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Next-generation metagenomic sequencing has substantially advanced our 
understanding of the human intestinal microbiome. Many commensal microbes in 
the human gut carry a wide array of antibiotic resistance genes (ARGs), collectively 
forming the gut-associated resistome. In this study, we investigated the gut resistome 
using metagenomic sequencing. We collected 119 fecal samples from individuals 
in four Chinese provinces: Yunnan, Guizhou, Sichuan, and Jiangsu. By constructing 
metagenome-assembled genomes (MAGs) and comprehensive gene catalogs, 
we  aimed to characterize the microbial community structure and assess the 
distribution of ARGs and mobile genetic elements (MGEs). Our results revealed 
significant regional differences in gut microbial composition. While Bacillota_A 
and Actinomycetota were the dominant phyla across all samples, their relative 
abundances and species-level profiles varied markedly among provinces. Our 
analysis of ARGs revealed a wide range of antibiotic resistance genes present 
in the gut microbiota. These ARGs showed uneven distribution across bacterial 
taxa and among individuals from different regions. For example, ARGs conferring 
resistance to commonly used antibiotics, such as multidrug agents, peptides, 
tetracyclines, glycopeptides, and aminoglycosides, were more prevalent in 
Jiangsu samples than in Sichuan and Yunnan samples, likely reflecting regional 
differences in antibiotic usage. In MAGs unique to Jiangsu samples, we identified 
five types of MGEs encompassing 24 subtypes. Among these, transposases (7 
subtypes) and recombinases (10 subtypes) were the most abundant. This study 
offers critical insights into gut resistome compositions and distributions across 
different populations. Our findings have important implications for public health, 
microbiota-host interactions, and the development of targeted strategies to mitigate 
antibiotic resistance.
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1 Introduction

The global spread of antibiotic resistance has emerged as a 
major public health challenge in the 21st century (Zhang et al., 
2023). To effectively assess the threat posed by antimicrobial 
resistance (AMR), it is essential to understand the genetic 
architecture of resistance and to accurately quantify the abundance 
of antibiotic resistance genes (ARGs) (Bai et al., 2024). Increases 
in antibiotic production, overuse, and misuse across clinical, 
agricultural, and environmental settings have contributed to the 
widespread dissemination of antibiotic-resistant bacteria (ARB) 
and their associated ARGs. Under selective pressure from 
antibiotics, ARGs can transfer between bacteria of the same or 
different species and genera through horizontal gene transfer 
(HGT), often mediated by mobile genetic elements (MGEs). This 
process accelerates both the emergence and persistence of 
antibiotic resistance (Zhai et al., 2024). The intestinal microbiota, 
often referred to as the “second genome” of the human body, forms 
a dynamic symbiotic relationship with the host through diverse 
mechanisms, including metabolite production, immune 
modulation, and maintenance of the intestinal barrier (Huang 
et al., 2023; Sheng et al., 2025; Su et al., 2021a; Su et al., 2021b; Yang 
et  al., 2022). Studies have shown that the resistome within the 
human gut microbiota is closely linked to the evolution of 
antibiotic resistance in clinical pathogens. Furthermore, ARGs may 
spread across hosts via environmental vectors such as water and 
soil, as well as through the food chain, thereby compounding the 
global resistance crisis (Zhang et al., 2023).

Recent advances in metagenomics have revealed considerable 
inter-individual variation in gut microbial composition. These 
differences are shaped not only by host genetic background and 
dietary patterns but also by environmental and geographical 
factors (Kim et al., 2024; Liu et al., 2025; Martín et al., 2014). 
Metagenomic sequencing enables the identification of numerous 
previously uncharacterized bacterial species within the intestinal 
microbiota and allows functional characterization at the genomic 
level (Glendinning et al., 2020; Lewis et al., 2019; Pasolli et al., 
2019; Wang et  al., 2024b). Studies have demonstrated that 
methods based on metagenome-assembled genomes (MAGs) and 
gene catalogs are effective in analyzing the gut microbiota of both 
humans and animals (Almeida et al., 2021; Chen et al., 2021). 
MAGs have become essential tools for exploring unknown 
microbial biodiversity, assessing enzymatic potential, and 
profiling ecological community structure (Jiménez-Volkerink 
et al., 2023; Lynes et al., 2023; Rao et al., 2023). To date, reference 
gene catalogs for the gut microbiome have been established in 
humans (Almeida et al., 2021) and chickens (Huang et al., 2018), 
and thousands of MAGs have been generated from diverse hosts, 
including humans (Pasolli et al., 2019), ruminants (Stewart et al., 
2018), chickens (Glendinning et  al., 2020), pigs (Wang et  al., 
2019), and horses (Li et  al., 2023). Zeng J’s research group 
reported a high degree of overlap in ARGs between human gut 
microbiota and that of farmed animals, such as chickens and pigs. 
They also identified key bacterial genera, including Bacteroides 
and Escherichia, as major contributors to cross-species ARG 
transmission (Zeng et al., 2019).

