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Gut microbiota heterogeneity in
non-alcoholic fatty liver disease:
a narrative review of drivers,
mechanisms, and clinical
relevance

Ying Guo, Naisi Zhang and Dongmei Pei*

Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, China

Non-alcoholic fatty liver disease (NAFLD), a prevalent metabolic disorder, is
increasingly recognized as a complex condition influenced by gut microbiota
dysbiosis. However, the heterogeneity in findings across studies has hindered
the clinical translation of microbiota-based interventions. In this narrative
review, we synthesize current evidence on gut microbial alterations in patients
with NAFLD, with a focus on the sources of variability that contribute to
inconsistent results. We included human studies (2000–2024) that compared
gut microbiota profiles between NAFLD patients and healthy controls using
16S rRNA or metagenomic sequencing; key drivers of microbial changes
include clinical factors (metabolic comorbidities, disease progression), biological
variables (diet, genetics), and methodological biases (sequencing platform
differences, diagnostic criteria variability). Emerging evidence highlights the
role of non-bacterial components (fungi, viruses) in modulating bacterial
communities and disrupting host metabolic pathways, exacerbating hepatic
inflammation and lipid accumulation. To overcome current limitations, we
propose integrating multi-omics approaches (metagenomics, metabolomics,
and proteomics) with a longitudinal study design to capture dynamic
microbiota–host interactions. Precision microbiota therapies, including strain-
specific probiotics, engineered microbial consortia, and fecal microbiota
transplantation tailored to individual dysbiosis profiles, are emerging as promising
strategies for targeted interventions. Addressing these challenges is essential to
identifying reliable microbial biomarkers and developing personalized strategies
for NAFLD prevention and treatment. Future research should harmonize
methodologies, validate causal mechanisms, and optimize microbiota-based
therapies to bridge experimental findings and clinical application.

KEYWORDS

gut microbiota, non-alcoholic fatty liver disease, metabolic syndrome, confounding
variables, population-based cohort studies

1 Introduction

Advances in the gut–liver axis (GLA) theory have highlighted the pathophysiological
association between gut microbiota dysbiosis and non-alcoholic fatty liver disease
(NAFLD), making it a key research focus in metabolic liver disease (Tilg et al., 2022).
Evidence suggests that structural disruptions, metabolite imbalances, and intestinal barrier
dysfunction in the gut microbiota are not only correlated with dietary patterns and NAFLD
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progression but also involved in exacerbating hepatic steatosis
and inflammatory responses through microbe-host interactions (Ni
et al., 2023).

High-throughput sequencing technologies have enabled
researchers to conduct large cohort studies, revealing novel gut
microbial profiles in patients with NAFLD (Sookoian et al.,
2024). However, inconsistent findings have hindered consensus
on NAFLD-associated microbial signatures. At the taxonomic
level, differences between obese and non-obese patients remain
unresolved, particularly regarding functional genomics and
metabolomics (Yan et al., 2024; Gagnon et al., 2023). Furthermore,
inconsistent findings regarding alpha diversity indices (e.g.,
Shannon index) often arise from cohort heterogeneity and
differences in disease staging (e.g., the distinction between
simple steatosis and NASH). Moreover, the confounding effects
of prevalent metabolic comorbidities further complicate the
interpretation of these metrics, leading to non-comparable results
across studies (Ng et al., 2025).

Approximately 40% of the patients with NAFLD have
comorbid conditions such as obesity, insulin resistance, or type
2 diabetes (T2DM), yet many studies fail to control for these
overlapping conditions, leading to non-comparable results (Kim
et al., 2024; Hov and Karlsen, 2023). The heterogeneity in
the gut microbiota among patients with NAFLD arises from
multiple sources (Figure 1), including clinical factors such as
overlapping microbial profiles due to metabolic comorbidities,
distinctions between obese and non-obese patients with NAFLD,
and variation across disease stages (e.g., simple steatosis vs. NASH);
biological contributors such as diet, genetics, and GLA dysfunction;
methodological factors such as cohort differences, sequencing
methods, analytical tools, and small sample sizes; and microbial
dynamics such as species interactions and functional redundancy
further complicate interpretations.

Critically, neglecting these sources of heterogeneity not only
obscures genuine microbial signatures of NAFLD but also hinders
the development of effective microbiota-based diagnostics and
therapeutics. A nuanced understanding of these drivers is,
therefore, a prerequisite for translating microbiome research
into personalized clinical strategies. Against this backdrop,
this review synthesizes current evidence on gut microbiota
alterations in NAFLD, focusing on (1) microbial changes across
disease phenotypes and progression stages, and (2) drivers of
heterogeneity, including clinical confounders, biological variables,
and methodological biases. By critically appraising these factors,
we aim to bridge translational gaps and inform personalized
NAFLD therapies, and advocate for multi-omics studies and
standardized protocols.

2 Methods

This narrative review aimed to synthesize and critically
evaluate the existing literature on the heterogeneity of gut
microbiota in NAFLD. To ensure comprehensive coverage of the
topic, we employed a systematic search strategy, although this
review does not constitute a formal systematic review or meta-
analysis requiring adherence to the Preferred Reporting Items for
Systematic reviews and Meta-Analyses guidelines.

We systematically searched PubMed, Google Scholar, and
Web of Science for studies published between January 1,
2000, and December 31, 2024. Search terms included “non-
alcoholic fatty liver disease”, “NAFLD”, “gut microbiota”,
“microbiome”, “heterogeneity”, and “metabolic syndrome”.
Reference lists of relevant articles were manually searched to
identify additional studies.

The inclusion criteria were (1) human studies involving
patients with NAFLD; (2) gut microbiota analysis (e.g., 16S rRNA
sequencing or metagenomic sequencing); (3) reported differences
in microbiota between patients with NAFLD and healthy controls;
and (4) sufficient data for analysis. Animal experiments, reviews,
and case reports were excluded. Two investigators independently
screened studies and extracted data on study design, sample size,
participant characteristics, sequencing methods, and key findings.
Disagreements were resolved through discussion.

The quality and relevance of the included studies were
appraised by the authors in light of the study design, sample size,
methodological consistency, and contribution to understanding
the sources of heterogeneity. The synthesized evidence was then
organized thematically around the key drivers of heterogeneity—
clinical factors (e.g., comorbidities, disease severity), biological
factors (e.g., diet, genetics), methodological factors (e.g., diagnostic
criteria, sequencing techniques), and microbial community
dynamics—to provide a critical analysis of the challenges and
future directions in the field.

