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Introduction: Heavy metal pollution adversely affects soil health by disrupting 
the microbial community structure and functions. The current study aimed to 
isolate and characterize heavy metal-tolerant bacterial strains and evaluate their 
potential for soil bioremediation and promoting agricultural sustainability.

Methods: A total of 68 bacterial strains were isolated from industrial discharge-
contaminated sites and screened for their maximum tolerance limits (MTL) 
against Cr, Cu, Pb, As, and Cd. The biosorption potential of 23 phylogenetically 
diverse strains was evaluated. Molecular identification was carried out through 
16S rRNA gene sequencing, and plant growth-promoting genes (acdS and nifH) 
were screened. Four representative strains (NCCP-650T, NCCP-614, NCCP-644, 
and NCCP-602) were tested for their effect on the growth of Brassica napus 
under axenic conditions with 50 mg/L of each metal.

Results: Several isolates exhibited high MTLs, with tolerance up to 3600 mg/L 
for Cr, 3300 mg/L for Cu, and 3000 mg/L for Cd and As, while Pb tolerance 
reached 2100 mg/L. Biosorption was highest for Pb, followed by Cd and Cu; 
Cr and As were less effectively biosorbed. Molecular identification revealed 
affiliation of strains to 19 bacterial genera, with Bacillus (21%), Pseudomonas 
(12%), and Staphylococcus (10%) as dominant. Seven strains harbored both acdS 
and nifH genes, with 15 and 8 strains positive for nifH and acdS individually. In 
plant experiments, all four tested strains improved B. napus growth under heavy 
metal stress, with NCCP-650T showing the most significant enhancement.

Discussion: The isolated strains demonstrated significant tolerance and 
biosorption of toxic metals, along with plant growth-promoting potential. 
These findings suggest that selected isolates, particularly NCCP-650T, can serve 
as bioinoculants for enhancing plant growth and bioremediation in metal-
contaminated environments.
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Introduction

Anthropogenic activities introduce multiple pollutants into 
the environment, consequently increasing the environmental 
burden (Zafar et al., 2021; Altaf et al., 2021). Heavy metals are 
continuously released into the atmosphere through industrial 
processes, causing serious environmental concerns (Arshad et al., 
2020; Gul et al., 2021; Manzoor et al., 2021). Some of these heavy 
metals also contain elements that are vital for living organisms at 
considerably low concentrations (Alloway, 1990). However, 
relatively high concentrations of these elements can have a toxic 
impact on the fauna and flora (Ilyas et al., 2022; Natasha et al., 
2022). These elements usually include transition metals in high 
densities (>5 g cm−3) compared to other materials. Soils are 
regarded as natural resources for producing food and other raw 
materials for human use. Nevertheless, soil also acts as a sink for 
waste materials, including heavy metals (Park et  al., 2011). 
Phytoextraction has the potential to restore or manage 
contaminated soils by providing a cost-effective solution (Arshad 
et al., 2008; Manzoor et al., 2018, 2019a). However, conventional 
remediation technologies are less effective and can sometimes 
impose detrimental effects on soil quality (Biswas et al., 2015; 
Wan et al., 2016).

Numerous plant species can grow in heavy metal-contaminated 
soils, but they cannot be used for remediation purposes due to their 
slow growth, low accumulation potential, and very low biomass (Shen 
and Liu, 1998). Moreover, heavy metals are occluded or adsorbed by 
iron–manganese oxides or complexes, organic matter, primary or 
secondary metabolites, and carbonates (Garbisu and Alkorta, 2001). 
These metal complexes limit heavy metal bioavailability in the soil and 
reduce phytoremediation efficiency (Chen et al., 2004; Sheng and Xia, 
2006). To improve the phytoavailability of metals, multiple strategies 
have been adopted, including the use of chelators, bacteria, fungi, and 
organic and inorganic amendments (Manzoor et al., 2019b; Gul et al., 
2019a,b, 2020; Arshad et al., 2016). Several rhizospheric bacteria have 
been reported to be tolerant or resistant to the toxicity of numerous 
heavy metals (Cardón et al., 2010; Dary et al., 2010; Koo and Cho, 
2009; Tank and Saraf, 2009). Intrinsic microbial properties enable 
these bacteria to tolerate the toxic effects of heavy metals, while their 
metal resistance ability is attributed to metal detoxification 
mechanisms that are activated upon exposure to elevated 
concentrations of heavy metals (Ledin, 2000).

Bacteria develop various mechanisms to promote plant growth in 
soils with high concentrations of heavy metals, namely, biosynthesis 
of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, 
production of phytohormones and siderophores, and production of 
indole acetic acid (Manzoor et al., 2021). Plant growth-promoting 
rhizobium (PGPR) strains have shown promising results in 
laboratories and greenhouse studies; however, the responses observed 
in field trials are inconsistent (Bowen and Rovira, 1999). PGPRs not 
only increase the growth of plants but also mediate the remediation of 
metal-polluted soils in close association with plants (Zhuang et al., 
2007). Studies have shown that PGPR strains play crucial roles in 
metal tolerance and plant growth improvement in metal-contaminated 
soils (Cardón et al., 2010; Dary et al., 2010; Koo and Cho, 2009; Tank 
and Saraf, 2009).

