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Introduction: The assembly of the plant microbiome results from a complex 
network of interactions. The role of microbial taxa in shaping the microbiome 
has recently gained attention, emphasizing the competitive dynamics and 
chemical warfare occurring within this dynamic environment. Within and around 
the roots, microbe-microbe interactions are piloted by nutritional constraints 
that can be modulated by the host. In this context, while nutrient blocking and 
antimicrobial production have largely been described as competitive traits in 
bacterial taxa, the importance of fungal metabolism in determining fungal-
fungal interactions remains largely unexplored.

Methods: In this work, we profiled the carbon substrate utilization of 91 root-
associated fungal isolates from Brassica napus and Triticum aestivum and 
evaluated their antagonistic abilities against two agronomically relevant fungal 
competitors, Rhizoctonia solani and Fusarium graminearum.

Results: Our results indicate that fungi arbor contrasted carbon utilization 
profiles and strategies that are independent from the two host plant species 
tested, the plant compartment and the geographic region. Strikingly, specific 
carbon utilization signatures were associated with antagonistic abilities with 
antifungal-mediated antagonism characterized by higher utilization rates of 
diverse carbon substrates while direct competitive abilities were associated with 
lower utilization rates of fewer carbon substrates.

Discussion: Together with taxonomy-based predictions of antagonism-specific 
enzymatic reactions, these results suggest that carbon utilization profiles and 
enzymatic reactions prediction could be  considered as markers of fungal 
antagonistic potential. From an ecological point of view, our results suggest that 
root-associated fungi have contrasted carbon usage strategies likely shaped by 
and determining fungal-fungal antagonistic interactions.
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1 Introduction

The plant microbiota forms a complex and dynamic community of microorganisms that 
colonize both external surfaces and internal tissues of plants, including leaves and roots 
(Edwards et al., 2015; Trivedi et al., 2020; Peñuelas and Terradas, 2014). This assemblage 
encompasses a broad taxonomic diversity, comprising fungi, bacteria, archaea, oomycetes and 
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protists (Buée et al., 2009; Vorholt, 2012). The balance of the plant 
microbiome is essential for plant health and fitness (Berendsen et al., 
2012; Vandenkoornhuyse et al., 2015; Berg et al., 2021). As observed 
in the human microbiome, plant diseases are often associated with 
dysbiosis, characterized by an imbalance or loss of microbial diversity 
(Chen et al., 2020; Arnault et al., 2023). Understanding the ecological 
and molecular processes that govern microbiome assembly, − 
particularly the interplay between biotic interactions and abiotic 
constraints  - has thus become a key challenge in harnessing 
microbiome functionalities for sustainable crop management (Trivedi 
et  al., 2020). Microbiome assembly is shaped by multiple factors, 
including host genetic background and developmental stage 
(Oberholster et al., 2018; Toju et al., 2019; Wassermann et al., 2019), 
environmental conditions (Maestre et al., 2015; Zhang et al., 2019), 
and microbial interactions (Cordovez et al., 2019; Zhou et al., 2019; 
Fitzpatrick et al., 2020; Bai et al., 2022). Among the key modulators of 
this environment are root exudates, which consist of complex mixtures 
of carbon-based compounds secreted by plant roots (Hu et al., 2018; 
Ma et al., 2022). These exudates serve as a major source of organic 
carbon for soil microbes and account for a substantial proportion-up 
to 40%- of plant-fixed photosynthates (Grayston et al., 1997; Fransson 
et al., 2007; Gargallo-Garriga et al., 2018). They also play a pivotal role 
in shaping the rhizosphere microbiome by favoring specific microbial 
taxa (Haichar et al., 2008; Hugoni et al., 2018; Sun et al., 2023). The 
pivotal role of microbial interactions, especially those occurring 
between different kingdoms, in structuring community composition 
and functionality has been underscored by studies employing 
synthetic microbial communities (Agler et al., 2016; Niu et al., 2017; 
Durán et al., 2018).

While bacterial-fungal interactions and the role of bacterial 
metabolites in controlling fungal communities have been 
extensively documented (Durán et  al., 2018; Pierce et  al., 2021; 
Wolinska et  al., 2021), fungal-fungal interactions remain 
comparatively underexplored. Although plant disease onset is often 
linked to total fungal biomass (Wolinska et  al., 2021) or the 
presence of specific pathogens (Doehlemann et  al., 2017), the 
influence of interspecific fungal interactions (i.e., antagonism), on 
community composition and disease dynamics is still poorly 
understood. These interactions can range from mutualism to 
antagonism and parasitism. In antagonistic interactions, several 
mechanisms have been described, illustrating the diverse strategies 
fungi employed to suppress competitors (Boddy and Hiscox, 2016). 
For instance, competitive exclusion has been described in 
endophytic colonization of tomato and cotton seeds by Beauveria 
bassiana, controlling root rot caused by Rhizoctonia solani, through 
direct competition for space (Ownley et  al., 2008). Similarly, 
copiotrophic fungi that rapidly metabolize carbon-rich substrates 
can deprive pathogens of these resources (Ramirez et  al., 2012; 
Männistö et  al., 2016). Another major mechanism is 
mycoparasitism, wherein one fungus actively parasitizes another. 
This process requires direct contact, host recognition, adhesion, 
hyphal penetration, and enzymatic degradation of the host cell wall 
(Koch and Herr, 2021; Liu and Dong, 2023). For example, 
Geotrichum sp. parasitizes Thanatephorus cucumeris, using it as 
both a nutrient source and structural support (Donayre and Dalisay, 
2016). Additionally, many fungi produce antifungal secondary 
metabolites-including flavonoids, alkaloids, terpenes, lipopeptides, 
and phenolic compounds-that inhibit the growth of fungal 

competitors (Mousa and Raizada, 2013; Lugtenberg et al., 2016). 
Aspergillus, Penicillium, Fusarium, and Phoma endophytes isolated 
from Eleusine coracana produce such compounds, effective against 
Fusarium spp. (Mousa et al., 2015). Thus, fungal-fungal competition 
encompasses a large range of interactions mechanisms from 
nutrient blocking and space occupation to the production of 
metabolites targeting competitors.

Because competition for resources is directly linked with 
nutrient availability and because the production of antifungal 
molecules requires specific precursors, it is likely that these 
fungal-fungal interactions are largely dependent on the 
nutritional environment. Fungi-fungi interactions are modulated 
by the plant’s surrounding physico-chemical environment, 
particularly by root exudates (Hu et al., 2018). Fungi capable of 
efficiently metabolizing exudate-derived compounds exhibit 
enhanced rhizosphere fitness (Broeckling et al., 2008), potentially 
leading to their selective enrichment (Hugoni et  al., 2018). 
Importantly, exudate composition varies with plant species, 
genotype, and developmental stage (Kowalchuk et  al., 2006; 
Chaparro et  al., 2013; Burns et  al., 2015; Eck et  al., 2019). 
Consequently, the rhizosphere mycobiome is likely to reflect the 
composition and timing of exudation events. Fungal taxa may 
therefore compete for access to these resources (Sasse et al., 2018; 
Hu et al., 2020), and some may utilize specific carbon substrates 
to produce antifungal metabolites. This suggests that root-
derived carbon inputs could serve as key drivers of fungal–fungal 
interactions and determine the antagonistic abilities of fungal 
taxa within a given environment. Considering the importance of 
fungal-fungal interactions for fungal fitness, it is also likely that 
these interactions sculpted fungal metabolic profiles over 
evolutionary time. In this context, we addressed the following 
questions: (i) Can different carbon utilization profiles 
be  distinguished among fungal isolates depending on their 
ecological origins, such as plant compartment, host plant species 
and geographic region in France? (ii) Is there a carbon utilization 
profile associated with antagonistic isolates (i.e., antifungal-
mediated antagonism and competition-mediated antagonism)? 
(iii) Is it possible to identify proteomic (i.e., EC) and metabolic 
(i.e., carbon substrates) markers predicting antagonistic effects? 
To explore these hypotheses, we used a collection of 91 fungal 
isolates associated with Brassica napus (oilseed rape) and 
Triticum aestivum (wheat) and assessed their antagonistic 
abilities against two widespread soil-borne plant pathogens, 
Rhizoctonia solani (Rs), and Fusarium graminearum (Fg). For all 
isolates of this collection we carried dual-culture assays against 
Rs and Fg to determine their antagonistic potential. As it is likely 
that the production of antifungal requires specific precursors, 
we characterized both competition-mediated antagonism (i.e., 
any form of competition reducing the growth of the competitor) 
and specifically antifungal-mediated antagonism (i.e., limitation 
of growth without direct contact). We identified competition-
mediated antagonism through the reduction in growth of Rs and 
Fg in the presence of the 91 fungal isolates. Whenever an 
inhibition zone without contact between mycelia was observed it 
was considered as antifungal-mediated antagonism, assuming 
that a diffusible molecule inhibited the competitor growth. 
We profiled carbon utilization capacities and predicted enzymatic 
reaction profiles (i.e., predicted proteomic models) based on 
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taxonomic affiliation. We  identified antifungal-mediated 
antagonism measured by the formation of inhibition zones and 
competition-mediated antagonism measured by the growth 
reduction of competitors (i.e., Rs or Fg). Antagonistic abilities 
were then compared to carbon utilization profiles and predicted 
proteomes to investigate the determinants of antagonistic fungal-
fungal interactions.