3 Factors affecting the heterogeneity
of results of NAFLD gut microbiota
studies

3.1 Clinical factors affecting heterogeneity
of the results of NAFLD gut microbiota
studies

3.1.1 Comorbidities
NAFLD frequently co-occurs with a spectrum of metabolic

comorbidities, including type 2 diabetes (T2DM), obesity, insulin
resistance, dyslipidaemia, and hypertension. These conditions
form a network with shared pathophysiological mechanisms and
overlapping gut microbiota features (Quek et al., 2023). This
overlap complicates the identification of NAFLD-specific microbial
changes (Jarvis et al., 2020). For example, T2DM is associated
with increased abundance of lipopolysaccharide (LPS)-producing
genera (e.g., Enterobacter) and reduction in butyric acid-producing
bacteria (e.g., Faecalibacterium); this pattern is also seen in patients
with NAFLD, making it difficult to isolate microbiota signatures
unique to NAFLD (Ojo et al., 2021; Yan et al., 2022). The synergistic
role of T2DM in accelerating NAFLD progression was reported
in large multicentre cohort studies, where patients with T2DM
and NAFLD experienced faster progression of hepatic fibrosis and
showed a higher risk of severe hepatic events than their non-T2DM
counterparts (Huang et al., 2023b; Jarvis et al., 2020).

The Swedish Malmö cohort study (n = 12,548) identified
low high-density lipoprotein cholesterol (<1.0 mmol/L) and high
triglycerides (TG≥1.7 mmol/L) levels as independent risk factors
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FIGURE 1

Factors contributing to heterogeneity in gut microbiota characteristics of NAFLD patients. The heterogeneity in gut microbiota composition among
NAFLD patients is driven by a multifactorial interplay of clinical, biological, methodological, and microbial dynamics (Fig. 1). Key contributors: 1.
Clinical factors: Overlapping microbial signatures due to comorbid metabolic disorders (e.g., obesity, insulin resistance, type 2 diabetes). Distinct
taxonomic profiles between obese and non-obese NAFLD subphenotypes. 2. Biological drivers: Dietary patterns (e.g., high-fat diets, low fiber intake).
Genetic predisposition (e.g., PNPLA3 polymorphisms). Gut-liver axis (GLA) dysfunction, including intestinal barrier disruption and systemic
inflammation. 3. Methodological limitations: Cohort heterogeneity (geographical, ethnic, and lifestyle disparities). Technical variability (16S rRNA vs.
shotgun sequencing, bioinformatics pipelines). Insufficient sample sizes and inconsistent disease classification criteria. 4. Microbial community
dynamics: Functional redundancy among microbial taxa. Competitive/synergistic species interactions (e.g., Bacteroides vs. Prevotella dominance).
Transient shifts in microbial abundance were influenced by host-derived metabolites.

for severe hepatic events, with hazard ratios of 1.28 and 1.30,
respectively (Nderitu et al., 2017). These metabolic disturbances
may partly act through the gut microbiota (Li et al., 2023). For
instance, Bifidobacterium lactis BL-99 supplementation improves
lipid profiles and modulates bile acid metabolism by increasing the
production of short-chain fatty acids (SCFAs) (Bajaj et al., 2018;
Manaer et al., 2024).

Most NAFLD microbiome studies have insufficiently controlled
for metabolic comorbidities. Few studies have adjusted for T2DM,
and even fewer have accounted for other metabolic factors, such
as dyslipidaemia (Loomba et al., 2019). This oversight can result
in the misclassification of microbial markers, such as incorrectly
attributing T2DM-related depletion in Akkermansia to NAFLD
(Wong et al., 2013; Sanna et al., 2019; Dao et al., 2016).

Most previous studies have had a cross-sectional design,
making it difficult to determine whether the microbial changes
are a driver of NAFLD or a secondary outcome of metabolic
comorbidities. Additionally, the majority of available cohort studies
have focused on middle-aged and elderly populations, limiting
the generalizability of the results. Future investigations should
prioritize the implementation of large, cross-regional study cohorts
to encompass a wider range of patients with NAFLD, particularly
those with multiple comorbid metabolic disorders (Neeland et al.,
2024) as well as adopt large, geographically diverse cohorts
encompassing a broader demographic and comorbidity spectrum
(Prado et al., 2024).

Personalized microbiota-based interventions, such as tailored
probiotic or prebiotic blends (e.g., Bifidobacterium animalis subsp.
lactis BL-99) for patients with T2DM-NAFLD, could improve
lipid profiles and inhibit the progression of liver fibrosis. These
strategies should be validated through randomized controlled trials
to confirm their efficacy and safety.

3.1.2 Obese and non-obese NAFLD
Obesity is a major risk factor for NAFLD; however,

approximately 20% of the patients are lean, highlighting the
phenotypic heterogeneity that complicates the elucidation of gut
microbiota characteristics. Obesity plays a central role in driving
disease heterogeneity through a distinct ‘lipid-flora-liver axis’
mechanism (Nogacka et al., 2021; Leong et al., 2020; Zou et al.,
2020; Chambers et al., 2019; Depommier et al., 2019; Mokkala et al.,
2021). Gut microbiota profiles differ between lean and patients
with obesity and NAFLD. Lean individuals exhibit a 1.5–2.3-fold
increase in the abundance of Akkermansia muciniphila and
depletion of Firmicutes/Bacteroidetes ratio (p < 0.05) (Kivimäki
et al., 2022; Raman et al., 2013). In contrast, patients with obesity
often show an increase in the relative abundance of LPS-producing
bacteria genera, such as Enterobacter, and a depletion of butyric
acid-producing bacteria, such as Faecalibacterium prausnitzii
(Mocanu et al., 2021; Ghorbani et al., 2023; Zhang Z. et al., 2024).
Of note, the abundance of Firmicutes/Bacteroidetes ratio peaks
at a BMI of 33 kg/m2 and then declines (Haro et al., 2016). The
non-linear relationship varies by sex; for instance, Mycobacterium
avium decreases significantly with increasing BMI in men but not
women (Kasai et al., 2015).

Bariatric surgery studies offer further insights into microbiota-
host interactions. Postoperative increment in A. muciniphila (2.1–
3.4-fold) is correlated with reduced hepatic adiposity (r =−0.47, p
= 0.002) (Jian et al., 2022). However, higher baseline microbiota
alpha diversity is associated with reduced postoperative fat loss
(p = 0.016), indicating that diversity does not always confer
metabolic benefits (Foster et al., 2017). This complexity reflects the
influence of obesity-related factors such as insulin resistance and
inflammation on microbiota function (Li et al., 2021). Moreover,
Dong et al. (2023) reported that sleeve gastrectomy resulted in

Frontiers in Microbiology 03 frontiersin.org

https://doi.org/10.3389/fmicb.2025.1645298
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Guo et al. 10.3389/fmicb.2025.1645298

reduced glucose-dependent insulinotropic polypeptide signaling,
conferring resistance to NAFLD. This effect was linked to elevated
levels of A. muciniphila and changes in indolepropionic acid, a
bacterial tryptophan metabolite. Bariatric surgery also alters ileal
physiology, affecting bile acid composition independently of weight
loss (Talavera-Urquijo et al., 2020).

