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Avocados are a key global fruit crop with rising international demand. However, 
postharvest diseases like anthracnose and stem-end rot (SER) can lead to significant 
economic losses, with incidence rates surpassing 30% in some regions. The latent 
nature of these infections complicates detection and management, affecting 
fruit quality and marketability. This review examines the pathogens behind these 
diseases, highlights advancements in detection technologies such as the use of 
biochemical and non-destructive methods and explores host-pathogen interactions 
through emerging omics approaches. We also evaluate the impact of preharvest 
practices on disease outcomes and current management strategies, including 
the growing potential of biological control agents, systemic resistance inducers, 
and natural product-based formulations as sustainable tools that complement 
synthetic fungicides. Finally, we highlight implications for fruit quality and consumer 
perception, along with critical research gaps, particularly the imbalance between 
anthracnose and SER studies in avocados, and outline future directions for improving 
postharvest disease control in avocados.

KEYWORDS

avocado, postharvest diseases, stem-end rot, anthracnose, body rot

1 Introduction

The avocado (Persea americana Mill.), a key player in the global agricultural economy, was 
valued at $15.83 billion in 2023, projected to reach $26.04 billion by 2030 (Avocado Market 
Size and Outlook, 2023). Mexico leads production with contributions from Colombia, the 
Dominican  Republic, and Peru (FAO, 2024). In the U.S., “Hass” avocados dominate, 
comprising 95% of the market with per capita consumption averaging 8.43 pounds annually 
(World Population Review, 2025). The cultivar’s success stems from its hybrid origins, 
combining the Mexican race’s cold tolerance and early maturity with the Guatemalan race’s 
thick skin for durability and marketability (Schaffer et al., 2013; Hass, 1935).

Preserving avocado marketability depends on maintaining postharvest quality. 
However, postharvest diseases such as anthracnose (body rot), and stem-end rot (SER) 
caused by fungi from the Colletotrichum species, and Botryosphaeriaceae family, 
respectively, cause significant losses (Everett, 2020; Fuentes-Aragón et al., 2018; Korsten, 
1997; Rivera et al., 2017; Sonavane and Venkataravanappa, 2022). These pathogens often 
remain latent, activating during ripening and storage to cause decay, reduce shelf life, and 
increase commercial rejection rates. For example, Colombian packinghouses reported 
rejection rates up to 70.1% for SER and 52.5% for anthracnose, leading to substantial 
economic losses (Ramírez-Gil et al., 2020). Similar losses, up to 40% in Kenya and 60% in 

OPEN ACCESS

EDITED BY

Montserrat Calderon-Santoyo,  
National Technology of Mexico CRODE 
Celaya, Mexico

REVIEWED BY

Asgar Ali,  
University of Nottingham Malaysia Campus, 
Malaysia
Juan Manuel Tovar-Pedraza,  
National Council of Science and Technology 
(CONACYT), Mexico
Ani Widiastuti,  
Gadjah Mada University, Indonesia

*CORRESPONDENCE

Fatemeh Khodadadi  
 fatemehk@ucr.edu

RECEIVED 10 June 2025
ACCEPTED 08 August 2025
PUBLISHED 10 October 2025

CITATION

Bernal VV, Boeckman NJ, Aćimović SG and 
Khodadadi F (2025) The dark side of 
avocados: a review of anthracnose and 
stem-end rot in postharvest fruit.
Front. Microbiol. 16:1644061.
doi: 10.3389/fmicb.2025.1644061

COPYRIGHT

© 2025 Bernal, Boeckman, Aćimović and 
Khodadadi. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE  Review
PUBLISHED  10 October 2025
DOI  10.3389/fmicb.2025.1644061

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2025.1644061&domain=pdf&date_stamp=2025-10-10
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1644061/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1644061/full
https://www.frontiersin.org/articles/10.3389/fmicb.2025.1644061/full
mailto:fatemehk@ucr.edu
https://doi.org/10.3389/fmicb.2025.1644061
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2025.1644061


Bernal et al.� 10.3389/fmicb.2025.1644061

Frontiers in Microbiology 02 frontiersin.org

untreated Mexican fruit, underscore the severity of these fungal 
diseases (Shivachi et al., 2023; Herrera-González, 2017). In contrast, 
comparable data are not currently available for the United States, 
highlighting a gap in postharvest disease monitoring efforts. Despite 
advancements, effective and sustainable control remains 
challenging, emphasizing the need for continued research into 
pathogen biology and innovative control strategies (Herrera-
González et al., 2021).

This review comprehensively examines the biology and 
distribution of anthracnose and SER pathogens; highlights advance 
in their detection and explores their interactions with the avocado 
host via omics approaches. We assess how pre-harvest conditions 
influence disease outcomes and evaluate current and emerging 
management strategies. Finally, we consider these infections’ broader 
implications on fruit quality and consumer perception. By 
consolidating this research, this review aims to identify key 
knowledge gaps in avocado postharvest diseases and guide 
future efforts.

2 Postharvest diseases: anthracnose 
and stem-end rot

Anthracnose, caused by species in the genus Colletotrichum, and 
stem-end rot primarily affiliated to fungi within Botryosphaeriaceae 
family (Akgül et al., 2016; Giblin et al., 2018; Guarnaccia et al., 2016; 
Twizeyimana et  al., 2013a; Valencia et  al., 2019), represent major 
postharvest challenges for avocado production worldwide (Armand 
and Jayawardena, 2024; Fischer et al., 2019). While both diseases often 
manifest during fruit ripening and storage due to latent infections 
established in the field, they exhibit distinct characteristics in terms of 
causal agents, infection sites, and symptom development. Members of 
the C. gloeosporioides complex have also been implicated in SER 
(Everett, 2020; Everett et al., 2018; Galsurker et al., 2018).

Colletotrichum species follow a hemibiotrophic infection cycle, 
colonizing fruit asymptomatically until ripening triggers a 
necrotrophic phase (Siddiqui and Ali, 2014). Anthracnose lesions 
appear as sunken (Figures 1A,D), dark (Figures 1B,C), water-soaked 
areas that progressively enlarge on the body of the avocado fruit 
(Figures 1E,F), often becoming covered with pink to orange spore 
masses under humid conditions (Siddiqui and Ali, 2014). The disease 
affects avocados both pre- and postharvest, damaging leaves and 
causing body rot in fruit during storage and market ripening (Dann 
et  al., 2013; Everett and Pak, 2002; Everett, 2020; Freeman et  al., 
1998). In contrast, in preharvest stages, Botryosphaeriaceae fungi are 
associated with avocado branch canker, manifesting as sunken, 
resinous lesions on branches and potentially leading to dieback 
(Eskalen and McDonald, 2009; Twizeyimana et al., 2013a; Valencia 
Bernal et  al., 2025). Postharvest, SER is initiated at the stem 
attachment site, with spores reaching the fruit via rain splash, pruning 
wounds, or insect activity, establishing latent infections (Eskalen 
et  al., 2013). Affected fruits initially exhibit surface discoloration 
(Figure  1G), shriveling around the stem base, and softening 
(Karunanayake and Adikaram, 2020; Möller et al., 2025). In some 
cases, fungal mycelium becomes visible at the stem scar. Advanced 
SER leads to water-soaked lesions, tissue breakdown, and a sharp 
internal boundary between healthy and decayed zones (Figures 1H–L) 
(Fostvedt et al., 2024).

2.1 Taxonomy and distribution

The genus Colletotrichum includes over 250 species grouped into 
15 species complexes (Talhinhas and Baroncelli, 2021), distinguished 
by molecular sequence analyses and morphological aspects (Cannon 
et al., 2012; Damm et al., 2010, 2012a, 2012b, 2013, 2019). In avocados, 
anthracnose is primarily associated with the C. gloeosporioides (CGSC) 
C. acutatum (CASC), and C. boninense (CBSC) species complex 
(Fischer et al., 2019; Fischer and Firmino, 2023; Fuentes-Aragón et al., 
2020; Giblin et al., 2018; Iñiguez-Moreno et al., 2021). Over a dozen 
Colletotrichum species have been confirmed as causal agents of 
anthracnose in avocados across multiple countries, including Israel, 
Kenya, Mexico, Australia, Ghana, and Brazil. These species include 
C. acutatum, C. aenigma, C. alienum, C. fioriniae, C. fructicola, 
C. gigasporum, C. gloeosporioides, C. godetiae, C. karstii, C. nupharicola, 
C. perseae, C. siamense, and C. theobromicola (Dann et  al., 2013; 
Hernández-Lauzardo et al., 2015; Kimaru et al., 2018; Sharma et al., 
2017; Velázquez-del Valle et al., 2016). Regional surveys highlight 
variability in species prevalence shaped by environmental conditions 
(Dowling et al., 2020; Fuentes-Aragón et al., 2018; Kwon et al., 2020; 
Silva-Rojas and Ávila-Quezada, 2011; Soares et al., 2021). Thermal 
preferences of Colletotrichum species complexes (CGSC optimal 
26–27°C, tolerant to 38–40°C) (Salotti et al., 2022); CASC optimal 
20–22°C (Khodadadi et al., 2023); CBSC intermediate ~25°C (CABI, 
2022; Moriwaki et al., 2003) influence their geographic distribution.