2 Materials and methods

2.1 Fungal material and selection of fungal 
isolates

The fungal isolates used were isolated in 2021. Briefly, root and 
rhizosphere samples were collected from 48 oilseed rape and 50 
wheat fields across three agriculturally distinct regions of France 
(East, South and West). Samples were ground and plated on three 
different culture media: Inhibitory Mold Agar (IMA) (Scognamiglio 
et al., 2010), Rose-Bengal Chloramphenicol Agar (RBCA; SIGMA-
ALDRICH; Ref. 17,211-500G) and Potato-Carrot Agar (PCA) 
(Chelkowski et al., 1992). All isolates were identified by amplification 
of the ITS1 region using universal primers ITS1ngs (5’-GGTCAT 
TTAGAGGAAGTAA-3′) and ITS2ngs (5’-TTYRCKRCGTTC 
TTCATCG-3′). Amplicons were sequenced by Macrogen Europe 
using Sanger sequencing method. For identification of fungal 
isolates, the ITS1 sequences obtained were compared with those in 
the nucleotide database using the Basic Local Alignment Search Tool 
(BLAST) of the National Center for Biotechnology Information 
(NCBI) in the USA (accessed April 2022).

The diversity of the isolates was illustrated through the 
construction of a phylogenetic tree, which was obtained by aligning 
the sequences using the MAFFT software (Katoh and Standley, 2013; 
Kuraku et al., 2013; Katoh et al., 2018) with default parameters to 
optimize sequence alignment. The phylogenetic tree was then 
generated using RAxML software (version 1.2.2; Stamatakis, 2014), 
applying the GTRCAT model (Stamatakis, 2014) and 100 bootstrap 
replicates to assess branch support. To adequately represent the 
observed diversity, we used PARNAS (Markin et al., 2023), a selection 
algorithm based on phylogenetic coverage. This software uses the 
phylogenetic distances on a phylogenetic tree and optimizes the 
selection of isolates in order to cover all the diversity represented on 
the tree. A total of 40 wheat isolates and 51 oilseed rape isolates were 
selected from the entire phylogenetic tree, thus covering the entire 
taxonomic range at genus level. To validate the representativeness of 
the selected isolates in relation to the entire crop collection, we used 
the same PARNAS software (Markin et al., 2023) this time quantifying 
the proportion of phylogenetic diversity captured by the selected 
isolates, enabling us to assess the extent to which these isolates reflect 
the overall diversity of the collection.

The taxonomic classification of these isolates was validated by a 
second round of sequencing, using the ITS1ngs and ITS2ngs primers 
described above. To further assign the isolates studied, additional 
primers NS1 (5’-GTAGTCATGCTTGTCTC-3′) and NS4 
(5’-CTTCCGTCGAATTCTTAA-3′) were also added using the same 
protocol. The resulting sequences were sent for sequencing to 
Macrogen, and taxonomic identification was validated using BLASTn 
against the NCBI nucleotide database (accessed October 2023).

Because NS1/NS4 barcodes, which amplify the 18S region of 
rRNA, are more conserved than the ITS1 region, we  chose to 
represent the genetic diversity of isolates by forming a phylogenetic 
tree with NS1/NS4 barcodes. All the phylogenetic trees represented 
in this article are based on these barcodes, using the following 
method. These sequences were aligned using Seaview (version 4, 
Gouy et  al., 2010) with the default parameters. Phylogenetic  
trees were constructed using Kimura’s method with the 
same software.

2.2 Antagonistic capacities against Rs  
and Fg

The competitive mediated antagonistic ability and the antifungal-
mediated antagonistic ability of 91 fungal isolates was tested against 
two known plant pathogens, Rs and Fg. The fungal pathogens Fg 
(strain MDC_Fg1) and Rs (strain AG 2–1 R5) were kindly provided 
from previous work (Gilligan and Bailey, 1997; Alouane et al., 2021). 
Rs and Fg cause damping-off on oilseed rape and wheat, respectively. 
We tested whether the 51 fungal isolates collected from oilseed rape 
could limit the growth of Rs through competitive mediated 
antagonism or antifungal-mediated antagonism using a modified 
dual-culture antagonism assay, as described in Zhao et al. (2021). 
We used the same approach to test whether the 40 fungal isolates 
collected from wheat could limit the growth of Fg. Briefly, all fungal 
isolates (i.e., those isolated from oilseed rape and wheat, and the 
competitors Rs and Fg) were grown for 7 days at 20°C on IMA 
medium (Inhibitory Mold Agar). For the dual-culture confrontation 
tests, a 5 mm diameter mycelial plug was collected from the growing 
edge of each fungal colony. Two plugs from two fungi (one isolate and 
Rs or Fg) were placed on IMA medium in 90 mm Petri dishes facing 
each other, 6 cm apart (center-to-center), each positioned 1 cm from 
the edge of the plate. After 7 days of incubation at 20°C, the Petri 
dishes were scanned (Epson Perfection V37), and the growth area (in 
cm2) of both the pathogen and the fungal isolate was measured using 
ImageJ Fiji software (version 1.54i; Schindelin et al., 2012). Plates 
inoculated only with Rs or Fg were included as controls to compare 
the pathogen’s growth in isolation with its growth in the presence of 
the different isolates. All experimental conditions, including controls 
and confrontation assays, were performed in triplicate, and the entire 
experiment was independently repeated three times. The inhibition 
rate was calculated using the following formula: Inhibition rate = 1 - 
(A1/A2), where A1 is the area occupied by the competitor (i.e., Rs or 
Fg) in the presence of a tested isolate, and A2 is the average area 
occupied by the competitor alone (i.e., control plates). Thus, a high 
inhibition rate translates to a high reduction in competitor 
growth area.

The ability of each isolate to perform competition-mediated 
antagonism was evaluated across all isolates tested and consisted of 
assessing the difference in growth (i.e., inhibition rate) of Rs and Fg in 
the presence of different isolates. Whenever a zone without mycelium 
was observed between the two mycelial growth areas (i.e., no visible 
mycelial growth of the pathogen or the tested isolate), we considered 
that the tested isolate is an antifungal-mediated antagonistic isolate. 
To validate that the growth measurements are robust and persist after 
7 days, the growth was measured a second time at 28 days after 
inoculation for 39 isolates.
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2.3 Profiling of fungal isolates carbon 
utilization profiles

The ability of each isolate to metabolize 95 different carbon 
substrates was evaluated using specific filamentous fungal (FF) 
microplates from Biolog (Biolog™ FF MicroPlates, Biolog Inc., 
Hayward, CA, USA; Supplementary Table S1). This method enables 
the analysis of fungal functional diversity and catabolic versatility 
(Pinzari et  al., 2016). The inoculation procedure followed the 
manufacturer’s recommendations (Biolog FF MicroPlate™ Protocol, 
Pawlik et al., 2019) with minor modifications. Isolates were grown for 
7 days at 20°C in the dark on 20% malt extract agar. Mycelia were 
harvested by adding 2 mL of FF-IF (filamentous fungal inoculation 
fluid) inoculation fluid (Biolog™) directly into the culture plates and 
gently scraping the surface with a sterile loop. The recovered 
suspension was then vortexed with 1 mm sterile glass beads to obtain 
a homogeneous solution used as inoculum. The optical density at 
600 nm (OD₆₀₀) of the inoculum was adjusted to 0.002, corresponding 
to 99% transmittance using a spectrophotometer (Jenway™ 7,300 
spectrophotometer). Each well of a Biolog FF MicroPlate was filled 
with 100 μL of the inoculum, and each isolate was tested in triplicate 
to ensure reproducibility of the carbon utilization profile of each 
isolate. The carbon utilization profile was measured by detecting the 
reduction of a tetrazolium dye, monitored via changes in optical 
density at 590 nm (OD₅₉₀), at 30-min intervals over 168 h using the 
OmniLog™ instrument (Biolog™), controlled via Data Analysis 
software (Version 1.7, Biolog Inc.). The area under the curve (AUC) 
was calculated from the kinetic data to quantify metabolic activity on 
each substrate. AUC values were then normalized by subtracting the 
signal of the negative control well (without carbon source) to obtain a 
relative consumption rate, which was used in downstream analyses.

2.4 Identification of proteomic features 
associated with antagonistic capacities

The consensus proteome of all isolates was analyzed to identify 
Enzyme Commission (EC) numbers specific to isolates with 
competition-mediated antagonism of both competitors. For this 
purpose, isolates metabolism was estimated using EsMeCaTa (Belcour 
et al., 2022), a Python workflow that approximates metabolic potential 
based on taxonomic affiliation by retrieving and analyzing reference 
proteomes from the UniProt database.