Many previous studies have failed to adequately control for
obesity-related confounders. BMI is a unidimensional indicator
and may mask the effects of body fat distribution on the
microbiome. Visceral fat area, for example, shows a stronger
correlation with LPS-producing species than BMI (Nie et al.,
2020; Yan et al., 2021). Future studies should incorporate precise
indicators of body fat distribution and combine multidimensional
data, such as computed tomography-measured visceral fat and
metabolic markers (e.g., homeostasis model assessment of insulin
resistance), to better define obesity-related microbiome changes
in NAFLD.

Most microbiome studies have focused on bacteria, overlooking
fungi and phages. Longitudinal studies are needed to assess
microbiome remodeling after weight loss surgeries or interventions
in different obesity phenotypes, emphasizing key taxa such
as A. muciniphila. Additionally, the sex hormone-microbiota-
hepatic steatosis regulatory axis should be examined separately
for male and female patients with obesity to identify sex-specific
therapeutic targets.

3.1.3 Severity of NAFLD
The progression of NAFLD, from simple steatosis to NASH

to liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC),
significantly alters gut microbiota composition and function
(Ponziani et al., 2019). Studies have shown that NAFLD/NASH is
associated with an increased abundance of Firmicutes/Bacteroidetes
ratio (1.5–2.3-fold) and reduced microbiome diversity (Shannon’s
index, decrease of 0.8–1.2, p < 0.05), along with shifts in key
functional genera (Boursier et al., 2016; Vallianou et al., 2021).

In the Rotterdam cohort study, 472 out of 1,355 participants
were diagnosed with hepatic steatosis, and their microbiotas
were characterized by elevated levels of Coprococcus (fecal cocci)
and Ruminococcus, with reduced microbial diversity (Alferink
et al., 2021). Zhang et al. (2021) reported that a high-
cholesterol diet promoted NASH progression, with an increase
in Mucispirillum, Desulfovibrio, and Anaerotruncus and depletion
of Bifidobacterium and Bacteroides. Hoyles et al. (2018) reported
an increase in Acidaminococcus, Escherichia coli, and Bacteroides
and depletion of Faecalibacterium and Anaerobacterium in patients
with NASH.

Shifts in the fungal profile also mark disease progression.
A study of 69 patients with NAFLD showed that non-
obese patients had a significantly increased proportion of
Trichoderma/Saccharomyces cerevisiae (wood mold/sterile yeasts).
This feature holds potential value for distinguishing between
mild and advanced liver disease (Demir et al., 2022). As
NAFLD progresses to cirrhosis and HCC, microbiota profiles
evolve. Loomba et al. (2021) reported the predominance of
Firmicutes in patients with NAFLD/NASH, and an increase in
Tenericutes abundance in patients with advanced fibrosis. Ponziani

et al. (2019) reported increments in Enterobacteriaceae and
Streptococcus spp. and depletion of A. muciniphila in patients
with NASH-cirrhosis. Behary et al. (2021) identified enriched
species composition in patients with NAFLD-HCC, including
Bacteroides cecum, Ruminococcus gnavus, Veillonella parvula,
Bacteroides xylanisolvens, and Clostridium bolteae, that may
promote tumorigenesis via the Toll-like receptor 4 (TLR4)/nuclear
factor kappa-B (NF-κB) pathway. These changes are summarized
in Figure 2.

Virome studies further reveal changes in enterovirus
composition in patients with NAFLD. A cross-sectional study of 73
patients with NAFLD found reduced numbers of Lactococcus and
Lactobacillus phages and an increased number of phiAT3 phages
(Lang et al., 2020). In addition, Chen et al. (2016) reported that
viral diversity differed significantly between patients with NAFLD,
different disease stages, and study and control groups and that
the presence of enterovirus was correlated with NAFLD severity.
Figure 2 highlights the unique microbial profiles associated with
the different stages of liver disease, emphasizing the potential role
of the gut microbiome in disease progression.

Currently available non-invasive diagnostic tools struggle to
distinguish NAFLD stages, leading to ambiguous links between
microbiota and pathology. This ambiguity is compounded by the
fact that most studies have focused on bacterial groups, with limited
attention to fungi and viruses. Small sample sizes and lack of
multicentre validation further limit generalizability.

Future research should pursue a multimodal diagnostic
platform integrating liver spatial transcriptomics with fecal virome
sequencing. Developing new biomarker combinations could
improve diagnostic accuracy. Understanding the proinflammatory
synergy between fungi and bacteria in patients with NASH is
also essential. Macrogenomic co-occurrence analysis may clarify
these interactions. Monitoring phage dynamics in high-risk
patients with NAFLD-HCC may offer early warning markers for
timely intervention.

3.2 Biological factors affecting
heterogeneity in NAFLD gut microbiota
studies

3.2.1 Lifestyle
Diet strongly influences gut microbiota. High-fat and highly

processed foods can induce dysbiosis, which is closely linked to
NAFLD onset and progression (Pi et al., 2024). Variability in
dietary habits across populations contributes to heterogeneity in
microbiota results. This section examines the effects of alcohol,
nicotine, substance use, and circadian rhythms on the NAFLD-
microbiota relationship.

3.2.2 Alcohol
The relationship between alcohol and NAFLD is complex.

Although NAFLD excludes excessive alcohol consumption by
definition, the impact of light-to-moderate alcohol consumption
on NAFLD remains a focus of research (Hashimoto et al.,
2015; Wongtrakul et al., 2021). Most studies suggest that
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FIGURE 2

Distinct gut microbial profiles across the progression of non-alcoholic fatty liver disease. This schematic summarizes key microbial taxa whose
relative abundance is consistently reported to be altered in NAFLD. The directional changes (increase ↑ or decrease ↓) depicted are based on a
qualitative synthesis of the literature where a consistent change (e.g., >1.5-fold difference) was reported across multiple studies (e.g., Boursier et al.,
2016; Ponziani et al., 2019, for bacteria; Demir et al., 2022, for fungi; Lang et al., 2020, for viruses). A. Microbial signatures in NAFLD/NASH: The
Firmicutes/Bacteroidetes ratio is frequently altered (reduced in most studies). Commonly increased taxa include Bacteroides (genus),
Acidaminococcus (genus), and Escherichia (genus). Commonly decreased taxa include Rikenellaceae (family), Prevotella (genus), Ruminococcus
(genus), Faecalibacterium (genus), and Anaerobacter (genus). B. Microbial signatures in cirrhosis or hepatocellular carcinoma (HCC): Commonly
increased taxa include phyla Firmicutes and Actinobacteria; family Enterobacteriaceae; genus Anaeroplasma. The dynamic divergence in microbial
composition across disease stages underscores the gut microbiome’s role in driving hepatic inflammation and fibrosis.