Each microbial community in the human body exhibits a distinct 
structure, shaped by the specific environment it inhabits. In this study, 

we  conducted a comprehensive investigation of the antibiotic 
resistome within the human gut microbiota using MAGs and gene 
catalogs derived from 119 human fecal samples. By integrating these 
genomic resources, we aimed to elucidate the genetic basis of antibiotic 
resistance, identify potential reservoirs and vectors of ARGs, and 
explore the ecological and evolutionary dynamics of the resistome. 
Notably, MAG reconstruction also enables the study of symbiotic 
fungi and viruses, expanding the scope of microbial 
community analysis.

2 Materials and methods

2.1 Sample collection and DNA extraction

We used a total of 119 fecal samples from healthy individuals 
residing in four Chinese provinces: Sichuan (n = 30), Yunnan (n = 30), 
Guizhou (n = 29), and Jiangsu (n = 30) (Bai et  al., 2024). Each 
participant provided duplicate samples. Detailed sampling 
information - including species source, province, city, county/district, 
village/farm, altitude, and GPS coordinates  - is provided in 
Supplementary Table S1. Following collection, we  immediately 
transported all samples on dry ice and stored them at −80°C to 
preserve microbial DNA integrity for downstream high-throughput 
sequencing. Total genomic DNA was extracted from each fecal sample 
using a commercial QIAamp Fast DNA Stool Mini Kit (Qiagen, 
Hilden, Germany) following the manufacturer’s instructions. The 
quality and quantity of extracted DNA were assessed using a 
NanoDrop spectrophotometer and agarose gel electrophoresis.

2.2 Metagenomic assembly

We conducted quality control and sequence assembly using 
the Majorbio Cloud Platform,1 a freely accessible online 
bioinformatics resource.

2.3 Metagenome bioinformatics analysis

We first performed adapter trimming and quality filtering on 
paired-end Illumina reads using fastp (version 0.23.0) (Chen et al., 
2018). We  removed reads shorter than 50 base pairs or with a 
quality score below 20. We further refined the reads using SeqPrep, 
accessible at https://github.com/jstjohn/SeqPrep, and Sickle, 
available at https://github.com/najoshi/sickle, version 1.33, which 
performed additional quality trimming and screening. After 
quality control, we aligned the clean reads to the human reference 
genome (GRCh38.p13) using BWA2 (Li and Durbin, 2009) and 
removed all host-derived sequences. We  then assembled the 
filtered reads into contigs using MEGAHIT (version 1.1.2) (Li 
et al., 2015), a de novo assembler optimized for large and complex 
metagenomic datasets.

1  www.majorbio.com

2  http://bio-bwa.sourceforge.net/, version 0.7.9a
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2.4 Metagenomic binning and quality 
control of MAGs

We conducted genome binning for each sample using three 
independent tools with default parameters: MetaBAT2 (version 
2.12.1) (Kang et al., 2015), MaxBin2 (version 2.2.5) (Alneberg et al., 
2014), and CONCOCT (version 0.5.0) (Wu et al., 2016). To generate 
a high-quality, non-redundant set of MAGs, we integrated the outputs 
using the standard pipeline of DAS Tool (version 1.1.0) (Sieber et al., 
2018). We improved the completeness and reduced the contamination 
of the resulting MAGs using RefineM (version 0.0.24) (Parks et al., 
2017). This tool identifies and removes contigs with aberrant genomic 
features  - such as atypical GC content, divergent tetranucleotide 
frequency profiles, inconsistent coverage patterns, or conflicting 
taxonomic assignments. We  assessed the completeness and 
contamination of all MAGs using CheckM (version 1.0.12) (Parks 
et  al., 2015), applying lineage-specific marker genes and default 
parameters. We retained only MAGs with ≥ 50% completeness and < 
10% contamination for subsequent pairwise dereplication. To evaluate 
genomic similarity, we  calculated the average nucleotide identity 
(ANI) between MAGs using Mash (Ondov et al., 2016) with default 
settings. We performed dereplication using dRep (version 3.4.2) (Olm 
et al., 2017), clustering MAGs at a 99% ANI threshold to define strain-
level similarity. From each cluster, we  selected the highest-quality 
MAG for downstream analysis. We calculated the coverage of each 
MAG using CoverM (version 0.6.1) with default parameters (CoverM 
GitHub repository). Taxonomic classification was performed using 
GTDB-Tk (version 2.3.0) (Parks et  al., 2018) which relies on 120 
universal single-copy marker proteins from the Genome Taxonomy 
Database (GTDB).

2.5 Gene prediction and functional 
annotation

We conducted gene prediction with Prodigal (version 2.6.3) using 
the -p meta flag to accommodate the metagenomic nature of the data 
(Hyatt et al., 2010). We annotated the predicted genes against several 
curated databases, including KEGG (build from August 2023), 
eggNOG (build from August 2023), CAZy (version 8, build from 
August 2023), VFDB (build from August 2024), BacMet (version 2.0), 
CARD (version 3.0.9, build from August 2023), and MGE (MGEs90).