First, for the entire taxonomic assignment of the selected fungi, 
EsMeCaTa searches for at least 5 reference proteomes associated with 
each taxonomic assignment, regardless of the rank at which the isolate 
was identified. If fewer than 5 reference proteomes are found, 
EsMeCaTa moves to higher taxonomic ranks (up to family level only) 
and explores non-reference proteomes to complete the set. EsMeCaTa 
then identifies proteins shared among the retrieved proteomes. Only 
proteins found in at least 50% of these proteomes are retained. Finally, 
EsMeCaTa constructs a consensus sequence for each retained protein 
and calls EggNOG-mapper (Cantalapiedra et al., 2021) to annotate the 
retained proteins with EC numbers. These EC annotations were 
grouped based on whether the isolates are showing competition-
mediated antagonism against Rs or Fg (as defined in section 2.3) or 
not. Isolates with the same taxonomic assignment and/or reference 
proteomes that were present in competitive and non-competitive 

isolates were excluded. This allowed us to identify ECs uniquely 
associated with inhibitors.

2.5 Assessing the specificity of fungal 
isolates antagonistic abilities against two 
fungal competitors

In order to determine whether the observed inhibition potential 
of the isolates tested (i.e., general competition-mediated antagonism 
or antifungal-mediated antagonism) are competitor-specific (i.e., 
specific to Rs or Fg) we conducted additional confrontation assays 
including isolates displaying antagonistic phenotypes against Rs 
(Oilseed rape isolates) or against Fg (Wheat isolates). To do so, 
we  followed the same protocol as previously described (part 2.2 
Antagonistic capacities against Rs and Fg) using a total of 25 isolates 
displaying inhibition phenotypes in the previous tests. Three biological 
replicates and 3 technical replicates were performed for 
each confrontation.

2.6 Statistical analyses

All statistical analyses were carried out using R version 4.3.3 
within RStudio version 2024.12.0. To assess differences between 
fungal isolates in terms of competition-mediated antagonism against 
the two competitors, we first evaluated the normality of Rs and Fg 
growth surface distributions. Given that these distributions did not 
meet the assumptions of normality, non-parametric Kruskal-Wallis 
tests were employed (base R stats package), followed by Dunn’s post 
hoc tests with false discovery rate (FDR) correction (rstatix package, 
Kassambara, 2021).

In order to evaluate the link between the observed antagonistic 
phenotypes and the carbon utilization profiles we grouped isolates 
into phenotypic categories. To do so, we  used the unsupervised 
k-means clustering classification method. This method allows 
observations to be grouped into an optimal number of clusters based 
on their similarity. By applying this approach to the observed 
inhibition rates (Supplementary Figure S1), the analysis identified the 
two distinct groups for both oilseed rape and wheat isolates. Based on 
the distribution of the inhibition values and on the k-means clustering 
we thus selected a 0.3 inhibition rate threshold for oilseed rape isolates 
and 0.2 for wheat isolates (Supplementary Figure S1). The inhibition 
rate was thus used as both a quantitative variable in linear models (lm 
function, stats package) and analysis of variance (ANOVA) using the 
rstatix packages and as a qualitative variable (i.e., competitive vs. 
non-competitive isolates) in subsequent Kruskal-Wallis tests followed 
by Dunn’s post hoc tests with FDR correction. These analyses enabled 
us to examine the influence of ecological origin, including the 
geographic region in France, plant compartment, and host plant 
species (wheat or oilseed rape). A linear regression was also performed 
between the inhibition rate calculated at 7 days post-inoculation and 
at 28 days post-inoculation.

In parallel, the carbon utilization profile of each isolate was 
assessed using carbon sources in Biolog FF microplates. More 
specifically, the area under the consumption curve (AUC) values 
for each well were calculated and adjusted relative to the control 
well (i.e., AUC of each well divided by AUC of well A01). This 
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data was used to form a heatmap using the ggplot function in the 
ggplot2 package, and to create a Euclidean distance matrix using 
the dist function in the stats package. This matrix was then used 
to explore the influence of multiple variables, such as ecological 
origin (i.e., geographic region in France, plant compartment, and 
host plant species), taxonomic assignment, and competition-
mediated antagonistic as a qualitative variable (against Rs or Fg), 
on the carbon utilization profiles of the isolates by performing a 
Permutational Multivariate Analysis of Variance (PERMANOVA) 
analysis using the adonis2 function in the vegan package (version 
2.6–4; Oksanen et  al., 2013). At the same time, in order to 
highlight the differences in carbon utilization between the 
antagonistic isolates, three analyses (i.e., PCA, Random forest 
and PPLS-DA) were carried out to obtain the most reliable 
results possible. PCAs were performed using the rda function in 
the vegan package to highlight the most discriminating 
carbonaceous substrates on the first two principal axes, applying 
an absolute contribution threshold > 0.8. The Random Forest 
analysis (Breiman, 2001) was performed using the MUVR 
package (version 0.0.976; Shi et al., 2019) to identify the major 
carbon substrates that predict the competition-mediated 
antagonistic as a qualitative variable (competitive isolates vs. 
non-competitive isolates) of the 51 fungal isolates obtained from 
oilseed rape isolates and tested against Rs. The MUVR algorithm 
achieves a minimal feature selection by performing recursive 
variable elimination in a repeated double cross-validation 
procedure and improves predictive performance minimizing 
over-fitting and false positives. In this analysis, we  used the 
following parameters for the random forest analysis: 48 
repetitions, 8 outer cross-validation segments and 80% of 
variables kept for iteration of the recursive variable elimination 
in the inner loop. The statistical significance of the ‘max’ model 
(i.e., model including predictors with redundant but not 
erroneous information) was assessed with 100 permutations on 
the competition mediated antagonistic qualitative variable. 
Finally, a PPLS-DA was used to discriminate groups of fungal 
isolates during competition-mediated antagonism on the basis 
of their carbon utilization profiles. PPLS-DA consists of a partial 
least square’s regression analysis where the response variable is 
a qualitative variable (y-block; describing the grouping factor), 
expressing the class membership of the statistical units (Sabatier 
et al., 2003). Utilization rates of the 95 carbon sources by the 
fungal isolates were first scaled by Z-score normalization before 
using the cppls function in the package pls. The PLS-DA 
procedure includes a cross-validation step producing a p value 
that expresses the validity of the PLS-DA method regarding the 
dataset (function MVA.test in package RVAideMemoire). The 
PLS-DA procedure also expresses the statistical sensitivity, 
indicating the modelling efficiency in the form of the percentage 
of misclassification of samples in categories accepted by the class 
model (function MVA.cmv in package RVAideMemoire). These 
three methods therefore identify carbon substrates used 
differently in antagonistic isolates. Only the carbon substrates 
identified in the three analyses were subsequently studied. 
Non-parametric Kruskall-Wallis tests and linear models (lm 
function) were used to identify differences in the consumption 
of these carbonaceous substrates between antagonistic and 
non-antagonistic isolates.

3 Results

3.1 Selection of a representative set of 
fungal isolates associated to oilseed rape 
and wheat roots

To investigate antagonistic fungal-fungal interactions, we used a 
previously established collection of 780 fungal isolates, comprising 
209 from wheat and 571 from oilseed rape, collected in 2021 in fields 
from three main agricultural regions in France. From this initial 
collection, we assembled a subcollection by selecting representative 
isolates. Using Parnas (Markin et al., 2023), we identified sequence-
based diversity clusters and selected 91 representative isolates (40 
from wheat and 51 from rapeseed; Supplementary Table S2) based on 
their genetic diversity (i.e., ITS1 sequences). These isolates represent 
78.98% of the 780 isolates sequence diversity. The majority of the 
selected isolates from oilseed rape are Eurotiomycetes (n = 20; 39.2%), 
Sordariomycetes (n = 12; 23.5%), and Mucoromycetes (n = 8; 15.6%), 
while the one from wheat are mainly classified as Eurotiomycetes 
(n = 14; 35%), Sordariomycetes (n = 13; 32.5%) and Dothideomycetes 
(n = 9; 22.5%).

3.2 Antagonistic abilities of individual 
fungal isolates

To determine the antagonistic potential of individual isolates, 
we  carried out in  vitro dual confrontation tests against two 
competitors, Rs and Fg. Oilseed rape isolates were tested against Rs, 
while wheat isolates were tested against Fg. The inhibition rate of 
isolates was analyzed in relation to their ecological origin, including 
the geographic region in France and plant compartment (i.e., 
rhizosphere vs. roots), as well as their taxonomic classification. Across 
all dual confrontation assays, regardless of competitor, the two main 
antagonistic mechanisms were identified: (i) competition-mediated 
antagonism, and (ii) antifungal-mediated antagonism (Figures 1A,B; 
Supplementary Figures S2–S4).