low-to-moderate alcohol consumption may reduce NAFLD risk
and progression (Hamaguchi and Kojima, 2013). For example,
Ajmera et al. (2018) reported less improvement in steatosis and
NASH among moderate drinkers than in abstainers. A meta-
analysis of 8,936 participants showed a lower risk of advanced
liver fibrosis in moderate drinkers with NAFLD (Wijarnpreecha
et al., 2021). However, the findings are inconsistent. A study
of 132 bariatric surgery patients found no association between
alcohol intake and histological severity (Cotrim et al., 2009). This
inconsistency may be related to small sample size and unadjusted
confounders such as genetics, diet, and lifestyle.

Alcohol also affects gut microbiota. Low-to-moderate alcohol
consumption can shift gut microbial communities, including
those that produce SCFAS (Morrison and Preston, 2016).
Caslin et al. (2019) reported higher A. muciniphila levels
among moderate alcohol consumers, reducing the severity of
experimental autoimmune encephalomyelitis. Alcohol may also
disrupt gut barrier integrity and gut–brain signaling (de Timary
et al., 2015). Moreover, alcohol influences the gut virome. Hsu
et al. (2023) reported depletion of Lactobacillus phages and
increased bIL67 in patients with NAFLD with moderate alcohol
consumption compared to those with no or low consumption
of alcohol.

These findings suggest that alcohol influences NAFLD via
multiple microbiota-related pathways, although the mechanisms
remain unclear. Current studies have focused on low-to-
moderate alcohol intake, with limited data on heavy drinking.
Future large-scale longitudinal studies should quantify alcohol
consumption gradients and correlate them with microbial ethanol
production through metabolomics to define thresholds for alcohol-
induced hepatotoxicity.

3.2.3 Nicotine
Nicotine, the primary component of cigarettes, has a strong

influence on gut microbiota composition and NAFLD progression.
Smoking is strongly associated with oral and gut dysbiosis, marked
by increased Prevotella abundance and reduced microbial diversity
(Wu et al., 2016). Mechanistically, nicotine synergizes with a high-
fat diet to exacerbate hepatic and muscular steatosis, potentially via
enhanced abdominal lipolysis and altered lipid metabolism (Sinha-
Hikim et al., 2014). In smokers, the gut microbiota shifts include
elevated Prevotella, decreased Bacteroidetes, and lower Shannon
diversity—partially reversible after cessation (Stewart et al., 2018).
Smoking also increases intestinal permeability and alters luminal
pH, promoting pathogenic colonization (Chen J. et al., 2024; Su
et al., 2025) and disrupting the GLA, leading to hepatic lipid
buildup and insulin resistance (Miao et al., 2023; Sun and Debosch,
2023).

Emerging evidence links electronic cigarettes to microbiota
changes, with increased Prevotella abundance and depletion of
Anaerobacter, despite stable overall diversity (Stewart et al., 2018).
A 31-year study found a 99% higher NAFLD risk in individuals who
were persistently exposed to second-hand smoke; further, heavy
smoking (>10 pack-years) has been correlated with higher all-cause
mortality in women (Liu et al., 2013; Charatcharoenwitthaya et al.,
2020; Wu F. et al., 2021). Bacteroides xylanisolvens may mitigate
NAFLD by reducing intestinal nicotine bioavailability (Chen et al.,
2022).

These findings highlight the pathogenic link between nicotine
exposure, microbiota dysregulation, and NAFLD, although the
mechanisms remain unclear. Preclinical studies suggest the
therapeutic potential of probiotics such as B. xylanisolvens in
countering nicotine-associated NAFLD (Lee et al., 2018), but
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randomized controlled trials and mechanistic animal studies are
needed. Current research is limited by poor quantification of
nicotine exposure, confounding by other tobacco toxins, and
reliance on cross-sectional designs, which hinder causal inference.

Emerging nicotine delivery systems, particularly electronic
cigarettes, are underexplored. Most studies on vaping involve small,
homogeneous cohorts (n < 100) and short follow-up periods
(<6 months), yielding inconsistent results. Future research should
prioritize longitudinal studies assessing the effects of smoking
cessation or nicotine replacement therapies on the gut microbiota
and metabolic status of patients with NAFLD. Additionally,
screening and validating engineered strains that degrade nicotine
in animal models could offer new therapeutic avenues.

3.2.4 Drugs
Pharmacotherapy is a major source of interindividual

heterogeneity in gut microbiota composition among patients with
NAFLD (Li et al., 2025), driven by bidirectional drug-microbiota
interactions that affect both therapeutic outcomes and microbial
ecology (Chen L. P. et al., 2024; Liu et al., 2024). Metformin
illustrates this complexity: approximately 30% of users experience
gastrointestinal side effects linked to Escherichia coli overgrowth
(Sun et al., 2018; Mueller et al., 2021), and its strain-specific
effects on gut microbes have varied across studies (Rosell-Díaz and
Fernández-Real, 2024; Szymczak-Pajor et al., 2025). For example,
Bacteroidetes abundance shows conflicting trends depending
on host metabolic status (Ejtahed et al., 2019); meanwhile,
increments in Blautia and Butyrivibrio coupled with a depletion
in Faecalibacterium is a signature pattern associated with insulin
sensitivity (de la Cuesta-Zuluaga et al., 2017; Barengolts et al., 2018;
Pastor-Villaescusa et al., 2021). Microbiota responses to metformin
differ markedly among patients with NAFLD, reflecting differences
in study design, participant characteristics, analytical methods, and
individualized nature of drug–microbiota interactions (Jang et al.,
2024).

