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Background: Pochonia chlamydosporia is an important egg-parasitic fungus
with potential applications in the biological control of parasitic pests. However,
the protein-response mechanisms during P. chlamydosporia infection of
nematode eggs remain unclear. In this study, we employed four-dimensional
data-independent acquisition (4D-DIA) proteomic sequencing to analyze the
changes in the mycelial proteome of P. chlamydosporia at different infection
stages.

Results: In total, 4,293 differentially expressed proteins (DEPs) were identified,
which were mainly involved in energy metabolism, protein synthesis and
modification, oxidative stress, and other key biological processes. In the early
stages of infestation, the fungus rapidly adapted to the host environment
by enhancing metabolism and protein synthesis, initiating the infestation
mechanism, and simultaneously enhancing its antioxidant capacity to cope with
the host defense response. At later stages, it fine-tuned the metabolic pathways
and enhanced DNA replication to maintain proliferation and continuously
strengthened the antioxidant response to host oxidative stress. In addition, the
number of proteins related to fungal transporter activity varied significantly after
induction, indicating that a variety of transmembrane proteins may be involved
in host recognition, adhesion, and formation of invasive structures.
Conclusion: This study provides critical insights into the molecular mechanisms
underlying P. chlamydosporia parasitic activity and establishes a theoretical
foundation for the development of novel biocontrol strategies for this fungus.

KEYWORDS
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Introduction

Pochonia chlamydosporia is an important opportunistic nematophagous fungus and a
representative species of egg-parasitic fungi. Pochonia chlamydosporia is widely used as a
biocontrol agent. This fungus is distributed worldwide and may adopt saprotrophic and
endophytic lifestyles (Li et al., 2022). It represents a major class of fungal biocontrol agents that
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specifically target the eggs of parasitic nematodes, which is a critical
life stage for controlling these pests (Mulkhtar et al., 2013; Saeed et al.,
2023). Clinical trials have confirmed that P. chlamydosporia can
be employed both in vitro and in vivo for effective management of
animal parasites. Crucially, its safety profile is well-established, posing
no harm to animals or humans, which is essential for practical
biocontrol applications (Araujo et al., 2013; Garcia et al., 2004a, 2004b,
2008; Ma et al., 2025). Several studies have demonstrated the efficacy
of P. chlamydosporia in reducing gastrointestinal nematode infections
in horses, cattle, and sheep (Braga et al., 2010, 2012; Carvalho et al.,
2010; de Carvalho et al., 2013; Dias et al., 2013; Ferreira et al., 2011;
Oliveira et al., 2021; Thapa et al., 2018; Vieira et al., 2020; Araujo
etal., 2013).

At present, the mechanism by which P. chlamydosporia identifies
nematodes and eggs is not clear; however, the known virulence factors
mainly include chitinases and serine proteases. Upon contact with
nematode eggs, the fungus produces adhesive structures and specialized
infection pegs at the hyphal tips (Garcia et al., 2004b; Zhu, 2017; Nie,
2019). Adhesion is followed by the secretion of a battery of lytic
enzymes, including proteases, chitinases, and lipases (Braga et al., 2010).
These enzymes degrade eggshell components (Esteves et al., 2009),
enabling mechanical penetration by the infection pegs and subsequent
hyphal invasion. Once inside, the fungus utilizes the egg contents for
growth, leading to characteristic crumpling, deformation, and
destruction of the embryo, and, ultimately, egg death and disintegration,
completing the parasitism (Garcia et al, 2004b). Genomic and
transcriptomic analyses of P chlamydosporia indicate that genes
upregulated during parasitism are involved in diverse functions such as
metabolism, cell signaling, transport, gene regulation, and DNA repair
(Manzanilla-Lopez et al., 2009; Rosso et al., 2011; Shen et al., 2015).

Despite the substantial advances in our understanding of the
genetics and basic parasitism processes of P. chlamydosporia, a
critical knowledge gap persists at the functional proteome level.
While genomic and transcriptomic studies predict potential gene
functions, they do not directly reveal the identity, abundance, post-
translational modifications, interactions, or in situ activity of the
key effector proteins (e.g., specific enzyme isoforms, adhesion
molecules, and signaling proteins) responsible for the critical steps
of adhesion, penetration, and nutrient acquisition during egg
parasitism. Thus, this study aimed to understand the underlying
mechanisms of this egg-parasitic fungus by performing total
protein analysis of P. chlamydosporia mycorrhizae using a four-
dimensional (4D)-data-independent acquisition (DIA) proteomic
approach. A comprehensive understanding of this functional
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proteome is essential to fully elucidate the molecular mechanisms
underlying the biocontrol efficacy of P. chlamydosporia and guide
the stable
biocontrol formulations.

rational development of more efficient and

Materials and methods
Preparation of Parascaris equorum eggs

Equine Parascaris equorum females were collected, and the eggs
of Parascaris equorum were collected directly from their uterus and
then sterilized using 1% NaClO solution to prepare a suspension of 10
eggs/pL for the subsequent experiments.

