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Comprehensive whole
metagenomics analysis uncovers
microbial community and
resistome variability across
anthropogenically contaminated
soils in urban and suburban areas
of Tamil Nadu, India

Ramavath Vasanthrao, Illathu Kandy Nidhin, Zarin Taj and
Indranil Chattopadhyay*

Department of Biotechnology, School of Integrative Biology, Central University of Tamil Nadu,
Thiruvarur, India

Introduction: Environmental contamination by heavy metals and hydrocarbons
significantly impacts microbial diversity and soil functionality.

Methods: This study employs whole-genome metagenome sequencing to
analyse microbial compositions, antibiotic resistance genes (ARGs), heavy metal
resistance genes (HMRs), and virulence genes (VGs) in soil samples from diverse
locations, including gardens, poultry farms, cattle sheds, markets, hospitals,
thermal power plants, paper industries, and waste disposal sites.

Results: The findings indicate that heavy metal concentrations (Pb, Cr, Cd, and
Cu) and hydrocarbons (heptadecane, triacontane, docosane, and heneicosane)
were positively correlated with several microbial phyla with relatively high
abundances in these contaminated sites, such as Actinobacteria, Proteobacteria,
Basidiomycota, Ascomycota, Euryarchaeota, and Apicomplexa. The prevalence
of multidrug resistance genes, including MexD, MexC, MexE, MexF, MexT, CmeB,
MdtB, MdtC, and OprN, was significant, facilitating antibiotic resistance primarily
via efflux pump mechanisms (42%), followed by antibiotic inactivation (23%) and
changes in antibiotic targets (18%). Virulence genes such as espR, regX3, sigA/
rpoV, bap, and sugB were significantly prevalent in contaminated locations,
indicating microbial pathogenic potential in polluted ecosystems. The functional
gene analysis revealed significant metabolic pathways related to protein
metabolism, carbohydrates, amino acids and their derivatives, metabolism, and
DNA metabolism, highlighting the microbial adaptation processes engaged in
pollution degradation and resource utilisation.

Discussion: This study establishes a clear link between environmental pollution,
microbial adaptations, and functional resilience, emphasizing the ecological
significance of microbial bio-remediation in shaping targeted remediation
strategies and long-term ecological recovery. Understanding these microbial
interactions is essential for developing targeted remediation techniques and
assessing long-term ecological recovery in contaminated regions.
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1 Introduction

Microbes constitute approximately 70% of the planet’s biodiversity
and are crucial for the preservation of the environment. The microbial
exchange of genes is the fundamental source of diversity among
microbes. Antimicrobial-resistant bacteria exist in humans, animals,
food, and soil, indicating a transmission dynamic between these
entities (Yadav and Kapley, 2021). The soil contains a diverse
community of microbes having antibiotic resistance genes. As a result,
these alterations to the environment promote horizontal genetic
transfer in bacteria and increase tolerance to various stress responses
(Cardenas Alegria et al., 2022). Excessive use of antibiotics causes
pressure on selective genes, leading to the development, perseverance,
and amplification of antibiotic-resistance genes (ARGs) (Lopatkin
et al,, 2016). Because of the wide range and abundance of microbes,
soils serve as a major source of antibiotic-resistant bacteria (ARB) and
ARGs (Nesme and Simonet, 2015). The ARGs discovered in the soil
are aminoglycosides, erythromycin, fluoroquinolones, sulfonamides,
tetracycline, and B-lactams (Cardenas Alegria et al., 2022). Bacteria
play a significant role in propagating ARGs in many habitats (Ondon
et al,, 2021). The significant variability in environmental resistomes
could be attributed to several biotic variables, such as secondary
metabolites produced by bacteria, and abiotic variables, such as heavy
metals, organic contaminants, pesticides, and disinfectants.
Environmental variables significantly influence bacterial populations
and resistance to environmental stresses. Hydrocarbon pollution has
been linked to increased bacterial antibiotic resistance. Research has

suggested that polluted places, such as activated sludge and metal-
affected environments, can act as hubs for the transmission of
resistance genes due to abiotic factors and selective pressure (Das
et al, 2021). Several potential co-selective agents for antibiotic
resistance include detergents, polyaromatic hydrocarbons,
polychlorinated biphenyls, and nanoparticles. Heavy metals are able
to reach the environment through natural causes such as geothermal
activity, wildfires, corrosion, and erosion, although these are small
sources compared with manmade contributors, including industry,
agriculture, and hospitals (Gillieatt and Coleman, 2024). Microbes are
commonly observed to be reactive and susceptible to heavy metals.
When the levels of heavy metals exceed specific limits, these can
negatively affect bacterial growth, shape, and important metabolic
activities. Continuous contamination with heavy metals causes more
pressure on responsive organisms, resulting in significant reductions
in abundance and diversity, whereas some organisms can adjust or
possibly grow due to the development of protective mechanisms
influencing the community of bacteria and their functional
characteristics. Soil physicochemical characteristics, for example, can
have significant effects on native bacteria, either directly or indirectly,
by regulating heavy metal reactivity. Thus, the interaction of soil
physicochemical features and heavy metal stress complicates the
comprehension of microbial assembly in damaged soils (Zou et al.,
2024). Heavy metals cause the simultaneous development of ARGs
and metal-resistance genes (MRGs) through co-selection in the
environment. Cu contamination has a significant effect on the soil

microbial resistome (Liu et al., 2022). Research has shown that ARGs
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and MRGs can coexist in different contexts. This occurrence can
be attributed to two different variables: co-resistance, where ARGs and
MRGs are contained inside the identical plasmid, transposon, or
integron, and cross-resistance, where ARGs and MRGs have been
picked by common pathways. Co-resistance and cross-resistance can
result in comparable occurrence trends for ARGs and MRGs (Yan
etal,, 2024). Tetracyclines and quinolones, ligand-like antibiotics, are
capable of producing strong complexes with heavy metal ions such
Cu?*, Zn**, and Cd** which may have hazardous effects. Current
research suggests that antibiotic-metal compounds can influence ARG
recruitment and bacterial community organization, thus impacting
the mechanisms of biodegradation (Yan et al., 2024). Cu contamination
leads to a significant increase in soil bacterial resistance. Heavy metals
cause the simultaneous appearance of ARGs and MRGs through
mutual selection (Liu et al., 2022). ARGs were shown to be more
prevalent and more abundant in agricultural soils as Ni levels
increased (Hu et al.,, 2017). Heavy metals are regularly added to
livestock feed to prevent sickness and promote growth in farm animals
(Zhou et al., 2016a). Xu et al. (2017) discovered a favorable link
between heavy metal resistance genes such as Cu (pcoA) and Zn
(czcD) and specific ARG subtypes in aquatic habitats. Zhou et al.
(2016b) reported strong relationships between heavy metals, ARGs,
and MRGs in cow dung. ARGs, including multidrug, aminoglycosides,
f-lactamases, macrolide-lincosamide-streptogramin, sulphonamides,
tetracycline, and vancomycin resistance gene, have also been linked to
iron and nickel resistance genes as well (Thomas 4th et al., 2020).
Farmhouse soil will absorb manure loaded with various microbiota
and quantities of antibiotic-resistant bacteria on the basis of the life
phase of the livestock (Liu et al., 2019). The proliferation of ARGs and
antibiotic-resistant bacteria (ARB) in humans, animals, and the
environment poses significant risks to human well-being and food
sustainability (Larsson and Flach, 2022). Antibiotic selection pressure
increases the occurrence of AMR in microbes, aggravating ARG
variations between habitats. Conversely, habitats with high levels of
antibiotics and bacterial burdens promote ARB and ARG release into
various ecosystems. Virulence variables play a significant role in
increasing pathogenic microbe growth within hosts (Bai et al., 2024).
Management implementing a “One Health” approach, spanning the
consumption of antibiotics and resistance levels within humans,
animals, and the environment in which they interact, is necessary for
successfully assessing the development of AMR. Humans may become
exposed to AMR infections through the food chain, including the
ingestion of infected meat, resulting in food-borne diseases.
Furthermore, bacteria that infect both humans and animals can share
mobile ARGs at an elevated rate. Additionally, soil bacteria and
pathogenic organisms in humans share resistance genes, and it has
been proposed that the soil microbiota serves as a repository of
resistance gene sequences. Antimicrobial resistance in cattle
production influences both the environment and human health
(Lawther et al., 2022; Gao et al., 2023). Resistome studies of soil
samples offer fresh insights into the environmental resistome,
including the discovery of new ARGs (Forsberg et al., 2014). The
application of shotgun metagenomics for understanding the structural
and functional properties of the environment has grown dramatically
in the past few years (Salam, 2024). Metagenomics provides a
comprehensive view of the microbial populations and resistome in
samples (Noyes et al., 2016). Our hypothesis was that soils with varied
heavy metal concentrations and abundances of organic compounds
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would have distinct resistomes and microbial populations. In the
present study, we analyzed the metagenome profile of soil samples
from eight different heavy metal and hydrocarbon contaminated sites
in Tamil Nadu, India, to investigate alterations in the microbiome and
resistome. The primary goals of this research are to determine the total
concentrations of heavy metals and the distributions of organic
compounds in soils, reveal the microbial and resistome diversity in
with different types
compoundcontamination, and investigate the relationships among the

areas of heavy metal and organic
levels of heavy metals, hydrocarbons, and microbial diversity in
different soil sites.

2 Materials and methods

2.1 Site description and soil sample
collection

Bulk soil samples were collected from eight different locations
with the possibility of becoming polluted from anthropogenic and
livestock activities, namely, garden (AGS) (10°48'42.6"N
79°36'55.6"E), poultry farm (NPS) (11°22'51.5"N 78°09'56.7"E),
cattle shed (CSS) (10°47'55.4”N 79°35’34.8”E), market (TMS)
(10°45'57.0’'N 79°38'10.7”E), hospital (THS) (10°46'34.9’N
79°36'11.9"E), dump yard (DYS) (11°30"24.7"N 77°15'27.5"E), paper
mill (PIS)(11°29'51.1"N 77°09"26.2"E) and thermal power plant (TPS)
(11°35'39.6"N  79°27°25.5"E) (Supplementary Figure 1A). Five
replicate samples were collected from each site (at a depth of 10 cm
from the topsoil) via alcohol-disinfected trowel, placed into sterile
polyethylene bags (Ziploc), combined into a composite sample and
subjected to cool conditions in the laboratory within twenty-four
hours. During sampling, the climatic conditions were found to
be moderate (Lacerda-Junior et al., 2019). Environmental soil and
environmental factors, such as pH and air temperature, can affect
microbial community analysis results. To minimize sample bias,
we identified locations with identical circumstances and used a five-
point stacked sampling method (Zhou et al., 2016b). The soil samples
are then air-dried and sieved via a 2 mm sieve. The sieved soil samples
were split into two portions and stored at —80 °C and —20 °C for DNA
extraction and physiochemical analysis, respectively.

2.2 Soil physiochemical and heavy metal
analysis

Various techniques were used to examine the following
parameters of the soil: pH; nitrogen, phosphorus, total organic
carbon (TOC), potassium, magnesium, and calcium contents; and
heavy metals such as lead (Pb), nickel (Ni), cadmium (Cd),
chromium (Cr), zinc (Zn), copper (Cu), manganese (Mn), iron
(Fe), and aluminum (Al). The soil pH was measured following the
method of Mclean; soil slurry with 10 g of soil and 20 mL of
distilled water was prepared. The slurry was left undisturbed for
30 min. The pH electrode was then inserted into the slurry, and the
readings were recorded (Nistala and Kumar, 2023). Five grams of
each soil samples was thoroughly mixed with one liter of 1 N
NH,OAc (pH 7) to determine the contents of potassium, sodium,
magnesium, and calcium. The filtrates were then collected using
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Whatman No. 1 filter paper. The EDTA titration method was
utilized to estimate calcium and magnesium, whereas flame
photometer was used to assess sodium and potassium (Ukabiala
etal, 2021). An atomic absorption spectrophotometer (AAS) was
used to analyze Pb, Ni, Cd, Cr, Zn, Cu, Mn, Fe, and Al. To estimate
the quantity of heavy metals present, 5 grams of each soil samples
were subjected to acid digestion, chilled, and then combined into
a 100-milliliter solution. Negative controls or blank samples were
also handled comparably. Standard solutions of the corresponding
heavy metalswere made at six concentrations. The prepared
solution was aspirated into the AAS apparatus in the following
order: blank, standard, and sample. The following range of
wavelengths, from 200 to 400 nm, was employed to measure the
absorbance of various heavy metals: 283.3 nm (Pb), 394.5 nm (Ni),
228.8 nm (Cd), 324.7 nm (Cr), 213.8 nm (Zn), 357.9 nm (Cu),
279.5 nm (Mn), and 248.3 nm (Fe) (Tibebe et al., 2022). The
nitrogen, potassium, sodium, and phosphorus contents were
measured in kilograms per hectare (kg/ha). Calcium and
magnesium were measured in milligrams per kilogram of soil (mg/
kg), and total organic carbon was measured as apercentage (%).
All heavy metals were measured in the parts per million
units (ppm).