Cardiovascular drugs also modulate the microbiota in
NAFLD. SGLT2 inhibitors promote hepatoprotection through
Akkermansia-enriched remodeling, while thiazolidinediones
and DPP-4 inhibitors have neutral or harmful effects on hepatic
steatosis (Zhang S. et al., 2024). Statins alter gut microbial
communities by inhibiting 3-hydroxy-3-methylglutaryl coenzyme
A reductase, potentially explaining the lower T2DM incidence in
obese users (5.9% vs. 17.7%) (Zhou H. et al., 2023; Vieira-Silva
et al., 2020). Proton pump inhibitors cause long-lasting dysbiosis,
marked by Enterobacteriaceae/Lactobacillaceae abundance and
Ruminococcaceae/Bifidobacteriaceae depletion (Jackson et al.,
2016). These changes are linked to NAFLD progression and
persist for over 2 years post-treatment (Imhann et al., 2016). Even
brief antibiotic exposure (<7 days) causes long-term microbial
diversity loss and functional gene depletion, promoting pathobiont
overgrowth and hepatic inflammation (Jernberg et al., 2010).
In Finnish children, initial macrolides use led to depletion of
Actinobacteriaceae and an increase of Anaplasma and Aspergillus
phyla (Korpela et al., 2016).

Although some studies considered drug-related variables,
most have focused on single drugs, neglecting the impact of

polypharmacy effects and their synergistic or antagonistic effects
on microbial metabolism. Notably, microbial responses to the
same drug varied widely between individuals. Longitudinal data
on microbiota resilience and antibiotic resistance gene enrichment
in patients with NAFLD are lacking. Future studies should assess
the long-term effects of various drugs on the gut microbiome
and NAFLD and develop standardized criteria for assessing drug
use, including information on the duration of drug use, dosage,
and co-administration, to improve the comparability of results. In
particular, multicentre, large-sample clinical studies are needed to
validate the prevalence of drug-microbiome interactions.

3.2.5 Circadian rhythm deviation
Circadian misalignment is a key modulator of hepatic

pathophysiology, with bidirectional links between chronobiological
disturbances and metabolic dysregulation in NAFLD (Bolshette
et al., 2023). The liver, which governs ∼43% of rhythmic
transcriptomes (Zhang et al., 2014), depends on circadian
regulation of lipid and glucose metabolism via signaling from
the suprachiasmatic nucleus to peripheral clocks (Panasiuk et al.,
2024; Speksnijder et al., 2024; Petrenko et al., 2020). Modern
lifestyles increasingly disrupt circadian rhythms, contributing to
metabolic diseases (Cui et al., 2024) and gut microbiota dysbiosis.
The microbiota, considered a “second circadian pacemaker”,
shows diurnal oscillations in B/F ratios and microbial metabolite
production (Lal et al., 2024; Adafer et al., 2020).

Time-restricted feeding, a chrononutrition strategy, has shown
promise in restoring microbial rhythmicity (e.g., Lactobacillus,
Mucispirillum, and acetate-producing taxa) and reducing hepatic
steatosis in preclinical animal models (Schrader et al., 2024; Snijder
and Axmann, 2019; Xia et al., 2023). However, current research is
largely preclinical, lacks large-scale human data, and offers limited
insight into the GLA. To our knowledge, no study has established a
framework for personalized circadian-based interventions.

Future studies should employ multi-omics approaches (e.g.,
transcriptomics and metabolomics) to map circadian-microbial
networks and clarify clock-controlled pathways, such as REV-
ERBα-mediated bile acid regulation, as potential therapeutic
targets. Large prospective cohort studies are needed to build
predictive models linking circadian disruption to metabolic disease
risk. In summary, circadian rhythm research offers new insights
into liver metabolism and may inform targeted prevention
and treatment strategies. With further advances, personalized
chronotherapeutic approaches are poised to become a key area in
future medicine.

3.3 Genetic factors affecting heterogeneity
in NAFLD gut microbiota studies

Genetic susceptibility plays a central role in NAFLD
pathogenesis, influencing both hepatic metabolism and gut
microbiota architecture. However, over 90% of microbiome studies
in NAFLD have not included host genetic data, and fewer than
15% have adjusted for key confounders such as ancestry, epigenetic
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modifiers, or familial clustering (Monga Kravetz et al., 2020;
Kabbani et al., 2022).

The PNPLA3 I148M variant, the strongest genetic risk factor
for NAFLD progression, illustrates gene-microbiota crosstalk.
Carriers show 2.3-fold higher intestinal permeability, enrichment
of Mycobacterium spp., and increased circulating endotoxins,
which activate hepatic inflammation via TLR4/NF-κB signaling,
than non-carriers (Park et al., 2024; Qin et al., 2022). Multi-
omics frameworks integrating genome-wide association studies,
metagenomics, and metabolomics reveal that genetic variants (e.g.,
TM6SF2 E167K and MBOAT7 rs641738) influence microbial bile
acid metabolism and butyrate synthesis, both key drivers of hepatic
lipotoxicity (Sehgal et al., 2022; Huang et al., 2023a; Tacke et al.,
2023).

Future research should prioritize large, multi-ethnic cohort
studies to validate the impact of genetic variations on NAFLD and
the gut microbiome and support personalized therapies. Multi-
omics technologies and longitudinal studies are needed to unravel
the mechanisms underlying gene-microbiota interactions.

3.4 Dysfunction of the GLA

Recent population-based cohort studies confirm that microbial
dysbiosis and metabolic dysfunction jointly drive NAFLD
progression (Takayama et al., 2021). As the core of enterohepatic
circulation, imbalance of the GLA is a key pathological factor
underlying NAFLD heterogeneity and microbial community shifts
(Mignini et al., 2024; Aron-Wisnewsky et al., 2020).

Under normal conditions, the intestinal epithelium acts as a
selective barrier via tight junction proteins (e.g., occludin and
zonula occludens-1), preventing microbial translocation into the
portal circulation (Di Vincenzo et al., 2024) (Figure 2). However,
insulin resistance and oxidative stress disrupt the integrity
of this barrier, increasing permeability and enabling bacterial
migration to the liver via the portal vein. This translocation
triggers hepatic inflammation and promotes dysbiosis through
local microenvironmental changes (Zhou et al., 2024).

Large cohort data link elevated LPS levels in the portal system
with increased TLR4 activation, initiating a proinflammatory
cascade via the NF-κB pathway, a mechanism that is commonly
observed in patients with NAFLD (Smith et al., 2020; Lu et al.,
2024; Wu et al., 2024) (Figure 3). Metabolomics studies have
shown that gut microbes influence hepatic lipid metabolism
and inflammation by altering bile acid composition (reduced
primary/secondary bile acid ratio), increasing endogenous ethanol,
and decreasing SCFA production (Takayama et al., 2021; Wang
et al., 2022). These changes create a feedforward loop through
the GLA, perpetuating dysbiosis. For example, altered bile
acid metabolism suppresses Clostridium species and favors
Proteobacteria proliferation, whereas SCFA depletion weakens
suppression of pathobionts such as Enterobacteriaceae (Wu J. et al.,
2021; Samy et al., 2024; Xu et al., 2024).