Fungal culture

On the basis of observations of fungal interactions with insect
eggs, the time points for sampling in proteomic studies were
determined to be 24, 48, and 96 h, corresponding to Groups 1, 2, and
3, respectively. Figure 1 shows the process of infestation, with the
three the
mid-infestation, and post-infestation phases, respectively, of insect

time points corresponding to pre-infestation,
eggs by the fungi. P. chlamydosporia cultured for 3 d was designated
the starting point of the experiment, i.e., the 0 h sample, to which
200 pL of Parascaris equorum eggs were added for induction,
designated as Group A. A blank control group (Group B) was
established by adding 200 pL sterile water instead of the egg
suspension. At the corresponding time points, 200 mg of mycelia
were collected, dispensed into 1.5-mL centrifuge tubes, and stored
in the refrigerator at —80 °C. The samples were stored in the
refrigerator at —80 °C. Three biological replicates were used in all

the experiments.

Fungal mycelial protein extraction

Proteins were extracted from tissue samples using SDT lysis buffer
[4% sodium dodecyl sulfate (SDS), 100 mM dithiothreitol (DTT), and
100 mM Tris-HCI, pH 8.0]. The samples were boiled for 3 min and then
subjected to ultrasonication. The supernatant was collected, and
proteins were quantified using a bicinchoninic acid (BCA) protein
assay kit.

FIGURE 1

The course of action of P chlamydosporia on the eggs of Parascaris equorum [(A) 24 h; (B) 48 h; (C) 96 hl.
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Protein assay

For each group of samples, 15 pug of protein samples was
obtained, added to 5 x sampling buffer, boiled in a water bath for
5min, and subjected to 10%

electrophoresis (PAGE).

SDS-polyacrylamide  gel

Protein digestion

Protein samples were enzymatically digested using the filter-
aided sample preparation (FASP) method as follows: DTT was
added to each sample to a final concentration of 100 mM, and the
samples were heated in a boiling water bath for 5 min and then
cooled to room temperature. Two hundred microliters of UA
buffer (8 M urea, 150 mM Tris—-HCI, pH 8.0) were added and
mixed thoroughly, and the solution was transferred to a 10-kDa
ultrafiltration centrifuge tube and centrifuged at 12,000 r/min for
15 min. The filtrate was discarded, and the centrifugation
procedure was repeated by adding 200 pL of UA buffer again.
Subsequently, 100 pL of iodoacetamide (IAA) solution (50 mM
TAA dissolved in UA buffer) was added, shaken at 600 r/min for
1 min, incubated for 30 min at room temperature in the dark, and
then centrifuged at 12,000 r/min for 10 min. Next, the sample was
washed twice with 100 pL of UA buffer and centrifuged at
12,000 r/min for 10 min each time.

For the enzymatic reaction, 40 pL of trypsin buffer (containing
6 pg of trypsin dissolved in 40 pL of NH,HCO buffer) was added;
the mixture was oscillated at 600 r/min for 1 min and then
incubated at 37 °C for 16-18 h. At the end of the reaction, the
collection tube was replaced with a new tube; the mixture was
centrifuged at 12,000 r/min for 10 min; the filtrate was collected;
and the reaction was terminated by adding an appropriate amount
of 0.1% trifluoroacetic acid (TFA) solution. The digested peptides
were desalted on a C18 column and lyophilized under vacuum.
The lyophilized peptides were resolubilized with 0.1% formic acid,
and the peptide concentration was determined by liquid
chromatography-mass spectrometry (LC-MS).

DIA analysis of mass spectrometry data

Peptide samples were separated using a Vanquish Neo ultra-
high-performance liquid chromatography system (Thermo
Scientific). The mobile phases were configured as follows: phase
A was an aqueous solution containing 0.1% formic acid and phase
B was an acetonitrile-water mixture containing 0.1% formic acid
(80% acetonitrile). The column was equilibrated with 96% A
phase before use. The sample was first injected into a trap column
(PepMap Neo 5 pm C18; inner diameter, 300 pm; length, 5 mm;
Thermo Scientific) and then into an analytical column (uPAC Neo
high-throughput column; Thermo Scientific) for gradient elution.