We first examined the competition-mediated antagonism 
between the competitor and the isolates by examining the 
inhibition rate of the different fungal isolates. Among the 51 
oilseed rape isolates tested against Rs, we observed significant 
differences in Rs growth depending on the isolate (Kruskal-Wallis 
chi-squared = 423.46, df = 51, p < 0.05; Figure  1A; 
Supplementary Figure S3), with a mean inhibition rate of 28% 
(+/− 18%). Across the three experimental replicates, 10 out of 51 
isolates significantly reduced Rs growth (Kruskal-Wallis, p < 0.05; 
Figure  1A). These isolates belonged to the fungal classes 
Mucoromycetes, Mortierellomycetes, Sordariomycetes, 
Eurotiomycetes, and Dothideomycetes. Interestingly, similar 
patterns were observed for the 40 wheat-derived isolates tested 
against Fg (Figure 1B). Fg growth varied significantly among the 
isolates (Kruskal-Wallis chi-squared = 303.91, df = 40, 
p < 2.2e-16; Figure 1B; Supplementary Figure S3), with a mean 
inhibition rate of 15% (+/− 14%). Likewise, across three 
experimental repetitions, 7 out of 40 isolates significantly 
inhibited Fg growth (Kruskal-Wallis, p < 0.05; Figure 1B). These 
competitive isolates also belonged to the same fungal classes 
identified in the Rs assays: Sordariomycetes, Mucoromycetes, 
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Mortierellomycetes, Dothideomycetes, and Eurotiomycetes. 
We  then tested whether these inhibition patterns can 
be connected to the fungal taxonomy. As only two isolates from 
Leotiomycetes and Mortierellomycetes were present among the 
oilseed rape isolates, and a similar scarcity was observed for 
Mortierellomycetes and Mucoromycetes among the wheat 
isolates, these taxonomic groups were excluded from these 
analyses. For the oilseed rape isolates tested against Rs, a 
significant difference in inhibition rate among taxonomic classes 
was detected (Kruskal-Wallis; p = 0.00067, chi-squared = 17.1; 
Figure 1C). Eurotiomycetes showed the lowest average inhibition 
rate (15% +/− 7%), whereas Mucoromycetes and Sordariomycetes 
displayed significantly higher average inhibition rates of 38% 
(+/− 11%) and 42% (+/− 21%) on average, respectively (Dunn’s 
test with FDR correction; p < 0.05; Figure 1C). In contrast, no 
such difference in inhibition rate was observed among taxonomic 
classes for isolates tested against Fg, particularly among 
Dothideomycetes, Eurotiomycetes, and Sordariomycetes 
(Dothideomycetes, Eurotiomycetes, and Sordariomycetes; 
Kruskal-Wallis, p > 0.05, Figure 1E). However, it is important to 
note that the Mucoromycetes, identified as competitive isolates 
against Rs for oilseed rape isolates, could not be tested for wheat 
due to low statistical power.

Interestingly, oilseed rape isolates ability to reduce Rs growth was 
significantly correlated with phylogenetic distance to Rs (ANOVA; 

p = 0.0001, R2 = 0.25; F = 17.7; Figure  1D), with distant isolates 
yielding stronger inhibition rate than related isolates. In contrast, the 
phylogenetic distance between wheat isolates and Fg did not correlate 
with their inhibition abilities (ANOVA; p > 0.05, Figure 1F).

In addition, we investigated the ability of fungal isolates to 
perform antifungal-mediated antagonism, by observing the 
presence or absence of inhibition zones in dual culture assays. 
Antifungal mediated antagonism was observed for seven isolates 
tested against Rs and two isolates tested against Fg across all three 
experimental replicates (Figures 1A,B). All isolates that showed 
a zone of mycelium growth inhibition and were therefore 
identified as exhibiting antifungal-mediated antagonism against 
Rs, belonged to the taxonomic class Eurotiomycetes, specifically 
the genus Penicillium (Figure  1A; Supplementary Figure S4), 
while isolates identified as performing antifungal-mediated 
antagonism against Fg were affiliated with the Sordariomycetes 
(Figure 1B; Supplementary Figure S4). These results suggest that 
these isolates may produce antifungal compounds and effectively 
suppress the growth of Rs and Fg.

To determine whether observed antagonistic phenotypes 
persisted over time, a second growth measurement was performed 
28 days after inoculation. A significant correlation of the 
inhibition rate was observed between the two dates (day 7 and 
day 28) for both wheat isolates tested against Fg (ANOVA, 
p < 0.05, R2 = 0.85, F = 118.9) and rapeseed isolates tested against 

FIGURE 1

Inhibition of two fungal competitors (i.e., Rs and Fg) by different fungal isolates. (A,B) Maximum likelihood tree of the fungal isolates based on SSU 
sequences, showing phylogenetic relationships among fungal isolates and their average inhibition rates against Rhizoctonia solani (Rs) (A) and 
Fusarium graminearum (Fg) (B). These isolates were either isolated from oilseed rape or wheat. Oilseed rape isolates were tested against Rs and wheat 
isolates against Fg. Fungal classes are color-coded. Bars indicate average inhibition rates across replicates, with a red line marking the limit between 
competitive isolates and non-competitive isolates. Red and black squares next to each isolate denote significant antagonistic mechanisms in a 
biological replicate. Kruskal-Wallis tests reveal significant differences in inhibition rates among isolates for both pathogens (p < 2.2e−16). (C,E) Inhibition 
rates of each fungal class against Rs (C) and Fg (E). Significant differences were observed for Rs (Kruskal-Wallis, p = 0.00067), but not for Fg (p = 0.13). 
Different letters indicate statistically significant groups (post-hoc test). (D,F) Linear regressions showing the relationship between inhibition rate and 
phylogenetic distance from Rs (D) and Fg (F). A significant positive correlation was observed for Rs (ANOVA, p = 0.0001, R2 = 0.25), but no significant 
relation was found for Fg.
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Rs (ANOVA, p < 0.05, R2 = 0.77, F = 54.56; 
Supplementary Figure S5). The inhibition zones formed by the 
different isolates were also present at 28 days post- 
inoculation (Supplementary Figure S6) except for one isolate 
(Ta_14).

3.3 Carbon utilization profile of individual 
fungal isolates

To investigate the diversity of carbon utilization profiles among fungal 
isolates, we analyzed their utilization of 95 distinct carbon substrates. 
We first aimed at exploring potential associations between metabolic traits 
and isolates’ origin (i.e., geographic region, compartment and host plant 
species), as well as taxonomic classification.

To investigate the differences in carbon utilization profile related 
to isolate origin and taxonomy, we  first examined the carbon 
utilization profiles of individual isolates (Figure 2A). The number of 
carbon sources metabolized by individual isolates ranged from 10 
(Supplementary Figure S7A; Fusarium sp.; Ta_14) to 90 substrates 
(Supplementary Figure S7A; Cladosporium sp.; Ta_37 and Penicillium 
sp.; Bn_44) out of the 95 substrates tested. On average, isolates used 
60 substrates (+/− 20, median = 62), with 49 isolates (52.7%) 
exceeding this average (Supplementary Figure S7A). This indicates a 
continuum of carbon use capabilities, ranging from specialists (i.e., 
able to use only a few specific substrates) to generalists able to utilize 
nearly all tested carbon sources. On average, each of the 95 substrates 
tested were consumed by 58 isolates (Supplementary Figure S7B; +/− 
21 isolates; median = 63), with large variations across carbon 
substrates. Glucuronamide was the least frequently used substrate, 
used by only 6 isolates (Supplementary Figure S7B; 6.45%), while α-D-
glucose and maltotriose (D-glucose-derived substrate) were utilized 
by 90 isolates (Supplementary Figure S7B; 96.8%). Notably, no 
substrate was either universally utilized or completely unused, 
highlighting the broad and heterogeneous carbon utilization potential 
of these plant-associated fungal isolates.

The observed carbon utilization profiles were largely determined 
by the taxonomic affiliation across all taxonomic ranks 
(PERMANOVA: class, p = 0.002, R2 = 0.15; order, p = 0.003, R2 = 0.22; 
family, p = 0.003, R2 = 0.31; genus, p = 0.021, R2 = 0.34; species, 
p = 0.005, R2 = 0.58; Supplementary Table S3, Figure  2B). The 
taxonomy explained up to 58% of carbon utilization at the species level 
and only 15% at the class level (Supplementary Table S3). Interestingly, 
the profiles were more contrasted between specific taxa. At the class 
level, Dothideomycetes differed significantly from Eurotiomycetes 
(pairwise PERMANOVA, p = 0.025) and Mucoromycetes (pairwise 
PERMANOVA, p = 0.025), while Sordariomycetes also diverged from 
Eurotiomycetes (pairwise PERMANOVA, p = 0.025) and 
Mucoromycetes (pairwise PERMANOVA, p = 0.026).

