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Trichoderma spp. are widely distributed across diverse environments and play 
a significant role in both ecosystem stability and economic applications. In this 
study, 57 Trichoderma strains were isolated from karst desert soil, of which 47 
strains were identified as nine known species, while 10 strains were characterized 
as belonging to four novel species. Phylogenetic analyses, based on the combined 
sequences of the internal transcribed spacer (ITS), translation elongation factor 
1-alpha (tef1-α), and RNA polymerase II second largest subunit (rpb2) genes, 
confirmed their distinct taxonomic positions. The results indicate that these 
four species are distributed across three known clades. Detailed morphological 
descriptions, cultural characteristics, and illustrations are provided for each new 
species, and comparisons are made with closely related taxa. The four new species 
are named Trichoderma calcicola, Trichoderma exigua, Trichoderma karsti, and 
Trichoderma xerophilum. This study documents the diversity of Trichoderma in rocky 
desertification ecosystems that remain agriculturally productive, suggesting their 
potential ecological adaptation to nutrient-poor, drought-prone, and calcium-rich 
soils, with implications for future biotechnological and biocontrol applications.
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Introduction

The genus Trichoderma (Sordariomycetes, Hypocreales, and Hypocreaceae) exhibits global 
distribution, is widely found in diverse ecological niches such as soil, plant roots, and decaying 
wood, and demonstrates remarkable adaptability to various environmental conditions (Cai 
and Druzhinina, 2021; Cao et al., 2022; Migheli et al., 2009). Moreover, it is recognized for its 
significant ecological and economic importance. Trichoderma harzianum is widely used as a 
biocontrol agent in the field of agriculture because of its high level of antagonism against 
diverse phytopathogenic microorganisms (Erazo et al., 2021; Geng et al., 2022; Yan and Khan, 
2021; Mitrović et  al., 2025). Some Trichoderma species have also shown potential in 
suppressing pathogenic nematodes (Yao et al., 2023). Besides serving biocontrol agents against 
pathogen, Trichoderma species have been shown to promote plant growth (Subramaniam 
et al., 2022), enhance plant stress tolerance by producing valuable secondary metabolites 
(Cheng et  al., 2012; Mukherjee et  al., 2013; Fazeli-Nasab et  al., 2022), and facilitate the 
remediation of soils contaminated with heavy metals (Bandurska et al., 2021; Kidwai et al., 
2022). Trichoderma reesei and its engineered strains represent significant cellulase producers 
that are commonly exploited for their carbohydrate-active enzyme content (Sperandio and 
Filho, 2021). Besides T. reesei, several other Trichoderma species also produce cellulase, 
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xylanase, and pectinase (Gooruee et  al., 2024). However, several 
Trichoderma species pose threats to the cultivation of edible fungi, the 
production of Gastrodia elata BI., and human health (Park et al., 2006; 
Kim et al., 2012; Sandoval-Denis et al., 2014; Ye et al., 2024).

Rocky desertification (RD), a severe form of karst ecosystem 
degradation, occurs when progressive soil erosion exposes the 
underlying bedrock, resulting in substantial agricultural and 
ecological deterioration. This process advances through multiple soil 
degradation pathways, including structural collapse, altered soil 
texture and porosity, reduced water-holding capacity, and nutrient 
depletion (Huang et al., 2009; Peng et al., 2013; Tang et al., 2013). 
These processes collectively disrupt ecosystem functioning and 
generate positive feedback loops that further accelerate RD. The Shilin 
Karst World Heritage Site in Yunnan Province, renowned for its 
towering limestone pinnacles, faces increasing threats from 
RD. Recent studies have demonstrated that the severity of RD drives 
significant shifts in fungi community composition; as RD intensifies, 
the abundance of Penicillium, Mortierella, and Metarhizium increases, 
whereas Myrothecium, Humicola, Paramyrothecium, and Chaetomium 
markedly decline (Yang, 2022). These patterns suggest that microbial 
indicators may serve as sensitive biomarkers for monitoring 
RD progression.

The diversity of Trichoderma species has been surveyed for 
different purposes (Mulatu et al., 2022; Cao et al., 2024; Tang et al., 
2022). However, the diversity of Trichoderma in rocky 
desertification areas remains unreported. In this study, 57 strains 
of Trichoderma were isolated from the karst rocky desertification 
soils of Shilin, Yunnan Province. Among these strains, 47 were 
identified as known species, and 10 were designated as putative 
new species based on the BLASTn search results of the ITS 
sequence. To clarify their taxonomic positions, we  used an 
integrative approach based on morphological characteristics and 
multilocus phylogenetic analyses (ITS, rpb2, and tef1-α). 
Furthermore, the analysis revealed significant genetic and 
morphological differences between the new species and their 
known counterparts, thereby confirming their status as a novel 
species. This study not only expands the current understanding of 
Trichoderma diversity in karst desertification ecosystems but also 
provides a baseline for future research on their ecological functions 
and potential agricultural applications.

Materials and methods

Sample collection and isolation

Soil samples were collected from the rocky desertification region 
in Shilin County, Kunming City, Yunnan Province (24.6° N, 103.4° E; 
altitude 1940 m a.s.l.). This area is characterized by exposed bedrock 
interspersed with gravel, sand, and soil. Despite the degradation, crops 
such as maize and soybeans are still cultivated, indicating that the 
region has not reached a fully desertified state. A total of 90 soil 
samples were collected from three sampling sites, with each located 
approximately 20 km apart. At each site, 30 samples were collected 
using a random sampling method, maintaining a minimum spacing 
of 5 m between sampling points. Samples were taken from a depth of 
5–10 cm after the removal of surface plant debris and gravel. All 
samples were labeled with unique identifiers and detailed collection 

information. Subsequently, the samples were transferred to the 
laboratory and stored at 4°C until further analysis.