Biological nitrogen fixation is important for maintaining the fertility 
of the soil system, which results from a series of nitrogenase enzymes. 

These nitrogenase enzymes are complex with heterotetrameric cores 
and are encoded by the nifK and nifD genes. Moreover, these enzymes 
have a dinitrogenase reductase subunit encoded by the nifH gene (Gaby 
and Buckley, 2014), which transfers reducing equivalents to the core 
enzyme complex and converts nitrogen (N2) into ammonia (NH3). The 
nifH gene is widely used to study the ecology of nitrogen-fixing bacteria. 
The diversity of nitrogen-fixing bacteria varies with habitat, and heavy 
metal-polluted soils could be  valuable habitats for studying the 
complexity of nifH genes (Gaby and Buckley, 2014). Soil microbes can 
potentially affect the bioavailability and mobility of heavy metals in 
plants. Rhizospheric bacteria can increase the uptake of nickel (Ni) in 
Alyssum murale and cadmium (Cd) in B. napus (Abou-Shanab et al., 
2006; Sheng and Xia, 2006). Similarly, the heavy metal-tolerant strain of 
the PGPR, Bacillus subtilis “SJ-101”, improved the growth of Brassica 
juncea in the presence of Ni toxicity (Tank and Saraf, 2009). The 
presence of PGPR strains, Acinetobacter and Pseudomonas, improved 
the mobility of a few important metals in plants (Esitken et al., 2006). 
Arbuscular mycorrhizal fungi also stimulate the phytoextraction 
process by forming associations with plant roots that enhance the 
uptake of both natural and toxic heavy metals. They also improve plant 
growth characteristics and increase total metal accumulation (Wang 
et al., 2007).

Biosorption is the ability of certain types of microbial biomass to 
accumulate heavy metals from aqueous solutions. Agricultural wastes 
efficiently adsorbed copper (Cu), Ni, lead (Pb), Cd, and zinc (Zn). 
Oves et  al. (2013) studied the biosorption potential of Bacillus 
thuringiensis and showed that the strain can biosorb 94% Ni, 91.8% 
Cu, and 87% Cd.

In this context, the overall objective of the study was to develop a 
strategy for the bioremediation of heavy metals while ensuring the 
growth of crop plants. The specific objectives included the following: 
(1) isolating and characterizing the metal-resistant bacteria from 
different industrial discharge sites in Pakistan; (2) evaluating the 
biosorption potential of the isolated strains for Pb, Cd, Cu, chromium 
(Cr), and arsenic (As); and (3) assessing the growth-promoting ability 
of potential biosorbent strains in Brassica napus plants via greenhouse 
experiments. In addition to newly isolated strains, this study included 
previously described novel taxa such as Acinetobacter pakistanensis sp. 
nov. (Abbas et al., 2014), Alcaligenes pakistanensis sp. nov. NCCP-650T 
(Abbas et al., 2015a), and Bacillus malikii sp. nov. (Abbas et al., 2015b), 
which were functionally characterized here for the first time for their 
biosorption efficiency and plant growth-promoting potential under 
heavy metal stress.

Materials and methods

Sample collection and isolation of heavy 
metal-tolerant bacteria

Soil, sewage, and/or water samples were collected in sterilized 
plastic bottles from the discharge waters of the tannery industry areas 
of Sialkot, Kasur, and Islamabad in Pakistan. The samples were 
subsequently brought to the laboratory and stored at 4°C until further 
use. The effluent samples were analyzed for heavy metals (Pb, Cd, Cu, 
Cr, and As) using an atomic absorption spectrophotometer (Perkin–
Elmer, USA). Standard stock solutions (1,000 mg/L) of the metals 
were procured from Sigma–Aldrich, USA.
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For the isolation of bacterial strains, the samples were diluted in 
phosphate-buffered saline (PBS) solution supplemented with 
increasing concentrations of heavy metals (100 mg/L/day). The 
supernatant was streaked on agar plates containing nutrient agar 
(NA) from different media, tryptic soya agar (TSA), or marine agar 
(Difco™, USA) supplemented with 600–1,200 mg/L of heavy metals 
(Pb, Cd, Cu, Cr, and As). The plates were then incubated at 
28°C. The heavy metals were added using the salts lead nitrate 
(Pb(NO3)2). Cadmium nitrate (Cd(NO3)2), copper sulphate 
(CuSO4.4H2O), potassium dichromate (K2Cr2O7), and sodium 
dihydrogen arsenate (NaH2AsO4). Growth was observed after 
24–72 h or until the appearance of bacterial colonies. The isolated 
colonies exhibiting distinct morphologies (in terms of texture, 
shape, margin, color, and elevation) were further purified via the 
subculturing method. The purified cultures of the bacterial strains 
were maintained on agar plates and stored at-80°C in 35% glycerol 
stock solution.