The taxonomy of Botryosphaeriaceae has undergone significant 
revisions (Burgess et  al., 2019; Phillips et  al., 2013; Slippers et  al., 
2017), with genus-level classification advanced through morphological 
and molecular analyses (Liu et al., 2012; Phillips et al., 2019; Slippers 
et  al., 2004). Genera consistently associated with SER include 
Botryosphaeria, Lasiodiplodia, Diplodia, Neofusicoccum, and 
Dothiorella (Fostvedt et al., 2024; Galsurker et al., 2018). Lasiodiplodia 
theobromae is widely reported (Fischer et al., 2019; Llanos and Apaza, 
2021; Ochoa and Vázquez, 2006; Ramírez-Gil et al., 2020; Rosado 
et al., 2016; Valencia et al., 2019; Wanjiku et al., 2020). Other important 
species include N. luteum (Everett, 2020; McDonald et  al., 2009; 
Twizeyimana et  al., 2013a), Diplodia seriata and D. pseudoseriata 
(Valencia et al., 2019), N. parvum, N. mediterraneum, N. australe, 
D. mutila, and L. citricola (Aćimović et al., 2018; Chen et al., 2014; 
McDonald et al., 2009; Moral et al., 2019).

The increasing global incidence of postharvest diseases in 
avocados and the identification of new pathogenic species underscores 
the complexity and expanding geographic distribution of species 
affecting avocado production. Understanding their disease cycle, 
infection strategies, and detection methods is crucial for developing 
effective disease management approaches as new species emerge 
across various regions.

2.2 Disease cycle

The disease cycles of both Colletotrichum and 
Botryosphaeriaceae responsible for these postharvest rots involve 
latent infections activated during fruit ripening (Fischer et al., 2019; 
Prusky et al., 2013). Initial infection by Colletotrichum spp. begins 
with germ tubes that develop appressoria to penetrate the fruit 
(Perfect et al., 1999). This is followed by a biotrophic phase until 
ripening triggers necrotrophy, with secretion of cell wall degrading 
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enzymes (CWDEs) leading to sunken lesions and secondary 
conidia formation (Everett et al., 2008; Hartill, 1991; Hartill and 
Everett, 2002; Prusky et al., 2013). Colletotrichum overwinters as 
conidium or sclerotia in plant debris (Casela and Frederiksen, 1993; 
Stensvand et  al., 2017; Yoshida et  al., 2007), with infection 
beginning at lenticels, wounds, or compromised skin by splash-
dispersed conidia germinating under wet conditions and 
temperatures typically ranging from 10°C to 35°C (Estrada et al., 
2000; Everett and Pak, 2002; Everett et al., 2018; Morse and Faber, 
2017; Salotti et al., 2022).

Botryosphaeriaceae persist in plant tissues as mycelium, pycnidia, 
or conidia (Galsurker et al., 2018; Johnson et al., 1992), entering the 
tree preharvest through natural openings or wounds, with spores 
dispersed by rain, wind, and insects (Eskalen et al., 2013; Hartill and 
Everett, 2002; Karunanayake and Adikaram, 2020; Navarro et  al., 
2022). Inside the fruit, a quiescent biotrophic state transitions to 
necrotrophy during ripening due to biochemical changes weakening 
host defenses (Alam et al., 2020; Galsurker et al., 2018; Prusky and 
Lichter, 2007), exacerbated by high humidity (>90%) and warm 
temperatures of 20–25°C (Bill et  al., 2014; Defilippi et  al., 2015). 

FIGURE 1

Symptoms of anthracnose and stem-end rot on avocado fruit. (A–F) Body rot symptoms include sunken lesions (A,D), internal decay (B,C), and cross-
sectional views showing lesion development (E,F). (G–L) SER symptoms include discoloration and darkening at the stem-end (G), with internal 
browning and vascular invasion visible (H–J). Infected vascular strands appear dark brown to black, forming an advancing boundary between healthy 
and diseased tissue (K,L).
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During necrotrophy, CWDEs are also secreted (Defilippi et al., 2018; 
Nagel et  al., 2021a), leading to internal decay from the stem end 
through the vascular system (Fostvedt et al., 2024; Möller et al., 2025) 
(Figure  2). Pycnidia forms in necrotic tissue, releasing secondary 
conidia that serve as inoculum for future infections (Twizeyimana 
et al., 2013a). The persistence of Botryosphaeriaceae fungi in dead and 
living branches, infected fruit, and even soil ensures that the disease 
cycle continues year after year, making early and efficient disease 
management essential (Llanos and Apaza, 2021).

3 Detection and diagnosis

Accurate detection of Colletotrichum and Botryosphaeriaceae 
species is essential for managing postharvest diseases and preserving 
avocado fruit quality (Alam et  al., 2020; Fischer et  al., 2019; 
Karunanayake and Adikaram, 2020). Traditional visual inspection is 
unreliable due to the pathogens’ quiescent nature (Matsui et al., 2023). 
This limitation is problematic in “Hass” avocados, where the dark, 
textured skin obscures early lesion development more than in lighter 
cultivars such as ‘Fuerte’ and ‘Bacon’ (Bill et al., 2014; Fischer et al., 
2019). As a result, undetected infections continue to cause economic 
losses throughout the supply chain (Ramírez-Gil et al., 2020, 2021).

Various detection methods for Botryosphaeriaceae- and 
Colletotrichum-induced diseases have also been tested across diverse 
crops such as mango, kiwifruit, blueberries, citrus, strawberries, olives, 

apples, and peppers, providing valuable insights that could 
be  integrated into avocado disease monitoring systems (Cabrera 
Ardila et al., 2020; Clark et al., 2004; Fazari et al., 2021; Jeong et al., 
2024; Li et al., 2021; Wang et al., 2021; Wu et al., 2023; Xu et al., 2016; 
Yang et al., 2022). Furthermore, with the pathogens’ similar infection 
strategies, there is strong potential to adapt or co-develop methods for 
dual diagnosis (Fischer et al., 2019).

3.1 Molecular detection methods

Polymerase chain reaction (PCR) is a widely used method for 
detecting Colletotrichum and Botryosphaeriaceae species. However, 
due to the genetic similarities, single-locus PCR often lacks the 
resolution for species-level identification. Multilocus phylogenetic 
analysis has become standard for resolving closely related taxa, using 
combinations of housekeeping genes (Table 1) (Phillips et al., 2013, 
2019; Vieira et al., 2020).

For anthracnose, PCR targeting the internal transcribed spacer 
(ITS) and β-tubulin (TUB2) regions enables genus-level identification 
(Chen et al., 2006; Vieira et al., 2020). To distinguish species within 
Colletotrichum, additional loci such as glutamine synthetase (GS), 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), calmodulin 
(CAL), actin (ACT), chitin synthase (CHS-1), DNA lyase (APN2), 
mating-type protein (MAT1-2) and L-arabinitol dehydrogenase (ladA) 
(Khodadadi et al., 2020; McHenry and Aćimović, 2024) are often 

FIGURE 2

Disease cycle of stem-end rot in avocado. Pathogens survive in cankers and infected debris, producing conidia that infect fruit preharvest and establish 
latent infections. Symptoms develop postharvest during ripening and storage. Created in BioRender. Valencia Bernal, V. (2025) https://BioRender.com/
bxrcbhq.
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employed. Specific combinations enhance resolution for species 
complexes (Khodadadi et al., 2020; Talhinhas and Baroncelli, 2021). 
For example, the CGSC is best resolved using APN2/MAT-IGS and 
GAP2-IGS, while CASC species are more accurately distinguished 
with HIS3, GAPDH, and TUB2 (Khodadadi et al., 2020).

For Botryosphaeriaceae, commonly sequenced loci include ITS, 
TUB2, and elongation factor-1α (TEF-1α) (Phillips et al., 2013, 2019), 
mirroring their role in Colletotrichum species differentiation. In 
avocados, these loci have enabled the first report of species-level 
detection of Neofusicoccum australe (Akgül et  al., 2016), 
Botryosphaeria dothidea (Qiu et al., 2020), and Diaporthe rudis (Torres 
et  al., 2016). These loci continue to be  the standard for species 
identification within the Botryosphaeriaceae family (Avenot et al., 
2023; Valencia Bernal et al., 2025).