To assess whether these carbon utilization patterns are shaped 
by the ecological origin of the isolates, we  investigated the 
influence of the host plant species, the plant compartment and 
the geographic region in France from which the fungi have been 
isolated. A PERMANOVA analysis on the complete carbon 
utilization profiles revealed no significant influence of host  
plant species, plant compartment, or geographic region in  
France on carbon utilization (PERMANOVA, p > 0.05; 
Supplementary Table S3; Figure 2B).

3.4 Specific carbon utilization profile 
associated with competitive abilities

In order to investigate whether a carbon utilization signature of 
competitiveness against Rs and Fg can be detected, we compared carbon 
utilization profiles of competitive isolates and non-competitive isolates.

Isolates from oilseed rape that had strong competitive abilities 
against Rs had a significantly lower metabolic distance to Rs (i.e., 
using similar carbon substrates) than non-competitive isolates, 
whether competition-mediated antagonism was considered as a 
categorical or continuous variable (Kruskal-Wallis; p = 0.014; 
F = 6.03; Supplementary Figure S8A; ANOVA; p = 0.004; 
R2 = 0.17; Supplementary Figure S8C). Therefore, isolates using 
the same carbon substrates as Rs exhibited stronger Rs growth 
inhibition. Similar results were observed when examining the 
number of carbon substrates used by competitive isolates versus 
non-competitive isolates. Specifically, competitive isolates against 
Rs used significantly fewer carbon substrates compared to 
non-competitive isolates (Kruskal-Wallis; p = 0.000322; F = 12.9; 
ANOVA, p = 0.0002, R2 = 0.23, F = 16.13; 
Supplementary Figures S9A,C). The observed carbon utilization 
signature was confirmed using a principal component analysis 
(PCA, Supplementary Figure S10D) and a PERMANOVA 
(PERMANOVA, R2 = 0.09296, p = 0.003; 
Supplementary Figure S10D) highlighting significant differences 
between carbon utilization profile of competitive and 
non-competitive isolates. To consolidate these results and identify 
the carbon substrates that may explain competition-mediated 
antagonism against Rs, we used three complementary statistical 
analyses: a Random Forest (RF), a PPLS-DA and a PCA 
(Supplementary Figures S10A–C). All three approaches 
confirmed that carbon utilization profiles can explain the 
observed competition-mediated antagonism (competitive isolates 
vs. non-competitive isolates) (model accuracy score RF = 92%, 
p = 4.9e-04; PPLS-DA; 999 permutations; CER = 0.13333, 
p = 0.001, R2 = 89.2; Supplementary Figures S10A–C). These 
analyses of the carbon utilization profiles of isolates revealed 
specific carbon substrates that distinguish competitive isolates 
from non-competitive isolates against Rs. Four substrates were 
identified by all three analyses (RF, PCA, PPLS-DA) as being 
significantly associated with the level of competition-mediated 
antagonism: quinic acid (F12), D-saccharic acid (G01), 
D-melibiose (D04) and D-glucuronic acid (C03) (Figures 3A–D). 
These four carbon molecules were systematically and significantly 
less utilized by competitive isolates (Kruskal-Wallis test; p < 0.05; 
Figures 3E–H). Interestingly, the relationship between inhibition 
rate and substrate utilization was significant but non-linear 
(polynomial model; p < 0.05; Figures 3I–L).

In contrast, for wheat isolates tested against Fg, the metabolic 
distance to Fg (Supplementary Figures S8B,D) was similar 
between competitive and non-competitive isolates as well as the 
number of carbon substrates consumed (Kruskal-Wallis, p > 0.05; 
ANOVA, p > 0.05, Supplementary Figures S9B,D). To validate the 
fact that competitive and non-competitive isolates wheat isolates 
do not have a different metabolic profile, we  used the same 
approach as for oilseed rape isolates. No difference in carbon 
utilization profiles was detected using a principal component 
analysis (PCA, Supplementary Figure S10E) and a PERMANOVA 
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FIGURE 2

Carbon utilization profiles of fungal isolates across host plant species, geographic regions in France, plant compartment and taxonomic assignment. 
(A) Heatmap showing the carbon utilization profiles (Biolog FF microplates) of fungal isolates grouped by hierarchical clustering. Each row represents a 

(Continued)
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(PERMANOVA, p > 0.05; Supplementary Figure S10E). To 
consolidate these results, we also performed a Random Forest 
(RF) and a PPLS-DA analysis. Both approaches confirmed that 
the carbon utilization profiles did not explain the observed 
competitive abilities of wheat isolates against Fg.

3.5 Specific carbon utilization profile 
associated with antifungal activities

In order to investigate the presence of a carbon utilization 
signature for antifungal activity on Rs and Fg we  compared  
the carbon utilization profiles of producer and 
non-producer isolates.

We used the same approach to investigate the carbon 
utilization patterns underlying the antifungal-mediated 
antagonism as previously with the competition-mediated 
antagonism. In this case, PCA (PERMANOVA; 999 permutations, 

Df = 1, SumOfSqs = 229.86, R2 = 0.09578, F = 5.1901, p = 0.003; 
Figure  4A) and PPLS-DA (999 permutations; CER = 0.08, 
p = 0.001, R2 = 67.9) but not RF (p > 0.05) revealed a significant 
difference in the consumption of carbon substrates between the 
two groups (i.e., inhibition zones producer and non-producer) of 
isolates derived from oilseed rape and tested against Rs. A total 
of 28 substrates were identified as discriminant by both analytical 
approaches. Unlike isolates showing a competition-mediated 
antagonism against Rs, those that showed an antifungal-mediated 
antagonism consistently consumed more substrates than those 
that did not (Kruskal-Wallis; p < 0.05; Figure 4B). This trend was 
confirmed by the overall number of carbon substrates utilized, 
with isolates producing inhibition zones using a larger diversity 
of carbon substrates (Supplementary Figure S11A) (Kruskal-
Wallis; p = 0.00821; F-statistic = 6.99). However, because only 2 
wheat isolates exhibited antifungal activity against Fg, the 
statistical power was too low to investigate the link with carbon 
utilization profile.

fungal isolate and each column a specific carbon substrate. All carbon sources and the corresponding values are included in Supplementary Table 5. 
Colors indicate the consumption rate, with red indicating high and blue indicating low usage. Metadata annotations on the left indicate the region of 
origin in France (i.e., East, South, West), plant compartment (i.e., Rhizosphere, Root), host plant [i.e., oilseed rape, wheat, or R. solani (Rs) and F. 
graminearum (Fg)], and taxonomic fungal class. (B) Principal Component Analysis (PCA) of substrate utilization profiles. Shapes represent the host plant 
and colors indicate taxonomic fungal class. Ellipses denote 95% confidence intervals for taxonomic fungal classes. PERMANOVA results indicate a 
significant effect of taxonomic fungal class (p = 0.002) but not of host plant (p = 0.572) on substrate utilization profiles.

FIGURE 2 (Continued)

FIGURE 3

Differentiation of the utilization of four metabolites between competitive isolates and non-competitive isolates against Rs and isolated from oilseed 
rape. (A–D) Chemical structures of the 4 analyzed metabolites: D-Melibiose (A), D-Saccharic Acid (B), Quinic Acid (C), and D-Glucuronic Acid (D). 
(E–H) Boxplots showing carbon substrate utilization rates in fungal isolates grouped by competitive isolates and non-competitive isolates against Rs 
for D-Melibiose (E; Kruskall-Wallis, p = 0.0000766, F = 15.6), D-Saccharic Acid (F; Kruskall-Wallis, p = 0.00000514, F = 20.8), Quinic Acid (G; Kruskall-
Wallis, p = 0.0000469, F = 21), and D-Glucuronic Acid (H; Kruskall-Wallis, p = 0.00000354, F = 21.5). Significant differences in utilization rates were 
observed across all metabolites. (I–L) Polynomial regression analyses showing a significant inverse relationship between metabolite utilization rate and 
inhibition rate for D-Melibiose (I: p = 0.0013, Adjusted R2 = 0.2, F = 7.6), D-Saccharic Acid (J: p = 0.00131, Adjusted R2 = 0.4, F = 18.21), Quinic Acid (K: 
p = 1.9e-5, Adjusted R2 = 0.33, F = 13.75), and D-Glucuronic Acid (L: p = 5.26e−6, Adjusted R2 = 0.37, F = 15.83). Regression lines (blue) are shown with 
95% confidence intervals (shaded area). These findings suggest that higher carbon substrat utilization is associated with a reduced ability to inhibit Rs 
growth.
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3.6 Proteomic markers of antagonism

In order to identify proteomic signatures associated with 
competitive isolates against our competitors, we used EsMecaTa to 
obtain enzyme commission numbers (ECs) deduced from reference 
proteomes available in databases. This strategy allowed us to identify 
ECs present only in competitive isolates against one of the two target 
competitors (Fg or Rs).