Characterization of the isolated bacterial 
strains

The purified bacterial colonies were morphologically 
characterized based on colony color, form, elevation, and margin. 
The cells of the isolates were also analyzed for Gram staining, 
morphology, and motility using a microscope (Olympus, CX31 
equipped with Digital Camera 5A). Growth characteristics of the 
bacterial strains were determined across a pH range of 4 to 9, a 
temperature range of 3 to 50°C, and their tolerance to NaCl 
concentrations of 0–30%. The cells were grown in tryptic soya broth 
at a range of pH values, and growth was observed after 24 h using a 
spectrophotometer (IMPLEN, Germany) at a wavelength of 600 nm. 
The temperature range was determined by growing the cells on TSA 
and incubating them at various temperatures (4 to 50°C). Salt 
tolerance was determined by growing bacterial strains on TSA plates 
supplemented with NaCl at concentrations ranging from 0 to 30%, 
with 1% increment.

Screening of bacterial isolates for 
maximum metal tolerance limits

The maximum tolerance limit (MTL) for each heavy metal by the 
isolated bacterial strains was determined according to the methods 
described by Malik and Jaiswal (2000), in which the MTL was defined 
as the highest concentration at which visible bacterial growth was 
observed, while complete inhibition of growth at the next higher 
concentration was considered the threshold. For MTL evaluation, the 
media were supplemented with various heavy metals (Pb, Cd, Cu, Cr, 
and As) using their salts as mentioned above, initially at a 
concentration of 300 mg/L, with a gradual increase of 300 mg/L up to 
the MTL for the tested isolate. The heavy metal-containing plates were 
subdivided into four equal sectors, and the isolates were streaked 
separately in each quarter. The same procedure was carried out with 
control plates (those plates without metal). Each sample was analyzed 
in triplicate. Finally, the plates were kept at 28°C for 4 to 6 days to 
observe the growth of bacteria. The MTL concentration at which the 
tested isolate failed to grow was subsequently determined.

Biosorption of heavy metals

To determine the biosorption of heavy metals, 22 strains (which 
exhibited maximum tolerance against different heavy metals) were 
tested in this study, with 3 independent replicates. Escherichia coli was 
included as a biological reference strain. Each isolate was cultivated in 
5 mL of tryptic soy broth (TSB) supplemented with 50 mg/L of a 
single heavy metal (Pb, Cd, Cu, Cr, or As) and incubated at 30°C with 
shaking for 48 h. Bacterial growth was monitored by measuring the 
optical density at 600 nm (OD₆₀₀) to ensure consistent culture density 
across all assays. After incubation, 2 mL culture samples were 
centrifuged at 7,500 × g for 10 min. The supernatants were collected 
to determine the residual metal concentration, while the pellets were 
dried at 60°C overnight and digested in a 5:3 mixture of nitric acid and 
perchloric acid. The metal content in both the supernatant and 
biomass was quantified using inductively coupled plasma–optical 
emission spectrometry (ICP–OES, Optima 8300, Perkin Elmer, USA). 
Biosorption was calculated based on the difference between the initial 
and final metal concentrations. In addition, abiotic controls (metal-
containing medium without bacterial inoculation) were included to 
account for non-biological metal precipitation or adsorption (Chen 
et al., 2006). Statistical analysis was performed following the GLM 
procedure in SAS (version 9.4) (SAS Institute, Inc., Cary, USA).

Identification of the bacterial strains

The bacterial strains were identified based on the sequence 
analysis of the 16S rRNA gene, as described previously (Ahmed et al., 
2007). For this purpose, the DNA template was extracted from fresh 
cells of the strain by colony PCR at 94°C for 10 min. The 16S rRNA 
gene was amplified in a thermal cycler (Applied Biosystems, Veriti, 
USA) by using a Premix Ex-Taq Kit (Takara Cat # RR003A, Japan) 
with forward primer 9F (5′-GAG TTT GAT CCT GGC TCA G-3′) 
and reverse primer 1510R (5′-GGC TAC CTT GTT ACG A-3′) under 
the following PCR conditions: pre-denaturation for 2 min at 94°C 
(1 cycle), denaturation for 1 min at 94°C (30 cycles), primer annealing 
for 1 min at 50°C, extension for 1.30 min at 72°C, and a final extension 
for 5 min at 72°C. The amplified 16S rRNA gene was visualized on a 
0.8% (w/v) agarose gel and subsequently purified using a purification 
kit (Invitrogen, USA), according to the manufacturer’s protocol. The 
purified PCR product of the 16S rRNA gene was sent for sequencing 
by Macrogen, Korea,1 using the forward primer 27F (5′-AGA GTT 
TGA TCM TGG CTC AG-3′) and the reverse primer 1492R (5′-ACC 
TTG TTA CGA CTT-3′). The software package ‘BioEdit’ was used to 
edit and construct an assembled consensus sequence, which was 
subsequently subjected to a BLAST search against the DNA Data Bank 
of Japan (DDBJ) and the EzTaxon server for identification of the 
strains. For the phylogenetic analysis of the isolated strains, the 
sequences of the closely related 16S rRNA gene were retrieved from 
validly published databases. Sequence alignment was carried out by 
using ClustalW (version 1.6) (Thompson et  al., 1997), and 
phylogenetic analysis was performed to determine the evolutionary 
relationship of the strain with other validly published strains. 