The soil fungal isolation steps were as follows: 10 g of soil were 
mixed with 90 mL of sterile water with an appropriate amount of 
sterile glass beads and then shaken thoroughly at 220 r/min−1 for 1 h. 
After allowing the suspension to stand for 2 min, the supernatant was 
collected and subjected to serial dilutions (10−1 to 10−4). Aliquots of 
100 μL from the 10−2 to 10−4 dilutions were plated in triplicate onto 
Rose Bengal Agar (RBA; Guangdong Huankai Microbial Science and 
Technology Co., Ltd., China) supplemented with antibiotics 
(streptomycin, 40 mg/L; ampicillin, 30 mg/L) to suppress bacterial 
growth. The inoculated plates were incubated in a temperature-
controlled chamber at 25°C for 5–7 days and monitored daily for 
colony growth.

After mycelia growth, well-developed colonies were subcultured 
onto potato dextrose agar plates (PDA: 200 g potato, 20 g dextrose, 
18 g agar, and 1,000 mL distilled water) for further purification and 
identification. The resulting pure cultures were deposited in the 
Laboratory for Conservation and Utilization of Bio-Resources, 
Yunnan University (YMF), Kunming, China.

Morphology observation

Growth rates were measured on 9-cm-diameter Petri dishes 
containing three different media: PDA, cornmeal agar (CMA: 20 g 
cornmeal, 18 g agar, and 1,000 mL distilled water), and synthetic 
nutrient-poor agar (SNA: 1 g KH2PO4, 1 g KNO3, 0.5 g MgSO4, 0.5 g 
KCl, 0.2 g glucose, 0.2 g sucrose, 18 g agar, and 1,000 mL distilled 
water), at 25, 30, and 35°C under alternating 12-h light and 12-h dark 
cycles. After 3 days of incubation, the colony diameter was recorded, 
and the time required for complete colony coverage was documented. 
Furthermore, the morphological characters of colonies, such as colony 
appearance, color, and conidia production, were recorded at the same 
time. For microscopic morphology, including hyphae, conidiophores, 
phialides, conidia, and other structures, images were taken using an 
Olympus BX51 microscope (Tokyo, Japan) connected to a DP 
controller digital camera. At least 30 datasets were measured for each 
structure. Colonies were photographed after 7 days, and conidia were 
photographed after 14 days of production.

DNA extraction, polymerase chain reaction 
(PCR) amplification, and sequencing

Genomic DNA was extracted following the method described by 
Ye et al. (2024). Briefly, 0.5 g of mycelia was transferred into a 2.0-mL 
microcentrifuge tube, to which steel beads and 700–800 μL of urea 
extraction buffer [7 mol/L of urea, 50 mmol/L of Tris–HCl, 
62.5 mmol/L of NaCl, 10 g/L of sodium dodecyl sulfate (SDS)] were 
also added, followed by 5 min of disruption at 50 Hz oscillation. The 
mixture was centrifuged at 12,000 r/min for 5 min, after which the 
supernatant was transferred to a 1.5-mL centrifuge tube and an equal 
volume of DNA extraction (phenol/chloroform/isoamyl alcohol, 
25:24:1) was added. The mixture was centrifuged at 12,000 r/min for 
5 min, and the supernatant was transferred to a new 1.5-mL centrifuge 
tube, to which an equal volume of isopropanol and 1/10 volume of 
3 mol/L of NaAc were added, followed by incubation at −20°C for 
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20 min. The mixture was then centrifuged at 12,000 r/min for 5 min, 
and the upper aqueous phase was discarded. The DNA pellets were 
washed twice with 70% ethanol, dried at 40°C, and then resuspended 
in 50 μL of sterile water for PCR analysis (Liu et al., 2005).

The ITS, rpb2, and tef1-α fragments were amplified using three 
pairs of primers: ITS4 and ITS5 for ITS (White et al., 1990), frpb2-5f 
and frpb2-7cr for rpb2 (Liu et al., 1999), and EF1-728F (Carbone and 
Kohn, 1999) and TEF1LLErev (Jaklitsch et al., 2005) for tef1-α. PCR 
amplifications were conducted in a 25-μL reaction system containing 
12.5 μL of 2 × Master Mix (Accurate Biology), 9.5 μL of double-
distilled water, and 1 μL each of forward primer, reverse primer, and 
DNA template. The PCR reactions were carried out using an 
Eppendorf Mastercycler (Eppendorf, Hamburg, Germany) following 
the thermal cycling program described in Table 1. The PCR products 
were purified using a PCR product purification kit (Biocolor 
Bioscience and Technology Co., Shanghai, China) and subsequently 
sequenced in both directions using amplification primers on an ABI 
3730 XL DNA sequencer (Applied Biosystems, Foster City, California). 
The obtained sequences were deposited in the GenBank database at 
the National Center for Biotechnology Information (NCBI), and the 
corresponding accession numbers are provided in Table 2.

Sequence alignment and phylogenetic 
analyses

Preliminary BLASTn searches were conducted using the ITS, 
rpb2, and tef1-α sequences of the newly isolated strains against the 
NCBI database to identify closely related species. Both the reference 
sequences and the newly generated sequences in this study are listed 
in Table 2. Phylogenetic reconstruction was performed based on the 
concatenated sequences of the ITS, rpb2, and tef1-α loci. Sequence 
alignment was conducted using Clustal X 1.83 (Thompson et al., 1997) 
with default parameters, followed by trimming to appropriate lengths 
using MEGA11 (Tamura et  al., 2021). Sequence assembly and 
alignment were carried out in BioEdit version 7.0 (Hall, 1999), with 
manual concatenation of the aligned sequences from the three loci. 
Missing nucleotide positions were filled with question marks “?” to 
facilitate subsequent analyses and to optimize the quality of sequence 
assembly. A sequence matrix (FASTA file) containing three gene loci 
was generated using BioEdit version 7.0, with a total of 3,024 
characters (669 from ITS, 1,041 from rpb2, and 1,314 from tef1-α). 
The alignment data used in the phylogenetic analyses were deposited 
in TreeBASE.