Beyond avocado, cross-crop assays offer insight into anthracnose 
and SER detection. Xu et al. (2016) developed species-specific PCR 
primers targeting the ITS and TUB2 gene regions, facilitating accurate 
species identification of Lasiodiplodia theobromae, Botryosphaeria 
dothidea, and Neofusicoccum parvum found in stem blight samples 
(Xu et  al., 2016). Similarly, Ni et  al. (2012) developed a nested 
multiplex PCR (mPCR) assay for mangoes, enabling simultaneous 
detection of L. theobromae, N. parvum, N. mangiferae, and Fusicoccum 
aesculi, at fungal DNA concentrations as low as 100 femtograms to 1 
picogram (Ni et al., 2012). In soybeans, Chen et al. (2006) developed 
a multiplex PCR assay using ITS1/ITS2-based primers to detect 

C. gloeosporioides and C. truncatum, with amplification at 100 
nanograms and no cross-reactivity with non-target DNA, highlighting 
its specificity and sensitivity (Chen et al., 2006).

Quantitative PCR (qPCR) enhances conventional PCR by 
providing real-time pathogen DNA detection, crucial for identifying 
latent infections and supporting early surveillance during both 
orchard and postharvest storage due to its high sensitivity; qPCR has 
been instrumental in distinguishing closely related Colletotrichum 
species within the C. gloeosporioides and C. acutatum complexes (Cao 
et al., 2023; Garrido et al., 2009). Recent multilocus qPCR assays, 
combining markers such as ITS, GAPDH, and TUB2, have successfully 
resolved species-level identities at femtogram DNA concentrations. In 
apples, bitter rot pathogens were distinguished with a detection limit 
of 0.5 pg (McHenry and Aćimović, 2024), while ITS-based 
quantification of C. fructicola in asymptomatic Camellia tissue 
demonstrated robust sensitivity and specificity (Cao et  al., 2023). 
Similar strategies have proven effective for tracking colonization and 
resistance responses in infected tissues (Yang et al., 2022), and for 
identifying quiescent infections in strawberry transplants using both 
SYBR Green and TaqMan chemistries (Rahman et al., 2019). In olives, 
assays targeting C. acutatum allowed detection as early as 16 h after 
inoculation, and an alternative virulence-gene assay (klap1) achieved 
femtogram-level detection (10.14 fg per reaction) (Azevedo-Nogueira 
et al., 2021). One of the more innovative developments, a spore-based 
qPCR for peppers, enabled Colletotrichum identification from a single 

TABLE 1  PCR primers used in species delimitation of Colletotrichum and Botryosphaeriaceae fungi.

Product name Gene Primer Sequence (5′–3′) Length (bp) Reference

Internal Transcribed 

Spacerab
ITS

ITS1- F CTTGGTCATTTAGAGGAAGTAA 290
White et al. (1990)

ITS4 TCCTCCGCTTATTGATATGC 330

β-tubulina

Bt2
BT2-A GGTAACCAAATCGGTGCTGCTTTC

495
Glass and Donaldson 

(1995)BT2-B ACCCTCAGTGTAGTGACCCTTGGC

β-tubulin 2b

TUB2
T1 AACATGCGTGAGATTGTAAGT 1,500 O’Donnell and Cigelnik 

(1997)T2 TAGTGACCCTTGGCCCAGTTG 730

Elongation factor-1αab

TEF-1α

EF1-728F CATCGAGAAGTTCGAGAAGG
350

Carbone and Kohn 

(1999)EF1-986R TACTTGAAGGAACCCTTACC

Calmodulinb

CAL
CL1C GAATTCAAGGAGGCCTTCTC

756 Weir et al. (2012)
CL2C CTTCTGCATCATGAGGTGGAC

Glyceraldehyde-3-

phosphate 

dehydrogenaseb

GAPDH

GDF-F GCCGTCAACGACCCCTTCATTGA

270 Templeton et al. (1992)GDF-R GGGTGGAGTCGTACTTGAGCATGT

Glutamine Synthetaseb

GS
GSF ATGGCCGAGTACATCTGG

900 Stephenson et al. (1997)
GSR GAACCGTCGAAGTTCCAC

Actinb

ACT
Act512F ATGTGCAAGGCCGGTTTCGC

300
Carbone and Kohn 

(1999)Act783R TACGAGTCCTTCTGGCCCAT

DNA Lyaseb

APN2
ColDL-F3 GGGAGAAGCGAACATACCA

756 Rojas et al. (2010)
CgDL-R1 GCCCGACGAGCAGAGGACGTAGTC

Intergenic spacer and 

partial mating type 

(Mat1-2) geneb

ApMat

CgDL-F6 AGTGGAGGTGCGGGACGTT

870 Rojas et al. (2010)CgMAT1F2 TGATGTATCCCGACTACCG

aPrimer set used for Botryosphaeriaceae identification.
bPrimer set used for Colletotrichum spp. identification.
abPrimer set used for both pathogens.
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conidium without requiring DNA extraction, greatly streamlining 
diagnostic workflow while maintaining accuracy (Jeong et al., 2024). 
This extraction-free model holds strong promise for anthracnose 
detection in avocado, particularly in high-throughput or time-
sensitive settings.

qPCR advancements have improved SER detection with duplex 
and triplex TaqMan assays enabling simultaneous detection of 
N. parvum, B. dothidea, and broader Botryosphaeriaceae groups in 
various plants and environmental samples (Romero-Cuadrado et al., 
2023, 2024). Billones-Baaijens et al. (2018) developed a multispecies 
qPCR assay targeting the β-tubulin gene to quantify 
Botryosphaeriaceae inoculum in vineyards. This robust assay detected 
10 species with high specificity and sensitivity, proving valuable for 
diagnostics, spore dispersal modeling, and orchard sanitation 
(Billones-Baaijens et al., 2018).

The high sensitivity and specificity of PCR and qPCR-based assays 
make them indispensable tools for early detection and disease 
monitoring, especially in avocado-exporting regions where preventing 
latent infections is critical for marketability. While these remain as 
cornerstones for pathogen detection in laboratory settings, their 
reliance on specialized equipment has prompted researchers to 
explore alternative technologies that offer greater accessibility and 
field applicability.

Loop-mediated isothermal amplification (LAMP) has emerged as 
a powerful alternative to conventional PCR and qPCR, for rapid, 
low-cost and on-site detection of plant pathogens, including those 
responsible for anthracnose and SER. Operating at a constant 
temperature (60–65°C), LAMP eliminates the need for thermal 
cyclers, making it highly suited for in-field diagnostics in orchards or 
export settings (Law et al., 2015). Although LAMP is not yet widely 
used for postharvest avocado pathogens, research on other avocado 
and fruit crop diseases demonstrates its considerable promise (Kamali 
Dashtarzhaneh et al., 2025).

In mango, a calmodulin-targeted LAMP assay reliably identified 
members of the Colletotrichum gloeosporioides species complex at 
DNA concentrations ranging from 0.1 to 10 ng/mL (Hattori et al., 
2021). Lan et al. (2020) pushed this sensitivity even further, detecting 
C. gloeosporioides in guava at just 10 femtograms of DNA, roughly a 
thousand times more sensitive than standard PCR and confirming its 
utility for detecting latent infections in asymptomatic fruit (Lan et al., 
2020). In soybean, a LAMP assay for C. truncatum detected as little as 
100 pg/μL and successfully identified the pathogen in field samples 
and seed lots containing only 10 conidia per 50 g (Tian et al., 2017). 
More recently, efforts have improved not just sensitivity, but usability. 
Cui et al. (2024) developed two assays for C. siamense, one using cresol 
red for a visible color shift, the other incorporating a fluorescent 
TaqMan probe for real-time readout. Both reached a detection limit 
of 50 copies/μL and successfully identified soil inoculum at 104 CFU/g 
(Cui et al., 2024). In strawberries, Wu et al. (2019) demonstrated how 
LAMP could be adapted to monitor fungicide resistance. Their assay 
simultaneously detected C. gloeosporioides and its G143A resistance 
mutation with just 10 pg of DNA, and by pairing the assay with a 
lateral flow device, they completed field detection within an hour, no 
lab required (Wu et al., 2019).

While most existing assays target anthracnose pathogens, efforts 
to adapt the technology for SER pathogens are growing. Wang et al. 
(2021) developed an assay for Botryosphaeria dothidea in kiwifruit 
that matched qPCR in sensitivity, reaching 10 picograms. In avocado, 

Madhu et al. (2025) created a tef1-α-based assay for Lasiodiplodia 
pseudotheobromae, capable of distinguishing it from closely related 
species and detecting infections down to 25 pg of DNA. King et al. 
(2024) took it a step further with a genus-level Lasiodiplodia assay, 
validated not only in culture but also in drone-captured air samples, 
detecting as little as 6.25 pg of DNA and demonstrating LAMP’s 
potential for environmental monitoring.