Although serum biomarkers (LPS and zonulin) correlate with
NAFLD severity (Guan et al., 2022; Teunis et al., 2022; Wang
et al., 2020), most of the evidence is observational, with limited
mechanistic studies focusing on GLA pathways. Methodological

variability in permeability assays and microbiota profiling also
hampers comparability.

Fecal microbiota transplantation has shown promise
in restoring GLA balance in early clinical trials, although
standardized protocols and long-term outcomes await validation
(Abenavoli et al., 2022). Fecal microbiota transplantation has also
demonstrated efficacy in attenuating gut microbial heterogeneity,
suggesting that microbiota remodeling may mitigate NAFLD
progression (Xue et al., 2022). Future research should prioritize
(1) large-scale, multi-ethnic cohort studies to identify population-
specific variations in gut microbiota composition and function,
(2) development of advanced methodologies for assessing the gut
barrier, such as artificial intelligent-driven multi-omics platforms,
and (3) real-time monitoring using novel paracellular permeability
biomarkers (e.g., tight junction protein fragments) such as
nanopore biosensors.

Fecal microbiota transplantation optimisation requires
rigorous randomized controlled trials to define donor-recipient
compatibility, delivery routes (oral vs. colonoscopic), and
long-term efficacy. Additionally, scalable formulations, such as
lyophilised microbial consortia or synthetic biotic cocktails, are
needed to ensure reproducibility and clinical utility.

3.5 Methodological factors affecting
heterogeneity in NAFLD gut microbiota
studies

3.5.1 Study cohort characteristics
Differences in participant age, sex, and geographic region

have been found to influence gut microbiota composition in
NAFLD research.

3.5.1.1 Age and sex heterogeneity
Age- and sex-related differences in gut microbiota play key

roles in influencing NAFLD progression. The microbiota evolves
with age, shifting from infancy to adulthood and further changing
in old age (Ghosh et al., 2022). Pediatric patients with NAFLD
exhibit distinct histological (e.g., portal inflammation without
ballooning) (Cross et al., 2024) and microbiota signatures (e.g.,
Oscillospira depletion and Ruminococcus enrichment) compared to
adults (Shi et al., 2021), suggesting developmental-stage-specific
host-microbe interactions (Gancz et al., 2023; Sisk-Hackworth
et al., 2023).

Sex hormones also influence microbial communities. Estrogen
depletion in postmenopausal women is associated with increased
β-glucuronidase activity and altered bile acid metabolism (Chen
et al., 2019; Escouto et al., 2023; van Trijp et al., 2021; Hui
et al., 2022). Male patients with NAFLD show higher Dialister and
Streptococcus abundance than women, likely due to sex steroid-
mediated modulation of bile acid pools, immune response, and
epithelial barrier function (Ronan et al., 2021).

Despite these differences, studies on children, adolescents,
and the elderly remain limited. Future research should use
age-stratified cohorts to clarify microbiota characteristics
and their roles in NAFLD/NASH across life stages. Special
attention should be given to child and adolescent populations
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FIGURE 3

Mechanisms underlying the gut-liver axis in NAFLD/NASH. The intestinal epithelial barrier is compromised under pathological conditions such as
insulin resistance and oxidative stress, increasing mucosal permeability. This allows translocation of bacterial components, such as
lipopolysaccharide (LPS), and metabolites, such as bacterial ethanol, into the portal circulation. In the liver, these products activate toll-like receptors
(TLRs) on hepatic cells, triggering the release of proinflammatory cytokines, hepatic inflammation, and lipid accumulation. These processes
contribute to the development and progression of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Key pathways
linking gut microbiota to NAFLD/NASH: Endotoxemia: LPS derived from Gram-negative bacteria activates TLR4 signaling in hepatic cells, promoting
proinflammatory cytokine production and hepatic inflammation. Bacterial ethanol: Gut-derived ethanol increased oxidative stress by generating
reactive oxygen species (ROS), damaging hepatic cells, and exacerbating inflammation. Bile acid metabolism: Gut microbiota dysbiosis disrupts bile
acid metabolism, promoting insulin resistance, a key factor in the pathogenesis of NAFLD/NASH. Energy harvest: The fermentation of dietary fibers
by the gut microbiota leads to the production of short-chain fatty acids (SCFAs) that regulate lipid metabolism. SCFA imbalance contributes to
hepatic steatosis and inflammation.

whose gut microbiota are still maturing and whose NASH
histology differs from that of adults. Sex-stratified analyses
are also needed to explore the influence of hormones,
the immune system, and metabolism on microbiota in
NAFLD/NASH, particularly in women across puberty, pregnancy,
and menopause.

3.5.1.2 Geographic region and dietary habits
Geographic differences in gut microbiota, shaped by diet

and lifestyle, are critical determinants of NAFLD pathogenesis.
Multinational studies from South America (Brazil) (Escouto et al.,
2023), North America (USA) (Trebicka et al., 2024), Asia (China)
(Yifu et al., 2022), and Europe (Italy and the Netherlands)
(Calabrese et al., 2022; van Trijp et al., 2021) have shown
variations in microbial composition linked to ethnicity, culture,
and lifestyle (Mehal and Schwabe, 2022). NAFLD prevalence

was highest in Hispanic/Latino populations (37.0%), intermediate
in non-Hispanic individuals of European ancestry (29.3%),
and lowest in non-Hispanic individuals of African ancestry
(24.7%) (Huang et al., 2021). Japanese Americans are more
susceptible to NAFLD than African Americans (Hullar et al.,
2021), often caused by reduced microbial diversity (Zhou et al.,
2019).

Diet further modifies NAFLD risk (Shen et al., 2017; Hydes
et al., 2020). Low-calorie and low-glycaemic diets reduce hepatic
steatosis via microbiota-dependent enhancement of gut barrier
integrity (Fernández et al., 2022; Houttu et al., 2021). In contrast,
Western diets worsen NAFLD by driving central obesity and
inflammation (Bennett et al., 2022). Ethnic dietary patterns
influence NAFLD prevalence, as seen in China, where Uyghurs
show 2.1-fold higher rates than Han, Kazakh, or Mongolian
populations (Zhou et al., 2019).
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Geographic and dietary factors jointly shape the gut microbiota
and NAFLD/NASH risk. Future studies should use multiregional
cohorts with standardized dietary and lifestyle data. Multi-omics
approaches can identify region-specific microbial signatures linked
to disease progression, particularly in the context of urbanization-
driven dysbiosis. Factors such as antibiotic overuse, environmental
toxicants, and urban dietary shifts may further disrupt microbiota
and gut integrity. Interdisciplinary investigations will bridge
critical gaps in the understanding of microbiota-mediated
NAFLD pathogenesis across diverse populations, leading to the
development of personalized NAFLD prevention strategies tailored
to regional and cultural contexts.