Phylogenetic reconstruction of the newly identified species was 
conducted through both maximum likelihood (ML) and Bayesian 
inference (BI) approaches. For the ML analysis, the concatenated 
sequence matrix in FASTA format, assembled using BioEdit version 
7.0 (Hall, 1999), was analyzed in IQ-TREE software (Nguyen et al., 
2015). The optimal nucleotide substitution model was selected 
through ModelFinder, executed with the command iqtree -s example.
fas -m MF -nt AUTO, which identified the TNe + I + G4 model as 
the best-fit evolutionary model based on the Bayesian Information 
Criterion (BIC). Bootstrap support values were estimated from 1,000 
replicates following the outgroup designation. Bayesian trees were 
constructed using MrBayes v3.1.2 (Huelsenbeck and Ronquist, 2001), 
with the best model chosen through MrModeltest 2.3. The Markov 
chain Monte Carlo (MCMC) analysis was initiated with four parallel 

chains (one cold and three heated) per run, which proceeded for five 
million generations with sampling intervals of 500 generations until 
the average standard deviation of split frequencies fell below 0.01. 
The initial 25% of sampled generations were discarded as burn-in, 
with the remaining samples utilized to compute posterior 
probabilities for Bayesian phylogenetic reconstruction. Phylogenetic 
trees were visualized using FigTree version 1.4, with the nodal 
support values indicated by both maximum likelihood bootstrap 
proportions (MLBPs≥75%) and Bayesian posterior probabilities 
(BIPPs≥0.85).

Results

Diversity analysis

A total of 57 strains of Trichoderma were isolated and purified 
from rocky desertification soils based on the initial colony 
morphology. Among these strains, 47 were identified as known 
species, and 10 were designated as putative new species based on the 
BLASTn search results of the ITS sequence.

Phylogenetic analyses inferred from the ITS sequence were 
conducted to identify known species. The detailed species and their 
isolation frequencies are provided in Table 3. The highest isolation 
frequency was observed in T. harzianum, reaching 26.31%. The 
isolation frequencies of the remaining species were as follows: 12.28% 
each for Trichoderma koningiopsis and Trichoderma sulphureum, 
8.77% for Trichoderma gamsii, 7.02% for T. hamatum, 5.26% for 
T. virens, and 3.51% each for T. atroviride, T. cerinum, and T. spirale.

Phylogenetic analyses

A concatenated dataset comprising ITS, rpb2 and tef1-α sequences 
(total length: 3,024 characters) was analyzed to determine the 
phylogenetic placement of the novel species. Phylogenetic trees were 
reconstructed through both ML and BI methods and exhibited 
consistent topological structures (Figure  1). Based on combined 
morphological characteristics and phylogenetic evidence, 10 isolates 
were identified as 4 new Trichoderma species, which are distributed 
across three different clades. The four new species were proposed as 
T. calcicola, T. exigua, T. karsti, and T. xerophilum, and each was 
supported by robust phylogenetic evidence and distinct 
morphological characteristics.

Two isolates were assigned to the Longibrachiatum clade, forming 
a new subclade corresponding to a novel species, designated as 
T. karsti (MLBP/BIPP = 100/1.00). In the Viride clade, two isolates 
formed a new subclade, defined as a novel species, designated as 
T. calcicola (MLBP/BIPP = 100/1.00). In the Harzianum clade, six 
isolates formed two new subclades, which were identified as novel 
species and named T. xerophilum (MLBP/BIPP = 100/1.00) and 
T. exigua (MLBP/BIPP = 100/1.00).

Taxonomy

Trichoderma karsti Z. F. Yu & X. W. Dai, sp. nov. Figure 2.
MycoBank No: 860053.
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Etymology: Latin, karsti, refers to the holotype being isolated 
from karst soil.

Description: Sexual morph: Unknown. Asexual morph: 
Conidiophores consisting of a recognizable main axis with branches 
arranged either in pairs or singly, arising at an angle slightly less than 90° 
with respect to the main axis. The distance between two neighboring 
branches ranges from 3.5 to 13.2 μm. Phialides are commonly singly, 
opposite, ampulliform or narrowly vase-shaped, and the tip is long and 
curved, oriented an indefinite direction. They measure (6.2–)7.5–
9.5(−11.3) × 2.3–4.1 μm, with a length-to-width (l/w) ratio of 
1.9–4.6(−5.1), and, at base, they are 1.6–2.4(−3.5) μm wide and widest 
around the middle. Conidia are oval, elliptic, pale yellow-green, and 
smooth-walled, measuring 3.8–5.2 × 2.8–3.2 μm, with an l/w ratio of 
1.1–1.4. Chlamydospores were observed growing at the tip of hyphae, 
round, measuring 8.2–10.8 × 7.1–9.7 μm, with a l/w ratio of 1.0–1.1.

Culture characteristics: optimum temperature for growth 30°C.
After 72 h, the colony radius on PDA was 64 mm at 25°C, 72 mm 

at 30°C, and 59 mm at 35°C, covering the plate after 3 days at 
30°C. The colony is white, circular, and turns green after 3 days. Aerial 
hyphae are abundant, forming a dense mat. Pure yellow pigments are 
noted. A slight odor was noted.