3 Results

3.1 Samples and metagenomic sequencing 
data

To create a resource for studying the human gut microbiome, 
we performed analysis of metagenome sequencing on fecal samples 
from 119 individuals across four provinces of China 
(Supplementary Table S1; Figures 1A,B; Bai et al., 2024). Some samples 
were from Yunnan Province, where the average altitude is 2,226 meters, 
the average longitude and latitude are 102.92 and 25.68, respectively, 
and the annual average temperature is 15.5°C. Some from Jiangsu 
Province has an average altitude of 21 meters, longitude and latitude of 
119 and 34.2, respectively, and an annual average temperature of 

14.5°C. Sichuan Province’s average altitude is 603 meters, with average 
longitude and latitude of 103.14 and 26.85, respectively, and an annual 
average temperature of 16.17°C. Others from Guizhou Province has an 
average altitude of 1,409 meters, average longitude and latitude of 
105.84 and 26.1, respectively, and an annual average temperature of 
14.83°C. Using high-throughput Illumina sequencing, we generated 
1.46 Tb of raw data from all 119 samples. After quality control, 
we retained 1.459 Tb of clean, high-quality data, achieving an effective 
data quality control rate of 99.33% (Supplementary Table S1).

3.2 Assembly of 3,882 MAGs from human 
gut microbiome sequencing data

We used MetaBAT, CONCOCT, and MaxBin2 for binning the 
assemblies. After dereplication and quality assessment, the 119 gut 
fecal metagenomes yielded 3,882 MAGs that met or exceeded 
medium-quality criteria (completeness ≥ 50% and contamination ≤ 
10%) (Supplementary Table S2). Among these MAGs, 2,404 were high-
quality genomes (completeness > 80% and contamination < 10%), 942 
had > 95% completeness and < 5% contamination, and 24 showed > 
97% completeness with 0% contamination (Supplementary Table S2). 
Detailed metrics, including genome completeness and contamination, 
total bases in contigs, CDS count, GC content, N50, tRNA count, and 
rRNAs, are summarized in Supplementary Table S2 and illustrated in 
Figure 1C. The vast majority of human gut microbes were bacteria 
(3,874 MAGs), while archaea were rare (eight MAGs). To classify these 
MAGs, we aligned their sequences against the GTDB. Our analysis 
assigned the 3,882 MAGs to 13 phyla, 16 classes, 40 orders, 84 families, 
310 genera, and 656 species. According to GTDB-Tk assignments, the 
three dominant bacterial phyla were Bacillota_A (2,676 MAGs, 
68.93%), Actinomycetota (386 MAGs, 9.94%), and Bacillota (347 
MAGs, 8.94%). Of the eight archaeal MAGs, two belonged to unknown 
species; all archaeal MAGs were assigned to the Methanobacteriota 
phylum. The abundance of Bacillota_A and Actinomycetota strains 
highlights their major role in shaping the human gut microbiota 
(Supplementary Table S3; Figure  1D). Based on 120 conserved 
bacterial marker genes and 53 conserved archaeal marker genes from 
the GTDB database, we constructed a high-quality bacterial MAG 
phylogenetic tree (with > 95% completeness and < 5% contamination) 
alongside an archaeal GTDB phylogenetic tree. This provides a robust 
framework for phylogenetic analysis of the MAGs (Figure  1E, 
Supplementary Figure S1). By comparing MAGs identified in 119 
human samples, we found 272 core MAGs present in at least 90% of 
samples. These included Blautia_A (123 MAGs), Fusicatenibacter (67 
MAGs), and Anaerobutyricum (57 MAGs) (Supplementary Table S4). 
These core MAGs correspond to genera previously reported in human 
gut metagenomic data (Kim et al., 2021). Conversely, MAGs with a 
relative abundance below 1% in 90% of samples were classified as rare 
(Peng et al., 2021), with only one MAG meeting this criterion.

3.3 Analysis of MAG community 
compositions and correlation analysis of 
phenotypes

We analyzed species abundance across samples using MAG 
species Sankey diagrams and species heatmaps at multiple taxonomic 
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FIGURE 1