The separated peptides were analyzed by DIA using an
Orbitrap Astral mass spectrometer (Thermo Scientific). The mass
spectrometry data were finally integrated using the DIA-NN
software to complete the database retrieval and quantitative
analysis of proteins.
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Sequence database searching

DIA MS data were analyzed using DIA-NN 1.8.1. The database

used was uniprotkb-Metacordyceps chlamydosporia
(Nematophagous fungus) (Pochonia chlamydosporia) [280754]-
14275-20241104.fasta, obtained from: https://www.uniprot.org/
taxonomy/280754. Trypsin was selected as the digestion enzyme.
For the database search, the maximal missed cleavage sites was
defined as 1, and the mass tolerance was defined as 10 ppm for
precursor ions and 10ppm for fragment ions.
Carbamidomethylation of cysteines was defined as a fixed
modification, whereas acetylation of the protein N-terminal and
oxidation of methionine were set as variable modifications for
database searching. The maximum number of variable modifications
was 1. The peptide length range was set to 7-30. The charge of the
peptide ranged from 1 to 4. The fragment ion m/z range was
150-2000. The database search results were filtered and exported
with a < 1% false discovery rate (FDR) at the peptide-spectrum-

matched and protein levels.

Bioinformatics analysis

Bioinformatics analysis was performed using Microsoft Excel
and R statistical computing software. Sequence annotation
information was obtained from UniProtKB/SwissProt, Kyoto
Encyclopedia of Genes and Genomes (KEGG), and the Gene
Ontology (GO) database. To ensure the validity and accuracy of
the subsequent raw letters and statistical analyses, in accordance
the general principle, in the protein identification form, we first
screened the sample experimental data to ensure that at least 50%
of the identified proteins corresponding to the sample groups
were retained without null-value data, and then filled the data
with the remaining null values and performed the statistical
analyses, which were performed with the default use of the ¢-test
(Student’s t-test) combined with the method of fold change (FC,
the ratio of the mean value of expression between the two groups).
Differentially expressed proteins (DEPs) were screened out by
identifying proteins that met the screening criteria of expression
difference greater than 1.5-fold (upward and downward
adjustments) and a p < 0.05, and the DEPs were subjected to GO
and KEGG enrichment analysis using Fisher’s exact test with FDR
correction for multiple testing. The enriched GO and KEGG
pathways were statistically significant at p < 0.01 according to
Fisher’s exact test.

Real-time fluorescence quantitative
reverse transcription—polymerase chain
reaction

Mycelial RNA from different infestation periods was extracted
and reverse-transcribed into complementary DNA (cDNA), and the
differentially expressed genes (DEGs) were verified by fluorescence
quantitative polymerase chain reaction (PCR). Primer 5.0 was used to
design the primers for fluorescence quantitative PCR, and 18S rRNA
was the internal reference gene. Relative expression was calculated
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using the 2-44¢tmethed "The data are shown as the means + standard
error of the mean (SEM) of three independent experiments.

Results

Screening of P. chlamydosporia differential
proteins

of different of
P. chlamydosporia on the eggs of Parascaris equorum was performed

Proteomic analysis infestation periods
using the DIA technique, and the mycelial proteins induced by
Parascaris equorum (Group A) and sterile water (Group B) at different
infestation stages of the egg-parasitic fungus P. chlamydosporia were
analyzed. The results revealed 8,875 proteins, 108,118 peptides,
106,902 peptides, and 80,742 unique peptides (Table 1 and Figure 2).
Proteins that met the screening criteria of an expression difference
greater than 1.5-fold (up- and downregulated) and a p < 0.05 were
regarded as significant DEPs. The number of DEPs in each group is
presented in Table 1. Data analysis revealed that 1,597, 245, and 607
proteins showed differential abundance from 0 to 24 h, 24 to 48 h, and
48 to 96 h, respectively. The proteome of the mycelia induced by eggs
of Parascaris equorum showed 655 DEPs at 24 h in comparison with
the findings in the control group (group B) induced by sterile water.
Among these proteins, 309 were upregulated and 346 were
downregulated. At 48 h, 353 DEPs were identified, of which 196 were
upregulated and 157 were downregulated. At 96 h, 790 DEPs were
identified, of which 508 were upregulated and 282 were downregulated.
These results indicated that protein expression in mycelia induced by
Parascaris equorum egg extracts differed from that in the control,
indirectly suggesting major changes in the physiological activity of the
fungus. Analysis of the processes in 24-h (A1/B1), 48-h (A2/B2), and
96-h (A3/B3) samples from both groups revealed that the highest
scores were recorded for chitinase, lipase, serine protease, glucanase,
pectinase, and cellulase, which are distinct protein hydrolases that
may be associated with the process of infestation of the eggs of
Parascaris equorum. These distinct proteases may contribute to the
virulence of the fungus in the pathogens and promote the colonization
of the eggs.

Subcellular localization of whole proteins

The subcellular localization of whole proteins was annotated and
counted by analyzing the cellular component (CC) classification of the

TABLE 1 Data for differentially expressed proteins.

10.3389/fmicb.2025.1644912

GO database. The results showed that the subcellular localization of
the whole proteins was mainly focused in the cytoplasm, nuclear
membrane, and mitochondria, and the pathway was enriched in
GO:005737, as shown in Figure 3.