2.3 GC-mass analysis of the soil samples

The soil samples were analyzed for organic pollutants using
GC-mass analysis with slight modifications (Siddiqui et al., 2024).
Briefly, 5 g of fresh soil sample was added to a 250 mL Erlenmeyer flask
with a 1:1 ratio of methanol: ethyl acetate mixture and shaken vigorously
at 250 rpm for 6-8 h. Furthermore, the mixed samples were sonicated
for 3 min, 30 s ON, and 30 s OFF mode conditions and centrifuged for
15 min at 10,000 rpm. All the organic pollutants were present in the
supernatant; the upper organic phase was collected and dried at
40 °C. The dry residue was dissolved in a methanol: ethyl acetate
mixture (1:1, v/v) and filtered through a 0.22 pm syringe filter; samples
were analyzed via a GC-mass analyzer (Siddiqui et al., 2024). The
organic pollutants were detected and quantified in the soil samples via
gas chromatography-mass spectrometry (GC-MS) (Agilent
CH-GCMSMS02, 8,890 GC System, 7,000 GC/TQ). Analyte separation
was achieved with an HP5MS column (30 m x 250 pm x 0.25 pm) under
the following conditions: the injection port temperature was set to
280 °C, and the column temperature was initially held at 50 °C for
1 min before being increased to 280 °C over the course of 38 min. The
injector port, interface, and ion source temperatures were set to 120 °C,
210 °C, and 280 °C, respectively. The temperature program for the GC
was as follows: start at 50 °C with a hold time of 1 min, then ramp to
120 °C at a rate of 5 °C/min, hold for 1 min, ramp to 210 °C at a rate of
10 °C/min with another 1-min hold, and finally increase to 280 °C at
10 °C/min and hold for 5 min. The total run time was 38 min. A sample
injection volume of 2 pL was used with helium as the carrier gas at a
1.0 mL/min flow rate. The transfer line and ion source temperatures
were maintained at 210 °C and 280 °C, respectively. The mass
spectrometer was operated in full-scan mode, scanned across a mass-
to-charge ratio (m/z) range of 30-900, and used the Mass Hunter
software for qualitative analysis. (https://www.agilent.com/en/
promotions/masshunter-mass-spec). For quantitative analysis, two
characteristic ions were detected via single-ion monitoring. Importantly,
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since this is primarily a qualitative analysis, concentration quantification
cannot be performed.

2.4 Soil dehydrogenase activity

After being weighed, 0.5 g of the air-dried soil samples were
placed into 15 mL centrifuge tubes. Every single tube was meticulously
filled with 2 mL of freshly made Tris-HCI buffer (pH 7.6) and 1 mL
of 1% (w/v) triphenyl tetrazolium chloride (Sisco Research
Laboratories Pvt. Ltd., India). After thoroughly vortexing the tubes to
completely combine the reaction mixture, the tubes were incubated
for 24 h at 37 °C in the dark. Ten milliliters of 96% ethanol were used
to obtain the triphenyl tetrazolium formazan (TPF) that had
developed after 24 h. The tubes were vortexed and centrifuged at 4,000
x g for 5 min. The red color intensity at 485 nm was used to measure
the quantity of TPF in the supernatant via a UV/Vis spectrophotometer
(Eppendorf AG 22331 Hamburg) (Seo and Cho, 2021).

2.5 DNA extraction from the soil samples

Air-dried and sieved soil samples were used for the DNA
extraction via the DNeasy Power Soil Pro Kit (QIAZEN, Hilden,
Germany), according to the manufacturer’s instructions. The quality
and quantity of the isolated DNA were determined via a Nanodrop
spectrophotometer (Genova Nano, Jenway, UK) with a 260/280 nm
ratio. DNA integrity was confirmed via 1% agarose gel electrophoresis
(Lacerda-Junior et al., 2019).

2.6 Whole metagenome sequencing using
the Illumina Hiseq platform

The extracted DNA samples were fragmented via the KAPPA
fragmentation method (KAPA HyperPlus Kit) to fragment the DNA
into 600 bp length. The fragmented samples were processed for end
repair and A-tailing with Hypapeep plus ERAT enzyme mixture.
Immediately after end repair and A-tailing the adapter was added and
ligated to the end repaired DNA fragments via DNA ligase. Library
amplification was performed on the adapter ligated samples with
Mlumina primers (Illumina, San Diego, USA). A total of 40 ng of
extracted DNA was used for amplification, along with 10pM of each
primer with initial denaturation at 98 °C, 4 Cycles of denaturation at
98 °C for 15 s, annealing at 60 °C for 30 s, extension at 72 °C for 30 s,
and a final extension at 72 °C for 1 min and followed by holding at
4 °C. Libraries were purified via Ampure beads and quantitated using
a Qubit dsDNA high sensitivity assay kit. Sequencing was performed
via [llumina Hiseq 4,000 (Illumina, San Diego, USA) at Biokart India
Pvt. Ltd. (Banglaore, India). The size of the product used for
sequencing was >450 bp.

2.7 Bioinformatics analysis
Quality control (QC) was performed on the raw sequenced

data via fastQC (https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/). The raw data were trimmed to remove the
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adapter sequences via the tool Trimgalore version 0.4.5 (https://
www.bioinformatics.babraham.ac.uk/projects/trim_galore/). The
trimmed raw data were used as the input for Kraken2 analysis.
Kraken2 version 2.1.2 software was used for further analysis (Lu
et al., 2022). The Kraken-build parameter was used to build
databases for the analysis. The source used to construct the
database was downloaded from NCBI (National Center for
Biotechnology Information). The cluster of Orthologous Genes
(COG) classifier version 1.0.5 (https://github.com/moshi4/
COGclassifier/) was used to perform the COG functional
annotation. The COG database is used for the functional
annotation of genomes by providing a set of clusters of orthologous
genes that can be used to predict the function of uncharacterized
genes on the basis their similarity to known genes. COGs are
defined as groups of proteins that are likely to be orthologs, which
are genes in different organisms that evolved from a common
ancestor by speciation, and thus retain the same function. COGs
are identified by comparing the complete proteomes of multiple
organisms and clustering the proteins into groups on the basis of
sequence similarity and phylogenetic analysis. The Kyoto
Encyclopedia of Genes and Genomes (KEGG) database annotation
refers to the process of assigning functional information to genes
or proteins via the KEGG database (https://www.genome.jp/kegg/
pathway.html). A gene or protein sequence is compared to the
sequences in the KEGG database using sequence alignment tool
BLAST. The gene or protein is assigned to a KEGG pathway or
function on the basis of the best match. The graphs have been made
with the top 10 pathways and pathway functions. MEGANG6
software was used to construct the phylogenetic tree at the taxon
level (Gautam et al., 2023). Virulence factors and antimicrobial
resistance (AMR) genes were predicted by performing a BLAST
search of protein files against the Virulence factor and CARD
database (https://card.mcmaster.ca/) of the respective samples,
with a gene identity of 95%. The Ghostkoala tool (https://www.
kegg.jp/ghostkoala/) was wused for pathway annotations.
Metageneassist (http://www.metagenassist.ca/METAGENassist/)
was used to predict metabolic genes. Microbiome analyst (https://
www.microbiomeanalyst.ca/)was used to predict alpha diversity,
beta diversity, rarefaction curve, dendogram, correlation plot, and
core microbiome. Sankey plots are visualized with the Pavian R
based tool (https://ccb.jhu.edu/software/pavian/). The SEED
subsystems database has been used to predict the subsystem.
STAMP 2.1.3 (https://beikolab.cs.dal.ca/software/STAMP) was
used to generate extended error bar charts. The comparative
analysis of metabolic pathways within SEED subsystems was
conducted using Fisher’s exact test by STAMP software. A p < 0.05
filter was used. Protein sequences are compared to sequences in the
BacMetdatabase
sequence alignment tools such as BLAST. The graphs have been
made with the top 20 heavy metals with at least 60% identity. Unit
variance scaling is applied to sequence abundance. Both taxon

(http://bacmet.biomedicine.gu.se/)  using

rows and sample columns were clustered using correlation distance
and average linkage. The top 50 organisms were used for heatmap
construction by clustiviz web tool (https://biit.cs.ut.ee/clustvis/).
Unit variance scaling is applied to rows; SVD with imputation is
used to calculate principal components. The X and Y axes show
principal component 1 and principal component 2 which explain
the total variance by clustviz web tool.
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3 Results and discussion

3.1 Soil physiochemical and heavy metal
analysis

All the samples had pH values ranging from neutral to alkaline.
Our results revealed that poultry farm soil (NPS) had markedly
higher concentrations of K (1,299 kg/ha), Na (3,963 kg/ha), Ca (mg/
kg), Mg (833 mg/kg), and total organic carbon (TOC) (6.71%) than
the other samples. The highest concentrations of metals such as Cu
(4.872 ppm), and Cd (0.316 ppm) were reported in the NPS sample.
N (478.93 kg/ha) and Ni (0.79 ppm) were the highest in the DYS
sample, and Pb (4.08 ppm), Fe (169 ppm), and Cr (2.41 ppm) were
found to have the highest concentration in the AGS sample. The
highest concentrations of Al (628.15 mg/kg) and Mn (1889.32 mg/
kg) were reported in the TPS sample. The CSS sample had the
highest concentration of P (219.4 mg/kg) and the lowest
concentrations of Pb (0.007 ppm), Ni (0.01 ppm), Cr (0.042 ppm),
Cu (0.347 ppm), and TOC (0.114%). The lowest concentrations of
calcium (111.6 mg/kg) and iron (60.3 ppm) were reported in the
TMS sample. Moreover, the lowest quantities of Na (71.6 kg/ha) and
Cd (0.061 ppm) were detected in the PIS and TPS samples,
respectively, and Na (85.86 kg/ha) and Cd (0.014 ppm) were detected
in the TPS samples (Supplementary Table 1). Principal components
analysis (PCA) revealed that the NPS sample was clearly distinct
from the remaining samples. The THS sample showed close
similarity to the AGS sample. TPS, TMS and CSS were grouped
together, at the same time; AGS, THS, PIS and DYS were grouped
together (Supplementary Figure 1B). The heatmap generated
concerning the Figure 1 displayed the soil properties vertically and
the location of the study site horizontally. A heatmap is a
two-dimensional illustration of data that uses colors to represent
values and provide instant visual information. The scale displays the
Z score measures, with blue signifying low concentration and dark
red representing high concentration. By using cluster analysis,
objects (cases) can be grouped into classes (clusters) based on
similarities within each class and dissimilarities between different
classes. The results of cluster analysis help in interpreting the data
and indicating patterns. Lead, cadmium, chromium and copper were
higher in three samples, namely, AGS, THS and NPS; these samples
were grouped together as high heavy metal concentration (HHMC)
samples and the other five samples with lower concentrations of
these heavy metals, namely, CSS, TMS, TPS, DYS and PIS were
grouped as low heavy metal concentration (LHMC) samples.
Cadmium, lead, and chromium are the most hazardous compounds
that can harm the environment (Chen et al., 2018). The soil pH was
positively correlated with Al, Mn, and Mg. Moreover, soil pH had
significant negative correlations with Ca, Cr, Fe, Cu, and Pb. Cu was
negatively correlated with soil pH, Al, and Mn. Moreover, Cu was
positively correlated with Pb, Fe, Cd, Cr, Ca, and TOC. Cd had
significant positive correlations with Cr, Fe, TOC, Ca, Cu, and Na.
Na and K were positively correlated with Zn, Ca, and TOC. Ca and
TOC were positively correlated with potassium, sodium, copper, and
zinc (Supplementary Figure 1C). Although zinc, copper, iron, and
chromium are critical minerals for soil microorganisms, excessive
deposits can cause oxidative damage and disrupt protein assembly
and activity (Salam, 2022). Copper is commonly used in pesticide
and antibacterial manufacturing, and is integrated into food for
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FIGURE 1
Heat map illustrating the areas where heavy metals and soil physiochemical properties cluster by using wards clustering methods and the Euclidean
distance matrix. The scale displays the Z score measures, with blue signifying low concentration and dark red representing high concentration. A
heatmap is a two-dimensional illustration of data that uses colors to represent values and provide instant visual information.

livestock to increase development by affecting microbes in the gut
(Pal et al., 2017).