However, LAMP does come with its setbacks and limitations. 
Primer design is technically demanding, requiring 4–6 primers that 
must bind with high precision to 6–8 distinct target sites. Even minor 
mismatches can result in non-specific amplification or false positives, 
particularly under field conditions with inconsistent sample quality 
(Rolando et al., 2020). Visual detection formats, like color changes in 
dye-based assays, can be  difficult to interpret under inconsistent 
lighting or with colored or cloudy plant extracts (Garg et al., 2022). 
Ultimately, while LAMP offers considerable benefits in speed and 
portability, its successful application hinges on rigorous assay 
validation, appropriate user training, and careful interpretation of 
results (Wong et al., 2018).

3.2 Biochemical and non-destructive 
detection methods

Advancements in biochemical and non-invasive sensor 
technologies have introduced powerful tools for early detection of 
postharvest diseases in avocado, complementing PCR-based 
diagnostics with real-time, tissue-preserving options (Zamir et al., 
2020). Platforms based on metabolomics, volatile profiling, 
spectroscopy, and artificial intelligence (AI) imaging are increasingly 
capable of detecting latent infections before visible symptoms appear 
(Cabrera Ardila et al., 2020; Chauhan et al., 2024; Jansen et al., 2011; 
Khlaif et al., 2024).

Metabolomic and volatile compound profiling show promise as 
An et al. (2024) used ultra-high performance liquid chromatography-
mass spectrometry (UHPLC–MS) and gas chromatography–mass 
spectrometry (GC–MS), to identify early-stage biomarkers, including 
shikimate, succinic acid, and tyrosine, in L. theobromae-infected 
grapefruit 1 day post-inoculation, predating visible symptoms (An 
et  al., 2024). Similarly, Moalemiyan et  al. (2006) used GC–MS to 
identify volatile organic compounds (VOCs) in mangoes infected with 
L. theobromae and C. gloeosporioides, classifying SER with 1-pentanol 
and ethyl boronate, and anthracnose with thujol. Their discriminant 
model achieved up to 100% classification accuracy (Moalemiyan et al., 
2006). In papaya, Tan et al. (2024) used solid-phase microextraction 
and GC–MS analysis to identify microbial fermentation markers (e.g., 
acetic acid) and healthy fruit biomarkers such as methyl butanoate 
and benzyl isothiocyanate, providing a model for avocado disease 
screening (Tan et al., 2024).

Isothermal microcalorimetry (IMC) has also emerged as a 
non-destructive biochemical tool capable of monitoring real-time 
fungal metabolic activity through heat flow. Betancourt-Rodríguez 
et  al. (2023) standardized IMC conditions to characterize 
Colletotrichum species isolated from various fruits, including 
avocados, by analyzing thermokinetic parameters. Using the total heat 
(Ht) and maximum growth rate (μmax), as well as multivariate analyses, 
they demonstrate consistent and reproducible heat signatures across 
the isolates. This revealed physiological distinctions that could support 
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future detection efforts (Betancourt-Rodríguez et al., 2023). Building 
on this, Betancourt-Rodríguez et  al. (2025) applied canonical 
discriminant analysis to group fungal genera based on thermokinetic 
profiles. Furthermore, they trained a neural network model using the 
resulting canonical variables. The model achieved high accuracy 
(95%) in distinguishing Colletotrichum, Penicillium, and Alternaria 
genera, highlighting IMC’s potential as a rapid and non-invasive 
diagnostic method (Betancourt-Rodríguez et al., 2025). Spectroscopy 
and near-infrared (NIR) imaging offer non-destructive diagnostic 
potential. NIR spectroscopy accurately classified bruising in “Hass” 
avocados (over 85% accuracy within 1–2 h) (Wedding et al., 2012). 
Fourier transform NIR spectroscopy (FT-NIRS) assessed anthracnose-
induced rot in avocados with 65–84% accuracy (Wedding et al., 2019). 
Visible-NIR spectroscopy also significantly reduced chilling injury 
rated in kiwifruit (Clark et  al., 2004). These optical technologies 
demonstrate robust capabilities for early and non-invasive detection 
of both physical damage and latent disease in horticultural crops.

AI-integrated imaging offers even higher-resolution diagnostics. 
In Japan, Matsui et  al. (2023) used deep learning segmentation 
(U-net++) on X-ray images to classify rot-affected avocado tissue at 
the pixel level with 98% accuracy and a root mean square error of just 
3.15% in rot area quantification. For surface-based diagnostics, 
Valiente et al. (2021) applied convolutional neural networks (CNNs) 
to identify anthracnose lesions with 92% accuracy based on texture 
and color pattern. Campos-Ferreira et  al. (2023) used machine 
learning classifiers, including Random Forest (RF) and multilayer 
perceptron (MLP), to distinguish healthy, anthracnose-, and scab-
infected fruit. RF and MLP models achieved 98% overall classification 
accuracy and an F1 score of 98% for anthracnose detection.

Even though many of these tools were developed for anthracnose 
or in other crops, particularly those detecting VOCs, metabolic shifts, 
or structural changes, they offer a compelling framework for broader 
avocado application. Given the latent infection strategies shared by 
anthracnose and SER, these non-destructive technologies can serve as 
screening or early-warning systems, enhancing disease control, 
reducing postharvest losses, and complementing molecular assays.

4 Plant-pathogen interactions: the use 
of omics

4.1 Metabolomics

Metabolomics has provided key insights into the biochemical 
changes that occur during avocado ripening and infection. Through 
high-resolution analytical techniques such as UHPLC–MS, and 
other variations of metabolic work, researchers have identified 
metabolites involved in defense, stress signaling, and disease 
progression (Castro-Moretti et al., 2020). One of the most consistent 
findings is the decline of antifungal compounds, such as epicatechin, 
chlorogenic acid, and other flavonoids, as the fruit ripens (Di 
Stefano et al., 2017; López-Cobo et al., 2016; Ramos-Aguilar et al., 
2021; Younis et al., 2022). This reduction, observed across peel, 
pulp, and seed tissues, weakens internal defenses and correlates 
with the activation of latent infections by pathogens like 
C. gloeosporioides and N. parvum (Ardi et al., 1998; Bowen et al., 
2018; Prusky et al., 1989, 2013). Phenolic content also varies by 
cultivar and growing region. Avocados from Spain, Chile, Peru, and 

Australia show significant differences in flavonol glycosides and 
phenolic acids (Lyu et al., 2023; Serrano-García et al., 2023), and 
peel tissues consistently retain higher flavonoid levels than pulp. 
Rapid phenolic degradation in the pulp may help explain why 
internal tissues are often the first to succumb to fungal attack (Lyu 
et al., 2023; Younis et al., 2022).

Pathogens also contribute to disease through their own metabolite 
production. N. parvum secretes virulence factors like hydroxymellein, 
isosclerone, and tyrosol, which induce necrosis and cellular damage 
(Abou-Mansour et  al., 2015; Evidente et  al., 2010). Other 
Neofusicoccum species produce fatty acid-derived toxins such as 
linoleic and azelaic acid, which disrupt host oxidative balance and 
promote tissue colonization (Salvatore et al., 2018). C. gloeosporioides 
expresses laccases that degrade polyphenols like epicatechin, 
undermining antifungal defenses and enhancing lipoxygenase-
mediated cell wall breakdown (Guetsky et al., 2005; Bill et al., 2017). 
Additionally, Botryosphaeriaceae species interfere with jasmonic acid 
and salicylic acid signaling, suppressing host immune activation 
(Abou-Mansour et al., 2015).

These metabolic disruptions collectively reduce host resistance 
and accelerate decay. Yet, metabolomics alone does not reveal the 
regulatory pathways underlying these shifts. To address this, 
transcriptomics has emerged as a powerful tool for examining gene 
expression changes associated with infection, ripening, and 
postharvest stress (Zhang et al., 2022; Wang and Huo, 2022).

4.2 Transcriptomics

Transcriptomics has significantly advanced our understanding of 
the molecular responses of avocado during ripening, pathogen attack, 
and postharvest storage. These insights have revealed critical shifts in 
plant defense signaling, oxidative stress responses, and fungal 
virulence regulation.

Foundational studies generated de novo transcriptome assemblies 
for avocado, mango, and macadamia (Chabikwa et al., 2020), enabling 
high-resolution analyses of tissue-specific gene expression. In Mexican 
avocado, transcript profiling identified regulators of fatty acid 
metabolism and ripening across different tissues and developmental 
stages (Ibarra-Laclette et  al., 2015). Subsequent studies using 
1-methylcyclopropene (1-MCP) demonstrated that ethylene 
inhibition alters expression of key genes involved in ripening and 
long-term storage responses (Olivares et al., 2022).