GO functional analysis of DEPs

The DEPs in the samples were analyzed for GO functions. These
proteins belonged to three major categories: fungal molecular
function (MF), biological process (BP), and CC. The top 10 GO terms
with the smallest p-values, that is, the most significantly enriched
terms, in each GO category were selected for comparison with the
control group, and the results are shown in Figure 4. The results of
the GO enrichment analysis (Figure 4A) of the DEPs in the 24-h
samples (groups Al and B1) revealed that the significantly enriched
MEF terms were structural constituent of the ribosome (GO:0003735),
transmembrane transporter activity (GO:0022857), and transporter
activity (GO:0005215); the significantly enriched BP terms were
transmembrane transport (GO:0055085), metal ion export
(GO:0070839), and peptide metabolic process (GO:0006518); and the
significantly enriched CC terms were ribosome (GO:0005840),
ribosomal subunit (GO:0044391), and large ribosomal subunit
(G0O:0015934). Thus, GO enrichment analysis of the DEPs in the
early invasion stage revealed that these proteins were mainly
associated with pathways related to ribosomal structure,
transmembrane transport, and metabolic processes, suggesting that
the fungus regulates protein synthesis, material transport, and
metabolic processes in the host to achieve invasion and parasitism.
In the analysis of the DEPs from the 48-h samples (groups A2 and
B2) (Figure 4B), the significantly enriched MF terms were
oxidoreductase activity (GO:0016491), structural constituent of
ribosome (GO:0003735), hydrolase activity, and acting on glycosyl
bonds (GO:0016798); these pathways could potentially affect the
physiological state of the host by regulating redox reactions, ribosome
function, and glycogen metabolism of the host. The significantly
enriched BP terms were organic acid catabolic process (GO:0016054),
glycerol catabolic process (GO:0016054), and glycogen catabolic
process (GO:0016054), glycoprotein catabolic process (GO:0006516),
carboxylic acid catabolic process (GO:0046395), and other pathways;
these pathways may affect the host’s energy metabolism and material
cycle by regulating the catabolic process of organic acids,
glycoproteins, and carboxylic acids in the host. Energy metabolism
and material cycling can help further catabolize the host. The
significantly enriched CC terms were ribosome (GO:0005840),

Comparison group Upregulated Downregulated Number of DEPs
Alvs. Bl 309 346 655
A2vs. Al 142 103 245
A2vs. B2 196 157 353
A3vs. A2 323 284 607
A3vs. B3 508 282 790
Alvs. A3 688 955 1,643