3.2 Distribution of various hydrocarbons
and other organic compounds across the
different soil sites

The heatmap (Figure 2A and Supplementary Table 2) revealed
that among the HHMC samples, AGS samples presented a greater
peak area of 1-dodecanol and docosane followed by the THS sample
had a higher peak area of docosane, triacontane, heptadecane,
eicosane, and didecan-2-yl phthalate. NPS had a greater peak area
fordiethyl phthalate, ammonium acetate, squalene, 2, 6, 10,
14-tetramethylpentadecane, tetrachloroethylene, hexadecane, decane,
1-iodo. Moreover, among the LHMC samples, the peak area of
ammonium acetate was greater in the CSS samples. PIS had a greater
peak area for 2-pentadecanone, 6, 10, 14-trimethyl. TMS had a greater
peak area of decane, 1-iodo, phthalic acid, 6-ethyl-3-octyl butyl ester,
1, 3-benzenedicarboxylic acid, bis (2-ethylhexyl), and dl-alpha-
tocopherol. The TPS had a greater peak area of 1-dodecanol,
hexadecane, 1-iodo. DYS had a greater peak area of octadecane,
phthalic acid, cyclobutyl ethyl ester, and behenic alcohol. Using the
ProTox-1II web server, we analyzed the toxicity and adverse effects of
the metabolites found in the soil samples, including their LD50 values
and severe hepatotoxicity,

cytotoxicity,  carcinogenicity,
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immunotoxicity, and mutagenicity characteristics. Carcinogenicity
was exhibited by the compounds such as, tetrachloroethylene,
hexadecane, 1-iodo-, hexadecanoic acid, ethyl ester, phthalic acid, di
(2-propylpentyl) ester, ethyl acetate, phthalic acid, di (2-propyl
pentyl) ethyl
1,3-benzenedicarboxylic acid, bis (2-ethylhexyl), pentadecanoic acid,
ethyl ester, phthalic acid, and 6-ethyl-3-octyl butyl ester
(Supplementary Table 3). Most of the compounds represent the

ester, (E)-9-octadecenoic acid ester,

predominant classes of hydrocarbons, alkanes, acyclic alkanes, and
fatty acids (Supplementary Figure 2).

N-docosane is usually present in petroleum pollution.
P aeruginosa DQ8 mostly degrades n-docosane by terminal oxidation
(Sui et al., 2023). Diethyl phthalate (DEP), a frequently employed
plasticizer, has sparked widespread public outrage because of its ease
of identification, ecological stability, and possible adverse health
effects (Yu et al, 2021). Squalene is frequently employed in the
culinary, cosmetic, and pharmaceutical sectors for several purposes
(Lu et al,, 2018). Petroleum hydrocarbons are eventually discharged
into soils as a result of container spills and leaks at gas pumps and
facilities for industry. The extensive and permanent existence of
pollutants derived from petroleum hydrocarbons represents major
dangers to human well-being, including carcinogenesis, toxicity, and
gene alterations that can be transferred through the food chain.
Because of the enhanced electrostatic repulsion between n-hexadecane
and soil particles, the ability of the compound to penetrate cadmium-
contaminated soil was far greater (Huang et al., 2023).
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3.3 Soil dehydrogenase activity

Among various soil enzymes, dehydrogenase activity (DHA) has
been recognized as an important biochemical indicator in soil
introducing the concept of determining the metabolic activity of
microorganisms in soil and other habitats by measuring DHA. DHA
activity is a sign of oxidative metabolism and microbiological activity
in soils because it is related to viable cells (Velmourougane et al.,
2013). The AGS sample was reported to have a soil dehydrogenase
activity value of 0.217 + 0.01 pg TTC g™' h™". The soil dehydrogenase
activity of the CSS, TPS, TMS, and PIS samples rangedfrom 0.32 to
0.48 pg TTC g™' h™'. A markedly higher dehydrogenase activity was
observed in the DYS sample (0.549 + 0.03 pg TTC g™' h™"), whereas,
a much lower soil dehydrogenase activity was reported in the THS
sample (0.094 + 0.03 pg TTC g h™'). The ANOVA-test revealed that
the soil dehydrogenase activity was significantly differed across all the
samples (p value 0.0037) (Figure 2B). Low organic content in hospital
soil can reduce microbial diversity and dehydrogenase activity (Basiry
et al,, 2022). Poultry litter can contain high levels of ammonia that
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can inhibit microbial activity (Crippen et al., 2019). Cattle manure
with decreased ammonia content might hinder soil microbes (Black
et al., 2021). The waste from livestock nourishes soil bacteria with
organic matter, facilitating the production of dehydrogenase via
metabolism (Zhu et al., 2023). Composted food remnants in market
soils serve as a substantial nutrient reservoir for microbes, leading to
an increased and dynamic microbial community. Fertilizers or
composts enrich soil with essential nutrients, enhancing
dehydrogenase activity (Medo et al.,, 2021; Carpio et al., 2020).
Gardens with increased organic matter content, such as compost and
leaves, provide a food source for microbes, resulting in an active
microbial population and higher DHA (Wozniak et al., 2024).
Organic substances found in dump yards, such as food leftovers, yard
trash, and paper products, might attract soil microbes, leading to
enhanced microbial and dehydrogenase activity (Rastogi et al., 2020).
Paper mills emit harmful substances such as chlorines, dyes, and
heavy metals into the surroundings, resulting in contamination of soil
and alterations of microbial communities (Mohan and Shukla, 2022;
Turner et al., 2022).
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3.4 Overview of the metagenomic
sequencing results

Metagenomic sequencing yielded 23.78 + 18.62 million reads per
soil sample, with a mean GC content of 62% + 0.02, and a mean
quality Phred score of 35.69. Overall, the average percentage of each
Kingdom was3.11% Archaea, 95.47% Bacteria, 0.56% Eukaryota
fungi, 0.40% Eukaryota protozoa, and 0.30% Viruses.

3.5 Bacterial diversity across the soil
samples

The rarefaction curves approached saturation, suggesting full
bacterial abundance (Supplementary Figure 3).
Supplementary Figure 4 depicts the representation of alpha diversity
indices across the samples. The two HHMC samples, AGS and THS,
had lower Shannon and Simpson indices, indicating reduced bacterial
diversity. The LHMC samples CSS and TMS presented the highest
Shannon and Simpson indices, indicating a diverse bacteriome.
Interestingly, the NPS samples presented greater diversity, unlike the
other HHMC samples. The non-significant p-values (> 0.05) of
Simpson (0.29) and Shannon (0.40) alpha diversity indices indicate
that the bacterial ecological niche is the same among the ‘high heavy
metal concentration’ (HHMC) and ‘low heavy metal concentration’
(LHMC) samples. The beta diversity plot depicts statistically
significant variations (p-value = 0.049) between the two groups of
samples, which had an F-value of 4.77 and an R-squared value of 0.44.
Significant inter-group variations in the bacteriome existed between
the HHMC and LHMC sample groups. Among the HHMC samples,
the AGS and THS samples were separated from the LHMC samples,
whereas the NPS samples were closely associated with the LHMC
samples (Figure 3A). The PCA score plot (Supplementary Figure 5A)
of the first two main components clearly demonstrates that high and
low heavy metal concentrations constitute the fundamental
foundation for separation, with PC1 and PC2 accounting for 97.1 and
2.2% of the variation, respectively. High-heavy metal concentration
samples, such as AGS and THS, were well separated from low-heavy
metal concentration samples, except for NPS, where the NPS samples
overlapped with low-heavy metal concentration samples (CSS, DYS,
TMS, TPS, and PIS). The 3D plot with three principal components
(Supplementary Figure 5B) revealed that the samples from the cattle
shed (CSS), dump yard (DYS), market (TMS), poultry (NPS), and
thermal power plant (TPS) were grouped together. In contrast,
hospital (THS), paper Industry (PIS), and garden (AGS) samples were
separated from all the other samples. The 3D PCA plot showing three
principal components (Supplementary Figure 5B) reveals that the first
principal component (PC1) explains 77.9% of the total variance,
whereas PC2 and PC3 account for 16 and 5.4%, respectively. These
results indicate a clear separation between the HHMC and LHMC
groups (Supplementary Figure 5B). Atthe phylum level of overall
taxonomic profiling, Actinobacteria was found to be predominant
with highest diversity followed by Proteobacteria, and Planctomycetota
(Supplementary  Figure  5C). The stacked bar plot
(Supplementary Figure 5C) shows that the HHMC samples (AGS,
THS, and NPS) have a higher abundance of bacteria than the LHMC
samples. Actinobacteria was the most abundant phylumin all the
samples, accounting for 75.65, 53.96, 70.91, 65.19, 66.67, 81.06, 58.39,
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and 66.79% of the effective bacterial sequences from AGS, CSS, DYS,
NPS, PIS, THS, TMS, and TPS, respectively. The nextmost dominant
phylum in the AGS, CSS, DYS, NPS, PIS, THS, TMS, and TPS samples
was Proteobacteria, with a prevalence of 23.52, 44.96, 28.58, 34.51,
32.20, 18.58, 40.70, and 32.41%, respectively. Actinobacteria was the
most abundant phylum, followed by Proteobacteria and
Planctomycetota between the two groups. Actinomycetia was the most
followed by

Alphaproteobacteria. Corynebacteriales was the most abundant order,

abundant class, Deltaproteobacteria  and
followed by Streptomycetales and Myxococcales. Mycobacteriaceae was
the most abundant family, followed by Streptomycetaceae,
Nocardioidaceae, and Nitrobacteriaceae. At the species level,
Mycobacterium canettii was the most abundant, followed by Sorangium
cellulosum, and Conexibacter woesei. Mycobacterium canettii was
predominant in the AGS (49.76%) and THS (40.54%) samples.
Sorangium cellulosum was predominant in the AGS, CSS, DYS, NPS,
PIS, THS, TMS, and TPS samples, with prevalence rates of 2.91, 4.50,
1.68,2.42, 2.18, 1.92, 4.38, and 1.97%, respectively. Kocuria flava was
predominant in DYS (5.43%), THS (4.66%), and TMS (3.37%) samples
(Supplementary Figure 5D). The core microbiome refers to the set of
taxa that are detected in a high fraction of the population above a
given abundance threshold. Sorangium cellulosum was the most
dominant species in the core microbiome, followed by Mycobacterium
canettii, Conexibacter woesei, Kocuria flava, Sandracinus amylolyticus,
Brachybacterium saurashtrense, Microvirga ossetica, Baekduia soli,
Archangium  violaceum, Streptomyces venezuelae, Rubrobacter
xylanophilus, and Nocardia asteroids (Figure 3B). The heat map
(Figure 3C) depicts the distribution of the selected bacterial species
across the samples. Among the HHMC samples, Mycobacterium
canettii was abundant in the AGS samples, whereas Stutzerimonas
stutzeri, Actinomadura madurae, and Saccharopolyspora erythraea
were abundant in the NPS samples. Kocuria flava and Mycobacterium
canettii were predominant in the THS. Among the LHMC samples,
the CSS samplespresented high abundances of Brachybacterium
saurashtrense and Bradyrhizobium erythrophlei species, the PIS
samplespresented high levels of Rubrobacterxylanophilus and
Microvirgaossetica species; and the TMS samplespresented high levels
of Mycolicibacterium duvalii, Nocardioides sp. CF8, and Sandaracinus
amylolyticus species. Mycobacterium cannettii was abundant in the
HHMC samples. Streptomyces sp., Bradyrhizobium and Nocardioides
were comparatively less abundant in HHMC than in LHMC. The
correlation plot (Supplementary Figure 6) shows that most of these
bacterial genera were positively correlated with one another, with only
a few negative correlations. Azospirillum, Dactylosporangium,
Rhizobium, Burkholderia, Gordonia, Pseudomonas, Xanthomonas, and
Achromobacter were highly positively correlated with each other.
Nocardioides was negatively correlated with many bacteria, mainly
Azospirillum, Dactylosporangium, Rhizobium, Burkholderia, Gordonia,
Pseudomonas, Xanthomonas, and Achromobacter.