Firstly, we found no specific EC shared between all competitive 
isolates from wheat and tested against Fg. Consequently, while ECs 
associated with competitive abilities were identified, they were present 
only in a single proteomic model corresponding to one isolate. For 
wheat isolates reducing Fg growth, eight specific enzymatic 
commission numbers (ECs) were identified (Table 1), all belonging to 
a single proteomic model Linnemannia sp. associated with the isolate 
Ta_11. Among these, two are related to the Krebs cycle (EC 
1.14.11.30 = HIF hydroxylase, EC 1.4.1.21 = aspartate dehydrogenase), 
suggesting a potential link with energy metabolism (Table 1). Three 
ECs (EC 3.4.21.7 = plasmin, EC 3.4.24.18 = meprin A; EC 
3.4.24.63 = meprin B) are involved in protein and amino acid 
hydrolysis, while the remaining three (EC 2.4.1.68 =  
glycoprotein fucosyltransferase, EC 2.4.1.214 = glycoprotein 

3-alpha-L-fucosyltransferase; EC 2.7.1.52 = fucokinase) participate in 
fructose degradation, a carbon source included in our carbon 
utilization profile (Table 1). However, no significant differences were 
observed in the utilization of fructose-containing substrates, either 
D-fructose (Kruskal-Wallis, p = 0.423, ANOVA; p > 0.05; 
Supplementary Figures S12B,D) or the D-Psicose/D-Fructose  
mixture (Kruskal-Wallis, p = 0.606, ANOVA, p > 0.05; 
Supplementary Figures S12B,D) between competitive isolates and 
non-competitive isolates.

Similarly, analysis of oilseed rape isolates revealed a set of exclusive 
enzymatic commission numbers (ECs) present only in competitive 
isolates. 14 ECs were present only in the predicted proteomes of isolates 
with highly competitive abilities against Rs. However, no shared ECs were 
identified between competitive isolates against Fg and against Rs, 
indicating distinct biochemical mechanisms depending on the 
competitor. The ECs identified correspond to three proteomic models 
(three taxonomic groups). A model corresponding to the genus 
Trichoderma, includes six isolates and reveals the presence of six 
competition-specific ECs (Table 2). These ECs are grouped into four main 
functional categories. One EC are involved in carbon metabolism (EC 
3.2.1.164 = endo-1,6- beta  - galactanase), one EC was linked to a 
protective mechanism against proteolytic degradation (EC 
4.2.1.95 = kievitone hydratase), two ECs were identified in amino acid 

FIGURE 4

Differentiation of carbon utilization profiles between antifungal producer isolates and non-antifungal producer isolates from oilseed rape and tested 
against Rs. (A) Principal Component Analysis (PCA) based on Euclidean dissimilarity of carbon utilization profiles. Antifungal mediated antagonistic 
isolates are shown in turquoise, while non-antifungal producer isolates are shown in red. Vectors indicate the carbon substrates with the highest 
contribution to the ordination (threshold ≥ 0.8). PERMANOVA revealed a significant difference between groups (R2 = 0.09578, F = 5.1901, p = 0.003). 
(B) Partial Least Squares Discriminant Analysis (PPLS-DA) showing separation between antifungal producer isolates and non-antifungal producer 
isolates, with a classification error rate (CER) of 0.087255 and p = 0.001. (C) Loadings plot from the PPLS-DA identifying the most discriminant carbon 
substrates (threshold ≥ 0.8). (D) Boxplots showing the relative utilization of key discriminant carbon substrates identify by PCA and PPLS-DA: 2-Amino-
Ethanol (H08) - p = 1.27e-2, F = 6.20, D-Sorbitol (E04) - p = 1.6e−2, F = 5.80, L-Pyroglutamic Acid (H05) - p = 2.38e−3, F = 9.23, D-Malic Acid (F10) - 
p = 4.87e−2, F = 3.88, Adenosine (H10) - p = 3.11e-3, F = 8.74, L-Serine (H06) - p = 1.12e−3, F = 10.6, Salicin (E02) - p = 0.112, F = 2.52 (not significant). 
Boxplots display individual values, group medians, and interquartile ranges. Letters indicate statistically significant differences based on Kruskal-Wallis 
(p < 0.05).
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degradation pathways as well as in lipid and phospholipid metabolism 
(EC 2.1.1.103 = phosphoethanolamine methyltransferase, EC 
2.5.1.26 = alkylglycerone-phosphate synthase), which are critical for 
maintaining cellular membrane integrity, one EC are unclassified (EC 
1.13.12.5 = Renilla-luciferin oxygen2-oxidoreductase) and the last one 
was associated with secondary metabolism and more precisely in the 
biosynthetic pathway of penicillin and cephalosporin (EC 6.3.2.26 = ACV 
synthetase). A second model corresponding to the genus Botrytis with a 
single isolate highlighted a set of seven competition-specific ECs (Table 2). 

These ECs are grouped into three main functional categories. Two specific 
ECs were identified in amino acid degradation pathways as well as in lipid 
and phospholipid metabolism (EC 1.2.1.47 = 4-N-dimethylamino 
butyraldehyde dehydrogenase, EC 3.4.24.20 = peptidyl lysine 
metalloproteinase), which are critical for maintaining cellular membrane 
integrity. Additionally, 3 ECs were associated with secondary metabolism 
and involved in the biosynthesis of terpene quinones (EC 
2.2.1.9 = SEPHCHC synthase, EC 4.2.1.113 = OSB synthase, EC 
4.2.99.20 = SHCHC synthase). One EC is involved in carbon metabolism 

TABLE 1  ECs identified in competitive isolates derived from wheat and tested on Fg.

EsMecaTa model EC number EC name Classification Isolate

Linnemannia 1.14.11.30 HIF hydroxylase Krebs cycle Ta_11

Linnemannia 1.4.1.21 Aspartate dehydrogenase Krebs cycle Ta_11

Linnemannia 2.4.1.214 Glycoprotein 3-alpha-L-

fucosyltransferase

Carbon metabolism Ta_11

Linnemannia 2.4.1.68 Glycoprotein fucosyltransferase Carbon metabolism Ta_11

Linnemannia 2.7.1.52 Fucokinase Carbon metabolism Ta_11

Linnemannia 3.4.21.7 Plasmin Amino acid hydrolysis Ta_11

Linnemannia 3.4.24.18 Meprin A Amino acid hydrolysis Ta_11

Linnemannia 3.4.24.63 Meprin B Amino acid hydrolysis Ta_11

Enzyme commission numbers (ECs) identified in the EsMecaTa metabolic model for wheat-derived competitive isolates assigned at genus level and tested against Fg. Each enzyme is 
associated with his EC number, his name, the functional category into which it has been classified (Krebs cycle, carbon metabolism, or amino acid hydrolysis), and the isolate in which it was 
detected.

TABLE 2  ECs identified in competitive isolates derived from oilseed rape and tested on Rs.

EsMecaTa model EC number EC name Classification Isolates

Trichoderma 1.13.12.5 Renilla-luciferin: oxygen2-oxidoreductase Unclassified Bn_01, Bn_03, Bn_05, 

Bn_10, Bn_30, Bn_04

Trichoderma 2.1.1.103 Phospho ethanolamine methyltransferase Amino acid and lipid metabolism Bn_01, Bn_03, Bn_05, 

Bn_10, Bn_30, Bn_04

Trichoderma 2.5.1.26 Alkylglycerone-phosphate synthase Amino acid and lipid metabolism Bn_01, Bn_03, Bn_05, 

Bn_10, Bn_30, Bn_04

Trichoderma 3.2.1.164 endo-1,6-beta-galactanase Carbon metabolism Bn_01, Bn_03, Bn_05, 

Bn_10, Bn_30, Bn_04

Trichoderma 4.2.1.95 Kievitone hydratase Proteolitic degradation protection Bn_01, Bn_03, Bn_05, 

Bn_10, Bn_30, Bn_04

Trichoderma 6.3.2.26 ACV synthetase Secondary metabolism Bn_01, Bn_03, Bn_05, 

Bn_10, Bn_30, Bn_04

Botrytis 1.2.1.47 4-N-trimethylamino butyraldehyde 

dehydrogenase

Amino acid and lipid metabolism Bn_31

Botrytis 2.2.1.9 SEPHCHC synthase Secondary metabolism Bn_31

Botrytis 3.4.24.20 Peptidyl lysine metalloproteinase Amino acid and lipid metabolism Bn_31

Botrytis 4.2.1.113 OSB synthase Secondary metabolism Bn_31

Botrytis 4.2.99.20 SHCHC synthase Secondary metabolism Bn_31

Botrytis 4.4.1.32 cpcE Unclassified Bn_31

Botrytis 4.6.1.14 Glycosylphosphatidylinositol 

diacylglycerol-lyase

Carbon metabolism Bn_31

Mucoraceae 1.5.99.12 Cytokinin dehydrogenase Secondary metabolism Bn_06

Enzyme commission numbers (ECs) identified in the EsMecaTa metabolic model for oilseed rape-derived competitive isolates assigned at genus level and tested against Rs. Each enzyme is 
associated with its EC number, its name, the functional category into which it has been classified (Unclassified, Amino acid and lipid metabolism, Carbon metabolism, Proteolytic degradation 
protection or Secondary metabolism), and the isolate in which it was detected.
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(EC 4.6.1.14 = glycosylphosphatidylinositol diacylglycerol-lyase), 
including inositol metabolism, which was also tested in Biolog FF 
microplates. The inositol metabolic pathway, enriched in competitive 
isolates against Rs, was significantly less consumed by competitive isolates 
compared to non-competitive isolates (Kruskal-Wallis test, p = 0.00005, 
ANOVA; p = 2.18e-11, F = 8.621, Supplementary Figures S12A,C). The 
last EC is unclassified (EC 4.4.1.32 = cpcE). Finally, the third model is 
associated with the family Mucoraceae, and comprises a single isolate and 
a single EC (Table 2). This EC is associated with secondary metabolism 
and especially the catalyses of cytokinins (EC 1.5.99.12 = cytokinin  
dehydrogenase).