3.5.2 Heterogeneity of analytical methods
3.5.2.1 Diagnostic variability as a confounding factor

Diagnostic inconsistency is a source of heterogeneity in
gut microbiota profiles across NAFLD studies. Although liver
biopsy is the histopathological gold standard, its invasive
risks (e.g., hemorrhage and infection), sampling bias, and
interobserver variability limit its clinical utility (Cao et al., 2022).
Consequently, many studies have adopted non-invasive tools such
as ultrasonography, MRI-PDFF, and transient elastography.
However, these methods exhibit significant limitations:
ultrasonography has low sensitivity for mild steatosis and
only detects lesions with >30% hepatic fat (Ezenwuba and Hynes,
2024); MRI-PDFF quantifies fat but does not assess inflammation
and fibrosis (Huang et al., 2025). Transient elastography performs
poorly in patients with obesity and cannot distinguish simple
steatosis from NASH (Gawrieh et al., 2024).

Staging ambiguity further complicates research. Non-invasive
techniques often fail to align with histological staging (e.g.,
steatosis, activity, fibrosis score S0–S4), leading to oversimplified
classifications (e.g., “NAFLD” vs. “NASH”) that obscure disease
progression (Zoncapè et al., 2024; Barr, 2025). Meta-analyses
incorporating studies using different diagnostic criteria increase
variability. For example, some studies diagnose NAFLD using
ultrasonography (Hui et al., 2022) or elastography (Calabrese et al.,
2022), while others rely on biopsy-based steatosis, activity, fibrosis
scoring (Yifu et al., 2022; Trebicka et al., 2024; Loomba et al.,
2021; Behary et al., 2021), fibrosis staging (Ponziani et al., 2019;
Loomba et al., 2017), or NASH/NAFLD distinctions (Hoyles et al.,
2018; Alferink et al., 2021; Zhang et al., 2021; Demir et al., 2022).
Such methodological inconsistencies hinder the establishment of
consistent microbiota profiles.

To achieve consistent microbiota profiles, a multifaceted
approach that integrates standardized protocols, advanced
technologies, and biomarker discovery is essential. Phase-specific
diagnostic guidelines should align diagnostic tools with disease
stage. The FIB-4 index combined with ultrasonography is cost-
effective for early screening (Schwabe et al., 2020); MRI-PDFF
paired with elastography enhances fat quantification and fibrosis
assessment in the mid-to-late stages; liver biopsy should be
reserved for diagnostically challenging cases for optimizing
the balance between cost, risk, and accuracy (Arrese et al.,
2021). Multimodal diagnostic platforms must integrate imaging,
histology, blood biomarkers (e.g., gut-derived LPS and secondary

bile acids), and microbiota data to enable machine learning-driven,
non-invasive staging.

Precision biopsy cohorts should simultaneously analyse gut
microbiota, hepatic immune microenvironments, and circulating
metabolites in patients with clear pathological biopsy-based staging
(e.g., steatosis, activity, fibrosis scores). Spatial transcriptomics
can map microbe-associated molecular patterns in inflamed or
fibrotic liver regions, revealing pathological changes through the
GLA. Future research should also focus on novel noninvasive
biomarkers such as endotoxin-producing gram-negative bacteria,
fecal virulence markers, fungal markers, or blood metabolite ratios
(e.g., branched-chain amino acid/aromatic amino acid ratios) to
develop diagnostic indices (Han et al., 2023). Detection of microbial
DNA fragments in exosomes or liver-specific cfDNA methylation
may further indicate gut-liver interactions.

3.5.2.2 Heterogeneity in sequencing methodologies
Sequencing methods affect the comparability of the gut

microbiome findings of large cohort studies. For instance,
16S rRNA sequencing in one cohort identified taxa linked
to NAFLD, whereas metagenomic sequencing approaches with
broader gene coverage yielded non-overlapping results (Xu
et al., 2023). Metagenomics captures gene-level data but cannot
distinguish viable from dead microbes and is prone to DNA loss,
contamination, or degradation (Zhou K. et al., 2023).

Pre-analytical variables, such as fecal collection methods,
freezing delays, and DNA extraction protocols, can influence
microbial profiles (Zeng et al., 2024). Questionnaire-derived
variables (e.g., defecation frequency, diet) add bias due to
inconsistent collection and standardization across cohorts,
complicating interpretation and generalization (Park et al., 2021).

Future studies should combine 16S rRNA sequencing,
shotgun metagenomics, and single-cell sequencing to
achieve high-throughput profiling, strain-level resolution,
and functional potential analysis. For example, Ke et al.
(2019) combined metaproteomics (protein expression),
metabolomics (metabolite dynamics), and 16S sequencing
to show how probiotics modulate diet-induced dysbiosis
and improve metabolic outcomes in obese mice. Efforts
are also needed to expand virome and archaeome profiling
using viral enrichment and methanogen-specific primers
(e.g., the mcrA gene) and assess their roles in microbial
dynamics and methane production, both relevant to NAFLD.
Standardizing pre-analytical workflows is essential for reducing
technical variability.

3.5.3 Statistical limitations
In NAFLD research, given the ethical concerns over liver

biopsy restricting histological data collection (Di Pasqua et al.,
2022; Panday et al., 2022; Wang et al., 2024), many studies
rely on non-invasive diagnostics with known variability. Some
studies have used non-invasive assays (e.g., MRI-PDFF) to
report differences in microbial abundance with nominal P-values,
overlooking multiple testing burdens. For example, a study linking
Bacteroides abundance to BMI in obese children (Morán-Ramos
et al., 2022) lost significance after false discovery rate correction,
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a mandatory practice in genomics, yet inconsistently applied in
microbiome research.

Future studies must adopt false discovery rate correction
(e.g., Benjamini–Hochberg procedures) to reduce false positives
and ensure statistical rigor. Bayesian hierarchical models with
shrinkage priors (e.g., horseshoe priors) can address sparse
signals and population stratification. Machine learning methods,
such as elastic net regression, are suitable for multicollinear
microbial data. Power analysis tools (e.g., micropower R
package) should guide sample size planning, and active learning
frameworks should be used to prioritize the enrolment of
phenotypically extreme cases (e.g., patients with discordant
imaging-histologic staging).

Given NAFLD’s potential for reclassification and temporal
microbiome shifts, hybrid designs using Mendelian randomization
(e.g., PNPLA3 rs738409 as an instrument) and longitudinal mixed-
effects models are needed to establish causality and translate
statistical rigor into biologically meaningful insights.