Actinobacteria, including Streptomyces, Nocardia, and Kocuria
can aerobically breakdown organic molecules (Behera and Das,
2023). Guo et al. (2017) reported that in heavy metal-contaminated
locations, Proteobacteria and Actinobacteria dominated the microbial
population (Guo et al., 2017). Actinobacteria are known for
producing spores that are resistant to external stressful circumstances,
secreting proteins that breakdown soil macromolecules. These
resistance mechanisms include resistance to heavy metals and
antibiotics, and the biosynthesis secondary compounds and
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antibiotics, providing unique benefitsunder soil conditions.
Proteobacteria have unique structural, biological, and metabolic
characteristics that enable them to thrive in oligotrophic settings and
handle different kinds of stress (Salam, 2022). Proteobacteria are

10.3389/fmicb.2025.1649872

copiotrophs that are capable of utilizing carbon obtained from trees.
The prevalence of Proteobacteria tends to increase when organic
matter levels in the soil increase. An increase in Proteobacteria
richness is usually associated with improved microbial tolerance to
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harmful chemicals and the condition of the soil (Zou et al., 2024).
Proteobacteria are the main active phyla in sediments polluted with
high quantities of heavy metals (e.g., As, Cu, Cd, Hg, Pb, and Zn)
(Song et al.,, 2021). Proteobacteria are the predominant bacteria in
polluted environments because of their high tolerance to heavy
metals (Qiao et al., 2021). Alphaproteobacteria include primary
producers, plant mutualists, and pathogenic microorganisms
(Williams et al., 2007). Nocardioides are involved in the degradation
of hydrocarbon and haloalkane pollutants through the activation of
genes such as phdA, phdB, phdC, and phdD (Ma et al,, 2023). The
abundance of heavy metals in the soil could cause competition for
resources among soil microorganisms, altering the variety of
microbial life in the soil. The presence of heavy metals affects
microbial diversity and growth because bacteria are susceptible to
heavy metals. Most investigations have shown that heavy metal
exposure can drastically reduce the soil bacterial population. Areas
with intermediate heavy metal contamination have greater bacterial
diversity than sites with low or high levels of heavy metal
contamination (Ma et al., 2022). Other studies have shown that heavy
metal contamination has no substantial effect on the diversity of
bacteria (Dell'Anno et al., 2021). S. cellulosum strains are an invaluable
resource for discovering new and potential commercial lipolytic
enzymes. The cellulolytic myxobacterium S. cellulosum not only is
very appealing in drug discovery, but also has significant breakdown
capabilities for a wide spectrum of macromolecules, including lipids
and polysaccharides (Yuan et al., 2023). B. saurashtrense JG06, a new
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diazotrophic plant growth boosting bacterium, increases peanut plant
tolerance by modifying physio-biochemical activity and host-gene
transcription under nitrogen deprivation circumstances (Alexander
et al., 2021). The wild-type, soil-dwelling bacterium S. venezuelae,
which creates aerial hyphae and spores as a component of its regular
growth process, also produces the alkaline volatile chemical
trimethylamine (TMA) under various circumstances for growth (Zhu
et al., 2024). Stutzerimonas stutzeri strains reduce N,O release in soils
with different appearances, likely due to changes in the makeup of soil
microbial communities and gene expression associated with
nitrification and denitrification (Gao et al., 2024). Saccharopolyspora
bacteria such as Sac. erythraea generate essential polyketide
antibiotics, such as erythromycin A (Lii et al., 2020). S. amylolyticus
typically exhibits myxobacterial properties such as gliding motility,
secondary metabolite synthesis, and spore development under
adverse environmental circumstances. S. amylolyticus degrades agar,
chitin, cellulose, and starch (Sharma et al., 2016).

Mycobacterium canettii is a smooth bacillus that belongs to the
Mycobacterium tuberculosis complex. M. canettii exposure primarily
manifests as lymph node and pulmonary tuberculosis. It also has the
ability for intra-species transfer of genes horizontally (Bouzid et al.,
2017). Kocuria spp. constitutes part of the typical human flora and can
be isolated from a variety of ecological habitats. In particular, these
bacteria live on human skin and mucus membranes, such as the
mouth cavity, and are generally regarded as non-pathogenic.
Infections are most with

typically observed in patients
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immunodeficiency, deformities, intensive care individuals, and even
newborns; nevertheless, an increase in Kocuria infections has recently
been reported in individuals who are immunocompetent (Ziogou
et al, 2023). Relative abundance analysis showed that several
Streptomyces sp. were detected in higher abundance in sediment
samples from the Ganga than the Yamuna of India (Behera et al,,
2020). Pseudomonadota and Actinomycetota were found in the
polluted sediment samples from the river Ganga, contaminated with
high concentrations of heavy metals such as Mn, Cr, and Fe (Rout
et al., 2024a).

3.6 Archaeal diversity across the soil
samples

The representations of alpha diversity indices across the samples
can be seen in Supplementary Figure 7A. HHMC samples were
having higher alpha diversity than the LHMC samples. Among the
LHMC samples CSS had the highest alpha diversity values similar as
the HHMC samples. DYS sample had the lowest alpha diversity. The
significant p-values (< 0.05) for Simpson (0.04) and Shannon (0.02)
alpha diversity indices indicate that bacterial ecological niches differ
between ‘high heavy metal concentration’ (HHMC) and ‘low heavy
metal concentration’ (LHMC) samples. The PCA score plot of the first
two principal components clearly shows that high and low
concentrations of heavy metals are the primary basis for separation,
where 99.1 and 0.6% of the variations were explained by PCI and
PC2, respectively (Supplementary Figure 7B). No significant inter-
group variations existed between the HHMC and LHMC sample
the of beta
(Supplementary Figure 7C). High-heavy metal concentration

groups  on basis archaeal diversity
samples, such as AGS and THS, were well separated from low-heavy
metal concentration samples, except NPS, where the NPS sample
overlapped with Low-heavy metal concentration samples (CSS, DYS,
TMS, TPS, and PIS) (Supplementary Figure 7B). Euryarchaeota
dominated the HHMC and LHMC samples at the phylum level,
followed by Thaumarchaeota. Euryarchaeota was more abundant in
HHMC (82%) than in LHMC (70.4%). Moreover, Thaumarchaeota
was more abundant in LHMC (26.1%) than in HHMC (15.4%).
Thaumarchaeota was found to be more abundant in DYS, PIS, TMS,
and TPS among the LHMC samples. Compared with the LHMC
samples, the HHMC samples (especially the AGS and THS) presented
a greater abundance of archaea (Supplementary Figure 8A).
Candidatus Nitrosocosmicus was the most abundant taxon, followed
by  Nitrososphaera, Methanoculleus, Halogeometricum  and
Methanocella at the genus level (Supplementary Figure 8B).
Candidatus Nitrosocosmicus franklandus was the most abundant
taxon, followed by Candidatus Nitrosocosmicus hydrocola, Candidatus
Nitrososphaera gargensis, Halogeometricum borinquense, and
Haloferax gibbonsii at the species level (Supplementary Figure 8C).
Candidatus Nitrosocosmicus gargensis and Candidatus Nitrosocosmicus
evergladensis were abundant in PIS, and Candidatus Nitrosocosmicus
franklandus was abundant in DYS, with a prevalence of 53.03%
(Supplementary Figure 8C). Twenty-three species were identified as
the core microbiome. Candidatus Nitrosocosmicus franklandus was
the most dominant species in the core microbiome, followed by
Candidatus Nitrosocosmicus hydrocola, Halogeometricum borinquense

and Candidatus Nitrososphaera gargensis (Figure 4A). AGS had
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relatively higher prevalence of Candidatus Nitrosocosmicus hydrocola,
Methanocella paludicola, and Methanocella arvoryzae. NPS had high
abundances of Nitrososphaera viennensis, Halorhabdus utahensis, and
Natronomonas pharaonis. THS had high abundances of Haloferax
gibbonsii and Methanothrix harundinaceae. Among the LHMC
samples, CSS had a relatively high prevalence of Methanosarcina
mazei, Methanoculleus marisnigri, and Methanoculleus chikugoensis
(Figure 4B). Most of the archaeal genera were positively correlated
with each other, mainly Methanopyrus, Haloferax, Halosimplex,
Halomicrobium, Halobaculum, Natrinema, Haloterrigena, and
Halorhabdus. Moreover, Methanobacterium was negatively correlated
with many bacteria, such as Methanopyrus, Haloferax, Halosimplex,
Halomicrobium, Halobaculum, Natrinema, Haloterrigena, and
Halorabdus (Supplementary Figure 9).

The ammonia-oxidizing archaea (AOA) of the phylum
Thaumarchaeota are a diverse, ubiquitous, and crucial functional
group of microbes found in a variety of environments. Candidatus
Nitrososphaera gargensis has adjusts to its niche in a heavy metal-
containing thermal spring through an abundance of heavy metal
resistance genes, chaperones, and mannosylglycerate as an appropriate
substance. It has the genetic capacity to adapt to ecological alterations
by communicating via a significant number of two-component
systems, by chemotaxis and flagellum-mediated movement, and even
by gas vacuole development (Spang et al., 2012). Nitrosocosmicus
franklandus is an environmentally significant strain of Thaumarchaeota
that has the capacity to interact well with ammonium oxidizing
bacteria in enriched soils that have elevated ammonium levels
(Lehtovirta-Morley et al.,, 2016). The Haloferax gibbonsii strain
contains essential enzymes for the manufacture of the bioplastic
polyhydroxyalanoate (Pinto et al., 2015).

3.7 Fungal diversityacross the soil samples

The stacked bar plot shows that the HHMC samples have a greater
abundance of fungi than the LHMC samples, especially the AGS
samples. The stacked bar plot (Supplementary Figure 10A) shows that
Ascomycota was highly dominant across the samples, followed by
Basidiomycota. Ascomycota was most abundant in the AGS sample.
Fusarium pseudograminearum was the most abundant taxon, followed
by Thermothielavioides terrestris, Colletotrichum higginsianum, and
Drechmeria coniospora. Fusarium pseudograminearum was the most
abundant species in the AGS samples with a prevalence of 95.26%
10B). The
(Supplementary Figure 10C) depicts the species-level fungal

(Supplementary Figure Heatmap
abundance across the samples. Among the HHMC samples, the AGS
samples presenteda relatively high abundance of Fusarium
pseudograminearum. Aspergillus chevalieri, Talaromyces rugulosus,
Marasmium ordeaes, and Aspergillus puulaauensis were prevalent in
the NPS samples. In THS, Pyricularia oryzae was abundant. TMS
revealed high Levelsofcryptococcus neoformans, Cercospora beticola,
and Malassezia restrictain LHMC samples. Ogataea parapolymorpha,
Pyricularia pennisetigena, and Pyricularia oryzae were abundant in the
CSS sample. The PIS sample presented greater abundances of
Ustilaginoidea virens, Brettanomyces bruxellensis, Ustilago maydis, and
Fusarium venenatum. TheTPS sample presented higher abundances
of Pochonia chlamydosporia and Botrytis cinere. The DYS sample
presented high abundances of Aspergillus fumigatus, Aspergillus
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(A) Heat map illustrating the core archaeal microbiome abundance; (B) Heat map illustrating the abundance of selected archaeal species across all the
samples by using Euclidean distance measure and Ward clustering algorithm. According to the z-score scale, red indicates a high abundance, whereas

luchuensis, and Aspergillus puulaauensis. Twenty-six species were
identified in the core microbiome (Figure 5), among which
Thermothielavioides terrestris was the predominant species, followed
by Thermothelomyces thermophilus, Drechmeria coniospora and
Colletotrichum higginsianum.