1 http://dna.macrogen.com/eng/

https://doi.org/10.3389/fmicb.2025.1644466
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
http://dna.macrogen.com/eng/


Abbas et al. 10.3389/fmicb.2025.1644466

Frontiers in Microbiology 04 frontiersin.org

Phylogenetic trees were constructed using three algorithms (data not 
shown in this study): maximum parsimony (MP), maximum 
likelihood (ML), and neighbor-joining (NJ), which were generated 
with the software package MEGA-6 (Tamura et al., 2013). The DNA 
sequences were submitted to the DNA databank of Japan, whose 
accession numbers are listed in Supplementary Table S1. The strains 
were submitted to the National Culture Collection of Pakistan 
(NCCP), and the most important strains (with respect to biosorption 
capacity or novel species) were also deposited in the Japan Culture of 
Microorganisms (JCM).

Screening of bacterial strains for the nifH 
and acdS genes

The screening of isolates for the presence of the nifH and acdS 
genes was performed using different primer sets to detect the specific 
amplicon of the respective gene. For this purpose, genomic DNA was 
extracted from young bacterial cells (14–16 h) using a QIAamp DNA 
Mini Kit following the manufacturer’s instructions (Qiagen Cat # 
51304, Germany).

Amplification of the acdS gene was performed in a 50 μL volume 
using a Premix Ex-Taq kit (Takara Cat # RR003A, Japan) with four 
sets of primers (Supplementary Table S2) and 50–100 ng of genomic 
DNA as a template. Amplification was performed with the following 
PCR procedure: pre-denaturation for 5 min at 94°C (1 cycle), 
denaturation for 30 s at 94°C (30 cycles), annealing for 30 s at 50°C, 
extension for 30 s at 72°C, and a final extension for 7 min at 72°C 
(Blaha et al., 2006). The DNA band of the expected amplicon size was 
analyzed with each primer set on a 0.8% agarose gel.

Amplification of the nifH gene was performed using a Premix 
Ex-Taq kit (Takara Cat # RR003A, Japan) with three sets of primers 
(PolF/PolR, nifHF/nifHI, and nifHfor/nifnai; Supplementary Table S2) 
and 50–100 ng of genomic DNA as a template using the 
aforementioned PCR conditions for each set of primers 
(Supplementary Table S2) (Laguerre et al., 2001; Poly et al., 2001; 
Sarita et al., 2008). The DNA band sizes of the expected amplicons 
with each primer set were analyzed on a 0.8% agarose gel.

Evaluation of heavy metal-tolerant strains 
for the growth promotion of Brassica 
plants

A greenhouse experiment was performed to test the PGPR activity 
of selected heavy metal-tolerant strains (NCCP-602, NCCP-614, NCCP-
644T, and NCCP-650T) and a reference nitrogen-fixing strain, 
Bradyrhizobium diazoefficiens JCM 10833, in soil-packed plastic 
pouches. Brassica napus seeds were grown in plastic pouches filled with 
soil and were watered with 50 mg/kg of each of five heavy metals, 
namely Pb, Cu, Cr, Cd, and As, separately (using salts Pb(NO3)2, 
CuSO4.4H2O, K2Cr2O7, Cd(NO3)2, and NaH2AsO4, respectively) during 
the whole growth period. The experiment was performed according to 
a complete random design (CRD) with three independent replications, 
keeping the strains as a significant factor than those in the heavy-metal 
treatment. The plants were harvested after 68 days of growth, and plant 
growth parameters (shoot length and shoot dry weight) were recorded. 
The statistical analysis was performed following the GLM procedure in 

SAS version 9.4 (SAS Institute, Inc., Cary, USA). Least squares means 
were estimated for the main effects of the metal and strain as well as 
their interaction effect. The standard error of the difference between 
means was calculated using the estimate statement in the model. In 
Figure 1, statistical differences among treatment groups are indicated by 
alphabetic letters, based on post-hoc comparison of least squares means.

Results

Physicochemical analysis of the effluent

Effluent samples were analyzed for various physicochemical 
parameters, including metal ion discharge, pH of the effluent samples, 
and physical appearance. The pH of the samples was mostly alkaline 
(pH 7.5 to 8.5), while the majority of these samples were highly 
colored and had a foul smell. The Cr and Pb concentrations in the 
majority of the samples were above the permissible limits of 0.1 mg/L.