DEP, differentially expressed protein.
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FIGURE 2
Cluster analysis of differentially expressed proteins.
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organellar ribosome (G0O:0000313), and mitochondrial ribosome
(GO:0005761); these pathways regulated the protein synthesis
process and further enhanced ribosome-related functions. For DEPs
(Figure 4C) in the 96-h samples (groups A3 and B3), the significantly
enriched MF terms were structural constituent of ribosome
(G0:0003735), structural molecule activity (GO:0005198), and FAD
binding (GO:0071949); this finding implied a significant increase in
the proteins binding to flavin adenine dinucleotide (FAD) in the
treatment group, which may be involved in redox reactions or energy
metabolism. The significantly enriched BP terms were amide
biosynthetic process (GO:0043604), peptide metabolic process
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(G0O:0006518), and translation (GO:0006412); amide and peptide
metabolism as well as protein translation activities increased,
suggesting that the metabolic function of the fungus is enhanced at
the late stage of infestation. The significantly enriched CC terms were
cytosolic ribosome (GO:0022626), ribosomal subunit (GO:0044391),
and ribosome (GO:0005840). Thus, similar to the findings for the
pre-infestation and mid-infestation phases, ribosome-associated
cellular components were significantly enriched, indicating that the
mycelium produces a stress response and that protein synthesis
activities are increased after stimulation by the eggs during fungal
infestation of the eggs.
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Subcellular localization of whole proteins. (A) Bar chart (B) Scatter plot (C) Pie chart (D) Donut chart.
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Analysis of the DEPs between groups Al and A2 (Figure 4D)
showed that the significantly enriched MF terms were RNA
polymerase I cis-regulatory region sequence-specific DNA binding
(G0O:0001165), sulfite reductase (NADPH) activity (GO:0004783),
sulfite reductase activity (GO:0016002), and other pathways; this
finding implied that changes in sulfite reductase activity may
be related to the cellular demand for sulfur metabolism or stress
response. The significantly enriched CC terms were RNA polymerase
I upstream activating factor complex (GO:0000500), cytoplasmic
stress granule (GO:0010494), and membrane (GO:0016020), which
are involved in transmembrane transport, signaling, or regulation of
membrane proteins. The significantly enriched BP terms were stress
granule assembly (GO:0034063), negative regulation of molecular
function (G0:0044092), and protein glycosylation (GO:0006486),
implying that biological processes related to stress granule formation
were significantly enhanced. Thus, the enrichment analysis of DEPs
in the pre- and mid-infestation groups indicated that the fungus
might be in a state of stress and that the increase in ribosome-related
functions might be related to the regulation of protein synthesis,
whereas the formation of stress granules and changes in membrane-
associated proteins reflect the response of the mycelia to
environmental changes. The analysis of DEPs between groups A2
and A3 (Figure 4E) showed that the significantly enriched CC terms
were the plasma membrane (GO:0005886), extracellular region
(GO:0005576), and cytosolic small ribosomal subunit (GO:0022627)
and other pathways, along with a significant increase in proteins
associated with the plasma membrane during the middle to late
stages of infestation, suggesting that cell signaling, substance
transport, or cell-cell interactions may be involved in the late stages
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of infestation. The significantly enriched MF terms were catalytic
activity (GO:0003824), oxidoreductase activity (GO:0016491),
oxidoreductase activity, acting on the CH-NH group of donors
(GO:0016645), and other pathways, suggesting that the activity of
enzymes related to redox reactions was significantly increased,
which may be involved in energy metabolism or antioxidant
reactions. The significantly enriched BP terms were carbohydrate
metabolic process (GO:0005975), cellular amino acid metabolic
process (GO:0006520), and alpha-amino acid metabolic process
(G0O:1901605). DEPs may affect energy supply and protein synthesis
by regulating carbohydrate and amino acid metabolism. The analysis
of DEPs between groups Al and A3 (Figure 4F) showed that the
significantly enriched CC terms were membrane (GO:0016020),
endoplasmic reticulum (GO:0005783), and endoplasmic reticulum
membrane (GO:0005789) as well as the nuclear outer membrane-
endoplasmic reticulum membrane network (GO:0042175); the
significantly enriched MF terms were transmembrane transporter
activity (G0O:0022857), transporter activity (GO:0005215), and
cation transmembrane transporter activity (GO:0008324) terms; and
the significantly enriched BP terms were transmembrane transport
(G0:0055085), cation transport (GO:0006812), and ion transport
(GO:0006811).

GO analysis of the functions of the DEPs revealed that the
mycelia triggered a series of signal-transduction pathways under
the stimulation of inducers. The number of fungal transporter
activity-related proteins varied significantly after induction, and a
variety of transmembrane proteins may be involved in processes
such as host cell recognition, adhesion, and the formation of
invasive structures. In the BP category, proteins with differential
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FIGURE 4
GO enrichment analysis of differentially expressed proteins. (A) Al vs. B1; (B) A2 vs. B2; (C) A3 vs. B3; (D) A2 vs. AL; (E) A3 vs. A2; (F) A3 vs. AL
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abundance were mainly involved in metabolic processes, cellular
processes, bioregulation, and responses to stimuli. In terms of MF,
DEPs were mainly associated with catalytic activity, binding,
structural molecular activity, and translocation activity. Subcellular
localization mainly occurred in the cytoplasm, nuclear membrane,
and mitochondria. Secreted hydrolases, including proteases and
chitinases, play a fundamental role in the degradation of
eggshell components.

KEGG analysis of differential proteins

To determine the biological pathways corresponding to the
three different infestation stages of P. chlamydosporia, these
proteins were further mapped to the corresponding pathways in
the KEGG database. The results of the KEGG enrichment analysis
of the DEGs are shown in Figure 4. DEGs (Figure 5A) were
annotated to 221 pathways in the comparative analysis of the 24-h
treatment groups (Al and B1), and 11 significantly enriched
pathways were identified. These genes were related to ribosome;
valine, leucine, and isoleucine degradation; metabolic pathways;
biosynthesis of amino acids; other glycan degradation; arginine
and proline metabolism; glycine, serine, and threonine
metabolism; propanoate metabolism; and peroxisomes. KEGG
analysis revealed significant enrichment of DEPs in metabolic
pathways during the early stages of infestation, suggesting that the
fungus was stimulated by inducers and that it enhanced the
metabolism of exogenous substances, adapted to the host
environment, and initiated the invasion mechanism. DEGs
(Figure 5B) were annotated to 157 pathways in the comparative
analysis of the 48-h treatment groups (A2 and B2), revealing 12
significantly enriched pathways. These pathways were valine,
leucine, and isoleucine degradation; ribosomes; metabolic
pathways; styrene degradation; galactose metabolism; tryptophan
metabolism; tyrosine metabolism; other glycan degradation;
microbial metabolism in diverse environments; propanoate
metabolism; butanoate metabolism; and fatty acid metabolism.
The enrichment of mycelial metabolic pathways in the middle
infestation stage suggests that the fungus may adapt to the host
environment by regulating various metabolic processes during
infestation, and by degrading host glycosides to obtain energy and
carbon sources, while destroying the host cell wall or extracellular
matrix. DEGs (Figure 5C) were annotated to 256 pathways in the
comparative analysis of the 96-h treatment groups (A3 and B3),
and 45 significantly enriched pathways were identified. These
genes were related to ribosome; tryptophan metabolism; arginine
and proline metabolism; DNA replication; valine, leucine, and
isoleucine biosynthesis; metabolic pathways; pantothenate and
coenzyme A (CoA) biosynthesis; and peroxisome and biotin
metabolism, including metabolic and cellular processes. In
comparison with the pre- and intermediate-acting processes, the
fine-tuned regulation of metabolic pathways and cell proliferation
was enhanced.