Aside from a considerable drop in wheat production,
E pseudograminearum produces a wide range of harmful secondary
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infected with
mycotoxins are unfit for consumption or feeding. Fusarium produces

metabolites, particularly mycotoxins. Cereals
a variety of mycotoxins, including trichothecenes and fumonisins. The
most prevalent Fusarium mycotoxin is deoxynivalenol (DON), which
leads to vomiting, oral infections, skin irritation, and bleeding in
humans and livestock (Li et al., 2022). T. terrestris contains enzymes
that

including cellulases and hemicellulases

can degrade
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polysaccharides from biomass, contributing to the global carbon cycle
(Camargo et al, 2020). C. higginsianum is a hemibiotrophic
ascomycete fungus that leads to commercially significant anthracnose
infections in a variety of monocot and dicot plants around the world
(Yan et al., 2018). Drechmeria coniospora is an obligate parasitic fungus
from the Clavicipitaceae family. It affects a wide spectrum of nematode
species by producing spores that cling to their cuticles (Wan et al.,
2021). C. neoformans is a dimorphic fungus leading to fatal
meningoencephalitis primarily in immunocompromised people
(Zhao and Lin, 2021). Cercospora leaf spot, resulting from the fungal
pathogen C. beticola, is a potentially devastating foliar disease of sugar
beets globally (Rangel et al., 2020). M. restricta is an opportunistic
fungal pathogen associated with skin disorders such as atopic
dermatitis, seborrheic dermatitis, and psoriasis (Peng et al., 2024).
P. pennisetigena is pathogenic to Poaceae plants in Brazil, China,
Japan, Philippines, and United States (Vi et al., 2022). U. virens is
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responsible for the development ofdevastating Rice false smut disease
across the globe (Chen et al., 2024). B. bruxellensis is found not only
in wine but also in several different kinds of alcohol. These yeasts can
withstand the extreme circumstances encountered throughout the
fermenting process, such as increasing ethanol levels and increasing
the amount ofsulphur dioxide administered (Smith and Divol, 2016).
U. maydis is a biotrophic fungal pathogen that produces tumours
throughout all airborne maize tissues (Ferris and Walbot, 2020).
B. cinerea, a common plant pathogen with a necrotrophic way of life,
produces grey mould infection on numerous plants (Bi et al., 2023).
Aspergillus fumigatus is an ecological filamentous fungus that can
cause serious illnesses in immunocompromised people (van de
Veerdonk et al, 2017). Thermothelomyces thermophilus is a
thermophilic ascomycete that produces several glycoside hydrolases
and oxidative enzymes that aid in the degradation of lignocellulosic
materials (Contato et al., 2024).
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3.8 Protozoan diversity across the soil
samples

The stacked bar plot shows that the HHMC samples had
greater protozoa diversity, followed by the LHMC samples
(Supplementary Figure 11A). According to the stack bar plot
(Supplementary Figure 11A), Apicomplexa was the most abundant
species in the HHMC and LHMC samples, followed by Unclassified
Protozoa and Euglenozoa. Among the genera, Leishmania was the
most abundant followed the Gaillardia, Besnoitia, Bigelowiella and
Plasmodium. Moreover, at the species level, Guillardia theta was
predominant, followed by Besnoitia besnoiti, Bigelowiella natans,
Cryptomonas  paramecium and Toxoplasma  gondi
(Supplementary Figure 11B). Figure 6A shows that at the protozoan
species level, Gaillardia theta, Bigelowiella natans, Besnoitia
besnoiti, Cryptomonas paramecium and Toxoplasma gondi were the
prevalent core microbiome taxa. Among the HHMC samples, the
AGS sample presented greater abundances of Plasmodium
cynomolgi, Leishmania donovani, Leishmania major, and Besnoitia
besnoiti. NPS had a high prevalence of Bigelowiella natans,
Dictyostelium discoideum, and Thalassiosira pseudonana. THS had
a high prevalence of Cryptomonas paramecium. Among the LHMC
samples, TMS had a greater prevalence of Toxoplasma gondi,
Babesia bovis, and Thalassiosira pseudonana. In contrast, CSS had
a greater abundance of Babesia bigemina, and PIS had a higher
abundance of Plasmodium knowlesi. Plasmodium vivax, and
Plasmodium knowlesi were predominant in the TPS samples. DYS
had a relatively high abundance of Gaillardia theta and Leishmania
donovani (Figure 6B). Most protozoan species were positively
correlated with each other with the exception ofPlasmodium
knowlesi. Plasmodium knowlesiwas negatively correlated with many
protozoa, mainly Besnoitia besnoiti, Theileria orientalis, Leishmania
major, Trypanosoma brucei, Neospora caninum, Leishmania
panamensis, Phaeodactylum tricomutum, and Dictyostelium
discoideum. Plasmodium knowlesi was positively correlated with
only Plasmodium vivax (Supplementary Figure 12).

Bovine besnoitiosis can be caused by the parasite B. besnoiti, a
cyst-forming apicomplexan parasite that is related to Toxoplasma
gondii and Neospora caninum (Zhou et al., 2020). Toxoplasma gondii
infections are widespread in humans and animals globally. Rodents
are among the most significant secondary hosts for T. gondii because
they are preyed upon by cats, which then deposit environmentally
tolerant oocysts in their stool, transmitting the infection (Dubey et al.,
2021). Neospora caninum, a parasite that forms tissue cysts, is the
cause of bovine neosporosis. It is considered as one of the major
causesof reproductive dysfunction in cattle; abortion and death of
newborns result in considerable economic losses in the global cattle
sector (Marugan-Hernandez, 2017). P knowlesiare transferred
between humans and wild macaques via mosquito vectors (Naik,
2020). P. vivax causes the vast majority of outbreaks of malaria in Asia
and the Americas (Adams and Mueller, 2017). T. orientalis is the cause
of benign or non-transforming theileriosis, and has a principal impact
via erythrocyte degradation. T. orientalis is an economically significant
pathogen of cattle in Australia, New Zealand, and Japan, particularly
when young animals are transplanted into a native environment
(Watts et al., 2016). L. donovani, a kinetoplastid protozoan, is the
second most significant parasite and the root cause of life-threatening
visceral leishmaniasis (Paul et al., 2023).
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3.9 Correlations between microbial
compositions, soil physiochemical
properties, and contaminants

The correlation plots (Figure 7) were constructed using the
statistically significant interactions between the microbial taxa, soil
physiochemical characteristics, heavy metal concentrations,
pollutants, metabolites, and other compounds using the Metscape
plugin in Cytoscape v3.10.2 software (based on the Pearson correlation
coefficient (r) values >0.75 and <—0.75; p-value <0.05). Positive inter-
and intra-phyla correlations were observed across bacteria, fungi,
archaea, and protozoan taxa. Na, K, TOC, diethyl phthalate and
Tetrachloroethylene were positively correlated with one another. The
soil pH was negatively correlated with most microbial taxa. Soil pH
plays a significant role in determining the microbiome compositions
of forest soils (Bowd et al., 2022) and the fungal compositions of
wastewater treatment plants (Assress et al., 2019). Soil pH was also
negatively correlated with Proteobacteria in sugarcane rhizosphere
soils with high Mn concentrations (Li et al., 2023). Additionally, both
the Proteobacteria and Actinobacteria detected in the red soils were
negatively affected by soil pH (Muneer et al., 2022). Similarly, soil pH
is a crucial factor in shaping the archaeal community compositionin
the black soils of China, where the Thaumarchaeota and Euryarchaeota
taxa are significantly affected by soil pH (Liu et al., 2019). The archaeal
species Methanosarcina mazei and Methanoculleus marisnigri, as well
as the fungal species Cryptococcus neoformans were also abundant in
the sediment samples from the polluted stretches of the river Ganga
in India (Rout et al., 2022). Pb, Cr, Cd, Ni, Cu, Zn and Fe were
positively correlated with the bacteria, archaea, fungi, protozoa, and
virus taxa. However, several edges with strong correlations (Pearson
correlation coeflicient values >0.75 and <—0.75) were detected for Pb,
Cr, Cd, and Cu. Higher concentrations of Mn reduce the abundance
of soil bacteria, particularly Proteobacteria and Actinobacteria, which
are negatively correlated with Mn concentrations.

Research suggests that high concentrations of heavy metals can
reduce sediment bacterial biomass, whereas low amounts can increase
the biomass of bacteria and promote growth (Chen et al,, 2018).
Proteobacteria have been found to be the dominant bacteria in soil
over time after exposure to heavy metals, since they are more resistant
to the presence of heavy metals. According to Schneider et al. (2017)
and Zhao et al. (2019a), there is a positive association between
Proteobacteria and heavy metal levels.

Among the bacterial taxa (Figure 7A), Actinobacteria and
Proteobacteria showed significant positive correlations within their
respective intra-phyla taxa. Moreover, Proteobacteria taxa, such as
Azospirillum sp., Rhizobium sp., and Bradyrhizobium sp., had
strong positive correlations with several Actinobacteria taxa such
as Nocardia, Nocardiodes, Streptomyces and Rhodococcus species.
These results are in agreement with the observations of Yan et al.
(2021), where Actinobacteria taxa were found to exhibit the least
competitive interactions with Proteobacteria taxa (especially under
oligotrophic conditions), probably due to fewer niche overlap
effects between these phyla. Within the Actinobacteria phylum,
Nocardioides humi, Nocardioides sp. CF8, Cellulosimicrobium
cellulans, Gordonia sp., and Pimelobacter simplex were strongly
positively correlated with each other. Moreover, Nocardia asteroids
and Gordonia sp. had positive correlations with Streptomyces sp.
and Streptomyces venezuelae. Similarly, among the Proteobacteria
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(A) The core microbiome of the protozoan taxa across the soil samples. A sample prevalence of 20% and a relative abundance of 0.01% were set as the
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taxa, Azospirillum sp., Ramlibactertataouinensis, Rhizobium sp., (r =0.99, p-value = 0.000001). Nocardiopsis alba can solubilise
Xanthomonas sp., and Sorangium cellulosum were positively — potassium (Boubekri et al., 2021). The K solubilising ability of
correlated with one another. Nocardiopsis alba had strong positive ~ Nocardiopsis alba may have led to a positive correlation with
correlations with Na (r = 0.99, p-value = 0.000000096), K (r=0.98, K. Additionally, Nocardiopsis plays a crucial role in organic
p-value = 0.00048), TOC (r = 0.98, p-value = 0.000005), diethyl  decomposition and lignocellulose degradation (Wang et al., 2025),
phthalate (r = 0.99, p-value = 0.000002) and tetrachloroethylene  probably leading to a positive correlation with TOC. The alkane
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compound docosane was strongly positively correlated with
Paracoccus sp. (r =0.97, p-value = 0.00006) and Kocuria rosea
(r =0.99, p-value =0.000001). A Kocuria rosea strain with
biosurfactant properties was identified from an oil refinery (Akbari
et al,, 2021), and the oil-degrading capabilities of Paracoccus
strains were reported (Lyu et al., 2022). Moreover, docosane is a
significant petroleum pollutant (Alsharyani and Muruganandam,
2024). Hence, the availability of docosane may have increased the
abundance of Kocuria rosea and Paracoccus sp., which maybe
indicated by these positive correlations. Nocardiopsis alba had
strong positive correlations with diethyl phthalate (r =0.99,
p-value = 0.000002) (r =0.99,
p-value = 0.000001). Nocardiopsis alba strains are known to

and tetrachloroethylene

degrade several complex pollutants, including naphthalene
compounds, into their derivatives, such as phthalic acids and acetic

10.3389/fmicb.2025.1649872

acids (Doley et al.,, 2017). These compounds (diethyl phthalate and
tetrachloroethylene) may be the byproducts of complex substances
degraded by Nocardiopsis alba. Zn (r = 0.76, p-value = 0.029) was
also positively correlated with Nocardiopsis alba. Heavy metals
such as Pb, Cr, Cd, and Cu had significant positive correlations
with most bacterial taxa. Pb had the strongest positive correlation
with Streptomyces sp. (r = 0.91, p-value = 0.0014), followed by
Mycobacterium  canettii  (r =0.89, p-value =0.003)
Pseudomonas sp. (r = 0.86, p-value = 0.0063). Moreover, Cu had
the strongest positive correlation with Stutzerimonas stutzeri
(r=0.79, p-value = 0.017), followed by Xanthomonas sp. (r = 0.79,
p-value = 0.017), and Pseudomonas sp. (r = 0.79, p-value = 0.0208).
Similarly, Cr was correlated with Xanthomonas sp. (r = 0.96,
p-value = 0.00012), sp.  (r =0.96,
p-value = 0.000094). Moreover, Cd had significant positive
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Network analysis depicting the Pearson correlations between the bacterial taxa (A), archaeal taxa (B), fungal taxa (C), protozoan taxa (D), soil
physicochemical characteristics, heavy metal concentrations, pollutants and other metabolites/compounds. All the blue edges represent negative
correlations, and pink edges represent positive correlations (Pearson correlation coefficient values higher than 0.75 and lower than —0.75 were
selectedto generate the correlation network in Cytoscape v3.10.2.with the Metscape plugin).