Flowchart of the steps and bioinformatic tools applied in assembling, constructing, annotating, and analyzing reference genomes and microbial gene 
catalogs. (A) Overview of sample collection sites. (B) Overview of assembled genomes and functional annotations. (C) Assembly statistics for MAGs. 
Metrics for high- or medium-quality genomes include Genome completeness and contamination, total bases in contig, CDS count, GC%, N50, tRNA 
number, and rRNAs. (D) Number of MAGs detected at the phylum level in descending order (from top to bottom). (E) Phylogenetic tree of the high-
quality MAG genomes of bacteria. The inner circle of the tree displays the names of the MAGs. Green bars indicate the completeness of the MAGs. The 
stacked bar chart represents the number of ARGs, MRG/BRG, VFGs, and MGEs genes corresponding to different MAG annotations in the extended 
CARD/BacMet/VFDB/MGE. The outermost color bands and the background colors of the inner circle of the MAG phylogenetic tree correspond to the 
different phyla to which the MAGs belong.
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levels. This analysis clearly illustrated the structural characteristics of 
community composition and its distribution across different 
provinces. At the phylum level, Bacillota_A dominated among the 
top 30 MAGs by abundance. At finer taxonomic resolutions (genus 
and species), the Sankey diagram revealed more complex branching, 
with some species showing significant enrichment in specific samples. 
For example, MAG1213 (Ruminococcus_E sp003526955), MAG3448 
(Enterococcus_D casseliflavus), and MAG1837 (Clostridium 
sp900540255) were significantly enriched in samples from Guizhou 
Province, likely reflecting the influence of local living environments 
(Figure  2A; Supplementary Figure S2). Several MAGs showed 
significant correlations with environmental factors such as altitude, 
temperature, and geographic coordinates (latitude and longitude). 
Specifically, the abundance of Bacillota_A MAGs correlated positively 
with altitude, while Cyanobacteriota MAGs correlated positively with 
latitude and longitude (Figure  2B). To illustrate the distribution 
patterns and relative abundance differences of MAGs across provinces, 
we constructed Venn diagrams and performed principal coordinate 
analysis (PCoA) for each province’s MAGs, accompanied by heatmaps 
of the top  30 most abundant common MAGs (Figures  2C,D; 
Supplementary Figure S3). These analyses revealed that Sichuan 
harbors 10 unique MAGs, Yunnan has 14 unique MAGs, Guizhou 
contains 26 unique MAGs, and Jiangsu possesses 55 unique MAGs. 
Meanwhile, 3,369 MAGs are shared across all four provinces 
(Supplementary Table S5). Additionally, clustering analysis showed 
that based on the composition of these 30 highly abundant MAGs, the 
MAG compositions of the samples from Yunnan and Sichuan show 
relatively high similarity. Guizhou has a certain degree of similarity 
with Yunnan and Sichuan, while Jiangsu samples display a distinct 
community structure. In the Jiangsu samples, the relative abundances 
of MAG1723 and MAG1866 (Bifidobacterium adolescentis) were 
significantly higher than those in Sichuan, Yunnan, and Guizhou 
provinces. This phenomenon may be attributed to the fact that the 
dietary structure in Jiangsu, characterized by light and fresh flavors 
with frequent consumption of rice, fish, shrimp, poultry, as well as 
higher intake of soy products and dairy products, provides abundant 
nutritional substrates such as proteins and lactose for Bifidobacterium 
adolescentis. Additionally, the flat terrain, abundant drinking water 
sources, and relatively good water quality in Jiangsu create a favorable 
growth environment for this bacterium. In contrast, the heavier-
flavored diets in Sichuan, Yunnan, and Guizhou—rich in spicy 
foods—and the higher mineral content in the water of these regions 
may alter the intestinal microenvironment, thereby inhibiting the 
proliferation of Bifidobacterium adolescentis. In Guizhou samples, the 
relative abundance of MAG3448 (Enterococcus_D casseliflavus) and 
MAG1837 (Clostridium sp900540255) was significantly higher than in 
other provinces, potentially reflecting unique environmental 
conditions or host dietary habits in this region.

3.4 Functional annotation using COG, 
KEGG, BacMet, VFDB, and CAZy databases

Next, we constructed an integrated human microbial gene catalog 
comprising 3,882 nonredundant genes and analyzed the proteomic 
content and functional potential of the human metagenomes by 
searching against the COG, KEGG, BacMet, VFDB, and CAZy 
databases. The 3,882 medium- and high-quality MAGs contained a 

total of 8,156,198 predicted proteins. Among these, 78.78% (6,425,193 
proteins) were predicted to have at least one COG function, 71.87% 
(5,861,652 proteins) had at least one KEGG function, and 6.77% 
(299,384 proteins) had at least one CAZy function (Figure  3A; 
Supplementary Table S6). The COG functional classification revealed 
that the MAGs were annotated into four broad categories: Cellular 
Processes and Signaling, Information Storage and Processing, 
Metabolism, and Poorly Characterized. These categories encompassed 
25 specific COG types, with Metabolism representing the largest 
proportion (Supplementary Table S7). Functional annotation of 
predicted coding genes from the 24 high-quality MAGs (each with > 
97% completeness and 0% contamination) further demonstrated that 
genes related to Translation, Ribosomal Structure and Biogenesis, and 
Carbohydrate Transport and Metabolism were predominant, as 
determined using the COG database (Figure  3B). The KEGG 
annotation results, shown in Figure 3C, classified protein functions 
into six metabolic systems. Proteins associated with metabolism 
accounted for approximately 78.02% of the total. Within this category, 
genes related to Global and Overview Maps and Amino Acid 
Metabolism were most abundant (Supplementary Table S8). Together, 
these findings are consistent with the COG-based results and indicate 
that the functional landscape of the human gut microbiome is 
dominated by metabolic processes, with amino acid metabolism 
emerging as the most prominent metabolic pathway.

We annotated the data using the CAZy database. The results show 
that the 299,384 CAZy proteins included 153,209 glycosyl hydrolases 
(GH), 84,958 glycosyl transferases (GT), 6,420 carbohydrate-binding 
modules (CBM), 38,583 carbohydrate esterases (CE), 3,292 
polysaccharide lyases (PL), 12,523 proteins with auxiliary activity 
(AA), and 399 cellulosome modules (Supplementary Table S9). 
We found that Glycosyl Transferases were the predominant enzymes 
across almost all MAGs, followed by Glycoside Hydrolases, 
Carbohydrate Esterases, and proteins with Auxiliary Activities. These 
proteins were unevenly distributed across the genomes of the taxa 
we identified. For example, GH and GT proteins were particularly 
enriched in Bacillota_A and Bacteroidota (Figure 3D). We further 
annotated the 24 high-quality MAGs (each with > 97% completeness 
and 0% contamination) using the BacMet and VFDB databases to 
analyze resistance genes and virulence factors in the human gut 
microbiome. In total, we  detected 124 resistance genes and 381 
virulence factors (Supplementary Table S10). The identified virulence 
factors primarily included components involved in nutrition and 
metabolism, immune modulation, adherence, regulation, and other 
functions (Supplementary Figure S4). The most abundant resistance 
gene was Cu (metal), with a frequency of 6.8%. Analysis of unique 
MAGs from Jiangsu Province revealed the highest diversity and 
abundance of resistance genes. The distribution of resistance genes in 
the gut microbiome also showed distinct patterns. At the phylum level, 
Bacillota_A and Bacteroidota were the primary hosts of these genes 
(Supplementary Figure S5).