Pathogen-focused transcriptomic studies have uncovered immune 
activation pathways. In fruit infected with C. gloeosporioides and 
treated with chitosan, Xoca-Orozco et  al. (2017) identified 
upregulation of phenylpropanoid biosynthesis and hormone signaling, 
suggesting chitosan functions as an elicitor of avocado defense 
responses. In roots infected with Fusarium kuroshium, genome-wide 
expression profiling revealed coordinated upregulation of genes and 
microRNAs related to hormone pathways, secondary metabolism, and 
cell wall modification, highlighting systemic defense reprogramming 
(Pale et al., 2024). Storage-associated transcriptomic changes have also 
been linked to fruit decay. Cold storage conditions modulate 
antioxidant systems by altering expression of phenolic biosynthesis 
genes and enzymes such as superoxide dismutase (SOD) and 
peroxidase (POD), both crucial for managing oxidative stress during 
shelf life (Chirinos et al., 2023). Together, these findings underscore 

https://doi.org/10.3389/fmicb.2025.1644061
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Bernal et al.� 10.3389/fmicb.2025.1644061

Frontiers in Microbiology 08 frontiersin.org

the utility of transcriptomics in unraveling avocado responses to 
developmental, environmental, and biotic stress cues.

Other pathogen-focused transcriptomic studies have revealed 
critical virulence strategies employed by both Colletotrichum spp. and 
Botryosphaeriaceae during crop infection. Transcriptomic studies 
have revealed that Colletotrichum spp. coordinate distinct gene 
expression programs across infection stages to support their 
hemibiotrophic lifestyle (O’Connell et  al., 2012). Early infection 
involves the upregulation of genes linked to appressorium formation, 
host penetration, and stress tolerance, including melanin biosynthesis 
enzymes, fatty acid metabolism genes, and redox regulators 
(O’Connell et al., 2012; Liang et al., 2018). During biotrophy, small 
secreted proteins (SSPs), LysM effectors, and other immune-
suppressing factors are expressed to evade host detection, while the 
transition to necrotrophy is marked by broad induction of 
carbohydrate-active enzymes, proteases, tannases, and necrosis-
inducing proteins (Liang et  al., 2018; Ozbudak et  al., 2025). 
Comparative studies show that dicot-infecting species exhibit greater 
transcriptional plasticity and deploy a more diverse repertoire of 
effectors and degradative enzymes than monocot specialists, reflecting 
host-driven genomic and regulatory adaptation (Baroncelli 
et al., 2024).

On the host side, transcriptomic studies of resistant cultivars of 
walnut and strawberry have shown that Colletotrichum infection 
activates multiple layers of defense, including early expression of 
pattern recognition receptors (FLS2, EFR), calcium-dependent protein 
kinases (CDPKs), and pathogenesis-related genes such as PR1 (Fang 
et  al., 2021; Wang et  al., 2017). In addition, effector-triggered 
immunity is activated through resistance genes including RIN4, 
RPM1, and RPS2, with downstream signaling involving WRKY 
transcription factors, respiratory burst oxidase homologs (Rboh), and 
calcium channels (CNGCs) (Fang et al., 2021; Wang et al., 2017). 
These transcriptional changes reflect a dynamic defense strategy 
tailored to both the biotrophic and necrotrophic phases of infection.

Transcriptomic analyses have similarly revealed that 
Botryosphaeriaceae pathogens deploy a diverse array of virulence 
mechanisms during host colonization. In grapevines infected with 
Lasiodiplodia theobromae, Zhang et  al. (2019) reported strong 
activation of genes involved in plant hormone signaling, immune 
receptor recognition, and defense-related secondary metabolism. 
Both pathogen-associated molecular pattern (PAMP)-triggered and 
effector-triggered immunity pathways were engaged, with increased 
expression of pattern recognition receptors, such as FLS2 and CERK1, 
MAP kinase signaling components (MPK3/6), WRKY transcription 
factors, and resistance (R) genes, including RPM1 and RPS2. 
Expression of phenylpropanoid pathway genes and reactive oxygen 
species (ROS)-associated enzymes further reflected the activation of 
both local and systemic defense mechanisms in the host (Zhang et al., 
2019). Other transcriptomic studies have identified additional fungal 
virulence factors. L. theobromae upregulates genes involved in 
phenolic catabolism and cell wall degradation under heat stress 
conditions, including salicylate hydroxylase, pectate lyase, and 
catechol dioxygenases (Paolinelli-Alfonso et al., 2016). Moreover, the 
secreted endopolygalacturonase LtEPG1 in L. theobromae has been 
shown to induce host cell death and activate defense-related 
transcription when transiently expressed in Nicotiana benthamiana, 
suggesting a dual role as both a virulence factor and elicitor (Thilini 
Chethana et  al., 2020; Peng et  al., 2025). Together, these findings 

suggest that Botryosphaeriaceae pathogens utilize a combination of 
enzymatic degradation, detoxification, and immunomodulatory 
strategies to facilitate latent colonization and postharvest 
symptom expression.

4.3 Multi-omics

Multi-omics approaches have enabled researchers to unravel the 
complex molecular networks regulating postharvest disease 
development in avocado. While metabolomics has revealed the 
depletion of antifungal compounds during ripening and 
transcriptomics has uncovered gene-level immune responses, 
combining these with genomics and proteomics offers a more 
integrated view of host-pathogen interactions (Figure 3). This systems-
level perspective is critical for understanding how pathogens exploit 
ripening-associated vulnerabilities to initiate infection and accelerate 
fruit decay (Núñez-Lillo et al., 2023). However, the effectiveness of 
multi-omics depends heavily on foundational resources. Without 
well-annotated genomes and reference datasets for avocado and its 
pathogens, interpreting gene function, expression patterns, and 
metabolite shifts remains challenging (Hayes et  al., 2024). 
Nevertheless, recent work is demonstrating the power of integration.

Multi-omics approaches have begun to reveal how postharvest 
fungal pathogens coordinate their infection strategies in response to 
host physiology, particularly during avocado ripening and storage. 
Rather than acting through isolated molecular processes, pathogens 
such as L. theobromae, N. parvum, and B. dothidea deploy tightly 
regulated networks of virulence genes, identified through genomic 
and transcriptomic studies, that remain latent in asymptomatic fruit 
until triggered by postharvest stress (Nagel et  al., 2021b). These 
networks include large inventories of CWDEs, secreted proteases, and 
biosynthetic gene clusters, which are transcriptionally upregulated in 
response to host-derived cues such as ripening-related metabolic 
shifts (Yan et al., 2018).

Integrating genomics and transcriptomics has shown that 
Botryosphaeriaceae pathogens maintain compact, repeat-poor 
genomes that lack the “two-speed” structure seen in many fast-
evolving fungi (Nagel et al., 2021a). Yet within this stable genome 
context, virulence genes are co-regulated through dynamic expression 
modules that respond to changes in host carbohydrate availability and 
oxidative balance. Gene family expansions linked to stress tolerance 
and colonization, such as those encoding glucanases, major facilitator 
superfamily (MFS) transporters, and orsellinic acid biosynthesis 
enzymes, underscore the group’s metabolic flexibility (Liang et al., 
2024). These adaptations allow pathogens to shift quickly from a 
quiescent state to aggressive colonization without requiring large-scale 
genomic reorganization.

Colletotrichum species, by contrast, exhibit a stage-specific 
infection strategy that has been elucidated through coordinated 
genomic, transcriptomic, and metabolomic analyses. 
Comparative genomics of C. orbiculare and C. gloeosporioides 
has revealed enriched clusters of small secreted proteins, 
carbohydrate-active enzymes, and effectors that support both 
stealth colonization and host degradation (Gan et  al., 2013, 
2021). Transcriptomic studies show that during biotrophic 
establishment, genes encoding LysM-domain proteins and 
immune-suppressing effectors are upregulated to evade host 
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defenses. As infection transitions to the necrotrophic phase, 
CWDEs, proteases, and pectinases dominate the transcriptome, 
reflecting the pathogen’s shift toward tissue breakdown and 
nutrient acquisition (Gan et al., 2013).

Multi-omics integration has also illuminated the host response. In 
Stylosanthes plants infected with Colletotrichum, Jiang et al. (2021) 
demonstrated that infection triggers upregulation of flavonoid 
biosynthesis genes, including phenylalanine ammonia-lyase and 
flavonoid 3′-hydroxylase, resulting in elevated accumulation of 
antifungal metabolites such as kaempferol, quercetin, and naringenin. 
This biochemical shift occurs alongside downregulation of lignin 
biosynthesis genes, suggesting a strategic allocation of defense 
resources from structural reinforcement to metabolite-based 
antifungal defense (Jiang et al., 2021).

5 Factors influencing postharvest 
disease

The development and severity of postharvest diseases in avocados 
are shaped by a complex interplay of preharvest and postharvest 
factors. Orchard management practices, harvest timing, and ripening 
physiology directly affect fruit structure, pathogen resistance, and 
storage performance (Arpaia et al., 1987, 2004; Defilippi et al., 2015). 
Fruit quality is established during development and maturation; 

postharvest conditions can only preserve, not improve, this quality 
(Everett and Pak, 2001).