correlations with Stutzerimonas stutzeri (r = 0.91, p-value = 0.0017)
and Nocardiopsis alba (r = 0.75, p-value = 0.03). Earlier studies
reported that heavy metal-tolerant bacterial species, namely,
Streptomyces (Elnahas et al., 2021), Pseudomonas (Vélez et al.,
2021), and Xanthomonas (Ramnarine et al., 2024) can remove or
sequester toxic heavy metals in contaminated environments. The
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heavy metal tolerance of these bacteria may have led to positive
correlations with Pb, Cr, Cd and Cu. Heptadecane, Triacontane,
Docosane and Heneicosane were the alkanes that had significant
positive correlations with bacterial taxa. Henicosane had a
significant positive correlation with Nocardiopsis alba (r = 0.86,
p-value = 0.006). Moreover, heptadecane had strong positive
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correlations with Kocuria flava (r = 0.84, p-value = 0.0075) and
Kocuria rosea (r = 0.85, p-value = 0.007). However, docosane and
triacontane had high numbers of significant correlations with
bacterial taxa, especially with Nocardioides sp., Nocardioides sp.
CF8, Nocardioides humi, Kocuria flava, Kocuria rosea, Rhodococcus
sp., Paracoccus sp., Blastococcussaxobsidens, and Anaeromyxobacter
sp. Fw109-5. Docosane had the strongest positive correlation with
Kocuria rosea (r =0.99, p-value=0.000001), followed by
Paracoccus sp. (r = 0.97, p-value = 0.00006), Kocuria flava (r = 0.96,
p-value = 0.00013) and Rhodococcus sp. (r = 0.97, p-value = 0.0001).
Moreover, Rhodococcus species are known for their ability to
biodegrade and adhereto hydrocarbon compounds (Ivshina et al.,
2022), and are reported to be present in various bacterial consortia,
which are capable of biodegrading of various environmental
pollutants, including pyrene, butane, and phthalates (Zhang and
Zhang, 2022). Additionally, Kocuria flava and Rhodococcus
consortia are effective at biodegrading various polycyclic aromatic
hydrocarbons (Sakshi Singh et al., 2022). Moreover, Nocardioides
species can degrade pollutants, including hydrocarbons and
aromatic compounds (Ma et al., 2023) and Nocardioides sp. CF8
was reported to be alkane utilizing bacterial taxon (Hamamura and
Arp, 2000). Hence, the alkane-degrading and alkane-utilizing
capabilities of these bacterial species may have led to the significant
positive correlations between these bacteria and the above-
mentioned alkane compounds.

The positive correlations between the taxa imply the
co-occurrence of the taxa due to cooperative interactions or similar
niche preferences. In contrast, their negative correlations imply the
co-exclusion of the taxa probably due to competition (Ju and Zhang,
2015). The study explores a variety of positive interactions among
different species, including cooperative interactions like mutualism
and synergism that support involved taxa. Symbiosis, cross-feeding,
and consortia formation are the primary mechanisms through
which bacteria form these positive associations (Weiland-Briuer,
2021), and these microbe-microbe interactions can contribute to
soil-health promotion activities, including biodegradation and
pollution alleviation (Wu et al., 2023). For example, Mycobacterium,
Rhodococcus, Rhizobiales and Proteobacteria taxa are reported to
be present in various bacterial consortia, and are capable of
biodegrading of various environmental pollutants, including
phthalic acid esters, pyrene, butane, and other phthalates (Zhang
and Zhang, 2022). Additionally, the Kocuria flava and Rhodococcus
consortium were effective in biodegradation of various polycyclic
aromatic hydrocarbons (Sakshi Singh et al., 2022). Hence, the intra-
phyla positive correlations between the taxa detected in the present
study may have arisen because positive associations between
microbes and the removal of various pollutants from soils and
improve soil health.

The archaeal phyla (Figure 7B) had no significant inter-phyla
correlations between Thaumarchaeota and Euryarchaeota. On the
other hand, strong positive intra-phyla correlations were observed,
especially among the Euryarchaeota taxa, namely, Haloterrigena
turkmenica, Halorubrum lacusprofundi, Haloferax gibbonsii,
Natronomonas moolapensis, Natronomonas pharaonis, Natrinema sp.
J7-2, Natrinema versiforme, Halorhabdus tiamatea, and Halorhabdus
utahensis. Thaumarchaeota and Euryarchaeota were the major
archaeal phyla detected across various Amazonian soil samples. They
had greater positive correlations (50-80%) between the taxa, probably
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due to syntrophic interactions between the archaeal taxa (de Chaves
etal., 2022).

Methanosarcina mazei had a significant negative correlation with
ethyl acetate (r = —0.76, p-value = 0.0263). Methanosarcina mazei is
an aceticlastic methanogen that can convert acetate into CO, and CH,
(Welte et al., 2010). Hence, the negative correlation may have occurred
due to the increased conversion of ethyl acetate into CO, and CH, in
the soils with a relatively higher abundance of Methanosarcina mazei.
Pb, Cr, Cd, and Cu had significant positive correlations with most
archaeal taxa. Candidatus Nitrososphaera evergladensis, Halorhabdus
utahensis, Natronomonas pharaonis, and Nitrososphaera viennensis
presented strong positive correlations with Pb, Cr, Cd, and Cu. In
contrast, Candidatus Nitrososphaera gargensis, Halogeometricum
borinquense, Haloferax gibbonsii, Haloterrigena turkmenica, Natrialba
magadii, Natronomonas moolapensis, Natrinema versiforme,
Halorubrum lacusprofundi, Halorhabdus tiamatea, Natronorubrum
bangense, Natrinema sp. J7-2, and Haloferax mediterranei were
positively correlated with Pb, Cr, and Cu, but not with Cd. Docosane
was the only alkane to possess significant positive correlations with
the archaeal taxa, especially with Halogeometricum borinquense
(r =0.092, p-value=0.001), Haloferax gibbonsii (r =0.84,
p-value = 0.009), Methanocella paludicola (r = 0.78, p-value = 0.02),
Methanothrix harundinacea (r = 0.84, p-value = 0.009), Natrinema
versiforme (r =0.8, p-value =0.0167), Halorubrum lacusprofundi
(r =0.8, p-value=0.017) and Haloferax mediterranei (r =0.82,
p-value = 0.013). Halophilic archaea, including Haloferax species,
were previously reported to exhibit hydrocarbon-degrading properties
(Park and Park, 2018).

Significant positive correlations were detected among the
Ascomycota and Basidiomycota taxa (Figure 7C). Among the
Ascomycota taxa, Drechmeria coniospora, Thermothielavioides
terrestris, Thermothelomyces thermophilus, Cercospora beticola,
Zymoseptoria tritici, Fusarium and Pyricularia species presented strong
positive correlations. Ustilago maydis, Rhizoctonia solani, and
Cryptococcus neoformans were the major Basidiomycota taxa that were
positively correlated with the Ascomycota species (especially, the
Fusarium and Pyricularia species). Ascomycota and Basidiomycota
were the most dominant phyla detected, with many interconnections
in the co-occurrence networks of the mycobiome of wastewater
treatment plants, indicating the importance and adaptive capabilities
of these phyla (Assress et al., 2019). The co-occurrence of some
members of Ascomycota and Basidiomycota may be due to their
co-evolutionary relationships, as in the case of Wynnea (Ascomycota)
and Armillaria (Basidiomycota) (Xu et al., 2019). Pb and Cr had
significant positive correlations with all the selected fungal taxa,
except for Fusarium pseudograminearum. Moreover, Marasmius
oreades, Aspergillus sp., and Aspergillusoryzae had strong positive
correlations with Pb, Cr, Cd and Cu. Aspergillus and Fusarium were
reported to possess heavy metal tolerance properties (especially to Cr
and Cu), and were considered potential bioremediation agents (Amin
et al., 2024). Four fungal taxa namely, Pyricularia oryzae (r = 0.75,
p-value =0.03), Pyricularia sp. (r =0.76, p-value=0.026),
Schizosaccharomyces pombe (r =0.84, p-value=0.0089), and
(r =0.81, p-value=0.016) were
significantly positively correlated with docosane.

Brettanomyces  bruxellensis

Apicomplexa and Euglenozoa were the protozoan phyla with

the most positive inter- and intra-phyla correlations (Figure 7D).
The Apicomplexa taxa, such as Plasmodium cynomolgi, Plasmodium
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coatneyi species, Neospora caninum, Theileria orientalis, and
Besnoitia besnoiti, had significant positive correlations with the
Euglenozoa taxa, such as Trypanosoma brucei and the Leishmania
species. The greater positive correlations among the protozoan taxa
may indicate enhanced cooperative interactions, which may be an
adaptive measure used by the protozoans through expanding the
niche to ensure survival under stressful conditions (Hu et al.,
2024). Bigelowiella natans had significant positive correlations with
Guillardia theta and Cryptomonas paramecium. Dictyostelium
discoideum was significantly positively correlated with Pb, Cr, Cu
and Cd. Several protozoan taxa, such as Guillardia theta,
Bigelowiella natans, Thalassiosira pseudonana, Leishmania
donovani, Leishmania braziliensis, and Plasmodium coatneyi were
significant positively correlated with Pb, Cr, and Cu, but not with
Cd. Moreover, docosane was positively correlated with Guillardia
theta (r = 0.87, p-value = 0.0046), Bigelowiella natans (r = 0.82,
p-value =0.012),  Cryptomonas  paramecium (r =0.84,
p-value = 0.009), and Babesia bovis (r =0.78, p-value = 0.02).
Previous studies suggest that protozoan taxa and hydrocarbon
correlations may occur due to protozoan predation. i.e., protozoa
may indirectly affect hydrocarbon degradation through the
differential predation of bacteria or fungi (Du et al., 2024). Hence,
the positive correlation with docosane may be due tothe indirect
influence of protozoans. A significant negative correlation was
observed between neophytidine and Plasmodium vivax (r = —0.72,
p-value = 0.0425). Neophytidine is a plant metabolite reported to
possess antimicrobial activity (Ngobeni et al., 2020), which may
be a reason for its negative correlation with P. vivax. However, why
the negative correlation only exists with P. vivax is unclear, and
whether actual inhibition exists or whether a negative correlation
occurrs through random chance can be answered only through a
detailed study.

The study indicated positive relationships between bacteria,
archaea, fungi, and protozoa implying that these interactions may
promote pollutant degradation and improve soil health. The strong
associations between particular bacteria and the presence of heavy
metals and alkanes indicate their tolerance to these contaminants
and highlight their potential for bioremediation; hence, facilitating
soil restoration initiatives.

3.10 Determination and assembly of AMR
genes

A total of 320 resistance genes related to 30 antibiotics were
identified by the comprehensive antibiotic resistance database
annotation, and resistance genes related to diaminopyrimidine,
sulfonamide, tetracycline, fluoroquinolone, rifamycin, and
aminoglycoside were present in higher abundances than the other
resistance genes. The bar plot (Figure 8A) depicts the major AMR
genes detected across the samples. AMR genes were more common
in NPS2, CSS1, T. H. S, TMS1, and TPS. The presence of the dfrE_1
gene was reported in all the soil samples (Figure 8A). The dfrE_1
and sul_Igenes were the most common AMR genes. The dfrE_1I
gene was abundant in all the samples, and the sul_I gene was
present in six samples, excluding PIS and AGS. The greatest
number of AMR genes was detected in the NPS2 sample, followed
by CSS and THS, and the lowest number of genes was detected in
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PIS and DYS. The HHMC samples presented more AMR genes,
except the AGS samples. dfrE_1, RbpA_1I and mexB_1 were the
AMR genes found in the AGS sample. The metagenomic study
identified antibiotic resistance genes from eight polluted sites, each
of which imparts resistance to various antibiotics. The highest
percentage of multidrug-resistance genes were found in CSS (71%),
followed by TMS (63%) and AGS (53%). Tetracycline,
glycopeptides, rifampin and aminoglycoside were the other major
ARGs. Tetracycline and glycopeptide-resistance genes were
abundant in the TPS, PIS, and DYS soil samples. Rifampin-
resistance genes were abundant in AGS (10%), THS (9%), CSS
(8%), and TMS (7%) samples. Moreover, Aminoglycoside
resistance genes were dominant in the THS and AGS samples
(Supplementary Figure 13). A significant number of multidrug-
resistance genes such as MexD, MexC, MexE, MexF, MexT, CmeB,
MdtB, MdtC, and OprN, confer antibiotic resistance via efflux
pumps in our study. The prevalence of drug-resistance genes differs
among different sample resources. Antibiotic efflux, antibiotic
inactivation, antibiotic target alteration, antibiotic target
protection, and antibiotic target replacement are the main
resistance mechanisms of ARGs identified in the present study.
Among them, antibiotic efflux (42%) was the predominant
mechanism, followed by antibiotic inactivation (23%) and
antibiotic target alteration (18%) (Supplementary Figure 14).
Kocuria flava and Kocuria rosea had significant positive
correlations with the AMR genes catB3_1, catQ_I, and aadAll_l,
and these three AMR genes were also positively correlated with
each other. At the same time, macB_I was positively correlated
with  Treponema pallidum (r =1, p-value=7.1581e-24)
(Supplementary Figure 15).