3.5 Antibiotic resistance gene profiling

To characterize human intestinal ARGs, we  analyzed the 
distribution of ARGs across 3,882 MAGs of at least medium-quality 
standard from 119 human gut samples. We performed ARG profiling 
using the CARD database. In total, we identified 159 unique ARG 
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FIGURE 2

Analysis of MAG community compositions. (A) Sankey diagram of community abundance for the top 30 most abundant MAGs. Different columns 
represent different taxonomic levels. Different color bands within the columns represent species, and the length of the color bands indicate the 

(Continued)
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abundance of the species. Gray connecting lines between the color bands represent the correspondence between species/samples at different levels. 
(B) Spearman correlation heatmap. The x-axis represents different environmental factors, while the y-axis represents the taxonomic units of MAGs at 
the phylum level. “*” represents p < 0.05; “**” represents p < 0.01“***” represents p < 0.001. (C) Venn diagram of MAG distributions across different 
provinces. (D) Heatmap of the top 30 most abundant MAGs clustered among the shared MAGs in Yunnan, Guizhou, Sichuan, and Jiangsu provinces. 
The pairwise distances among columns were calculated using the Pearson correlation coefficient and subsequently subjected to hierarchical 
clustering. The right panel clusters these MAGs by province; the blue-to-red gradient indicates increasing MAGs abundance.

FIGURE 2 (Continued)

FIGURE 3

Functional annotation using COG, KEGG, and CAZy databases. (A) Functional annotations of human microbial proteins. Annotation results are obtained 
using COG, KEGG, and CAZy. (B) COG classification statistical heatmap. The horizontal axis represents different MAG genomes, and the vertical axis 
represents the number of genes for different functions. Refer to the legend for the functional descriptions of specific COG types. (C) Pathway 
classification statistical bar chart. The vertical axis represents the level 2 classification of KEGG pathways, and the horizontal axis represents the number 
of genes annotated with this classification. Colors of different bars represent the level 1 classification of KEGG pathways. The rightmost bar indicates 
the number of genes under different level 1 classifications. (D) Heatmap of the distributions of CAZy. The horizontal axis represents 7 different kinds of 
CAZy, and the different colors of the vertical axis represent different bacterial taxonomic information.
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types spanning 35 drug resistance classes within the human gut 
MAGs. Recent studies of the human gut microbiome have reported a 
link between antibiotic use and the prevalence of ARGs in the 
microbiome (Kim et  al., 2024). Consistent with these findings, 
we  observed that Bacillota_A and Actinomycetota harbored the 
greatest numbers of ARGs. We also detected ARGs in eight archaeal 
taxa, including Methanobacteriota (Figure  4A; 
Supplementary Table S11). Multidrug, glycopeptide, aminoglycoside, 
and tetracycline resistance genes were prevalent in the human 
intestine (Figure 4B). Among bacterial genera (considering only those 
represented by ≥ 5 genomes), Blautia_A, Faecalibacterium, and 
Gemmiger contained the highest numbers of ARGs per genome 
(Figure  4C). Multidrug resistance genes were the most abundant 
ARGs in the human gut, followed by tetracycline resistance genes. The 
high abundance of tetracycline resistance genes is of particular 
concern, given that tetracycline has been widely used to treat bacterial 
infections, including respiratory tract diseases. This widespread 

presence of tetracycline resistance genes may therefore have negative 
implications for human health.

Furthermore, all 3,882 MAGs contained five or more ARGs, 
indicating that ARGs are widespread throughout the human gut 
microbiome. Notably, we  identified an Escherichia coli strain 
(MAG1203) harboring 84 unique ARG types spanning 27 drug 
resistance classes (Supplementary Figure S6; Supplementary Table S12). 
This strain carried a broad array of resistance genes targeting 
multidrug antibiotics, peptide antibiotics, tetracyclines, glycopeptides, 
phosphonic acids, aminoglycosides, and fluoroquinolones. Given the 
well-documented pathogenicity of E. coli, this finding suggests that 
this strain may represent a potential drug-resistant superbug. In 
addition, we detected a substantial number of ARGs in MAG3398 
(Anaerostipes hadrus), MAG94 (Faecalibacterium duncaniae), and 
MAG147 (Anaerobutyricum hallii), species that are widely reported to 
exhibit probiotic properties (Supplementary Table S12). While the 
presence of these ARGs could potentially facilitate future isolation and 