Isolation and morphological 
characterization of bacterial strains

A total of 68 strains were isolated from the discharge of industrial 
areas (Islamabad, Sialkot, and Kasur) in Pakistan, and the purified 
strains were subsequently designated as NCCP-601 and onward. The 
isolated strains were enriched with different heavy metals and 
differentiated based on colony morphology (Supplementary Table S1). 
The majority of the strains were round, lobed, and filamentous in 
shape, with entire margins; however, some strains had irregular 
margins. The colony colors of the majority of strains were white and 
pale yellow, while some strains were peach and off-white. The 
morphologically different strains were further subjected to other 
experiments and stored in a freezer at −80°C.

MTL of isolated bacterial strains for heavy 
metals and NaCl

All the enriched bacterial strains were found to be highly tolerant 
to different heavy metals, including Cr, Cu, Cd, Pb, and As (Figure 2). 
The results demonstrated that the majority of the isolated strains 
tolerated 3,600 mg/L Cr, 3,300 mg/L Cu, 3,000 mg/L Cd, 1,500 mg/L 
Pb, and 1,200 mg/L As. Among these isolates, NCCP-601, 602, 603, 
621, 627, 647, 653, 657, 660, and 661 had maximum tolerance limits 
(MTLs) for Cr (3,600 mg/L), Cd (2,400–3,000 mg/L), Cu (2,100–
3,300 mg/L), Pb (1,200–1,500 mg/L) and As (900–1,200 mg/L). The 
isolates reported in these studies showed the highest tolerance to Cd 
and As compared to previous reports. The majority of the bacterial 
isolates were also found to grow over a wide range of sodium chloride 
(NaCl) concentrations, ranging from 0 to 20%, as shown in 
Supplementary Table S1.

Biosorption of heavy metals

Based on the MTL, the isolated strains were further analyzed for 
possible use in heavy metal biosorption from 50 mL of TSB containing 
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FIGURE 1

Effect of selected heavy metal-tolerant plant growth-promoting rhizobium (PGPR) strains on the growth of Brassica napus under five individual heavy 
metal stress conditions (Pb, Cd, Cu, Cr, and As at 50 mg/L each): (a) Representative images of plants grown under different treatments and (b) growth 
responses of Brassica napus to each strain–metal combination. The bars represent the means ± standard errors (n = 3). Statistical analysis was 
performed using the GLM procedure in SAS 9.4. Different letters indicate statistically significant differences among treatments (p < 0.05) based on post-
hoc comparisons of least squares means.
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50 mg/L of the corresponding heavy metals. All the isolated bacterial 
strains showed significant reductions in heavy metal concentrations 
in the TSB medium. The maximum biosorption occurred for Pb, 
followed by Cd and Cu. However, no significant reduction in Cr or As 
concentration was observed for any of the isolated strains 
(Figures 3d,e). The isolates significantly differed in their biosorption 
of Pb, Cd, and Cu (Figures  2a–c), but there was no significant 
difference in the biosorption of As or Cr (Figures 3d,e). The same 
alphabetic letter is used for each metal treatment, and the bars in 
Figure 3 indicate statistically non-significant differences (p = 0.05). 
Among these, three isolates, namely NCCP-614 (99%), NCCP-605 
(96%), and NCCP-655 (91%), exhibited maximum biosorption of Pb 
(Figure 3a). Similarly, strains NCCP-614 and NCCP-655 also exhibited 
maximum biosorption capacities of 89 and 59% for Cd, respectively 
(Figure 3b); however, the maximum biosorption of Cu was achieved 
by NCCP-625 (42%), followed by NCCP-619 (38%) and NCCP-647 
(36%) (Figure 3c). Our results indicated that these isolates can be used 
for the bioremediation of soil and water contaminated with heavy 
metals such as Pb, Cd, and Cu.

Identification of the bacterial strains

It is accepted that culturable microorganisms from any given 
sample taken from an environment represent only a small portion of 
the total population that is present. In this study, 68 bacterial strains 
were identified taxonomically based on the sequence of the 16S rRNA 
gene (Supplementary Table S1). These 68 strains were isolated from 
effluent samples and found to be highly tolerant to heavy metals. Based 
on comparative 16S rRNA gene sequence data, a diverse bacterial 
community was observed (Figures  4a,b). The isolated population 
(Figure 4a) belonged to three phyla, Actinobacteria (6%), Firmicutes 
(38%), and Proteobacteria (56%). These heavy metal-tolerant strains 
(Figures 4a,b) were related to 19 different genera. The dominant strains 
were Bacillus (21%), Pseudomonas (12%), and Staphylococcus (10%).