5.1 Orchard practices

Orchard practices significantly influence avocados’ postharvest 
quality, fruit firmness, ripening behavior, disease susceptibility, and 
storage potential (Arpaia et al., 2004; Everett and Pak, 2001). Factors 
such as irrigation uniformity, tree nutrition, fruit positioning, and 
sanitation practices directly affect fruit structural integrity, skin 
resilience, and metabolic stability, influencing postharvest 
performance and marketability (Defilippi et al., 2015).

Both drought and excessive rainfall significantly affect fruit quality 
and postharvest disease susceptibility. Inconsistent irrigation has been 
linked with lenticel damage, irregular ripening, and increased 
susceptibility to anthracnose and SER (Ramírez-Gil et  al., 2021). 
Excessive rainfall before harvest raises internal water content, leading 
to cell breakdown during ripening and increased vulnerability to 
infection (Pak et  al., 2003). Water-deficit stress further impacts 
ripening dynamics; fruits losing water rapidly (2.9% fresh weight/day) 
ripened 40% faster than those with slower loss (0.5% per day), due to 
elevated ethylene production and mesocarp softening (Adato and 
Gazit, 1974). Additionally, drought-stressed fruit develop higher 
internal temperatures, and without transpiration cooling, postharvest 

FIGURE 3

Multi-omics insights into host-pathogen interactions during postharvest disease. Genomics, transcriptomics, proteomics, and metabolomics can 
collectively reveal pathogen virulence factors, infection strategies, host defense responses, and metabolic shifts, providing an integrated framework for 
early detection and disease management. (JA = Jasmonic Acid; SA = Salicylic Acid; SOD = Superoxide dismutase; POD = Peroxidase) Created in 
BioRender. Valencia Bernal, V. (2025) https://BioRender.com/u28ig2w.
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heat buildup exacerbates physiological disorders. Brief exposure to 
temperatures >25°C for 24 h significantly increases SER and 
anthracnose incidence (Kassim et al., 2013; Arpaia et al., 2018).

Calcium (Ca) deficiencies increase susceptibility to SER and 
anthracnose by weakening cell wall structure and accelerating 
ripening (Thorp et  al., 1997; Ramírez-Gil et  al., 2021). Calcium 
crosslinks pectin, limiting enzymatic degradation, nutrient leakage, 
and microcrack formation that facilitate fungal colonization (Kirkby 
and Pilbeam, 1984; Messenger et al., 1997; Tingwa and Young, 1974). 
While foliar Ca (NO3)2 applications have shown mixed results, some 
improving firmness and reducing ethylene production (Barrientos-
Priego et al., 2016), root uptake is generally more effective (Partridge 
et  al., 2002; Messenger et  al., 1997). Late-harvested fruit typically 
contain less calcium, correlating with higher incidence of vascular 
browning and fungal infection (Thorp et al., 1997; Chaplin and Scott, 
1980). Other nutrients also influence disease risk: excess nitrogen 
promotes rapid ripening and softening, while higher potassium 
supports skin strength and even ripening (Penter and Stassen, 2000; 
Kirkby and Pilbeam, 1984).

Orchard canopy structure influences light penetration, humidity, 
and airflow, all of which affect postharvest disease risk. Fruit from the 
lower canopy which is exposed to higher humidity and reduced 
airflow, exhibits increased incidence of anthracnose and SER (Defilippi 
et  al., 2015; Everett and Pak, 2001). Dense canopies also support 
higher fungal inoculum loads, raising infection rates at harvest 
(Everett et al., 2007). Canopy position also affects fruit maturity and 
dry matter (DM) content; lower-canopy and early-season fruit 
typically accumulate less DM and are more susceptible to diseases 
(Shezi et al., 2020).

Preharvest fungal inoculum levels in orchards are a major 
predictor of postharvest rot incidence. The amount of infected leaf 
tissue within an orchard has been directly correlated with the level of 
postharvest rots in fruit harvested. Quantification of spore load from 
leaf surfaces, dead branches, and stem tissue, revealed that these act 
as major reservoirs for Colletotrichum spp. and Botryosphaeria spp. 
(Everett et al., 2003). Pruning strategies that reduce canopy density 
and improve sunlight penetration have been shown to lower 
postharvest disease rates, as fruit from open canopies exhibit thicker 
skin, better calcium accumulation, and reduced moisture retention 
(Ramírez-Gil et al., 2021). These physiological conditions, set during 
the preharvest period, ultimately influence how fruit responds to 
harvest and ripening.

5.2 Harvest timing and ripening behavior

Harvest timing significantly impacts postharvest disease resistance. 
Fruit harvested at peak physiological maturity generally exhibits 
greater resilience to fungal infection than overripe or immature fruit 
(Arpaia et al., 2018). Overripe fruit’s increased lipids and ethylene 
accelerate softening, promoting pathogen invasion. Immature fruit 
ripens unevenly, developing defects that predispose it to decay (Arpaia 
et al., 2018; White et al., 2009). This vulnerability is further shaped by 
the fruit’s postharvest ripening behavior. Unlike many fruits, avocados 
remain physiologically mature but unripe on the tree due to suppressed 
ethylene biosynthesis (Hershkovitz et al., 2009; Kende, 1993). Once 
harvested, they enter climacteric ripening, marked by increased 
ethylene production and respiration (Lelièvre et  al., 1997). These 

ripening changes weaken fruit defenses: mesocarp softening can cause 
cuticle microcracks, enabling pathogen entry (Everett, 2020; Everett 
et al., 2008), while levels of antifungal compounds such as dienes and 
phenolic acids decline (Prusky et al., 1989, 2013; Prusky and Lichter, 
2007). Environmental and orchard level conditions further influence 
ripening behavior. Warmer preharvest conditions, such as higher mean 
minimum air temperatures and cumulative degree-days, accelerate 
postharvest softening and peel color change (Rivera et al., 2017). In 
contrast, fruit from trees with higher leaf area index and canopy density 
ripen more slowly, likely due to altered carbohydrate allocation and 
photosynthetic activity (Rivera et al., 2017). From orchard conditions 
to harvest timing and postharvest ripening, each stage shapes the fruit’s 
physiological trajectory and its susceptibility to disease.

6 Management strategies

Effective postharvest avocado disease management requires both 
preharvest risk mitigation and postharvest handling. Integrated 
Disease Management (IDM) combines cultural, chemical, biological, 
and physical controls for sustainable disease reduction (Pandey et al., 
2016; Gurr, 2021). However, IDM adoption is limited in avocado due 
to challenges such as lacking predictive models; nevertheless, its 
principles are vital for cutting chemical dependence and extending 
control efficacy (He et al., 2016).

6.1 Cultural practices

Cultural strategies aim to reduce inoculum sources and minimize 
fruit exposure to conditions that favor pathogen infection. These 
practices represent targeted interventions used in orchards and packing 
systems to limit disease development before and during harvest.

Regular removal of fallen fruit, dead wood, and mummified 
tissues disrupts the disease cycle and limits fungal inoculum in the 
orchard (Everett et al., 2018; Galsurker et al., 2018). Maintaining an 
open canopy through selective pruning improves airflow and reduces 
humidity, two conditions that suppress spore germination and fungal 
colonization. Pruning should be performed with sanitized tools to 
prevent mechanical spread of pathogens within and between trees 
(Everett, 2020; Fostvedt et al., 2024).

Clean harvest cuts are essential for minimizing infection risk. 
Using clippers instead of pulling fruit prevents stem tearing, a primary 
entry point for SER pathogens (Mazhar et al., 2018; Koo-Lee, 2024). 
Harvesting during or immediately after rainfall should be avoided to 
reduce surface moisture that favors fungal germination. Postharvest, 
fruit should be cooled to 4°C within 6 h to suppress ripening and 
pathogen growth, while avoiding lower temperatures to prevent 
chilling injury. Maintaining cold chain continuity and minimizing 
handling delays are critical for preserving fruit quality and reducing 
disease expression during storage and distribution (Morse and 
Faber, 2017).

6.2 Chemical control

Fungicide applications remain a key component of preharvest 
disease management in avocado, particularly for controlling 
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anthracnose. In the U.S., only azoxystrobin and copper-based 
fungicides are registered for use against anthracnose preharvest, while 
no fungicides are currently approved for managing SER (Morse and 
Faber, 2017). Postharvest fungicide applications are not standard 
practice in the U.S., where emphasis remains on cultural practices 
(Morse and Faber, 2017).

Fungicides trials against Botryosphaeriaceae fungi, remain 
experimental and are unregistered for commercial avocado 
production (Valencia Bernal et al., 2025). In Southern California, field 
trials showed that preharvest applications of azoxystrobin combined 
with propiconazole significantly protected against Neofusicoccum spp. 
(Twizeyimana et  al., 2013b). New  Zealand trials explored copper 
alternatives for preharvest fungicides. Pyraclostrobin and boscalid 
effectively controlled anthracnose and SER, often surpassing copper. 
Fluazinam matched copper for anthracnose but was inconsistent 
against SER (Everett et al., 2011).