Colony radius on CMA after 72 h: 12 mm at 25°C, 29 mm at 
30°C, and 15 mm at 35°C. The colony lucency is circular, darkening 
to deep green as the incubation time extended. There was no diffusing 
pigment noted, and the odor was indistinct.

Colony radius on SNA after 72 h: 13 mm at 25°C, 34 mm at 30°C, 
and 30 mm at 35°C. The colony is white and turns green after 5 days. 
Sulphur yellow pigment was noted, and a slight odor was noted. 
Chlamydospores noted in all media.

Materials examined: China, Yunnan Province, Shilin Country, 
from soil of rocky desertification, August 2024, Z. F. Yu, (holotype 
YMF 1.09950). lbid. (cultures: YMF 1.09951).

Notes: From a systematic perspective, T. karsti is closely related 
to T. thermophilum and associated with T. rugosum. T. thermophilum 
and T. rugosum, which exhibit a sexual morph, T. karsti has only 
been observed in its asexual state (Qin and Zhuang, 2016; Zhang 
and Zhuang, 2018). The phialides of T. thermophilum and 
T. rugosum are relatively regular in morphology, while those of 
T. karsti are more curved and asymmetrical. In addition, the conidia 
of T. karsti are larger than those of T. thermophilum 
(3.8–5.2 × 2.8–3.2 vs. 2.7–6 × 2.3–3) and T. rugosum 
(3.8–5.2 × 2.8–3.2 vs. 3–4 × 2.2–3). The colonies of all three species 
are yellow on PDA and CMA, while they appear transparent or 
translucent on SNA. T. karsti has a mild odor, whereas no distinct 
odor was detected in the other two species.

Trichoderma xerophilum Z. F. Yu & X. W. Dai, sp. nov. Figure 3.
MycoBank NO: 860054.
Etymology: Latin, xerophilum, refers to the arid karst soil.
Description: sexual morph: unknown. Asexual morph: 

conidiophores comprising a recognizable main axis, primary 
branches that are mostly paired, occasionally 3 verticillate or 
solitary, and arise at an angle of approximately 90° from the main 
axis. Each branch terminates in a paired and a whorl of 3 together 
with a terminal phialide. Phialides ampulliform to narrowly vase-
shaped, straight or slightly curved, mostly paired or whorls of 3 
on terminal branches of the conidiophore, occasionally solitary, 
(5.5–)6.0–8.7(−11.5) × 2.1–3.2 μm, l/w ratio 2.3–4.9, 1.4–3.2 μm 
wide at base, widest around the middle. Conidia are oval, elliptic T
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TABLE 2 GenBank accession numbers of taxa used in phylogenetic analyses.

Species name Strain number GenBank accession number

ITS rpb2 tef1-α
T. afroharzianum CBS 124620* FJ442265 FJ442691 FJ463301

T. afroharzianum GJS 04–193 FJ442233 FJ442709 FJ463298

T. anaharzianum YMF 1.00383* MH113931 MH158995 MH183182

T. anaharzianum YMF 1.00241 MH262584 MH262577 MH236493

T. aquatica YMF 1.04624 MH383057 MK775511 MK775506

T. aquatica YMF 1.04625* MH383058 MK775512 MK775507

T. asiaticum YMF 1.00352* MH113930 MH158994 MH183183

T. asiaticum YMF 1.00168 MH262582 MH262575 MH236492

T. atrobrunneum T42 KX632515 KX632572 KX632629

T. atrobrunneum S3 — KJ665241 KJ665376

T. azevedoi CEN 1422* MK714902 MK696821 MK696660

T. azevedoi CEN 1423 MK714903 MK696822 MK696661

T. breve HMAS 248844* KY687927 KY687983 KY688045

T. breve HMAS 2488445 KY687928 KY687984 KY688046

T. calcicola YMF 1.09956* PV344624 PV366307 PV346763

T. calcicola YMF 1.09957 PV344625 PV366308 PV346764

T. camerunense GJS 99–230 NR137300 — AF348107

T. camerunense GJS 99–231 AY027783 — AF348108

T. endophyticum DIS 220 K FJ442270 FJ442765 FJ463328

T. endophyticum DIS 220 J FJ442254 FJ442690 FJ463330

T. exigua YMF 1.10219* PV702217 PV711372 PV711374

T. exigua YMF 1.10220 PV702218 PV711373 PV711375

T. gamsii S488 — KJ665270 JN715613

T. gamsii G. J. S. 04–09 DQ315459 JN133561 DQ307541

T. ghanense 18ASMA008 MT520628 — MT671928

T. ghanense 18ASMA007 MT520627 — MT671927

T. guizhouense HGUP 0038 JN191311 JQ901400 JN215484

T. hailarense WT 17901* MH287485 MH287506 MH287505

T. harzianum CBS 226.95* AJ222720 AF545549 AF348101

T. harzianum GJS 05–107 FJ442679 FJ442708 FJ463329

T. hispanicum S453T JN715595 JN715600 JN715659

T. karsti YMF 1.09950* PV344618 PV366301 PV346757

T. karsti YMF 1.09951 PV344619 PV366302 PV346758

T. lentiforme DIS 218E FJ442220 FJ442793 FJ463310

T. lentiforme DIS 173F FJ442253 FJ442787 FJ463347

T. lentinulae CGMCC 3.19848 MN594470 MN605868 MN605879

T. lentinulae HMAS 248256* MN594469 MN605867 MN605878

T. lixii CBS 110080 NR_131264 KJ665290 FJ716622

T. longibrachiatum C. P. K. 1707 — JN182315 EU401610

T. longibrachiatum S 328 — JQ685883 JQ685867

T. longiphialidicum TC 675 — MF095872 MF095880

T. longiphialidicum TC 668 — MF095871 MF095879

T. macrochlamydospora JZBQT5Z1* ON653399 ON649955 ON649902

(Continued)
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to subspheroidal, green, smooth, (3.1–)3.3–3.9(−4.2) × (2.5–)2.7–
3.4 (−3.6) μm, with a l/w ratio of 1.0–1.2. The chlamydospores 
observed at the tips of hyphae exhibited two distinct 
morphological types: elliptical, measuring 10.0–12.9 × 7.8–9.2 μm 
with a length-to-width ratio of 1.2–1.6, and subglobose, 

measuring 8.5–11.2 × 6.6–9.4 μm with a length-to-width ratio of 
1.0–1.2.