The percent 16S rRNA gene sequence similarity with those of 
closely related species in their respective genera was 97.9 to 100% for 
Bacillus, Alcaligenes, Acinetobacter, Pseudomonas, Citrobacter, and 

Bravibacterium (Figure 4b; Supplementary Table S1), which indicates 
that some of these strains could be characterized taxonomically to 
delineate them as novel species. Taking these results into account, along 
with phylogenetic analyses, DNA–DNA homology, and phenotypic and 
chemotaxonomic data, three isolated strains have been characterized 
as novel species: Acinetobacter pakistanensis sp. nov. (Abbas et  al., 
2014), Alcaligenes pakistanensis sp. nov. (Abbas et  al., 2015a), and 
Bacillus malikii sp. nov. (Abbas et al., 2015b). However, the 16S rRNA 
gene sequences of the other strains had high similarity (>99%) with 
those of the closely related taxa in their respective clusters; therefore, 
these strains were not included in the taxonomic characterization studies.

Screening of the nifH and acdS genes of 
isolated bacterial strains

To determine the potential use of isolated heavy metal-tolerant 
isolates in agriculture, phylogenetically different isolates were also 
analyzed for the screening of the nitrogen fixation gene nifH using 
different primer sets, such as PolF/PolR, nifHF/nifHI, and nifHfor/
nifHrev (Supplementary Table S2). Rhizobium etli JCM 21823T and 
Bradyrhizobium japonicum JCM 10833T were used as positive 
controls. The nifH gene was amplified by these primers, and 
amplicons of approximately 360, 420, and 780 bp, previously 
reported to be associated with the presence of the nifH gene, were 
identified (Supplementary Table S3). The nifH gene was amplified in 
at least 15 isolates with one or two primer sets (Figure 5). Similarly, 
the presence of the acdS gene in the genome was analyzed using four 
sets of primers, F1936f/F1938r, F1936f/F1939r, and F1937f/F1939r 
(Supplementary Table S2). The ACC deaminase gene acdS was 
amplified in at least 8 strains by these primers, with approximate 
sizes of 792, 558, and 516 bp. A careful analysis of the results showed 
that at least 7 strains (NCCP-650T, NCCP-611, NCCP-660, NCCP-
635, NCCP-622, NCCP-614, and NCCP-605) were found to have 
both nifH and acdS genes (Figure 5). Among them, strain NCCP-
650ᵀ, previously described as a novel species (Alcaligenes 
pakistanensis), exhibited the most pronounced plant growth-
promoting effect and carried the nirK gene (Abbas et al., 2015a), 

FIGURE 2

Maximum tolerance limits (MTLs) of isolated bacterial strains for different heavy metals (Cr, Cu, Pb, Cd, and As).

https://doi.org/10.3389/fmicb.2025.1644466
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Abbas et al. 10.3389/fmicb.2025.1644466

Frontiers in Microbiology 07 frontiersin.org

potentially contributing to nitrogen cycling and environmental 
adaptation. The cooccurrence of functional marker genes with 
observed biosorption and PGPR traits suggested a possible role for 
these genes in the adaptive performance of the strains. Overall, the 

identified strains, particularly those with combined biosorption 
capacity, PGPR traits, and genetic potential, represent strong 
candidates for microbial-assisted bioremediation and development 
as bioinoculants in metal-contaminated agroecosystems.

FIGURE 3

Biosorption capacity (%) of heavy-metal-tolerant strains: (a) lead, (b) cadmium, (c) copper, (d) chromium, and (e) arsenic. Bars with the same letter for 
each metal are not significantly different (p = 0.05).
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Evaluation of heavy metal-tolerant strains 
for the growth promotion of Brassica 
plants

Based on the presence and absence of the nifH and acdS genes, as 
well as MTL, four isolates (NCCP-650T, NCCP-614, NCCP-644, and 
NCCP-602) and the reference nitrogen-fixing strain JCM 10833 were 
evaluated for their impact on Brassica napus growth under axenic 
conditions when treated with a 50 mg/L solution for each studied 
metal separately. The statistical analysis revealed that the effects of 
strain, heavy metals, and their interaction were significant (p < 0.05) 
on shoot fresh weight and length. Additionally, all the strains used in 
this study played a significant role in increasing the fresh shoot weight 
and length of Brassica plants compared to those of the control plants 
(with no addition of strain or metal) when irrigated with water 

containing 50 mg/L Pb or Cd (Figures 1a,b). However, the application 
of water containing Cr or As salts significantly reduced plant growth, 
and no positive response was observed in plants irrigated with water 
containing 50 mg/L As because shoot length and shoot fresh weight 
were negligible in comparison to those in the other heavy metal 
treatments. Among the strains tested, NCCP-650T demonstrated the 
greatest improvement in Brassica growth. Additionally, many strains 
of this genus have been reported to have PGPR activity (Duca 
et al., 2014).

Discussion

The biodiversity of heavy metal-resistant bacterial communities 
from industrial discharge was examined using standard techniques. 
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The initial chemical analysis indicated a slightly high pH level with 
an ample amount of heavy metal pollution. The discharge sample 
values exceeded the threshold values described by various 
environmental protection agencies. Nevertheless, polluted samples 
contain various bacterial communities that tend to biosorb various 
heavy metals. Primary characterization revealed different bacterial 
communities with various shapes and colonies. The composition 
of waste helps bacterial cells cope with and adapt to external 
conditions (Mitchell and Kogure, 2006). In this study, we found 
different bacterial communities based on the composition of 
industrial waste. The analysis revealed 80 different strains based on 
phenotypic characterization. However, phenotypic characterization 
data cannot be  used for direct comparisons of different strains 
(Fritze, 2002).