DEGs (Figure 5D) were annotated to 111 pathways in the
comparative analysis of the 24- and 48-h treatment groups (A1 vs.
A2), resulting in 13 significantly enriched pathways. These genes
were involved in N-glycan biosynthesis, metabolic pathways,
sphingolipid metabolism, glycosphingolipid biosynthesis-globo
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and  isoglobo  series, other  glycan  degradation,
glycosylphosphatidylinositol (GPI)-anchor biosynthesis, arginine
and proline metabolism, protein processing in the endoplasmic
reticulum, various types of N-glycan biosynthesis, thermogenesis,
tryptophan metabolism, indole diterpene alkaloid biosynthesis,
and glycosphingolipid biosynthesis-ganglio series. These findings
suggest that early- to mid-infestation mycelia regulate N-glycan
and GPI anchor biosynthesis, affect protein function and
localization, and influence cell membrane structure and signaling
by regulating sphingolipid and glycosphingolipid biosynthesis.
DEGs (Figure 5E) were annotated to 208 pathways in the
comparative analysis of the 48- and 96-h treatment groups (A2 vs.
A3), and 38 significantly enriched pathways were identified. These
genes were related to the following metabolic pathways: arginine
and proline metabolism; biosynthesis of amino acids; ribosome,
fructose, and mannose metabolism; microbial metabolism in
diverse environments; biosynthesis of cofactors; glycerolipid
metabolism; glycine, serine, and threonine metabolism; and
amino sugar and nucleotide sugar metabolism. Nucleotide sugar
metabolism and mid- to late-infestation development of mycelia
involve the degradation and synthesis of amino acids to obtain
nutrients, support their own growth, and regulate carbohydrate
and lipid metabolism to increase the energy supply. DEGs
(Figure 5F) were annotated to 203 pathways in the comparison of
the 24- and 96-h treatment groups (A1 vs. A3), and 40 significantly
enriched pathways were identified. These genes are related to
metabolic pathways such as glycosylphosphatidylinositol (GPI)-
anchor biosynthesis; fatty acid metabolism; fatty acid biosynthesis;
various types of N-glycan biosynthesis; cofactor biosynthesis;
mineral absorption; protein processing in the endoplasmic
reticulum; starch and sucrose metabolism; and valine, leucine and
isoleucine biosynthesis, where the endoplasmic reticulum is an
important organelle for protein folding and processing.
Enrichment of this pathway suggests that the fungus supports the
process of infestation by regulating protein processing in the
endoplasmic reticulum and affecting protein function and
stability. Multiple stages showed significant enrichment of the
chitin degradation pathway in amino sugar and nucleotide sugar
metabolism, in which chitinase is mainly involved in the
degradation of chitin (chitin) in the metabolic pathway. The
degradation product of chitin (composed of N-acetylglucosamine
and GIcNAc), GIcNAc, enters this pathway and is further
UDP-GIcNAc

peptidoglycan synthesis, and other processes), indicating that the

metabolized to (used for glycosylation,
chitinase-mediated amino sugar metabolism pathway is capable

of degrading chitin in worm eggs, as shown in Figure 6.

Results of fluorescence quantitative PCR
analyses

To validate the findings of proteomic sequencing, eight DEPs.
qRT-PCR analysis of the corresponding genes was performed using
the cDNAs obtained at 24, 48, and 96 h during the action of
P, chlamydosporia on the eggs as templates to validate the expression
of the target genes. The validation results revealed that the trends in
the gene expression profiles obtained by qRT-PCR were positively
correlated with the RNA-seq data.
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Discussion

To understand the mechanism of action of P. chlamydosporia in
infesting insect eggs, this study, on the basis of previous research on
the insecticidal effect of the fungus, conducted a proteomic analysis
of the fungus to establish a histological database of P. chlamydosporia
ordinary nutrient hyphae and hyphae containing infestation
structures. The key genes and major protein species of the egg-parasitic
fungus that kill insect eggs and their differential expression were
determined by histological techniques.