Culture characteristics: Optimum temperature for growth is 30°C.
Colony radius on PDA after 72 h: 55 mm at 25°C, 63 mm at 30°C, 

and 40 mm at 35°C, covering the plate after 3 days at 30°C. The colony 

TABLE 2 (Continued)

Species name Strain number GenBank accession number

ITS rpb2 tef1-α
T. miyunense JZBQF7* — ON649969 ON649916

T. miyunense JZBQF9 — ON649970 ON649917

T. neokoningii CBS 120070 MH863076 KJ665318 KJ665620

T. notatum JZBQT1Z5* — OP832381 OP832396

T. parareesei CBS 125925* — HM182963 GQ354353

T. parareesei C. P. K. 634 — HM182968 GQ354351

T. pholiotae JZBQH12* — ON649972 ON649919

T. pingquanense JZBQT7Z10* ON653401 ON649961 ON649908

T. propepolypori YMF 1.06224* MN977789 MT052181 MT070158

T. propepolypori YMF 1.06199 MN977790 MT052182 MT070157

T. pseudoasiaticum YMF 1.06200* MN977792 MT052183 MT070155

T. pseudopyramidale COAD 2426* — MK044224 MK044131

T. pseudopyramidale COAD 2427 — MK044229 MK044136

T. pyramidale CBS 135574 — KJ665334 KJ665699

T. reesei G. J. S. 00–89 — JN175548 JN175599

T. reesei G. J. S. 97–38 AJ004962 JN175552 JN175603

T. rifaii CBS 130746* FJ442663 — FJ463324

T. rifaii DIS 337F FJ442621 FJ442720 FJ463321

T. rugosum HMAS254536 — MH612372 MH612378

T. rugosum HMAS254548 — MH612373 MH612379

T. rugulosum SFC20180301-001* MH050353 MH025986 MH025984

T. rugulosum SFC20180301-002 — MH025987 MH025985

T. samuelsii S42 JN715593 JN715598 JN715652

T. sempervirentis CBS 133498* — KC285755 KC285632

T. sempervirentis S601 — KC285756 KC285633

T. simile YMF 1.06201* MN977793 MT052184 MT070154

T. simile YMF 1.06202 MN977794 MT052185 MT070153

T. subvermifimicola JZBQT4Z1* ON653398 ON649952 ON649899

T. thermophilum HMAS252912 — KX066261 KX066249

T. tongzhouense JZBQT1Z1* ON653394 ON649945 ON649892

T. vermifimicola CGMCC 3.19850 MN594472 MN605870 MN605881

T. vermifimicola HMAS 248255* MN594473 MN605871 MN605882

T. xerophilum YMF 1.09952 PV344620 PV366303 PV346759

T. xerophilum YMF 1.09953* PV344621 PV366304 PV346760

T. xerophilum YMF 1.09958 PV344622 PV366305 PV346761

T. xerophilum YMF 1.09959 PV344623 PV366306 PV346762

Protocrea farinosa CBS 121551 MH863119 EU703935 EU703889

Protocrea pallida CBS 299.78 MH861137 EU703948 EU703900

1Novel species introduced in this study are indicated in bold. 2The type and ex-type strains are indicated with * after the strain number. 3″—” indicates sequence unknown.
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is translucent, circular, and radial, with a white to pale grayish green. 
Aerial hyphae are abundant, forming a dense mat. Pure yellow 
pigments noted, slight odor noted.

Colony radius on CMA after 72 h: 25 mm at 25°C, 32 mm at 
30°C, and 29 mm at 35°C. The colony lucency is circular, 1–2 zonate, 
darkening to green as incubation time extended. No diffusing pigment 
was noted, and odor was indistinct.

Colony radius on SNA after 72 h: 44 mm at 25°C, 50 mm at 30°C, 
and 30 mm at 35°C. The colony lucency is circular, three or more 
zonate, and the color changes to yellowish green after 3 days. Pure 
yellow pigments were noted, and a slight odor was noted. 
Chlamydospores were noted in all media.

Materials examined: China, Yunnan Province, Shilin Country, 
from soil of rocky desertification, August 2024, Z. F. Yu, (holotype 
YMF 1.09953). lbid. (cultures: YMF 1.09952, YMF 1.09958, YMF 
1.09959).