Molecular characterization was performed with 16S rRNA 
sequencing, which confirmed the identity of each strain. In our study, 
we observed the dominant genera Bacillus, followed by Pseudomonas, 
Staphylococcus, Alcaligenes, Citrobacter, and Enterobacter. Bestawy 
et al. (2013) identified Enterobacter, Stenotrophomonas, Providencia, 
Comamonas, Delftia, and Ochrobactrum as dominant genera from 
activated industrial effluent sludge in Egypt. Gram-positive and gram-
negative bacteria have very strong anionic cell walls. This anionic cell 
wall allows bacteria to bind the metal for nucleation (Kelly et  al., 
2004). The isolated strains showed good MTL against Cr, Cu, Cd, Pb, 
and As. The tolerance limit of bacteria against a particular metal 
gradually increases over time, and bacterial generations produced 
after a certain time show good resistance against metal concentrations 
and can be used for decontamination purposes (Kelly et al., 2003). The 
MTL follows the order of Cr > Cu > Cd > Pb > As; however, the MTL 
values always vary in relation to the strain type and evaluation 
parameters during the study.

Heavy metal-resistant bacteria can play crucial roles in the 
bioremediation of contaminated soil by conferring resistance to heavy 
metal stresses and reducing toxicity in contaminated soil surroundings 
(Filali et al., 2000). Microbial ecological studies on mining-impacted 
sites, such as coal mine dumps, have shown that the structure, 
diversity, and functional groups of the microbial community can serve 
as valuable bioindicators of restoration progress and environmental 
health (Chen et al., 2020). Recent advances in microbial technologies 
have demonstrated their successful application in the ecological 
remediation of mine-contaminated soils, often involving plant–
microbe partnerships to enhance contaminant removal and ecosystem 
recovery (Xiao et  al., 2021; Guo et  al., 2021). In recent years, 
biosorption has been reported to be a safe and cost-effective process 
for removing heavy metals from different solutions. The major 
advantage of biosorption over conventional methods is the efficient 
removal of heavy metals from different media. The effluents are on the 
order of only a few parts per billion (ppb) of residual metals (Volesky, 
1999). Previous studies have shown that Pseudomonas aeruginosa can 
biosorb both Cr(III) and Cr(VI), with Cr(VI) removal occurring 
through abiotic reduction to Cr(III), followed by adsorption onto 
surface functional groups. Amines and carboxyl groups were 
identified as key binding sites, with protonated amines interacting 
electrostatically with negatively charged chromate ions under acidic 
conditions. These findings highlight the role of metal speciation and 
surface charge in Cr biosorption and may explain the limited Cr 
uptake observed in strains lacking such reduction capabilities or 
surface group interactions under the tested conditions (Kang et al., 

2007). The genetic makeup and long-term exposure of bacterial 
strains to these heavy metals could lead to the development of 
resistance against potential toxicity and adverse effects (Lim and Aris, 
2014). Previous studies noted that S. capitis could tolerate Cr+4 
(2,800 μg/mL) and Bacillus sp. JDM-2-1 could tolerate Cr+6 (4,800 μg/
mL). Similarly, these strains were able to resist Cu+2 (200 μg/mL), Cd+2 
(50 μg/mL), Hg+2 (50 μg/mL), Pb+2 (800 μg/mL), and Ni+2 (4,000 μg/
mL) (Zahoor and Rehman, 2009). In another study, Pseudomonas 
aeruginosa tolerated Pb+2 (650 μg/mL), Cu+2 (200 μg/mL), Cd+2 
(50 μg/mL), Zn+2 (50 μg/mL), Ni+2 (550 μg/mL), and Cr+6 (100 μg/mL) 
(Rehman et  al., 2008). Previous studies have reported that these 
bacterial isolates exhibit high resistance to heavy metals (Roane 
et al., 2001).

The ability of isolated microbial populations to tolerate toxic metal 
concentrations could have been attained by adaptation—a genetically 
altered tolerance—or by a shift in species composition, whereby 
organisms that are already tolerant become relatively more competitive 
(Li et  al., 2006). Previous studies have reported the distinctive 
characteristics of a few members of this genus for antibiotic resistance 
and Cd reduction (Chien et al., 2007). Regarding Cd reduction with 
Stenotrophomonas sp., our results were well supported by those of a 
previous study by Chien et  al. (2007), which indicated that 
Stenotrophomonas sp. screened from metal-contaminated soil 
exhibited considerably greater tolerance against heavy metals 
compared to those acquired from culture collections. A previous study 
reported that Staphylococcus sp. can biosorb Cu+2, but its efficiency is 
directly proportional to the concentration of Cu in the medium 
(Andreazza et al., 2011; Stanley and Ogden, 2003).