Proteomic analysis revealed that DEPs in the pre-infestation
phase of fungal eggs were enriched mainly in the structural
constituents of ribosomes, transmembrane transport, and peptide
metabolic process pathways. Among them, the levels of the MFS
transporter and the adhesin protein Mad1 were significantly increased
(Qi and Peng, 2019). Peteira et al. (2015) used complementary DNA
(cDNA)-amplified fragment length polymorphism (AFLP) based on
transcriptional profiling to identify genes involved in the pathogenicity
of nematode eggs infested with Puccinia thickettsii and reported that
genes encoding transcription factors, transporter proteins, and
enzymes involved in the metabolism of the fungus were enriched
(Peteira et al., 2015). This is consistent with the enrichment trends of
transporters and metabolism-related pathways in the present study.
Mycelia in the early stages of infestation require rapid adaptation to
the host environment to initiate infestation. By enhancing metabolic
pathways and protein synthesis, the fungus can rapidly acquire
nutrients and synthesize proteins required for infestation, and by
enhancing the antioxidant response, the fungus can respond to the
oxidative stress generated by the host to ensure its own survival and
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infestation, which helps the fungus cope with the hosts defense
response (Qi et al, 2022). Among these pathways, the MAPK
signaling pathway mediates fungal immune evasion and promotes
infection by upregulating transcriptional repressors and histidine
phosphotransferases, while ABC transporter-mediated lipid transport
is crucial for membrane formation of structures such as appressorium
(Wawra et al., 2016). These findings suggest that the fungus supports
the infestation process by increasing fungal protein synthesis and
material transport capacity to rapidly establish the metabolic base
required for infestation and to support the infestation process by
regulating the translation mechanism of the fungus to promote the
synthesis of its own proteins (Andersson et al., 2014).

In the middle stage of infestation (48 h), the functional focus of
the DEPs shifted to oxidoreductase activity, hydrolase activity, glycosyl
bonding, organic acid catabolic processes, and glycoprotein catabolic
processes. These changes suggest that at this stage, the fungus is
beginning to utilize host energy storage substances (e.g., carbohydrates
and organic acids) and regulate the oxidative stress state of the host
through redox reactions to maintain its growth advantage (Kotze,
2003). In addition, enrichment of the mitochondrial ribosome further
suggests that the fungus may weaken the defenses of eggs by
interfering with the energy metabolism (e.g., ATP synthesis) of the
host. Fungi need to adapt to the host environment and acquire more
nutrients, and their metabolic pathways diversify to obtain more
nutrients to support their own growth and reproduction. At this stage,
an increase in glycoside degradation and lipid metabolism can help
the fungus destroy the host cell wall or extracellular matrix. Nematode
eggshells consist of an outer yolk layer composed of proteins, a middle
layer of chitin (composed of a protein matrix embedded in chitin
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microfibrils), and an inner lipid layer (Wronska et al., 2023; Bird and
McClure, 1976; Clarke et al., 1967; Atkins et al., 2003). Thus, the
simultaneous production of proteases (P32, VCP1, SCP1) (Ward et al.,
2012; Lopez-Llorca et al., 2010; Olivares-Bernabeu and Lopez-Llorca,
2002), chitinases (Yang et al., 2007; Wang et al., 2005; Thalita et al.,
2017; Clavero-Camacho et al., 2024), and lipases is essential for egg
penetration and colonization by P. chlamydosporia (Ramesh et al.,
2016; Huang et al., 2004). The fungus destroys the host cell wall or
extracellular matrix by degrading host glycosides and lipids, resulting
in damage to the host cell structure and further weakening the host’s
defense ability; simultaneously, the fungus degrades amino acids,
glycans, and lipids through hydrolytic enzymes and lipases to obtain
nutrients and support its own growth and predation. Moreover, the
fungus degrades host amino acids, sugars, and lipids using hydrolytic
enzymes to obtain nutrients and support its growth, robbing the host
of its nutrient sources and leading to host cell failure (Elliott et al.,
2019; Fry et al., 2018).

By the late stage of infestation (96 h), the DEPs were significantly
enriched in pathways such as FAD binding, amide biosynthetic
process, and translation, indicating a progressive increase in fungal
metabolic activity, which may have involved more complex redox
reactions and the regulation of protein synthesis. The persistent
enrichment of ribosome-related pathways (e.g., cytosolic ribosomes)
suggests that protein synthesis remains a key process in the late stage
of infestation, whereas the enrichment of the endoplasmic reticulum
and transmembrane transporter activity may reflect the modification
of the host cell membrane system by the fungus to promote nutrient
uptake or toxicant secretion. Fungi have to maintain their growth and
reproduction while responding to host defense. Fungi can support
proliferation and infestation by fine-tuning their metabolic pathways
and enhancing DNA replication (Yang et al., 2013). Sustained
enhancement of the antioxidant response helps the fungus cope with
oxidative stress in the host and ensures successful completion of the
infestation process. Throughout the course of infestation, the fungus
affects the function and stability of host proteins and interferes with
the normal physiological processes of the host by regulating protein
glycosylation and processing. The fungus gradually adapts to the host
environment and completes infestation through dynamic regulation
of metabolic pathways and cellular functions. From the early to late
stages of infestation, fungi utilize various mechanisms, such as
nutrient deprivation, destruction of cell structure, oxidative stress, and
protein function interference, which ultimately lead to egg death.