Notes: Based on phylogenetic analyses, the four strains of 
T. xerophilum formed a single clade, sistering to the clade formed by 
T. afroharzianum, T. atrobrunneum, T. pyramidale, and 
T. pseudopyramidale. The phialides of T. afroharzianum (5.2–
10.2 × 2.0–3.5 μm) and T. atrobrunneum (5.5–8.0 × 2.2–3.7 μm) are 
lageniform to ampulliform, whereas T. xerophilum exhibits longer 
phialides (6.0–8.7 × 2.4–3.2 μm) with a more pronounced length-to-
width ratio, making it distinctive within the group. T. atrobrunneum 
does not mention the formation of chlamydospores, while 
T. afroharzianum rarely produces them (Chaverri et  al., 2015). In 
contrast, T. xerophilum forms chlamydospores at the tips of hyphae, 
exhibiting two distinct morphological types. Furthermore, the phialides 
of T. pyramidale exhibit greater morphological diversity, ranging from 
lageniform to ampulliform and occasionally inequilateral or sigmoid, 
compared to the more uniform phialides of T. xerophilum (5.5–
11.5(−17.5) × 2.8–3.7(−4.5) vs. 6.0–8.7(−11.5) × 2.1–3.2), thereby 
reflecting the morphological differences between the two species 
(Chaverri et al., 2015). Similarly, the phialides of T. pseudopyramidale 
(5.3–8.6(−9.1) × 2.2–2.9(−3.2) μm) are predominantly ampulliform to 
lageniform and usually formed in whorls, showing a somewhat narrower 
width than those of T. xerophilum (6.0–8.7(−11.5) × 2.1–3.2 μm) (del 
Carmen et al., 2021). These morphological characteristics distinctly set 
T. xerophilum apart from other closely related species.

Trichoderma calcicola Z. F. Yu & X. W. Dai, sp. nov. Figure 4.
MycoBank NO: 860055.
Etymology: Latin, calcicola, referring to the limestone-rich karst 

soil from which the strain was isolated.

Description: Sexual morph: Unknown. Asexual morph: 
Conidiophores and branches form a pyramidal structure, the distance 
between two neighboring branches (6.7–)8.0–25.0(−30.0) μm. 
Branches paired asymmetrically or solitary, occasionally in a whorl of 
3 at an angle less than or near 90° concerning the main axis, branches 
terminating in a single, paired, or a whorl of three phialides. Phialides 
are spindle-shaped and lageniform, (6.4–)7.5–11.4(−12.0) × (2.6–)2.9–
3.8(−4.0) μm, l/w ratio 1.4–3.5. Conidia thin-walled, ellipsoidal, rarely 
globose, green, smooth, (3.5–)3.8–4.5(−4.8) × (2.6–)2.8–3.2(−3.5) μm, 
l/w ratio 1.2–1.4. Chlamydospores were noted at the tip of hyphae, 
round, and measure 7.1–10.23 × 6.2–8.4 μm, with a l/w ratio of 1.1–1.2.

Culture characteristics: Optimum temperature for growth is 25°C.
Colony radius on PDA after 72 h: 55 mm at 25°C, 50 mm at 30°C, 

and 24 mm at 35°C, covering the plate after 3 days at 25°C. The 
colonies are white, circular, and fuzzy; aerial hyphae are abundant. No 
diffusing pigment noted, slight odor noted.

Colony radius on CMA after 72 h: 35 mm at 25°C, 32 mm at 
30°C, and 24 mm at 35°C. The colony lucency is circular, the central 
air mycelia of the colony exiguity, and the margin dense. No diffusing 
pigment noted, slight odor noted.

Colony radius on SNA after 72 h: 40 mm at 25°C, 33 mm at 30°C, 
and 30 mm at 35°C. The colonies are white, circular, and fuzzy, aerial 
hyphae hairy to floccose, dense. Slight odor noted. Chlamydospores 
were observed in all media.

Materials examined: China, Yunnan Province, Shilin Country, 
from soil of rocky desertification, August 2024, Z. F. Yu, (holotype 
YMF 1.09956). lbid. (cultures: YMF 1.09957).

Notes: T. calcicola and T. hailarense are phylogenetically related 
but exhibit distinct differences in morphological and culture 
characteristics (Zhang et al., 2022). Regarding phialides, T. hailarense 
features longer lageniform phialides (8.0–15.5 μm × 2.5–3.6 μm), 
while T. calcicola possesses spindle- to lageniform-shaped phialides 
(6.4–12.0 μm × 2.6–4.0 μm). For conidia, T. hailarense yields delicately 
roughened, obovoid conidia (4.2–4.9 μm × 3.4–4.1 μm), whereas 
T. calcicola produces smooth, ellipsoidal conidia 
(3.5–4.8 μm × 2.6–3.5 μm). T. hailarense exhibits faster growth at 
30°C, whereas T. calcicola shows better adaptation to growth 
conditions at 25°C.

Trichoderma exigua Z. F. Yu & X. W. Dai, sp. nov. Figure 5.
MycoBank NO: 860056.
Etymology: Latin, exigua, refer exiguous conidiation.
Description: Sexual morph: Unknown. Asexual morph: 

Conidiophores more or less symmetrical, main axis recognizable, 

TABLE 3 Isolated known species and frequency.

Species GenBank Number Frequency

T. atroviride P. Karst 451289 2 3.51%

T. cerinum Bissett, Kubicek & Szakács 488349 2 3.51%

T. gamsii Samuels & Druzhin 501050 5 8.77%

T. hamatum (Bonord.) Bainier 165799 4 7.02%

T. harzianum Rifai 340299 15 26.31%

T. koningiopsis Samuels, Carm. Suárez & Evans 487454 7 12.28%

T. spirale Bissett 359087 2 3.51%

T. sulphureum (Schwein.) Jaklitsch and Voglmayr 807456 7 12.28%

T. virens (Mill., Giddens & Foster) Arx 128198 3 5.26%
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branches arising at an angle of less than 90° concerning the main axis. 
Most branches are paired or form a whorl of 3, occasionally solitary. 
Phialides concentrated on the apex of conidiophores, arranged in 2–5 
whorls, less solitary, ampulliform or narrowly vase-shaped, straight or 
curved, with an indefinite direction. (5.5–)6.5–9.7(−12.0) × (2.0–) 
2.6–3.5(−4.2) μm, l/w ratio1.6–3.5. Conidia oval, elliptic, green, 
smooth, (2.7–)2.9–3.5(−4.1) × (2.4–)2.5–2.8(−3.0) μm, l/w ratio 
1.1–1.3. Chlamydospores not found.

