the relative abundance of A. muciniphila (%) and protein expression of MUC2 and ZO-1. Data are presented as mean
+ SD. Statistical significance was determined using one-way ANOVA. *p < 0.05, **p < 0.01, ***p < 0.001, and ns: not significant.

pro-inflammatory cytokines such as IL-1f, IL-6, and TNF-q,
thereby
destruction (Song B. et al., 2023). A. muciniphila also counteracts

attenuating F  nucleatum-induced periodontal
P. gingivalis-induced alveolar bone loss by upregulating anti-
inflammatory IL-10 and downregulating pro-inflammatory
IL-12 (Huck et al.,, 2020). In obese mouse models, pasteurized
A. muciniphila administration alleviated P. gingivalis-induced
periodontal tissue destruction, reduced plasma TNF-a, and
increased IL-10 levels (Mulhall et al., 2022). Similarly,
supplementation with A. muciniphila or its outer membrane
protein Amuc_1100 in mice promotes M2 macrophage
polarization and alleviates alveolar bone destruction (Mulhall
et al, 2020). Our study showed that FMT from healthy
individuals increased A. muciniphila levels in periodontitis
mice, reduced CEJ-ABC distance, and limited alveolar bone
resorption. Bone-related indicators such as BMD and BV/TV
were positively associated with A. muciniphila abundance, while
IL-1p levels were reduced, further supporting its protective role
against periodontal disease progression. Gram-negative bacteria
secrete endotoxins such as LPS that translocate into circulation
through compromised gut barriers, potentially triggering
autoimmune responses (Zhou et al., 2023). A. muciniphila has
been demonstrated to reduce serum LPS levels (Plovier et al.,
2017) and improve host metabolic and immune function
through specific metabolites including P9 protein (Yoon et al.,
2021), outer membrane protein Amuc_1100 (Macchione et al.,
2019) and short-chain fatty acids (Ioannou et al., 2025). It
enhances epithelial integrity by increasing tight junction
proteins (e.g., ZO-1, CLAUDINI15) and restoring mucin
production. Our findings revealed that FMT from healthy
donors increased intestinal A. muciniphila, upregulated tight
junction proteins (ZO-1, CLAUDIN15, JAM3), and MUC2
expression, improved gut barrier function, and suppressed
intestinal inflammation by reducing IL-6 and TNF-a levels.
However, the exact molecular mechanisms underlying these
effects remain to be elucidated.

However, several limitations of the present study should
be considered. The limited sample size of human participants may affect
the generalizability of the findings, and validation in larger cohorts is
warranted. The three-month follow-up period may not be sufficient to
capture long-term microbial and immunological changes following
periodontal therapy. Additionally, while the ligature-induced
periodontitis model in mice provides a controlled experimental setting,
it does not fully mimic the complexity and chronic progression of human
periodontitis. Although A. muciniphila was observed to be enriched
following treatment and associated with improved outcomes, further
studies are needed to clarify its specific role and underlying mechanisms
in modulating host inflammation. The findings highlight the potential
relevance of the gut-oral axis in periodontal inflammation. Modulating
gut microbiota composition, particularly increasing A. muciniphila
abundance, may represent a complementary approach in managing
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periodontitis and related systemic conditions. However, these insights
require further mechanistic exploration and clinical translation before
being considered for therapeutic application.

5 Conclusion

Our results demonstrate that periodontitis reduces A. muciniphila
abundance in the gut. Restoration of A. muciniphila levels improves
intestinal microenvironment and barrier integrity, attenuates systemic
inflammation, and potentially modulates periodontitis progression.
These findings provide novel insights into the therapeutic potential of
A. muciniphila as an adjunctive strategy for managing periodontitis
and associated systemic conditions.
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