FIGURE 4

Profiling of the antibiotic resistome in the human gut microbiome. (A) Heatmap of the ARG distribution. Color from blue to red represents an 
increasing number of ARG. Color bands at the top of the heatmap represents the resistance drug corresponding to each column of ARG. (B) Antibiotic 
resistance gene prediction and classification statistics chart. The vertical axis represents different phyla, while the horizontal axis shows the percentage 
distribution of ARG annotations to gene numbers. Different colored blocks within the bars correspond to different antibiotic classes. (C) Number of 
ARGs in MAGs at different taxonomic levels. The inner to outer portions represent the kingdom level to the genus level. The color represents different 
species in different taxonomic groups. (D) ARG gene count and drug class (ARG type) numbers of MAGs specific to human intestinal microbiota in 
different regions. The abscissa represents the 4 regions (Sichuan, Yunnan, Guizhou, and Jiangsu).
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culture of these strains, it also raises concerns regarding the possible 
adverse impacts of these resistance genes on the host gut microbiome.

We next performed pairwise comparisons of ARG profiles in 
gut-specific MAGs from populations across four Chinese provinces 
(Sichuan, Yunnan, Guizhou, and Jiangsu). Our analysis revealed that 
both the number of ARGs and the number of drug resistance classes 
were highest in samples from Jiangsu Province, with ARG abundance 
exceeding that observed in Sichuan, Yunnan, and Guizhou by more 
than twofold (Figure 4D; Supplementary Table S13). This pattern may 
reflect the fact that Jiangsu Province is economically developed, with 
high population mobility and more extensive use of antibiotics in both 
medical and agricultural settings. These factors likely contribute to the 
greater abundance and diversity of resistance genes observed. In 
contrast, although Sichuan and Yunnan differ in genetic backgrounds 
and environmental conditions, their socioeconomic factors and 
lifestyles  - including dietary habits and hygiene practices  - are 
relatively similar. In addition, there is a moderate degree of population 
movement and interaction between these regions. Resistance genes 
can disseminate across regions through interpersonal contact and 
transmission, which may explain the similar number and diversity of 
ARGs and drug resistance classes observed in the gut microbiomes of 
individuals from these provinces. Furthermore, the spread of ARGs 
can occur between different bacterial species through horizontal gene 
transfer, which may further exacerbate the growing challenge of 
antibiotic resistance.

3.6 Mobile genetic elements related to 
antibiotic resistance genes

The association between resistance genes and MGEs, such as 
plasmids and transposons, is a key factor in evaluating the potential 
for ARG dissemination within microbial communities. HGT, 
facilitated by MGEs, is the primary mechanism by which bacteria 
acquire ARGs. We employed Spearman analysis and linear regression 
analysis to evaluate the correlation between MGEs and ARGs. The 
results revealed a significant linear correlation between MGEs and 
ARGs (y = 0.3205x - 0.6511, R2 = 0.5959, p < 2.2e−16), indicating that 
the increase in MGEs may facilitate the dissemination of ARGs 
(Figure 5A). This correlation was further confirmed by a correlation 
heatmap (Supplementary Figure S7), which showed that among 
different types of MGEs, transposase exhibited significant positive 
correlations with Multidrug (Figure 5B). To investigate the potential 
mechanisms driving ARG dissemination across Sichuan, Yunnan, 
Guizhou, and Jiangsu provinces, we  characterized the number of 
MGEs present in the unique MAG populations from these four 
regions (Supplementary Table S13). Our analysis identified 3,559 
MGEs (Table S1) in gut microbiota representatives spanning the 
following taxa: 46 strains of Actinomycetota (7 species), 72 strains of 
Bacillota (12 species), 183 strains of Bacillota_A (41 species), 3 strains 
of Bacillota_B (1 species), 13 strains of Bacillota_C (3 species), 45 
strains of Bacteroidota (8 species), 25 strains of Cyanobacteriota (4 
species), 11 strains of Methanobacteriota (3 species), 3 strains of 
Patescibacteria (1 species), 22 strains of Pseudomonadota (2 species), 
and 6 strains of Verrucomicrobiota (2 species).

We identified five types of MGEs (comprising 30 subtypes): 
conjugative transfer proteins, integrases, recombinases, transposases, 
and transposons. The majority of MGEs (2,349 of 3,559) originated 

from Bacillota_A and Bacillota, which are known to play important 
roles in the gut microbiota of healthy adults (Do et  al., 2024). 
Recombinases (12 subtypes) and transposases (10 subtypes) were the 
predominant MGE types identified. The number of MGE subtypes 
varied among samples, with Jiangsu Province exhibiting a significantly 
higher total number of MGE subtypes compared to Yunnan Province. 
In the MAGs unique to samples from Jiangsu Province, we identified 
five types of MGEs spanning 24 subtypes. Transposases (7 subtypes) 
and recombinases (10 subtypes) were the predominant MGE types 
(Figure  5C). The major subtypes of integrases, transposases, and 
recombinases were integrase (site-specific), Tn3, and XerD (site-
specific tyrosine), respectively. We also identified both shared and 
unique MGEs among the unique MAG populations from the four 
provinces. Specifically, five unique MGE subtypes were detected in 
Jiangsu Province - Tn7_transposase_B (plasmid), transposase-like_
protein_B (plasmid), transposon_TnsA, transposon-related_protein, 
and XerD_subunit (tyrosine) - while two unique subtypes were found 
in Guizhou Province  - transposon_Tn21_modulator_protein 
(plasmid) and XerD (site-specific).