Although limited in avocado, prochloraz showed strong 
postharvest efficacy in research. A 5-min dip in 500 ppm prochloraz 
significantly reduced anthracnose and SER (Danderson, 1986). 
Similar success occurred in mangoes when prochloraz was applied 
alone or with fludioxonil as a heated dip (Swart et al., 2009). However, 
prochloraz is not registered for postharvest use in the U.S. and is being 
phased out in Europe due to toxicological concerns (Shimshoni et al., 
2020). As a potential alternative, fludioxonil has demonstrated 
comparable efficacy against SER and anthracnose. In some avocado 
trials, it outperformed prochloraz in controlling early-season cultivar 
decay with minimal residue beyond the peel (Shimshoni et al., 2020).

Fungicide resistance is a major challenge for controlling 
anthracnose, particularly in Colletotrichum species. Resistance to 
various fungicide classes, including quinone outside inhibitors (QoIs) 
is well-documented, often linked to target gene mutations like 
β-tubulin (Chung et al., 2006). For instance, over 90% of C. acutatum 
isolates from Florida strawberry fields resisted azoxystrobin and 
pyraclostrobin (Forcelini et al., 2016). Recently carbendazim-resistant 
C. fructicola and C. siamense populations were identified in China 
with no fitness penalties (Karim et  al., 2024). Besides biological 
resistance, fungicide regulations are stringent. Since 1990s, Europe has 
withdrawn over 70% of previously approved active substances due to 
environmental and toxicological concerns (Fussell, 2016). Active 
ingredients such as prochloraz are being phased out due to concerns 
over carcinogenicity and endocrine disruption (Leskovac and 
Petrović, 2023). Globally, import rejections from residue are fueling 
demand for safer, residue-free alternatives (Chikte et al., 2024).

6.3 Biological control

Microbial biocontrol agents (BCA) offer promising alternatives to 
chemical fungicides for managing anthracnose and SER. Bacterial 
species such as Pseudomonas fluorescens and Bacillus subtilis produce 
lytic enzymes like chitinase and β-1,3-glucanase, which degrade 
fungal cell walls and inhibit pathogen growth. Fortnightly applications 
of talc-based P. fluorescens formulations combined with chitin have 
been shown to significantly delay anthracnose symptom development 
postharvest (Vivekananthan et al., 2004). More recently, three strains 
of Bacillus thuringiensis were evaluated against C. gloeosporioides, 
achieving in vivo inhibition rates above 63%. The antagonistic activity 
was attributed to volatile compound production, nutrient competition, 

and β-1,3-glucanase secretion (Magallón-Andalón et al., 2025). Yeast-
based biocontrol works by competitive exclusion, where yeasts 
colonize fruit surfaces, outcompeting fungal pathogens for nutrients 
and infection sites. For instance, Saccharomyces cerevisiae significantly 
reduced anthracnose in mangoes, suggesting potential for avocado. 
However, it was less effective than P. fluorescens (Vivekananthan et al., 
2004). New findings suggest that Meyerozyma caribbica and 
M. guilliermondii exhibit strong antagonism against L. theobromae, 
with co-cultures outperforming individual strains in mycelial 
inhibition (~90%) (Ayón-Macías et al., 2025). Fungal antagonists, 
especially Trichoderma species, effectively suppress Colletotrichum and 
Neofusicoccum pathogens via mycoparasitism, antibiosis, and induced 
resistance. T. harzianum suppressed C. gloeosporioides in tropical 
fruits (Wijeratnam et  al., 2008), while T. atroviride inhibited 
N. pseudotrichia growth by 55% and fully controlled SER on avocado 
(Wanjiku et al., 2021). These biocontrol agents could be integrated into 
spray programs or combined with low-risk fungicides to enhance 
disease suppression and reduce chemical use.

However, BCAs often show inconsistent efficacy commercially 
due to environmental sensitivity and competition with native 
microbes. For instance, Trichoderma species may be  less 
antagonistic in nutrient-rich soils. Many BCAs require specific 
temperature or humidity, and small-scale trial success often does 
not translate to field-scale. Introducing non-native microorganisms 
also carries ecological risks like invasiveness or disrupting native 
communities. These limitations highlight the need for more 
research, better formulations, and careful ecological assessment 
before fully integrating BCAs into large-scale postharvest disease 
management (Singh et al., 2020).

To address these limitations, advances in formulation have 
improved the stability, viability, and delivery of microbial agents under 
both pre- and post-harvest conditions. In one study, electrosprayed 
microcapsules of Yamadazyma mexicana applied pre- and postharvest 
reduced anthracnose severity by up to 96% at 25°C and up to 93% 
under cold storage, with complete disease suppression (100%) when 
both treatments were combined, without compromising fruit quality 
(González-Gutiérrez et al., 2024a). Building on this work, a follow-up 
study developed a powdered version of the bioformulation, which 
preserved yeast viability, maintained antifungal activity, and reduced 
anthracnose severity and incidence by 88.9 and 80%, respectively, 
during postharvest storage, while also maintaining key 
physicochemical quality traits of the fruit (González-Gutiérrez et al., 
2024b). Similarly, solution blow-spun nanofibers made with pullulan 
and loaded with Meyerozyma caribbica completely prevented 
symptom development on avocado fruits as a preventive application 
and reduced disease severity by up to 76% under curative application 
in cold storage, outperforming azoxystrobin in both cases (Vázquez-
González et  al., 2024). These formulation strategies enhance 
consistency and efficacy across various storage conditions, providing 
a more consistent and scalable approach to postharvest disease control.

6.4 Systemic resistance inducers

Instead of directly targeting fungal pathogens, systemic resistance 
inducers (SRIs) activate host defense pathways, priming the fruit’s 
immune system and reducing its susceptibility to infection (Elliston 
et  al., 1977). These compounds stimulate enzymes such as 
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phenylalanine ammonia-lyase (PAL), chitinase, and β-1,3-glucanase, 
leading to increased phenolic compound accumulation and cell wall 
reinforcement (Munhuweyi et al., 2020).

Phosphorus acid is an efficient SRI; a 500 mg L−1 preharvest 
application boosted PAL activity and antifungal compounds, with 
peak disease suppression 14 days post-treatment (Bosse et  al., 
2013). Similarly, 1.5% chitosan sprays enhanced PAL and 
epicatechin in the exocarp, improving firmness and suppressing 
anthracnose and SER (Munhuweyi et al., 2020; Obianom et al., 
2019). Submicron chitosan dispersions also increased PAL, 
peroxidase (PO), polyphenol oxidase (PPO), and total phenolics 
in dragon fruit, reducing C. gloeosporioides incidence and severity 
(Zahid et al., 2015). In avocado, chitosan-thyme oil coatings have 
been shown to increase phytoalexin production and resistance 
under warm storage conditions (Herrera-González et al., 2021).

More recently, phenylalanine (Phe) has emerged as an SRI that 
activates mitogen-activated protein kinase (MAPK) cascades, 
WRKY transcription factors, and flavonoid biosynthesis. In 
mango, Phe-treated fruit showed reduced oxidative stress, 
increased anthocyanin levels, and suppressed Colletotrichum 
growth (Patel et al., 2023). Moreover, high-degree polymerized 
agave fructans (HDPAF) have been shown to trigger over 5,400 
differentially expressed genes in “Hass” avocado, including key 
components of immune perception (FLS2, WRKY33, CRK25), 
MAPK signaling, and phenylpropanoid and flavonoid pathways. 
HDPAF treatment also delayed ethylene peaks, reduced 
respiration, and helped preserve fruit quality during storage, 
highlighting its potential as a dual-function elicitor for both 
disease management and shelf-life extension (Cuéllar-Torres 
et al., 2023).

SRIs have also demonstrated efficacy against 
Botryosphaeriaceae pathogens. In mango, a combination of 
hexanal vapor and bacterial antagonist (Pseudomonas fluorescens) 
reduced SER caused by L. theobromae, while increasing the 
activity of PAL, peroxidase (PO), polyphenol oxidase (PPO), 
superoxide dismutase (SOD), and catalase (CAT) (Seethapathy 
et  al., 2016). In banana, hexanal vapor (800 ppm) completely 
inhibited C. gloeosporioides and L. theobromae in vitro and reduced 
disease incidence in  vivo by 75.2 and 80.2%, respectively. It 
transiently elevated PAL, PO, PPO, and glucanase, inhibited 
phospholipase D, and promoted cell wall thickening, enhancing 
resistance and delaying ripening (Dhakshinamoorthy et al., 2020). 
In avocado, preventive root applications of marine extracts with 
potassium oxide and Trichoderma harzianum reduced 
L. theobromae lesion development and improved root and dry 
matter traits, indicating systemic defense activation (Jiménez-
Ariza et  al., 2023). In passion fruit, eugenol reduced lesion 
incidence by 87% and increased activities of PAL, chitinase, β-1,3-
glucanase, PO, PPO, SOD, and CAT, alongside phenolic and 
flavonoid accumulation (Sun et al., 2023).