Comparative analyses of the findings obtained during different
infestation periods revealed that the fungus underwent stress
adaptation during infestation. For example, the enrichment of sulfite
reductase activity and stress granule assembly suggests that the fungus
has to cope with sulfur metabolic stress or oxidative stress in the host,
whereas the enrichment of the plasma membrane and oxidoreductase
activity in the later stages may involve intercellular signaling and
antioxidant defenses to maintain a long-term parasitic state. Together,
these pathways provide the necessary material and functional basis for
the fungal infestation of worm eggs at multiple levels, including
regulation of gene expression and protein synthesis. Stimulation of
mycelia by worm eggs triggers a series of signaling pathways that
contribute to the survival, propagation, and further infestation of the
fungus within the worm eggs.

Our findings showing a significant increase in hydrolase activity
between 24 and 48 h, coupled with broader proteome changes,
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indicated substantial transcriptional reprogramming triggered by
nutrient stress as the fungus transitioned from a saprophytic to a
parasitic lifestyle. This suggests the involvement of specific gene
families, particularly hydrolases and transport proteins, potentially
facilitating the endosymbiotic behavior crucial for parasitism
(Larriba et al., 2014). Although the pronounced upregulation of
hydrolases at 48 h aligns with expectations for host penetration and
nutrient acquisition, the extent of the increase across multiple
enzyme classes within this narrow timeframe is particularly
noteworthy and underscores the intensity of this metabolic shift.
These findings provide a crucial molecular timeline of the adaptive
response of P. chlamydosporia, which enable it to counter host
defenses while sustaining its own growth and reproduction. Our
results align with, yet highlight distinctions from, previous findings
outlining the mechanisms employed by other nematophagous fungi.
For instance, while urea acts as a key environmental signal
triggering the saprophytic-to-parasitic switch in Arthrobotrys
oligospora, and Hirsutella minnesotensis employs diverse signaling
pathways to parasitize various nematode hosts, the response by
P. chlamydosporia appears to be heavily reliant on the rapid,
coordinated induction of hydrolytic enzymes and transport
functions as detected in its proteome. This mechanistic diversity
underscores the evolutionary flexibility of fungal parasitism
strategies. Understanding these specific molecular adaptations in
P. chlamydosporia, a promising biocontrol agent against nematodes,
is vital for the development of effective and targeted biological
control strategies.

However, this study focused exclusively on the fungal proteome,
which is a major limitation since it does not capture the concurrent
host responses or the dynamic molecular dialogue occurring at the
host-pathogen interface during infestation. Future studies should
prioritize integrated proteomic and transcriptomic analyses of both
fungi and their host nematodes during infection to characterize
these critical interactions. Furthermore, targeted functional studies
of the identified hydrolases and transport proteins, potentially
through gene knockout or RNAi approaches, are essential to
confirm their specific roles in virulence and adaptation, ultimately
providing strategies for enhancing the biocontrol efficacy of
P. chlamydosporia.

Conclusion

Proteomic analysis showed that P. chlamydosporia adapts to the
host environment and completes its invasion by dynamically
regulating gene expression and metabolic networks. RNA-binding
proteins and ribosome biosynthesis-related genes were upregulated in
the early stage of invasion (24 h), which allowed the fungus to respond
to the environment and rapidly initiate the invasive program,
enhancing transporter function and the antioxidant response to
address the oxidative stress of the host. In the middle stage of
infestation (48 h), oxidoreductase and glycoside/lipid metabolism
pathways were activated to destroy the host cell wall and remove
nutrients, and serine proteases (e.g., VCP1 and P32) and ghrelinase
(GH18 family) acted synergistically to degrade the eggshell protein
layer and ghrelin barrier. In comparison with the pre- and mid-term
stages, the late stage of infestation (96 h) enhanced the fine-tuned
regulation of metabolic pathways and cell proliferation. Overall, the
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enhanced functions of metabolic pathways and cellular processes at
the transcriptional and translational levels during the infestation
process indicate complex metabolic regulation of the fungus during
egg infestation, which involves energy acquisition, protein synthesis
and modification, and the response to oxidative stress.
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