Previous studies have shown that the physical proximity of MGEs 
and ARGs (< 5.0 kb) can strongly promote HGT. To assess the 
potential for horizontal transfer of ARGs at the strain level, we further 
analyzed the distribution of MGEs in three Escherichia coli MAGs 
(MAG38, MAG2283, and MAG1203), each of which carried more 
than 100 ARGs (Supplementary Table S14). These three MAGs 
contained 6, 8, and 7 MGEs, respectively. Notably, transposase 
elements - found at multiple locations within each MAG - frequently 
co-occurred with various ARGs on the same contigs. For example, in 
MAG1203, we identified a gene cluster located within a 120 kb region 
of a single contig containing 13 ARGs and 4 MGEs, including 4 
transposases (Supplementary Figure S8). This finding suggests a high 
risk of horizontal ARG transfer facilitated by MGEs in these strains.

4 Discussion

The human gut microbiome is now recognized as a complex 
ecosystem that plays a vital role in human health and disease (Kawano-
Sugaya et al., 2024). Recent efforts have generated genome collections 
of human gut microbes based on MAGs, including the Unified 
Human Gut Genome (UHGG) (Almeida et al., 2021) and HumGut 
(Hiseni et al., 2021). However, these collections typically use only a 
single representative genome per species, which can lead to substantial 
gene loss. Moreover, even genomes of the same microorganism can 
vary significantly when isolated from different environments (Zheng 
et  al., 2024). Recent studies have greatly expanded the catalog of 
known species within the human gut. Three independent efforts have 
reconstructed between 60,000 and 150,000 MAGs from public human 
microbiome datasets, with the majority representing species that lack 
cultured representatives (Almeida et al., 2019; Nayfach et al., 2019; 
Pasolli et al., 2019). Pasolli et al. (2019) assembled over 153,000 high- 
and medium-quality draft genomes from metagenomic samples, 
demonstrating the capability of high-throughput metagenomic 
genome mining. Their research mainly focused on the extensive 
diversity of the human microbiome across different ages, geographical 
regions, and lifestyles. Almeida et  al. (2021) presented a unified 
catalog containing 204,938 reference genomes of the human gut 
microbiome, aiming to comprehensively document the genomes of 
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the human gut microbiome. Integrating these independent resources 
into a unified, non-redundant human gut genome dataset is essential 
for advancing future microbiome research. Both of these studies took 
the gut microbiomes of populations from multiple global regions as 
research objects, constructed large-scale genomic collections (such as 
the UHGG database), but focused more on the large-scale 
construction of metagenomic resources and the analysis of common 
characteristics across populations. In contrast, we  systematically 
characterized the antibiotic resistome of gut microbiomes from 
populations in four Chinese provinces (Sichuan, Yunnan, Guizhou, 
and Jiangsu) through metagenomic sequencing and MAG-based 
analysis. We focused on regional-specific differences and, through 
comparative analysis of populations with significant differences in 
geographical isolation, dietary cultures, and medical practices, 
revealed the structural features of the gut microbial communities, 
mapped the distribution patterns of ARGs, and elucidated resistance 

transmission mechanisms mediated by MGEs. These findings provide 
new insights into the regional heterogeneity of human gut resistomes.

We observed significant differences in gut microbial community 
structures among individuals from different provinces. Previous 
studies have shown that unifying human gut genomes - including both 
MAGs and isolate genomes  - provides valuable insights into the 
richness, diversity, and cultivability of the gut microbiome across 
multiple taxonomic and functional levels (Almeida et al., 2021). Using 
the assembled genomes to analyze gut microbiome functions, 
we found that although Bacillota_A and Actinomycetota were the 
dominant phyla, their relative abundances and species compositions 
varied markedly across regions. For example, the Jiangsu population 
exhibited significantly higher relative abundances of MAG1723 and 
MAG1866 (Bifidobacterium adolescentis) compared to populations 
from southwestern regions (Yunnan and Sichuan). In contrast, 
MAG3448 (Enterococcu_D caeliflavu) and MAG1837 (Clostridium 