3.7 Antagonistic potential of fungal isolates 
across competitors

In order to test whether competition-mediated antagonism 
and/or antifungal-mediated antagonism are competitor-specific, 
we  tested all antagonistic isolates on both competitors in dual 
confrontation tests. Of the 25 isolates tested on both competitors 
(16 isolated from oilseed rape and 9 isolated from wheat), 9 
isolates significantly reduced the growth of both competitors in 
all three replicates of the experiment (Kruskal Wallis; p < 0.05; 
Figure  5A). These isolates belonged to the Mucoromycetes, 
Sordariomycetes and Dothideomycetes classes and had a similar 
average inhibition rate in the presence of both competitors (0.463 
when interacting with Fg and 0.49 when interacting with Rs). 
Therefore, both competitors are similarly affected by the same 
fungal groups. Interestingly, the ability of isolates to reduce 

growth of both competitors was highly correlated (ANOVA; 
p = 1.69e-6; F-statistic: 40.55; R2: 0.62; Figure 5B) suggesting that 
the ability to reduce growth of a single competitor explains 68% 
of the ability to reduce growth of another competitor. Regarding 
antifungal-mediated antagonism, among the nine isolates 
previously identified, only two were able to do antifungal-
mediated antagonism repeatedly on the two competitors 
(Figure 5A). One isolate was isolated from oilseed rape and one 
from wheat and belong to the Eurotiomycetes (Bn_24) and 
Sordariomycetes (Ta_29), respectively.

4 Discussion

4.1 Broad diversity in carbon utilization of 
fungal isolates but limited ecological 
structuring

In any given environment, the metabolism of fungi is shaped by 
inherited metabolic capacities and by context-dependent abiotic and 
biotic constraints (McGuire et al., 2010). From this eco-evolutionary 
perspective, this potential reflects selective pressures that acted on the 
fungus lineages over time. Consequently, one might expect that fungi 
inhabiting distinct ecological niches would exhibit divergent carbon 
utilization signatures, indicative of local adaptations and 
environmental filtering (McGuire et al., 2010; Saunders et al., 2010; 
Talbot et  al., 2014). In plant-associated microbiota, these carbon 
utilization traits are influenced by both plant-dependent factors (e.g., 
root exudates) and plant-independent variables such as soil 

FIGURE 5

Antagonistic potential of fungal isolates against two competitors. (A) Maximum likelihood tree of the fungal isolates based on SSU sequences, 
annotated with the plant host species (oilseed rape in green and wheat in yellow), fungal taxonomic class (colored squares), and red and black squares 
next to each isolate denote significant competition-mediated antagonism and antifungal-mediated antagonism, respectively in a biological replicate. 
Average inhibition rates against Fg and Rs are shown as bar plots with a red line marking the limit between competitive isolates and non-competitive 
isolates. A Kruskal-Wallis test indicates significant differences among isolates for both competitors (Fg: χ2 = 229.9, df = 25, p < 2.2e−16; Rs: χ2 = 215.59, 
df = 25, p < 2.2e-16). (B) Correlation between inhibition rates against Fg and Rs, with a linear regression line (R2 = 0.6224, p = 1.69e-6) and 95% 
confidence interval (gray shading).
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physicochemical properties. While many studies have successfully 
described the variations in mycobiota composition across diverse 
ecological contexts (e.g., climatic gradients, host plant species; 
Thiergart et  al., 2020), including databases and meta-analyses 
(Větrovský et al., 2019; Větrovský et al., 2020), much less is known 
about the carbon utilization capacity of individual fungi within natural 
fungal communities.

Leveraging a large collection of fungal isolates from two host plants, 
two root-associated compartments and three geographical regions in 
France, we investigated whether the ecological context influences fungal 
carbon utilization capacities. Our results reveal a wide spectrum of carbon 
utilization profiles among isolates. The diversity of carbon used by an 
isolate can be considered as a proxy of niche width (LeBlanc et al., 2017) 
and our results reveal a range of niche width highly generalist carbon 
usage (i.e., isolates capable of metabolizing almost all tested carbon 
sources; e.g. Cladosporium sp. Ta_37 and Penicillium sp. Bn_44 with 90 
carbon substrates used; Supplementary Figure S7) to highly specialized 
carbon usage (e.g., Fusarium sp. Ta_14 with 10 substrates used; 
Supplementary Figure S7). However, despite this diversity we found no 
clear structuring of carbon utilization profiles based on ecological origin. 
None of the host plant species, the compartment or the geographical 
origin significantly structured isolates’ carbon utilization profile (Figure 1; 
Supplementary Table S3). Instead, carbon usage was more strongly 
associated with fungal taxonomy, suggesting that in our experimental 
system the evolutionary lineage better predicts carbon substrate 
preferences than local environmental conditions (Figure  2; 
Supplementary Table S3). Similar results have been obtained by 
comparing smaller sets of fungal endophytes from semi-arid regions 
(Knapp and Kovács, 2016) and oomycetes (Masigol et  al., 2023) 
highlighting species specific carbon utilization profiles. Interestingly, 
while we did not detect host-specific patterns, LeBlanc et al., (2017) did 
detect host-specific carbon utilization profiles by focusing on 84 Fusarium 
species. It is important to note that only two plant species were tested in 
the present study, potentially explaining this difference with previous 
studies, and calling for larger host plant screenings. Taken together this 
suggests that patterns of niche width differentiation through metabolic 
specialization can be detected at both precise and large taxonomic scales.

Consistent with previous reports highlighting the high metabolic 
plasticity of soil fungi (Camenzind et al., 2020) this finding suggests 
carbon utilization potential may not be  tightly constrained by 
ecological settings. In our dataset, more than half of the isolates 
utilized over 60 substrates, (52.7% above the median of 62, 
Supplementary Figure S7) suggesting widespread generalism. Several 
studies have also shown that endophytic fungi, notably those 
belonging to the genera Fusarium, Alternaria or Cladosporium, can 
modify their carbon utilization profile according to the nutritional 
environment or the identity of the host plant (Schulz and Boyle, 2005). 
Similarly, many soil-associated fungal species, often classified as 
opportunistic saprotrophs or facultative endophytes, display a wide 
ecological amplitude and a metabolic repertoire enabling them to 
exploit different carbon niches (Rodriguez et al., 2009; Porras-Alfaro 
and Bayman, 2011). These observations reinforce the idea that many 
plant-associated fungi are not strictly specialized, but rather metabolic 
generalists adaptable to the fluctuating conditions of root ecosystems, 
supporting the idea that many root-associated fungi are generalists 
and are capable of colonizing multiple plant species. Within the root 
environment, fungi are exposed to a heterogeneous mix of carbon 
compounds, requiring them to prioritize the most effectively 

assimilable source substrates. Fungal carbon catabolite repression 
(CCR) systems allow such prioritization by enabling the preferential 
use of more energetically favorable compounds (Adnan et al., 2018). 
CCR is a regulatory mechanism in fungi that allows preferential 
utilization of easily metabolizable carbon sources, such as glucose, 
over less favorable ones (Adnan et al., 2018). CCR plays a crucial role 
in fungal metabolic plasticity and stress responses, which are essential 
for disease progression in pathogenic fungi. These mechanisms likely 
represent an evolutionary trade-off between specialization and 
generalization, shaped by fluctuating resource availability in the 
rhizosphere (Philippot et al., 2013). Considering that the rhizosphere 
of plants is considered to be one of the most dynamic interfaces on 
Earth (Philippot et al., 2013) it is likely that temporal variation in 
carbon availability also plays a key role in shaping fungal metabolic 
strategies. While our current profiling has identified differences in 
carbon substrate utilization according to fungal isolate lineage, 
uncovering host-mediated constraints on carbon metabolism may 
require more complex assays with dynamic and diverse carbon 
sources availability. Incorporating a broader diversity of host plants 
and fungal taxa would also likely provide opportunities to identify 
species-specific host-driven carbon utilization.