This study has limitations. First, this study did not include ongoing
surveillance to assess ARG persistence with their bacterial hosts.
Second, the study lacked antibiotic residue detection. As a result, more
research is needed to determine the relationship between antibiotic
residues and ARG diversity. Third, the environmental samples were
insufficiently broad, with no samples from human beings, drinking
water, dust, flies, or aerosols being collected. As a result, more research
is needed into the potential exposure dangers of ARGs in duck farms.

ARGs associated with influential antibiotic efflux include mexC,
and mexE which target fluoroquinolones, whereas those engaged in
antibiotic target substitution and protection include RbpA, which target
rifamycins. The ARG RbpA alters the association between rifampin and
the o factor of bacterial RNAP, causing an allosteric change in the
rifampin binding pocket within the p component. The RbpA protein
interacts with rifampicin at the  subunit attachment location of
RNAP. This reduces the sensitivity of RNAP torifampicin and prevents
its traditional suppression of the f} subunit. Alterations in the f subunit
conformation alter rifampin’s ability to attach to the enzyme, resulting
in resistance (Jalal and Sonbol, 2024). ARGs and ARBs from livestock
can spread to people via food, water, or air (Bai et al., 2024).

Lietal. (2015b) used metagenomic analysis to identify the presence
of antibiotic genes in various soil samples. This study revealed a robust
correlation between anthropogenic impacts and the abundance of total
ARGs in ecosystems. In high-impact settings, ARG abundances
increased by as much as three orders of magnitude compared with those
in less-impacted environments. A link between ARGs and MGEs has
been discovered in conserved urban and suburban environments (Zhao
etal, 2019b). Hemala et al. (2014) identified a link between antimicrobial
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resistance and petroleum exposure. Hydrocarbon-degrading
Gammaproteobacteria and Actinobacteria carry several antibiotic
resistance genes. Antibiotics can impact the microbial population
structure, selection of resistant microbes, and bacterial physiology
through agricultural operations such as livestock manure usage,
aquaculture, and the use of untreated effluent, which can contaminate
soil and water resources (Kaviani Rad et al., 2022). Chen et al. (2017)
reported resistance genes for aminoglycosides, cefoxitin, cefazolin,
ceftriaxone, chloramphenicol, fluoroquinolones, penicillin, macrolides,
tetracyclines, and polypeptides in a PAH-contaminated environment.
The soil microbes isolated from urban garden plots are frequently
resistant to ampicillin, cefoxitin, ceftriaxone, chloramphenicol,
gentamicin, kanamycin, and penicillin (Mafiz et al,, 2018). The resistome
of the surroundings encompasses both innate and acquired resistance
processes by bacteria. Fundamental resistance mechanisms include

cellular responses to harmful compounds, such as wide-spectrum efflux

10.3389/fmicb.2025.1649872

pumps, chromosomally expressed resistant enzymes such as
f-lactamases, and constraints that prevent entry such as porins and the
outer membrane of gram-negative bacteria. Horizontal gene transfer
(HGT) can result in acquired resistance mechanisms such as compound-
specific efflux pumps, the expression of insensitive targets, and enzymes
that alter structure and target of antibiotics (Das et al., 2021). Additionally,
elevated levels of Cd in the areas nearest the industrial area resulted
inincreasedlevelsof soil aminoglycoside, betalactam, fluoroquinolone,
multidrug, and vancomycin resistance genes, but no similar stimulating
influences were observed on different kinds of ARGs (Cheng et al., 2021).

Human-animal combined mobile ARGs have been found in
human, chicken, pig, and cattle intestines, imparting resistance to six
important antibiotic classes: tetracyclines, aminoglycosides,
macrolide-lincosamide-streptogramin B (MLSB), chloramphenicols,
f-lactams, and sulphonamides (Lawther et al., 2022). The prevalence

of resistance genes to tetracycline (34.24%), aminoglycoside (19.37%),
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FIGURE 8
Comparison of relative abundance of antibiotic resistance genes (A) and heavy metal resistance genes (B) in soil samples of different sites. (C) Relative
abundance of top 20 metabolic genes identified in soil samples of eight different areas.

and macrolide (19.37%) is relatively high in chickens (Yang et al.,
2022). Tetracycline resistance genes, including tet(Q)_1 and tet(W)_1,

are present in all cattle microbiomes (Lawther et al, 2022).
Proteobacteria is the major bacterial host and contains the greatest
number of various ARGs in poultry birds (Liu et al, 2024).

Tetracycline resistance genes such as tet(Q)_I and tet(W)_1 were
found in all the cattle microbiomes. Both of these tetracycline
resistance genes have been found in key pathogenic bacteria such as
Prevotella spp. and Clostridium difficile (Lawther et al., 2022).

Trimethoprim (TMP) resistance is caused by dihydrofolate
reductases which transform dihydrofolate to tetrahydrofolate, which is
necessary for the generation of nucleic acid precursors. dfrE is already
present in several organisms from diverse geographical locations. dfrE
has been widely distributed in Asia, where it is found in at least three
staphylococcal species (S. sciuri, S. aureus, and S. arlettae) of human and
animal origin (including clinical samples), as well as the livestock-
associated M. caseolyticus strain JCSC5402 (65) from various nations
(Gomez-Sanz et al., 2021). Sull genes provide resistance to sulfonamides.
The average number of copies of the sull gene appeared to be lower in
soils modified with manure than in the unaltered sample (Han et al.,
2021). The application of aminoglycosides against bacteria that are
resistant to beta-lactams and fluoroquinolones indicates the prevalence
of MDR bacteria in healthcare facilities. Proteobacteria harboured
resistance genes for aminoglycosides [APH (6)-Id], beta-lactamases,
macrolides, and sulfonamides (Talat et al., 2023). Actinobacteria and
Proteobacteria make up the majority of antibiotic-resistant bacteria
(Qiao et al., 2021). The antibiotic resistance genes, known to be resistant
against aminoglycoside [aadA5, APH(6)-1d, and APH (6)-Ia], tetracycline
[tet(G), tet(C), tet(M), tetW, tetQ, and tet(39)] and sulphonamide (sull
and sul2) were also detected in the sediment samples of the river Yamuna
in India (Das et al,, 2020). Aminoglycoside resistance genes such as
aac(6)-1b, aads, acrD, and ANT(2”)-Ia were most commonly reported
in sediments of Rasulabad Ghat, with aadS also prevalent in Bagwan and
Triveni Sangam in river Ganga of India (Rout et al.,, 2023).
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3.11 Identification and composition of
heavy metal resistance genes

A total of 350 heavy metal resistance genes related to 29 metals
were identified by BacMet2 database annotation across all the samples.
The resistance genes for Cu, As, Cr, Zn, Ag, and Fe were abundant.
Multiple metal resistance genes were also an important part of the
MRGs, accounting for 33 to 53% of the total MRGs. Most of the multi-
metal resistance genes were linked to Cd, Zn, Co, Ni, Cr, Te, Se, V, Mo,
Mn, Fe, Bi, Zn, Pb, and Mg. Supplementary Figure 16 shows the pie
charts depicting the percentage of heavy metal-resistance genes
(HMRGs) detected across the samples. These HMRGs were resistant
to 29 different metals, among whichcopper (Cu), arsenic (As), iron
(Fe), nickel (Ni), zinc (Zn), mercury (Hg), and chromium (Cr)
resistance genes were abundant (Supplementary Table 4). Many of
these genes are resistant to multiple heavy metals, andare classified
asmulti-metal resistance genes. In all the samples, the highest
percentage of the HMRGs belonged to multi-metal genes, with AGS
(53%) having the highest percentage, followed by THS (51%), NPS
(49%), DYS (48%), TMS (47%), CSS (45%), PIS (39%), and TPS (33%).
The Cu resistance genes included ricR, copE, cusA, ybdE, copA, ctpV,
copB, and actP; the arsenic resistance genes arsM, pstB, and arsT; the
Fe resistance genes furA and can; and the Ag resistance genes cusA/
ybdE and silP; which were the top 15 MRGs in terms of abundance.
The ruvB gene is commonly involved in resistance to chromium (Cr),
tellurium (Te), and selenium (Se) (Figure 8B). The HMR gene arsM
had significant negative correlations with Mycobacterium canettii
(r=—0.77, p-value = 0.025), Rhodopseudomonas palustris (r = —0.78,
p-value = 0.021), Bradyrhizobium sp. (r = —0.77, p-value = 0.024),
Rhizobium sp. (r = —0.77, p-value = 0.025), Cupriavidus taiwanensis
(r =—0.77, p-value =0.026), Sorangium cellulosum (r =-—0.78,
p-value = 0.02), =—0.78,
p-value = 0.02). The AMR gene mex_1 had positive correlations with
HMR genes such as aioE (r =0.98, p-value = 0.00002) and arsT

and Ramlibacter tataouinensis (r

frontiersin.org


https://doi.org/10.3389/fmicb.2025.1649872
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

Vasanthrao et al.

(r =0.98, p-value = 0.00001). Meanwhile, emrA_1 and iri_I were
negatively correlated with ruvB (r = —0.8, p-value = 0.018) and chrA
(r=—0.92, p-value = 0.001), respectively (Supplementary Figure 15).

Soil microorganisms have the natural ability to withstand and resist
heavy metals. Resistance is the capacity to develop successfully in an
environment of continual prohibitive quantities of a chemical, whereas
tolerance is the ability to remain latent and be sustained in surroundings
containing the compound without considerable growth (Munoz-
Garcia et al,, 2022). Tolerance and resistance are primarily based on the
permanent formation of complexes with biosurfactants and active
metal drainage via efflux transporters (Herrera-Calderon et al., 2024).
The CopA genes, which encode the multi-copper oxidase, convert Cu
(I) to the less hazardous chemical form Cu (IT). The existence of the
copA gene in bacterial populations indicates that the cop system
associated with Cu-resistance may be common in soil, most likely
because of horizontal gene transfer between soil bacteria. The copA
gene was found solely in metagenomic DNA from Cu-polluted soils,
indicating that the copA gene is widespread in polluted habitats. It is
extensively prevalent in Cu-resistant bacterial strains and may serve as
a useful marker for studying Cu-resistance in bacteria (Altimira et al.,
2012). CopA consists of eight transmembrane domains and two
cytoplasmic heavy metal interaction motifs with cooper-coordinating
(CXXC) domains and has been demonstrated to efflux copper ions
from the cytoplasm (Sitthisak et al., 2007). The copA gene produces
copper-transporting P-type ATPases that restrict Cu from infiltrating
the cytosol and aid in intracellular detoxification (Li et al., 2015a).
CopA needs ATP to eliminate heavy metals from the outer layer of the
cell; however; CusA is an energy-free process that essentially requires
an antiporter component (Besaury et al., 2013). M. tuberculosis has
been found to require CtpV to maintain its resistance to copper toxicity
(Ward et al., 2010). M. tuberculosis possesses multiple Cu-responsive

10.3389/fmicb.2025.1649872

pathways, including the RicR regulon, which is specific to infectious
mycobacteria. Although host-supplied Cu may prevent the proliferation
of bacteria, M. tuberculosis possesses a distinct defense mechanism,
RicRregulon, which prevents Cu cytotoxicity (Shi et al., 2014). CtpC
enhances M. tuberculosis tolerance to zinc toxicity andincreases the
intracellular viability in macrophages (Botella et al., 2011).