6.5 Plant extracts and essential oils

Plant-derived volatiles and essential oils (EOs) have emerged 
as promising tools in postharvest disease management. Their 
antifungal activity stems from multiple mechanisms such as 
membrane disruption, metabolic interference, inhibition of 

germination, and in some cases, activation of host defenses 
(Sivakumar et al., 2021).

Thyme oil, rich in thymol and carvacrol, has shown consistent 
efficacy against C. gloeosporioides. When applied as vapor in 
combination with modified atmosphere packaging, it significantly 
reduced anthracnose severity in avocado and extended shelf life 
by minimizing lesion development and ripening (Sellamuthu 
et al., 2013). Similarly, Lippia sidoides oil, incorporated into a 1% 
carboxymethylcellulose (CMC) edible coating, reduced infection 
rates while maintaining firmness and sensory quality of avocados, 
an effect attributed to its synergistic action of thymol and 
carvacrol (Antonia et al., 2024).

Other plant species such as Lippia scaberrima L. javanica, and 
Artemisia afra have demonstrated strong antifungal effects linked 
to terpenoid components like R-(-)-carvone. Their oils have been 
successfully tested in coating applications and in fresh-cut 
systems, where they reduced browning, microbial load, and 
helped preserve antioxidant activity on avocados (Regnier et al., 
2010; Adeogun et  al., 2020a, 2020b). Furthermore, clove and 
cinnamon oils, used in fumigation or dip treatments, delayed SER 
for up to 7 days at 15°C, with clove oil proving most effective 
against L. theobromae and Diaporthe nelumbonis (Nilmini 
et al., 2021).

EO volatility remains a key limitation, reducing their efficacy 
in storage. To overcome this, edible coatings are used to regulate 
EO release and improve adhesion. Chitosan and CMC-based 
coatings incorporating oregano or moringa extracts have 
demonstrated improved firmness retention, antioxidant 
preservation, and slowed ripening in avocado (Tesfay et al., 2021; 
Cenobio-Galindo et al., 2019). Basil oil embedded in a beeswax 
matrix similarly reduced fungal development while maintaining 
texture (Karunanayake et al., 2020).

Encapsulation and nano structuring have further enhanced 
delivery. Thyme oil-loaded chitosan nanoparticles completely 
inhibited C. gloeosporioides in vitro and reduced disease incidence 
by up to 60% in fruit without compromising quality (Correa-
Pacheco et al., 2017). In another study, EO-chitosan formulations 
integrated into biodegradable polymeric nets reduced anthracnose 
by 80%, offering a novel packaging-based solution (Correa-
Pacheco et  al., 2022). Modified atmosphere packaging with 
lemongrass EO further suppressed anthracnose severity and 
preserved marketable traits such as firmness, flavor, and color 
(Mpho et al., 2013).

Incorporating EOs into coatings and packaging systems has 
expanded their utility beyond surface sprays, allowing for 
sustained antifungal activity and improved fruit quality. Even 
though these treatments may not fully replace fungicides in high-
pressure disease environments, they offer a compelling alternative 
or complement in organic systems and export markets seeking to 
reduce postharvest losses while meeting sustainability standards.

7 Sensory and consumer impact of 
fungal diseases

Postharvest diseases significantly compromise avocado sensory 
attributes, including texture, flavor, and aroma, critically impacting 
consumer acceptance and marketability (Ramírez-Gil et al., 2021). 
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While external blemishes are visible, internal quality deterioration 
manifesting as excessive softening, uneven ripening, off-flavors, and 
textural collapse is more detrimental to consumer perception (Aked, 
2002). Dry matter (DM) content is a key quality determinant, high 
DM (>26%) correlates with a desirable buttery texture and richer 
flavor, whereas low DM (<20%) fruit results in a watery, bland, and 
less appealing fruit (Giuggioli et  al., 2023). Fungal infections 
accelerate cell wall breakdown, lipid oxidation, and enzymatic 
degradation, leading to premature softening and structural collapse, 
making fruit feel undesirable even pre-consumption (Defilippi et al., 
2018; Harker et al., 2010; Ruiz-Aracil et al., 2024). The preferred 
ripeness stage at purchase (medium-soft 6.5 N firmness) is also 
disrupted by pathogens which either accelerate or delay softening, 
leading to increased bruising and internal necrosis that significantly 
reduce purchase intent (Arpaia et al., 2015).

Beyond textural changes, disease-induced biochemical shifts 
influence aroma, reducing consumer acceptability. Fungal infections 
alter aroma by producing VOCs, modifying phenolic content, and 
increasing lipid oxidation (Bano et al., 2023; Fernandes et al., 2024; 
Obenland et al., 2012). Pathogenic fungi, including Colletotrichum 
spp. and Botryosphaeriaceae spp., disrupt natural volatiles profiles by 
accelerating lipid membrane breakdown, leading to an incomplete 
transition from immature to mature aromas (Gong et  al., 2022; 
Obenland et al., 2012; Parthasarathy et al., 2017). Healthy ripening 
avocados undergo a decline in grassy aldehydes (e.g., hexanal), and 
an increase in desirable compounds like acetaldehyde, and 
β-myrcene, contributing to a creamy, nutty aroma (Obenland et al., 
2012). However, fungal infections alter the trajectory, often preserving 
grassy aldehydes and suppressing key esters, resulting in unripe, 
musty, or fermented odors (Gong et  al., 2022). For example, 
Colletotrichum infections trigger oxidative stress and elevate enzymes 
like PPO, POD, and lipoxygenase (LOX), promoting lipid oxidation 
and rancid volatiles formation (Fernandes et  al., 2024). Similar 
infections in mangoes and apples increase alcohols, ketones, and 
aldehydes, associated with unpleasant odors (Parthasarathy et al., 
2017). The increase in C6/C9 aldehydes and alcohols in infected fruit 
is linked to LOX pathway activation contributing to off flavors (Gong 
et al., 2019). Given aroma’s critical role in consumer acceptability, 
fungal-induced volatile disruptions emphasize the need for effective 
postharvest disease management to preserve avocado aroma 
and marketability.

While postharvest fungal diseases reduce fresh avocados 
marketability, the impact on processed products is poorly understood. 
Processing typically involves removing visibly defective fruit, disinfection 
and blending with additives (Koo-Lee, 2024). However, infected fruit 
passing visual inspection can still exhibit internal breakdown, off-flavors, 
and altered volatile profiles that persist post-processing, particularly in 
minimally processed items like guacamole. Despite rising demand for 
avocado products, systematic research on how infections affect processed 
quality is lacking. Addressing this gap is critical for developing 
comprehensive disease management extending beyond whole-
fruit appearance.

8 Discussion

Research on postharvest fungal diseases in avocado exhibits a 
notable imbalance. While significant attention has been paid to 

Colletotrichum species and anthracnose due to their economic impact 
and available research tools, Botryosphaeriaceae fungi (SER 
pathogens), including Neofusicoccum, Lasiodiplodia, and 
Botryosphaeria, remain comparatively understudied in avocado. Much 
of the current knowledge is derived from other hosts, limiting 
avocado-specific disease models and hindering a full understanding 
of latent infection and unique symptom expression.

Despite advancements in molecular diagnostics (e.g., qPCR, 
LAMP) for asymptomatic detection, their broader adoption faces 
challenges. High costs, specialized equipment, training needs, and lack 
of standardized protocols limit implementation, particularly for small-
scale producers and in resource-limited regions (O’Brien and Alamar, 
2025). Similarly, multi-omics approaches are nascent, but their utility 
is constrained by a lack of annotated genomes, cultivar-specific 
infection models, and foundational omics datasets for avocado and its 
pathogens, hindering the identification of functional interactions.

Current management strategies largely depend on cultural practices 
and fungicides, especially preharvest treatments for anthracnose. 
However, efficacy against SER is inconsistent, and concerns over 
fungicide resistance and environmental impact drive the need for 
sustainable alternatives. While fungicides will likely persist, they can 
be  complemented by biological control agents, systemic resistance 
inducers, and plant-based products. The transition of biocontrol 
solutions from laboratory to commercial scales has encountered hurdles 
like inconsistent efficacy under variable conditions, formulation stability, 
and regulatory complexities (Peralta-Ruiz et al., 2023).

Beyond disease control, these infections severely impact sensory 
attributes diminishing consumer acceptance and marketability (Gamble 
et al., 2010) softening, discoloration, and off-flavors (Obenland et al., 
2012). As the avocado industry expands, future research must integrate 
traditional management with emerging biotechnologies. A 
multidisciplinary approach, combining agronomic, molecular, and 
technological innovations, is essential for ensuring long-term 
sustainability. By adopting a systems-based approach, from preharvest 
optimization to innovative management, the industry can secure more 
effective, sustainable, and economically viable solutions to preserve 
avocado quality globally.
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