Culture characteristics: Optimum temperature for growth is 30°C.
Colony radius on PDA after 72 h: 51 mm at 25°C, 60 mm at 

30°C, and 42 mm at 35°C, covering the plate after 3 days at 30°C. The 
colony is white, circular, and turns primrose after 3 days. Aerial 
hyphae are abundant, forming a dense mat. No diffusing pigment 
noted, slight odor noted.

Colony radius on CMA after 72 h: 30 mm at 25°C, 35 mm at 
30°C, and 27 mm at 35°C. The colony is lucency, with the air mycelium 

FIGURE 1

Phylogenetic tree of Trichoderma species based on the combined ITS, rpb2, and tef1-α gene sequences constructed using the maximum likelihood 
(ML) analysis and Bayesian inference (BI) analysis. The numbers above branches represent maximum-likelihood bootstrap percentages (left) and 
Bayesian posterior probabilities (right). ML bootstrap support (70) and Bayesian posterior probabilities (0.75) are shown on the respective branches. 
Protocrea farinose CBS 121551 and P. pallida CBS 299.78 were used as outgroups. Bold font indicates newly described species.
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having more edges and less center; no diffusing pigment was noted, 
and odor was indistinct.

Colony radius on SNA after 72 h: 40 mm at 25°C, 51 mm at 30°C, 
and 33 mm at 35°C. The colony is white, circular. Three days later, the 
center of the colony turns yellow-green. No diffusing pigment was 
noted, and odor was indistinct.

Materials examined: China, Yunnan Province, Shilin Country, 
from soil of rocky desertification, August 2024, Z. F. Yu, (holotype 
YMF 1.10219). lbid. (cultures: YMF 1.10220).

Notes: T. exigua and T. guizhouense are phylogenetically 
related but exhibit distinct differences in morphological and 
culture characteristics (Li et  al., 2013). However, T. exigua 

possesses distinctly longer lageniform phialides than the 
ampulliform to lageniform phialides of T. guizhouense 
(6.5–9.7 × 2.6–3.5 vs. 4.5–10 × 2–3); the phialides of the former 
are organized in 2–5 whorls, while those of the latter are often in 
a whorl of 3. Moreover, conidia of T. exigua are smooth, oval to 
elliptic, and larger (2.4–3.0 vs. 2–3), while conidia of T. guizhouense 
are globose.

Finally, regarding culture characteristics, T. guizhouense exhibits 
rapid growth, with a colony radius of 57–58 mm on PDA at 25°C after 
72 h, whereas T. exigua shows slower growth. Both species lack 
diffusing pigments, although T. guizhouense may produce a brown 
diffusing pigment in some strains, and both species emit a slight odor.

FIGURE 2

Morphology of Trichoderma karsti (YMF1.09950). (A–C) Cultures on PDA plates, 7d; CMA plates, 7d; SNA plates, 7d; 25°C; (D–I) conidiophores and 
phialides; (J) chlamydospores; and (K) conidia. Scale bars: 10 μm (D–K).
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Discussion

Current taxonomic resolution within the Trichoderma genus has 
been achieved through integrative analyses incorporating 
phylogenetic, morphological, ecological, and biogeographical data. 
Notably, two genetic loci, rpb2 and tef1-α, have been established as the 
standard molecular markers for the identification of novel 
Trichoderma species (Cao et  al., 2024). These molecular markers, 
along with comprehensive morphological examination, have 
significantly enhanced the precision of species delimitation within this 
genus. This study used a comprehensive analysis of multi-gene 
sequences (ITS, rpb2 and tef1-α) along with morphological 

characteristics to systematically elucidate the phylogenetic 
relationships among the species. Based on the multi-gene phylogenetic 
tree, the four new species were classified into three distinct clades: 
Longibrachiatum, Viride, and the Harzianum clades. Furthermore, all 
clades exhibited high maximum likelihood bootstrap proportions and 
Bayesian posterior probabilities, providing strong support for their 
phylogenetic classification.

The newly described species T. calcicola belong to the Viride clade, 
one of the most species-rich and widely distributed clades within the 
genus Trichoderma. The Viride clade, initially referred to as the 
“section Trichoderma,” is represented by the type species T. viride Pers 
(Bissett, 1991). Building upon the study of Samuels et  al. (2006), 

FIGURE 3

Morphology of Trichoderma xerophilum (YMF1.09953). (A–C) Cultures on PDA plates, 7d; CMA plates, 7d; SNA plates, 7d; 25°C; (D–I) conidiophores 
and phialides; (J) chlamydospores; and (K) conidia. Scale bars: 10 μm (D–K).
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Jaklitsch et  al. (2013) further analyzed the complex group; 
subsequently, Jaklitsch and Voglmayr (2015) formally renamed the 
clade the Viride clade through the construction of an updated 
phylogenetic tree. Species in this clade primarily exhibit verticillate or 
pachybasium-like conidiophores, with phialides arranged in whorls 
or pairs and producing green conidia, yet they display significant 
diversity in colony morphology, growth rates, and conidial shape and 
size (Qin and Zhuang, 2016). Members of this clade demonstrate 
remarkable ecological versatility, having been isolated from diverse 
substrates such as decaying corticated branches, fungal stromata, 
phyllosphere habitats, and various soil ecosystems, attesting to their 
broad geographical distribution and adaptive capacity (Kredics et al., 