3.12 Metabolic genes diversity

The top 20 metabolic genes identified from soils and are presented
in Figure 8C. Sulfate reducers, nitrite reducers, ammonia oxidizers,
dehalogenations, sulfide oxidizers, chitin degradation, nitrogen
fixation, xylan degraders, atrazine metabolism, aromatic hydrocarbon
degraders, lignin degraders, chlorophenol degrading, naphthalene
degrading, and carbon fixation were identified as major metabolic
genes in all the samples.

3.13 Functional characterization of the soil
bacterial population

The Figure 9 depict the comparative analysis of the functional
profiles of microbial communities across the HHMC and LHMC
samples with the AGS, analyzed using PICRUSt, which is based on the
KEGG pathways. Even though the AGS sample was detected to have
higher concentrations of heavy metals, the AGS sample was a garden
sample with the least livestock and human exposure (least disturbance)
compared with all other samples. Hence, we compared all the samples
with AGS here. Pb, Cr, Fe, Cu, Cd, 1-dodecanol, ethyl acetate,
undecane, 3, 8-dimethyl, docosane, tricontane, henicosane, and
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Difference of functional genes categorized into different subsystem between different soil samples. The comparative analysis of metabolic pathways
was conducted using Fisher's exact test by STAMP software. p < 0.05 filter was used.

tetrachloroethylene were detected to be higher in the AGS sample.
Moreover, the AGS sample had the lowest soil pH among the soil
samples collected in the present study. The functional predictions of
the microbial community revealed that protein metabolism,
carbohydrates, amino acids and derivatives, and DNA metabolism
were the major functional categories across all three HHMC samples
(Figure 9). Compared with the AGS sample, the THS and NPS samples
presented agreater proportion of genes for protein metabolism, DNA
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metabolism, ‘dormancy and sporulation, and ‘phages and transposable
elements’ Meanwhile, the AGS samplespresented a greater proportion
of ‘virulence disease and defence; sulphur metabolism, Tron
acquisition and metabolism;, and ‘motility and chemotaxis’ genes.
Comparedwith the AGS samples, the THS samplespresented greater
‘stress response’ and ‘virulence’ genes. Protein metabolism, amino
acids and derivatives, and DNA metabolism were the major functional
gene categories across all the LHMC samples (Figure 9). Comparied
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with AGS samples, all five LHMC samples presented greater
proportions of ‘phages, prophages, transposable elements, plasmids’
and ‘iron acquisition and metabolism’ genes. Moreover, ‘virulence’ and
‘virulence, disease and defense’ were higher in TMS, CSS and
DYS. Moreover, compared with those of the LHMC samples, ‘motility
and chemotaxis’ and ‘stress response’ were higher in the AGS samples.
A higher proportion of ‘phages, prophages, and transposable elements
in LHMC samples revealed a relationship between hydrocarbon
pollution and the emergence of antibiotic resistance in the
microbiome, which is not limited to therapeutic drug use. Increased
sulphur metabolism levels in AGS may explain the larger predicted
prevalence of genes associated with the manufacture of the amino
acids cysteine and methionine (Chung et al., 2019). Pollution affects
the functional variety and number of soil microbiomes, as stated
earlier (Das et al., 2021). The KEGG orthology analysis found that the
samples had a wide range of metabolic categories; including
carbohydrate metabolism, membrane transport, and amino acid
metabolism in the Ganga silt (Rout et al., 2024a). These locations
contain abundant material which encourages diverse microbes (Rout
et al., 2024b). Antibiotic-resistant bacteria could become more
prevalent in polluted soil because of coselection forces from pollutants
such as metals and hydrocarbons (Cunningham et al., 2020).

3.14 Virulence genes diversity

Virulence factors facilitate the spread of AMR genes across
environments by forming biofilms and increasing disease transmission
(Talat et al., 2023). The major virulence genes detected in the AGS
samples wereespR and regX3. However, the sugB, whiB3, mmPL3,
chpA, pks, sigA/rpoV, fliA, fadD26, clpC and algCgenes were
predominant in the THS sample. sigA/rpoV, prrA, eccC5, groEL2,
narG, sugB, aftD, eccA3 and eccB5 were the major genes detected in
NPS. Moreover, the CSS sample presentedincreased abundances of the
entB, ybtE, acpXL, cheY, entF and fimF genes. Bap, regX3, and
fbpCwere predominant in DYS. The major genes detected in PIS were
sigA/rpoV and Bap. Moreover, the irpl, entC, espR, fepA, and fimB
genes were predominant in TMS. Moreover, the cap8E, cap8D and
sigA/rpoV genes are abundant in the TPS (Supplementary Figure 17).
Following a thorough screening of the protein-protein interaction
(PPI) network, 14 genes were identified as potentially important, and
their respective string network diagrams were generated. The end
result is a PPI relationship network with fourteen nodes and 65 edges.
The p-value for PPI enrichment was calculated to be 0.00012. The
Mixed, incl. Adenovirus iva2 protein, eccd-transmembrane domain,
cellular response to decreased oxygen levels, and phosphorelay
response regulator activity ~were significantly  enriched
(Supplementary Figure 18). In this study, we identified multiple
virulence factors predominantly associated with the pathogenic
genomes of Mycobacterium, Klebsiella, Pseudomonas, Acinetobacter,
and Staphylococcus. These virulence determinants play a crucial role
in the pathogenicity (Supplementary Table 5).

Mycobacterium tuberculosis needs the ESX-1 secretion system to
be fully virulent. EspR regulates ESX-1 by immediate association and
transcriptional stimulation of the espACD operon (Blasco et al., 2011).
Reduced potassium ion levels cause M. tuberculosis to become latent.
RegX3 plays a role in M. tuberculosis viability during potassium

deficiency (Bagchi et al., 2024). The trehalose-recycling ABC
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transporter LpqY-SugA-SugB-SugC is required for the pathogenicity
of M. tuberculosis (Kalscheuer et al., 2010). WhiB3 regulates
mycobacterial pathogenicity by inhibiting phagosomal development
and controlling the cell cycle. WhiB3 prevents acidic pH within cells
by maintaining the mycothiol redox pathway. WhiB3 has been linked
to the mechanism of lipid metabolism under dormancy, which
regulates lipid breakdown and the manufacture of reserve lipids such
as triacylglycerols (TAG) that produce inclusion complexes. WhiB3
promotes the synthesis of lipids which trigger inflammatory processes
in pathogenic strains (Barrientos et al., 2022). The pks gene encodes a
cyclomodulin called colibactin, which causes DNA damage, disturbs
the eukaryotic cell cycle, and leads to the onset and development of
colorectal cancer (Sadeghi et al., 2024). AlgC is required for the
biosynthesis of UDP-glucose, a substrate for the production of
lipopolysaccharide (LPS) in H. pylori (Feng et al., 2023). PrrA acts as
a transcription factor, regulating the intensity of the response of Mtb
to pH, Cl-, NO, and hypoxia (Giacalone et al., 2022). The
M. tuberculosis protein GroEL2, a chaperone-like immunomodulatory
protein, regulates proinflammatory responses from macrophages and
dendritic cells (DCs), induces maturation of DCs, and facilitates
antigen presentation to T cells (Georgieva et al., 2018). MmpL3 is a
member of the RND protein superfamily, which includes inner
membrane transporters. The over expression of MmpL3 is required
for the (Bolla, 2020).
Arabinofuranosyltransferase D (AftD) is a key enzyme in the

survival of M.  tuberculosis
glycolipid assembly process. AftD is a crucial enzyme for cell wall
biosynthesis routes in mycobacteria and other mycolic acid-producing
bacteria in the orderCorynebacteriales (Tan et al., 2020). Cap8D
encodes a dehydratase that is required for the production of the
capsule precursor implicated in adhesion (Sinha et al., 2021). The entC
is a key virulence gene associated with iron absorption in
K. pneumoniae (Zhang et al., 2022). M. smegmatis requires the
phosphorus recognizing gene RegX3 for survival on propionate and
persistance in macrophages. RegX3 aids M. smegmatis growth and
persistence by altering the shape of thestrain in macrophages (Pei
etal,, 2021). Biofilm-associated protein (Bap) and its homologues have
been demonstrated to be involved in multicellular assembly and
biofilm development in a variety of species, including staphylococci
and enterococci. Calcium ions in the environment regulate
Bap-mediated biofilm formation by preventing the amyloid assembly
of Bap-derived peptides and resulting in intercellular adhesion
(Schiffer et al., 2021). The entB gene increases the virulence of
hypervirulent K. pneumoniae (hvKP) by producing abundant
enterobactin, which aids in iron intake and biofilm development (Han
et al,, 2022). The EccB5 protein in the ESX-5 system could be a key
membrane protein associated with the transmission mechanisms of
the type VII secretion system, which is required for the proliferation
and pathogenicity of pathogenic bacteria (Kurniawati et al., 2020).
AlgC is required for the biosynthesis of UDP-glucose, which is the
basis for the production of lipopolysaccharide (LPS) in H. pylori (Feng
etal., 2023). The deactivation of clpC in S. aureus increases permanent
intracellular persistence in phagocytes (Gunaratnam et al., 2019).

4 Conclusion

This study highlights the substantial impacts of heavy metal and
hydrocarbon contamination on microbial diversity, resistance
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mechanisms, and soil functionality. The high Heavy Metal
Concentration (HHMC) zones (AGS, THS, and NPS) exhibited
diminished pH levels and lowered dehydrogenase activity, reflecting
microbial alterations that suggest a detrimental impact on soil health
and metabolic activities. The HHMC regions exhibited elevated levels
of antibiotic resistance genes (ARGs), heavy metal resistance genes
(HMRs), and virulence genes (VGs), indicating that the microbial
community is affected by environmental stresses. Despite a reduction
in overall microbial diversity, the prevalence of Actinobacteria in
certain soils indicates that these organisms have adapted ecologically
to thrive under adverse conditions.

The Low Heavy Metal Concentration (LHMC) zones (CSS,
TMS, TPS, DYS, and PIS) had greater microbial diversity than did
the High Heavy Metal Concentration (HHMC) regions. CSS and
TMS are distinguished by the lowest concentrations of heavy
metals, hydrocarbon contaminants, and HMR genes among the
LHMC regions. The lower dehydrogenase activity observed in the
CSS and TMS locations than in the other LHMC areas signifies a
compromised microbial response to ecological stresses.
Concurrently, these samples exhibited substantially increased
proportions of AMR and VGs, which may be attributed to the
presence of augmented pathogenic microorganisms such as
maltophilia,
Cryptococcus neoformans, Leishmania major, Leishmania mexicana,

Mpycobacterium  cannetti,  Stenotrophomonas
Leishmania brazilensis, Babesia bovis, Babesia bigemina, Neospora
caninum, and Besnoitia besnoiti. In contrast, TPS, DYS, and PIS,
which possessed a diminished quantity of AMR and VR genes,
demonstrated a lower ability for microbial adaptation to
environmental conditions.

Heavy metal and hydrocarbon contamination profoundly
influences microbial diversity, metabolic adaptations, and the
prevalence of resistance genes in samples. The intraphylum
relationships within the microbial communities and the positive
correlations of heavy metals and alkanes with microbial taxa such as
Nocardiopsis alba, Streptomyces, Pseudomonas, Xanthomonas,
Rhodococcus, Kocuria rosea, Paracoccus, Nocardioides sp. CF8,
Haloferax, Aspergillus and Fusarium reveal the role of microbial
adaptability in the bioremediation of environmental pollutants.
HHMC locations exhibit minimal microbial diversity but more robust
survival mechanisms, whereas LHMC areas maintain microbial
richness alongside increased antibiotic resistance, highlighting the
ecological effects of environmental contaminants on microbial
composition and soil activity. The results demonstrate that there is a
distinct correlation between environmental contaminants and the
emergence of microbial adaptation with respect to the soil habitat.
This highlights the resilience of microorganisms and the possible
bioremediation activities that they can perform in contaminated
environments. A comprehensive understanding of these interactions
is essential for the development of efficient bioremediation solutions
and the evaluation of long-term ecological alterations in
compromised ecosystems.
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