FIGURE 5

The correlation between ARGs and MGEs. (A) The overall correlation between ARGs and MGEs in 119 human fecal samples. (B) Relevant heat maps of 
Antibiotic class and MGEs. (C) Classification results of MGEs in unique MAGs of the Jiangsu province. The x-axis represents the genome MAG IDs, while 
the y-axis shows the MGEs. The red legend “Presence” indicates the annotation of MGEs, and the light purple legend “Absence” indicates no annotation 
of MGEs. Different colored blocks in the y-axis clustering tree represent different MGE types.
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p900540255) were specifically enriched in samples from Guizhou. 
These regional differences likely reflect a combination of factors, 
including geographic environment, dietary habits, lifestyle, and 
patterns of antibiotic use. COG functional classification revealed that 
human gut microbial genomes are broadly distributed across 
numerous biological functions. These span basic cellular processes - 
such as transcription, translation, and energy metabolism - as well as 
functions related to environmental adaptation and host interactions, 
including secondary metabolite synthesis and ion transport. KEGG 
functional annotation further revealed the specific roles of genes 
within metabolic pathways and functional modules, demonstrating 
that gut microbes form complex metabolic networks and collaborative 
mechanisms in amino acid metabolism, carbohydrate metabolism, 
energy metabolism, and global overview maps. These functional 
annotation results not only offer important insights for in-depth 
investigations of the metabolic characteristics of human MAGs, but 
also establish a foundation for understanding the interactions between 
gut microbes and their hosts, as well as the mechanisms underlying 
gut health and disease. We also identified a large number of resistance 
genes and virulence factors, whose types, quantities, and distribution 
patterns varied among individuals and were closely linked to host and 
environmental factors. The presence of these resistance genes may 
pose significant public health risks. Future studies should integrate 
experimental validation with advanced bioinformatics analyses to 
further elucidate the actual roles and regulatory mechanisms of these 
functional genes, thereby providing a theoretical basis for developing 
gut microbiome-based health intervention strategies.

Our findings confirm the presence of multiple ARGs within the 
gut microbiota, which are unevenly distributed across bacterial taxa 
and among individuals. The widespread occurrence of multidrug 
resistance genes may complicate the treatment of intestinal 
infections and further threaten public health. This study revealed 
significant differences in ARG resistance levels to commonly used 
antibiotics between the Jiangsu and Sichuan/Yunnan regions, clearly 
reflecting regional patterns of antibiotic use. Our ARG analysis 
showed that both the number of ARGs and the number of drug 
classes (ARG types) were highest in Jiangsu Province. The ARG 
count in Jiangsu was more than double that observed in Sichuan, 
Yunnan, and Guizhou. This disparity may be linked to the higher 
annual usage of antibiotics, such as tetracyclines and glycopeptides, 
in medical prescriptions in Jiangsu compared to the southwestern 
provinces. Variations in medical standards, the scale of livestock 
industry development, and public awareness and habits regarding 
antibiotic use across regions likely contribute to the long-term 
exposure of gut microbes to different levels of antibiotic selective 
pressure, thereby shaping distinct microbial community structures 
and resistomes. These findings underscore the need to carefully 
consider regional factors when studying the gut microbiome and 
provide a foundation for developing region-specific public health 
strategies. MGEs, such as plasmids and bacteriophages, can transfer 
between bacterial hosts and often serve as vectors for ARGs, thereby 
facilitating antimicrobial resistance in bacteria (Brito, 2021; McInnes 
et  al., 2020). In this study, we  identified various types of MGEs 
within MAGs unique to Jiangsu province samples, with transposases 
and recombinases being the most prevalent. These MGEs can 
mediate the horizontal transfer of ARGs between different bacterial 
species, accelerating the spread of resistance genes within the gut 
microbial community. Variations in the diversity and abundance of 
MGEs may contribute to the uneven distribution of ARGs across 

regions and individuals. Moreover, the presence of MGEs may drive 
the rapid evolution and adaptation of microbes under antibiotic 
pressure, further intensifying the challenge of antibiotic resistance. 
Therefore, intervention strategies targeting MGEs could represent a 
promising approach to controlling the spread of antibiotic resistance. 
Such strategies may include the development of novel drugs or 
biological agents that inhibit MGE activity or block their 
transfer pathways.

However, this study has certain limitations. First, the samples 
were collected from only four provinces in China. Although these 
regions encompass diverse geographical areas and living 
environments, they may not fully capture global microbial diversity. 
Future studies should broaden sampling efforts to include additional 
regions and populations to achieve a more comprehensive 
understanding of the gut microbiome antibiotic resistome. Second, 
we primarily focused on the functional annotation of MAGs unique 
to each province. Further research should investigate the specific 
functions of ARGs and MGEs within provincial MAGs and their 
effects on host health. Additionally, this study did not extensively 
examine the complex interactions between host factors - such as age, 
gender, and underlying health conditions - and the gut microbiome 
antibiotic resistome. In future research, we can combine multi-omics 
techniques such as single-cell transcriptomics (Leng et  al., 2024; 
Wang et al., 2024a; Wang et al., 2025) to explore the relationship 
between the metagenome, its resistance genes, and the 
host phenotype.

To sum up, the extensive application of MAGs from human fecal 
samples can greatly enhance our understanding of the human gut 
microbiome. From a public health perspective, comprehensive 
analyses of the microbiome, mobilome, and resistome offer valuable 
strategies to address the escalating challenge of antimicrobial 
resistance (Baquero et al., 2019; Djordjevic et al., 2024). Given the 
observed spread of antimicrobial resistance across different provinces, 
it is essential to understand the reservoirs and transmission pathways 
of ARGs (Fredriksen et al., 2023; Kawano-Sugaya et al., 2024). Our 
study provides an exhaustive reference genomic dataset for the human 
gut microbiota and underscores the complex interactions between the 
host and the gut microbiome. Future research should address current 
limitations, further investigate the mechanisms underlying the 
formation and regulation of antibiotic resistance within the intestinal 
microbiome, and develop more effective strategies to protect public 
health and combat antibiotic resistance.
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