Heavy metal-resistant bacteria of different genera, namely, 
Mycobacterium, Pseudomonas, Agrobacterium, Achromobacter, 
Arthrobacter, Sphingomonas, and Microbacterium, have been observed 
to potentially stimulate plant growth and ameliorate stress symptoms 
in plants (Abou-Shanab et al., 2007; Jiang et al., 2008; Ma et al., 2009). 
Some rhizobacteria can reduce metal toxicity, resulting in the 
stimulation of plant growth. In our study, the selected strains 
increased Brassica growth in heavy metal-contaminated soil. These 
results are promising for Pb, Cd, Cr, and Cu. These results are in 
agreement with the previous study conducted by Belimov et  al. 
(2005). They isolated and characterized Cd-tolerant bacteria 
associated with the roots of the metal-accumulating plant B. juncea 
L. Czern. The plants were subsequently grown in metal-polluted soils, 
during which PGPR strains were selected for their ability to promote 
plant growth under unfavorable environmental conditions. In support 
of this finding, Wang et al. (2023) demonstrated that a phosphate-
solubilizing fungus combined with native plants significantly reduced 
soil Pb while enhancing plant biomass and nutrient uptake in a 
phosphate mining wasteland, reinforcing the potential of plant–
microbe systems for heavy metal remediation. He et  al. (2009) 
characterized Cd-resistant bacteria and investigated their potential to 
promote plant growth. The authors found that Pb and Cd uptake in 
Cd hyperaccumulator tomato plants cultivated in metal-polluted soil 
enhanced the phytoremediation efficiency of Cd-polluted soils. In 
contrast, the isolated strains did not promote the growth of plants in 
As-contaminated soil since As is considered highly toxic to plants and 
microorganisms. The reduced growth could be  due to the low 
production of siderophores, which in turn restricted the movement 
of As in the soil. The production of siderophores is necessary for the 
mobilization of As in the soil along with iron ions, which renders As 
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more soluble and bioavailable to plants (Drewniak et al., 2008; Wang 
et  al., 2011). Previous studies reported that Bacillus subtilis and 
Paenibacillus macerans were able to remove up to 82.2 and 62.4% of 
As(III), respectively, from an initial concentration of 50 μg/mL. The 
majority of arsenic removal occurred through surface binding, 
contributing approximately 90% to B. subtilis and 82% to P. macerans, 
while intracellular uptake accounted for a minor portion of the total 
arsenic removal. The maximum arsenic removal was observed at pH 
8, and the optimal temperatures were 35–40°C for B. subtilis and 30°C 
for P. macerans. Arsenic binding followed pseudo-second-order 
kinetics and fit the Langmuir isotherm model. Fourier transform–
infrared (FT–IR) analysis indicated the involvement of lipids, 
carbohydrates, amines, amides, and aromatic groups in the binding 
process (Vishnoi et al., 2014).

Overall, the diverse metal resistance profiles, biosorption 
capacities, and plant growth-promoting effects of the isolated 
bacterial strains underscore their potential for bioremediation 
and sustainable management of heavy metal-
contaminated environments.

Conclusion

There has been limited research on the biosorption of heavy 
metals by heavy metal-tolerant bacterial strains. The strains 
isolated from Pakistan in our studies were found to be highly 
tolerant to Cr, Cd, Cu, Pb, and As. Some strains were found to 
be more tolerant to Cd and As than those in previous reports. 
Our results indicated that two isolates (NCCP-614 and NCCP-
655) exhibited more than 91% biosorption of Pb and more than 
59% biosorption of Cd, while three other isolates (NCCP-625, 
NCCP-619, and NCCP-647) exhibited more than 36% biosorption 
of Cu. These isolates can be used for the bioremediation of soil/
water systems contaminated with Pb, Cd, and Cu. Phylogenetic 
identification of these heavy metal-tolerant strains based on the 
sequence data of the 16S rRNA gene showed that at least three 
strains were novel species that can be characterized by polyphasic 
taxonomy. Molecular characterization of the nifH and acdS genes 
revealed that seven strains contained both of these genes. These 
gene-positive strains also exhibited strong biosorption capacities, 
suggesting that these genetic traits could contribute to their 
functional performance in contaminated environments. Among 
them, the strain NCCP-650ᵀ, which harbored both genes, 
significantly enhanced the growth of Brassica napus in 
greenhouse experiments under heavy metal stress. This strain has 
also been reported to possess the nitrite reductase gene (nirK), 
which plays a role in the denitrification process. While this 
association is promising, further confirmation through gene 
expression studies and enzymatic activity assays is recommended 
in future studies. These heavy metal-tolerant strains may serve as 
potential bioinoculants to improve crop productivity under 
contaminated conditions. Moreover, the novel taxa identified in 
this study could be valuable sources of new genes involved in 
metal transport and tolerance mechanisms. The combined 
bioremediation and PGPR potential of these strains under stress 
conditions holds significance for sustainable agriculture.
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