4.2 Carbon substrate utilization shapes 
antagonistic interactions between fungi

While the carbon utilization of individual fungal isolates provides 
insights into their ecological strategy and evolutionary history, fungi in 
natural environments rarely act in isolation. They constantly engage in 
competitive interactions, particularly for limiting resources, questioning 
the influence of carbon utilization traits for fungal-fungal interactions. 
Antagonistic interactions can involve a spectrum of strategies, from rapid 
resource exploitation and/or niche occupation to the production of 
antifungal compounds that inhibit the growth of competitors (Mousa and 
Raizada, 2013; Lugtenberg et al., 2016; Sasse et al., 2018; Hu et al., 2020). 
Our results demonstrate that many root-associated fungi from wheat and 
oilseed rape exhibit antagonistic activities against fungal competitors 
primarily through general competition-mediated antagonism and in 
some cases specifically by antifungal-mediated antagonism (Figure 1). 
The observed phenotypes were maintained after 28 days of confrontation, 
highlighting the importance of the competitive interactions for fungal 
establishment and survival. Our results indicate that the antagonistic 
potential of fungal isolates follows phylogenetic patterns for oilseed rape-
associated isolates but not wheat-associated isolates, suggesting that 
fungal taxa have indeed developed contrasted strategies to compete with 
other fungi. The observed phylogenetic patterns may reflect potential 
conservation of metabolic pathways within fungal lineages. Previous 
studies have shown that trait like enzyme profiles and carbon utilization 
strategies often exhibit phylogenetic signal among fungi (Hedges et al., 
2004). Similarly, some biosynthetic gene clusters (BGCs), particularly 
those involved in the production of secondary metabolites such as 
antifungals, can be  phylogenetically conserved in certain clades 
(Wisecaver et  al., 2014; Spatafora et  al., 2017). Further comparative 
genomics would be  needed to determine whether the phylogenetic 
pattern of fungal-fungal interaction traits reflects conserved functional 
capacities or ecological convergence. In our system the competitive 
abilities of isolates were negatively correlated to their metabolic distance 
to the competitor (Supplementary Figure S8), demonstrating that 
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metabolic proximity, and thus niche overlap, determine competitive 
interactions between fungi. Interestingly, antagonism against Rs also 
correlated with the use of fewer carbon substrates 
(Supplementary Figures S9A,C), suggesting a reduction in niche width 
for competitive isolates compared to non-competitive isolates. This 
negative correlation between niche width and competitive ability suggests 
that there might be a competitive cost for using a large number of carbon 
substrates (i.e., generalist carbon source utilization). This supports the 
idea that generalist strategies in carbon utilization, while advantageous in 
fluctuating environments, may be less favorable in more stable conditions.

In contrast, and while we did not validate that antifungal compounds 
were produced, isolates producing inhibition zones consumed a higher 
number of carbon substrates than other fungi (Supplementary Figure S11) 
indicating that diverse carbon substrates may be required to produce 
molecules responsible for this inhibition. Alternatively, the production of 
inhibitive compounds might be  associated with generalist strategies. 
Previous work showed that glucose concentration plays a crucial role in 
the biosynthesis of antifungal volatile organic compounds by 
Aureobasidium pullulans (Yalage Don et al., 2021). While our experimental 
design did not allow to detect the presence of antifungal volatile organic 
compounds, it could be hypothesized that carbon metabolism is involved 
in the biosynthesis of various antifungal molecules, including volatile 
molecules. Collectively, our results suggest that carbon sources and 
concentrations may significantly impact the production of antifungal 
compounds in fungi, and that antifungal-mediated competition shapes 
fungal metabolic profiles.

Overall, our results indicate that carbon utilization interacts with 
both the competition-mediated and antifungal-mediated antagonism. 
Surprisingly we found no link between antagonistic abilities and the 
carbon utilization profiles for wheat isolates. Strikingly however, 
we found that the antagonistic abilities of fungi were highly correlated 
between the two competitors tested (i.e., Rs or Fg; Figure  5B) 
demonstrating that a large fraction of the variations observed between 
isolates are due to competitor-independent mechanisms. 
Consequently, the observed absence of metabolism-driven 
competitive abilities in wheat isolates could reflect host-dependent 
mechanisms. Alternatively, because fewer isolates were tested from 
wheat, this could reflect a lack of statistical power to identify 
meaningful carbon utilization patterns, calling for the investigation of 
a larger fungal isolate pool. In contrast, antifungal-mediated 
antagonism was competitor-specific (i.e., Rs or Fg; Figure 5), thus 
pointing to an inducible mechanism activated in response to a 
molecular detection and recognition of competitors. Alternatively, this 
specificity could result from the intrinsic tolerance or resistance of 
competitor fungi to antifungal molecules. Interestingly, our data show 
that isolates capable of antifungal-mediated antagonism are generally 
not the most competitive. This contrast suggests metabolic 
specialization from a trade-off between the production of antifungal 
metabolites and the rapid exploitation of environmental resources.

4.3 Carbon substrate utilization traits as a 
functional signature of fungal-fungal 
antagonism

Herein, we  combined two complementary approaches to 
determine whether specific metabolic patterns could explain fungal-
fungal interactions. We  analyzed both individual fungal isolates’ 

carbon utilization potential through Biolog profiling and estimated 
metabolic capabilities based on taxonomy by mining databases for 
reference proteomes. Our results indicate that specific substrates are 
associated with the observed antagonistic abilities of our isolates 
against fungal competitors. We identified four substrates associated 
with competition-mediated antagonism against Rs: D-melibiose, 
saccharic acid, quinic acid and D-glucuronic acid (Figure  3). 
Surprisingly, the relation between the utilization of these substrates 
and competitive abilities was non-linear (Figure 3). Isolates with high 
utilization of these carbon sources had consistently low antagonistic 
potential while those that efficiently metabolized the 4 carbon sources 
were more prone to display high antagonistic abilities. Because the 
utilization of these sources is reduced in highly competitive isolates, it 
is unlikely that their metabolism directly impacts competition but 
rather that it is connected to important metabolic pathways 
determining competition. In addition, competitive isolates tended to 
metabolize a lower diversity of carbon sources (i.e., narrow niche 
width), suggesting that high competitive abilities are connected to 
specialized carbon usage. Conversely, isolates displaying inhibition 
zones used specific carbon sources in greater quantities (Figure 4) and 
an overall larger diversity of carbon sources, suggesting that the 
metabolism of specific carbon sources is required for the biosynthesis 
of the metabolites responsible for the antifungal activity (Yalage Don 
et al., 2021).

Analysis of predicted proteomes from oilseed rape isolates 
identified taxon specific enzymatic functions present uniquely in 
antagonistic isolates. Specifically, these enzymatic functions are 
involved in lipid metabolism, amino acid metabolism, secondary 
metabolite biosynthesis and carbon metabolism (Table 2). Consistent 
with the differential usage of carbon substrates, antagonist isolates of 
the genus Linnemannia are predicted to produce enzymes carbon 
metabolism and amino acid hydrolysis, supporting the idea that these 
isolates mobilize central metabolic functions to support their 
antagonistic activity (Table 1). Taken together, the observation that 
metabolic distance to the competitor is correlated with antagonistic 
abilities and that antagonist-specific carbon utilization profiles and 
predicted enzymatic reactions can be  identified, suggest that 
antagonistic potential could be predictable. While carbon utilization 
does not fully predict antagonistic abilities of individual fungi, they 
may be considered as markers to evaluate both competition-mediated 
and antifungal-mediated antagonistic potential. A number of previous 
studies have previously screened fungal isolates to identify fungal 
derived antifungal molecules (Tanney et al., 2016; Xu et al., 2016; 
Macías-Rubalcava and Sánchez-Fernández, 2017; Deshmukh et al., 
2018). However, screening collections of individual fungal isolates is 
often time consuming and is generally limited to a specific target 
pathogen, making it difficult to scale to large collections. Our work 
provides evidence for a set of predictive characteristics to identify 
highly competitive and inhibitive isolates based on: (i) carbon 
utilization profile including niche width and metabolic distance to the 
competitor, (ii) specific carbon substrate utilization and (iii) predicted 
enzymatic reactions.

Aside from predicting antagonistic potential, our results highlight 
the role of carbon usage strategies in fungal-fungal interactions and 
highlight that competition based antagonistic interactions are frequent 
between plant-associated fungi. While significant efforts have been 
done to take into account the role of microbe-microbe interactions in 
microbiome assembly (Hunter et al., 2010; Bakker et al., 2014) and 
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plant holobiont functioning (Mendes et al., 2011), these efforts have 
been focused on bacterial-bacterial (Cabrefiga et  al., 2007) and 
bacterial-fungal interactions (Getzke et al., 2019). In the meantime, 
fungal-fungal interactions have received little attention and the results 
obtained herein call for considering competitive fungal-fungal 
interactions in the context of the plant holobiont to decipher the 
complexity of the plant-microbiome assembly. More specifically, 
profiling carbon utilization profiles of root-associated fungi offers 
insights into broader ecological strategies and may reveal the hidden 
role of nutrient usage strategies in structuring complex micro-microbe 
interaction networks.
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