2014; Jaklitsch and Voglmayr, 2015). T. calcicola aligns with the clade’s 
traits in its conidiophore branching, phialide arrangement, and green 
conidia. The newly described species, T. xerophilum and T. exigua, 
belong to the Harzianum clade, a cosmopolitan and widely distributed 
group. The clade displays a complex speciation history and diverse 
morphological characteristics (Atanasova et  al., 2010; Druzhinina 
et al., 2010; Qin and Zhuang, 2017; Ye et al., 2023). Species within the 
Harzianum clade typically produce diverse pustules in culture, 
exhibiting variation in conidiophore morphology, phialide shapes, 
and conidial characteristics (Chaverri and Samuels, 2003; Jaklitsch, 
2009; Zheng et al., 2021; Ye et al., 2023). Even in the present study, 
morphological characteristics of T. xerophilum and T. exigua also vary 

FIGURE 4

Morphology of Trichoderma calcicola (YMF1.09956). (A–C) Cultures on PDA plates, 7d; CMA plates, 7d; SNA plates, 7d; 25°C; (D–J) conidiophores and 
phialides; (K,L) chlamydospores; and (M) conidia. Scale bars: 10 μm (D–K).
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in the l/w ratio of phialides and arrangement. The taxonomy of the 
Harzianum clade was revised by Chaverri et  al. (2015), who 
emphasized the need to use the secondary barcode tef1-α to accurately 
identify species within this complex. Subsequently, numerous species 
within this clade have been extensively reported, further enriching 
their diversity (Jaklitsch and Voglmayr, 2015; Qiao et al., 2018; Zhang 
and Zhuang, 2018; Phookamsak et al., 2019; Gu et al., 2020; Barrera 
et al., 2021; Cao et al., 2022, 2024; Ye et al., 2023).

Trichoderma karsti was robustly assigned to the Longibrachiatum 
clade, with high statistical support in phylogenetic analyses, and the 
species morphologically aligns with the diagnostic traits of the 
 Longibrachiatum  clade. In contrast to the other clades, the 
Longibrachiatum clade appears to be monophyletic (Samuels et al., 
1998, 2012; Zhang and Zhuang, 2018). Samuels et al. conducted a 
comprehensive revision of this clade, describing eight new taxonomic 

units, including Trichoderma aethiopicum, and expanding the known 
species within the clade to 21, along with the development of a 
systematic identification key. Additionally, the re-description of 
species such as T. parareesei and the first identification of the sexual 
form of T. gilliesii significantly refined the taxonomic framework, 
laying a crucial foundation for future phylogenetic and functional 
studies. Following this methodological framework, an expanding 
array of species has been systematically identified and reported in this 
clade (Yabuki et  al., 2013; Jaklitsch and Voglmayr, 2015; Qin and 
Zhuang, 2016; Zheng et al., 2021).

As a potential natural biocontrol resource or a contaminant of 
cultured mushrooms, Trichoderma has attracted considerable attention. 
Recent studies have documented Trichoderma diversity across multiple 
ecological niches, including: (1) plant-associated habitats (endophytic, 
epiphytic, and rhizosphere environments) (Xia et al., 2011; Mulatu et al., 

FIGURE 5

Morphology of Trichoderma exigua (YMF 1.10219). (A–C) Cultures on PDA plates, 7d; CMA plates, 7d; SNA plates, 7d; 25°C; (D–I) conidiophores and 
phialides; (J) conidia. Scale bars: 10 μm (D–J).
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2022); (2) fungal cultivation systems including edible mushroom 
substrates and medicinal fungi growth media (Wang et al., 2022; Cao 
et  al., 2024); and (3) diverse ecosystems spanning alpine wetlands, 
forested areas, grasslands, wetlands, and agricultural landscapes (Tang 
et al., 2022; Dou et al., 2019). Sometimes, nationwide investigations of 
Trichoderma diversity were also conducted (Ahedo-Quero et al., 2024). 
Notably, Trichoderma asperellum appeared to be associated with the 
roots of the plant (Xia et al., 2011; Mulatu et al., 2022). Except for 
cultivation substrates of Lentinula edodes (Cao et al., 2024), T. harzianum 
was the predominant species in other natural ecosystems, either in 
agricultural or undisturbed soil. Its widespread distribution may 
be attributed not only to ecological plasticity but also to its competitive 
advantage in resource-poor environments, which may be a key factor 
in its success as a biocontrol agent. Previous studies have also 
demonstrated that both T. harzianum and T. asperellum can promote 
seed germination, highlighting their practical potential in agriculture 
(Muradov et al., 2025).

In our survey, the most abundant species was also T. harzianum 
with an isolation frequency of 26.31%, which is close to 23% in alpine 
wetlands with a similar arid and barren environment to karst desert 
soil. This consistency suggests that T. harzianum may exhibit habitat-
specific adaptation to stressful environments. Future comparative 
studies across different ecosystems may further elucidate its ecological 
preferences and functional potential. Recent studies have shown that 
Trichoderma spp. significantly enhance organic matter decomposition 
by increasing CO₂ release and residue turnover (Organo et al., 2022), 
suggesting that they may play an important role in nutrient cycling 
and ecosystem recovery in karst desertification soils.

Nevertheless, this study has some limitations. The culture-
dependent approach used here may underestimate total fungal 
diversity by missing unculturable or slow-growing taxa. In addition, 
all samples were collected from a soil depth of 5–10 cm, potentially 
overlooking fungi present in deeper horizons or at the rhizoplane. 
Future studies should incorporate high-throughput sequencing and 
functional assays to comprehensively characterize the ecological roles 
and adaptive mechanisms of Trichoderma in karst desert environments.
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