3.6 Microbial community dynamics

Dynamic shifts in gut microbiota contribute to interpatient
variability in NAFLD. Dysbiosis is bidirectional, driven by
host genetics, high-sugar/high-fat diets, or antibiotic use, and
worsens with NAFLD progression (Benedé-Ubieto et al., 2024;
Di Vincenzo et al., 2024). Despite functional overlap in key
metabolic pathways, such as bile acid metabolism and SCFA
synthesis, strain-level differences lead to metabolite variability,
limiting the utility of single-species analyses (Lau et al., 2024).
Microbial communities also adapt rapidly to host conditions,
further increasing study heterogeneity.

Future research should use multi-omics methods to capture
functional changes in microbial communities. Longitudinal cohort
studies using time-series analyses can track microbial trajectories
from simple steatosis to NASH, supporting early diagnosis and
intervention. Host-microbe interactions, especially the impact
of microbial metabolites on hepatic inflammation and lipid
deposition, should be investigated using in vitro co-culture
models and animal experiments. Personalized strategies, including
targeted nutrition and tailored probiotics/prebiotics, should also be
explored based on individual microbiome dynamics.

3.7 Interplay between heterogeneity
drivers: toward a systems-level
understanding

The clinical, biological, methodological, and microbial
factors discussed above do not operate in isolation but
interact in complex, synergistic ways that fundamentally
amplify heterogeneity and challenge simplistic interpretations.
For instance, an individual’s genetic background (e.g.,
carriage of the PNPLA3 I148M variant) can modulate their
metabolic response to drugs like metformin, which in turn
induces distinct shifts in the gut microbiota composition
and function. Similarly, dietary habits (a biological factor)

are deeply entangled with geographic and cultural contexts
(a methodological cohort characteristic), creating unique
microenvironmental pressures that are conducive to divergent
microbial communities. Furthermore, disruptions to the circadian
rhythm can exacerbate dysbiosis induced by a high-fat diet,
while also altering host drug metabolism, creating a vicious
cycle that promotes NAFLD progression through multiple,
interconnected pathways.

The current practice of analyzing these factors in isolation,
while necessary for initial characterization, limits a holistic
understanding. This challenge is compounded by the pervasive
methodological heterogeneity across studies, which includes
variations in diagnostic criteria (e.g., ultrasound vs. biopsy),
sequencing technologies, and statistical approaches. These
methodological differences not only contribute directly to
observed discrepancies but also confound our ability to disentangle
the complex biological interactions described above.

Future research must therefore prioritize integrative analytical
frameworks that address both biological and methodological
complexity, e.g., frameworks employing interaction terms in
multivariate models within large, diverse cohorts to statistically
quantify these interdependencies, and frameworks applying
multi-omics integration (e.g., merging genomics, metabolomics,
and metagenomics) to elucidate the underlying biological
networks. Concurrently, the adoption of standardized, phase-
appropriate diagnostic pathways, rigorous statistical corrections
for multiple testing, and prospective multicentre designs are
essential to reduce noise and enhance the comparability of
future datasets.

A systems-level approach that captures the dynamic crosstalk
between host genetics, lifestyle, environment, and microbial
ecology—while minimizing methodological confounders—is
paramount for advancing beyond correlation and toward causal,
mechanistic insights. This refined understanding is essential for
developing personalized microbiota-targeted interventions that
account for the unique confluence of factors in each patient.

4 Conclusion

This review delineates the intricate relationship between gut
microbiome alterations and NAFLD progression while critically
addressing the methodological and conceptual limitations that
hinder consensus in current research. The key challenges
include the predominance of cross-sectional studies obscuring
causal links; methodological inconsistencies (e.g., diagnostic
criteria, sequencing platforms); and overemphasis on bacterial
communities at the expense of fungi, archaea, and virome
components. Geographic and demographic biases further limit the
generalizability of findings.

To translate these insights into clinical practice, a concerted
effort toward implementing integrated translational frameworks is
paramount. Specifically, we propose a structured implementation
pathway centered on multi-omics integration and precision
microbiota therapy:

For multi-omics integration, a logical technical workflow
should be adopted: (1) utilizing metagenomics to define taxonomic
and functional potential; (2) applying metabolomics (e.g., mass
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spectrometry) to profile key microbial and host metabolites
(e.g., short-chain fatty acids, bile acids, endogenous ethanol);
and (3) employing proteomics or host transcriptomics to assess
the resultant hepatic inflammatory and metabolic responses.
The critical next step is data integration using bioinformatics
platforms (e.g., MixOmics, QIIME 2 plugins) and machine learning
algorithms (e.g., random forest, neural networks) to identify robust,
cross-validated biomarker panels that can stratify patients and
predict disease progression.

For precision microbiota therapy, future clinical trials must
incorporate several key design elements to ensure validity
and clinical relevance: (a) Precisely defined patient cohorts,
stratified not just by NAFLD severity but also by baseline
microbial signature (e.g., enterotype), genetic risk factors
(e.g., PNPLA3 genotype), and major metabolic comorbidity
status; (b) standardized and quality-controlled interventions,
whether using defined consortia of beneficial strains, engineered
probiotics with specific functions (e.g., bile acid metabolism),
or rigorously screened fecal microbiota transplantation; (c)
clinically meaningful endpoints beyond microbial shifts, primarily
focusing on improvements in liver fat content (quantified by
MRI-PDFF), histologic activity (for trials including biopsy), and
non-invasive fibrosis markers (e.g., ELF test, VCTE); and (d)
long-term follow-up schedules (e.g., 1–2 years) to monitor the
sustainability of microbial remodeling, long-term safety, and hard
clinical outcomes.

Beyond these core strategies, future studies must also prioritize
longitudinal multi-omics approaches to resolve microbial
functional dynamics across NAFLD stages; standardized protocols
for sample processing and data analysis to reduce technical
variability; mechanistic validation using organoid models and
gnotobiotic systems to test candidate metabolites (e.g., iso-bile
acids) and microbial-host crosstalk; diverse population cohorts
incorporating age-stratified, sex-specific, and geographically
tailored dietary interventions; and emerging frontiers such as
phage-microbe networks and precision probiotics for targeted
therapeutic development.

A paradigm shift toward systems-level analysis is imperative,
leveraging machine learning to integrate multi-dimensional
data for personalized risk prediction while bridging bench
discoveries to clinical applications through diet-microbiome
co-regulation strategies. Addressing these priorities will not
only clarify microbiome-NAFLD causality but also unlock
novel diagnostic and therapeutic avenues for this globally
prevalent disease.
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